101
|
Polireddy K, Chen Q. Cancer of the Pancreas: Molecular Pathways and Current Advancement in Treatment. J Cancer 2016; 7:1497-514. [PMID: 27471566 PMCID: PMC4964134 DOI: 10.7150/jca.14922] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most lethal cancers among all malignances, with a median overall survival of <1 year and a 5-year survival of ~5%. The dismal survival rate and prognosis are likely due to lack of early diagnosis, fulminant disease course, high metastasis rate, and disappointing treatment outcome. Pancreatic cancers harbor a variety of genetic alternations that render it difficult to treat even with targeted therapy. Recent studies revealed that pancreatic cancers are highly enriched with a cancer stem cell (CSC) population, which is resistant to chemotherapeutic drugs, and therefore escapes chemotherapy and promotes tumor recurrence. Cancer cell epithelial to mesenchymal transition (EMT) is highly associated with metastasis, generation of CSCs, and treatment resistance in pancreatic cancer. Reviewed here are the molecular biology of pancreatic cancer, the major signaling pathways regulating pancreatic cancer EMT and CSCs, and the advancement in current clinical and experimental treatments for pancreatic cancer.
Collapse
Affiliation(s)
- Kishore Polireddy
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, USA 66160
| | - Qi Chen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, USA 66160
| |
Collapse
|
102
|
Aslani S, Jafari N, Javan MR, Karami J, Ahmadi M, Jafarnejad M. Epigenetic Modifications and Therapy in Multiple Sclerosis. Neuromolecular Med 2016; 19:11-23. [PMID: 27382982 DOI: 10.1007/s12017-016-8422-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/30/2016] [Indexed: 01/03/2023]
Abstract
Breakthroughs in genetic studies, like whole human genome sequencing and genome-wide association studies (GWAS), have richened our knowledge of etiopathology of autoimmune diseases (AID) through discovery of genetic patterns. Nonetheless, the precise etiology of autoimmune diseases remains largely unknown. The lack of complete concordance of autoimmune disease in identical twins suggests that non-genetic factors also play a major role in determining disease susceptibility. Although there is no certain definition, epigenetics has been known as heritable alterations in gene function without changes in the nucleotide sequence. DNA methylation, histone modifications, and microRNA-associated gene expression suppression are the central mechanisms for epigenetic regulations. Multiple sclerosis (MS) is a disorder of the central nervous system (CNS), characterized by both inflammatory and neurodegenerative features. Although studies on epigenetic alterations in MS only began in the past decade, a mounting number of surveys suggest that epigenetic changes may be involved in the initiation and development of MS, probably through bridging the effects of environmental risk factors to genetics. Arming with clear understanding of epigenetic dysregulations underpins development of epigenetic therapies. Identifying agents inhibiting the enzymes controlling epigenetic modifications, particularly DNA methyltransferases and histone deacetylases, will be promising therapeutic tool toward MS. In the article underway, it is aimed to go through the recent progresses, attempting to disclose how epigenetics associates with the pathogenesis of MS and how can be used as therapeutic approach.
Collapse
Affiliation(s)
- Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Jafari
- Markey Cancer Center, University of Kentucky, 741 South Limestone St. Biomedical Biological Research Building (BBSRB), 378D, Lexington, KY, 40506, USA.
| | - Mohammad Reza Javan
- Department of Immunology, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Jafar Karami
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Ahmadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Jafarnejad
- Department of Pharmacology, School of Medicine, Ardabil University of Medical Science, Ardabil, Iran
| |
Collapse
|
103
|
Jazi MS, Mohammadi S, Yazdani Y, Sedighi S, Memarian A, Aghaei M. Effects of valproic acid and pioglitazone on cell cycle progression and proliferation of T-cell acute lymphoblastic leukemia Jurkat cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:779-786. [PMID: 27635203 PMCID: PMC5010851 DOI: pmid/27635203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 04/28/2016] [Indexed: 02/08/2023]
Abstract
OBJECTIVES T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignant tumor. Administration of chemical compounds influencing apoptosis and T cell development has been discussed as promising novel therapeutic strategies. Valproic acid (VPA) as a recently emerged anti-neoplastic histone deacetylase (HDAC) inhibitor and pioglitazone (PGZ) as a high-affinity peroxisome proliferator-activated receptor-gamma (PPARγ) agonist have been shown to induce apoptosis and cell cycle arrest in different studies. Here, we aimed to investigate the underlying molecular mechanisms involved in anti-proliferative effects of these compounds on human Jurkat cells. MATERIALS AND METHODS Treated cells were evaluated for cell cycle progression and apoptosis using flowcytometry and MTT viability assay. Real-time RT-PCR was carried out to measure the alterations in key genes associated with cell death and cell cycle arrest. RESULTS Our findings illustrated that both VPA and PGZ can inhibit Jurkat E6.1 cells in vitro after 24 hr; however, PGZ 400 μM presents the most anti-proliferative effect. Interestingly, treated cells have been arrested in G2/M with deregulated cell division cycle 25A (Cdc25A) phosphatase and cyclin-dependent kinase inhibitor 1B (CDKN1B or p27) expression. Expression of cyclin D1 gene was inhibited when DNA synthesis entry was declined. Cell cycle deregulation in PGZ and VPA-exposed cells generated an increase in the proportion of aneuploid cell population, which has not reported before. CONCLUSION These findings define that anti-proliferative effects of PGZ and VPA on Jurkat cell line are mediated by cell cycle deregulation. Thus, we suggest PGZ and VPA may relieve potential therapeutic application against apoptosis-resistant malignancies.
Collapse
Affiliation(s)
- Marie Saghaeian Jazi
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Saeed Mohammadi
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Yaghoub Yazdani
- Infectious Diseases Research Center and Laboratory Science Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sima Sedighi
- Joint, Bone, and Connective tissue Research Center (JBCRC), Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Memarian
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrdad Aghaei
- Joint, Bone, and Connective tissue Research Center (JBCRC), Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
104
|
Chiu HW, Yeh YL, Wang YC, Huang WJ, Ho SY, Lin P, Wang YJ. Combination of the novel histone deacetylase inhibitor YCW1 and radiation induces autophagic cell death through the downregulation of BNIP3 in triple-negative breast cancer cells in vitro and in an orthotopic mouse model. Mol Cancer 2016; 15:46. [PMID: 27286975 PMCID: PMC4902929 DOI: 10.1186/s12943-016-0531-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 05/31/2016] [Indexed: 12/31/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is the most aggressive and invasive of the breast cancer subtypes. TNBC is a challenging disease that lacks targets for treatment. Histone deacetylase inhibitors (HDACi) are a group of targeted anticancer agents that enhance radiosensitivity. Bcl-2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) is a member of the Bcl-2 subfamily. BNIP3 is not found in normal breast tissue but is up-regulated in breast cancer. In the present study, we investigated the anti-cancer effects of a newly developed HDACi, YCW1, combined with ionizing radiation (IR) in TNBC in vitro and in an orthotopic mouse model. Furthermore, we examined the relationship between autophagy and BNIP3. Methods Trypan blue exclusion was used to investigate the viability of 4 T1 (a mouse TNBC cell line) and MDA-MB-231 cells (a human TNBC cell line) following combined YCW1 and IR treatment. Flow cytometry was used to determine apoptosis and autophagy. The expression levels of BNIP3, endoplasmic reticulum (ER) stress- and autophagic-related proteins were measured using western blot analysis. An orthotopic mouse model was used to investigate the in vivo effects of YCW1 and IR alone and in combination. Tumor volumes were monitored using a bioluminescence-based IVIS Imaging System 200. Results We found that YCW1 significantly enhanced toxicity in 4 T1 cells compared with suberoylanilide hydroxamic acid (SAHA), which was the first HDACi approved by the Food and Drug Administration for clinical use in cancer patients. The combined treatment of YCW1 and IR enhanced cytotoxicity by inducing ER stress and increasing autophagy induction. Additionally, the combined treatment caused autophagic flux and autophagic cell death. Furthermore, the expression level of BNIP3 was significantly decreased in cells following combined treatment. The downregulation of BNIP3 led to a significant increase in autophagy and cytotoxicity. The combined anti-tumor effects of YCW1 and IR were also observed in an orthotopic mouse model; combination therapy resulted in a significant increase in autophagy and decreased tumor tissue expression of BNIP3 in the tumor tissue. Conclusions These data support the possibility of using a combination of HDACi and IR in the treatment of TNBC. Moreover, BNIP3 may be a potential target protein for TNBC treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0531-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui-Wen Chiu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ya-Ling Yeh
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, Taiwan, 704
| | - Yi-Ching Wang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacology, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Jan Huang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Yow Ho
- Department of Radiation Oncology, Chi Mei Medical Center, Liouying, Tainan, Taiwan.,Chang Jung Christian University, Tainan, Taiwan
| | - Pinpin Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, No. 35 Keyan Road, Zhunan Town, Miaoli County, 350, Taiwan.
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, Taiwan, 704. .,Department of Biomedical Informatics, Asia University, Taichung, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
105
|
The Metabolic Impact on Histone Acetylation and Transcription in Ageing. Trends Biochem Sci 2016; 41:700-711. [PMID: 27283514 DOI: 10.1016/j.tibs.2016.05.008] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/09/2016] [Accepted: 05/13/2016] [Indexed: 12/13/2022]
Abstract
Loss of cellular homeostasis during aging results in altered tissue functions and leads to a general decline in fitness and, ultimately, death. As animals age, the control of gene expression, which is orchestrated by multiple epigenetic factors, degenerates. In parallel, metabolic activity and mitochondrial protein acetylation levels also change. These two hallmarks of aging are effectively linked through the accumulating evidence that histone acetylation patterns are susceptible to alterations in key metabolites such as acetyl-CoA and NAD(+), allowing chromatin to function as a sensor of cellular metabolism. In this review we discuss experimental data supporting these connections and provide a context for the possible medical and physiological relevance.
Collapse
|
106
|
Frequent mutations in acetylation and ubiquitination sites suggest novel driver mechanisms of cancer. Genome Med 2016; 8:55. [PMID: 27175787 PMCID: PMC4864925 DOI: 10.1186/s13073-016-0311-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 04/19/2016] [Indexed: 12/14/2022] Open
Abstract
Background Discovery of cancer drivers is a major goal of cancer research. Driver genes and pathways are often predicted using mutation frequency, assuming that statistically significant recurrence of specific somatic mutations across independent samples indicates their importance in cancer. However, many mutations, including known cancer drivers, are not observed at high frequency. Fortunately, abundant information is available about functional “active sites” in proteins that can be integrated with mutations to predict cancer driver genes, even based on low frequency mutations. Further, considering active site information predicts detailed biochemical mechanisms impacted by the mutations. Post-translational modifications (PTMs) are active sites that are regulatory switches in proteins and pathways. We analyzed acetylation and ubiquitination, two important PTM types often involved in chromatin organization and protein degradation, to find proteins that are significantly affected by tumor somatic mutations. Methods We performed computational analyses of acetylation and ubiquitination sites in a pan-cancer dataset of 3200 tumor samples from The Cancer Genome Atlas (TCGA). These analyses were targeted at different levels of biological organization including individual genes, pathway annotated gene sets, and protein-protein interaction networks. Results Acetylation and ubiquitination site mutations are enriched in cancer with significantly stronger evolutionary conservation and accumulation in protein domains. Gene-focused analysis with the ActiveDriver method reveals significant co-occurrences of acetylation and ubiquitination PTMs and mutation hotspots in known oncoproteins (TP53, AKT1, IDH1) and highlights candidate cancer driver genes with PTM-related mechanisms (e.g. several histone proteins and the splicing factor SF3B1). Pathway analysis shows that PTM mutations in acetylation and ubiquitination sites accumulate in cancer-related processes such as cell cycle, apoptosis, chromatin regulation, and metabolism. Integrated mutation analysis of clinical information and protein interaction networks suggests that many PTM-specific mutations associate with decreased patient survival. Conclusions Mutation analysis of acetylation and ubiquitination PTM sites reveals their importance in cancer. As PTM networks are increasingly mapped and related enzymes are often druggable, deeper investigation of specific associated mutations may lead to the discovery of treatment-relevant cellular mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0311-2) contains supplementary material, which is available to authorized users.
Collapse
|
107
|
Li QQ, Hao JJ, Zhang Z, Hsu I, Liu Y, Tao Z, Lewi K, Metwalli AR, Agarwal PK. Histone deacetylase inhibitor-induced cell death in bladder cancer is associated with chromatin modification and modifying protein expression: A proteomic approach. Int J Oncol 2016; 48:2591-607. [PMID: 27082124 PMCID: PMC4864178 DOI: 10.3892/ijo.2016.3478] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 03/17/2016] [Indexed: 12/19/2022] Open
Abstract
The Cancer Genome Atlas (TCGA) project recently identified the importance of mutations in chromatin remodeling genes in human carcinomas. These findings imply that epigenetic modulators might have a therapeutic role in urothelial cancers. To exploit histone deacetylases (HDACs) as targets for cancer therapy, we investigated the HDAC inhibitors (HDACIs) romidepsin, trichostatin A, and vorinostat as potential chemotherapeutic agents for bladder cancer. We demonstrate that the three HDACIs suppressed cell growth and induced cell death in the bladder cancer cell line 5637. To identify potential mechanisms associated with the anti-proliferative and cytotoxic effects of the HDACIs, we used quantitative proteomics to determine the proteins potentially involved in these processes. Our proteome studies identified a total of 6003 unique proteins. Of these, 2472 proteins were upregulated and 2049 proteins were downregulated in response to HDACI exposure compared to the untreated controls (P<0.05). Bioinformatic analysis further revealed that those differentially expressed proteins were involved in multiple biological functions and enzyme-regulated pathways, including cell cycle progression, apoptosis, autophagy, free radical generation and DNA damage repair. HDACIs also altered the acetylation status of histones and non-histone proteins, as well as the levels of chromatin modification proteins, suggesting that HDACIs exert multiple cytotoxic actions in bladder cancer cells by inhibiting HDAC activity or altering the structure of chromatin. We conclude that HDACIs are effective in the inhibition of cell proliferation and the induction of apoptosis in the 5637 bladder cancer cells through multiple cell death-associated pathways. These observations support the notion that HDACIs provide new therapeutic options for bladder cancer treatment and thus warrant further preclinical exploration.
Collapse
Affiliation(s)
- Qingdi Quentin Li
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Zheng Zhang
- Poochon Scientific, Frederick, MD 21704, USA
| | - Iawen Hsu
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yi Liu
- Poochon Scientific, Frederick, MD 21704, USA
| | - Zhen Tao
- Poochon Scientific, Frederick, MD 21704, USA
| | - Keidren Lewi
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam R Metwalli
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Piyush K Agarwal
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
108
|
Shen L, Orillion A, Pili R. Histone deacetylase inhibitors as immunomodulators in cancer therapeutics. Epigenomics 2016; 8:415-28. [PMID: 26950532 DOI: 10.2217/epi.15.118] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
HDAC inhibitors (HDACIs) are anticancer agents being developed in preclinical and clinical settings due to their capacity to modulate gene expression involved in cell growth, differentiation and apoptosis, through modification of both chromatin histone and nonhistone proteins. Most HDACIs in clinical development have cytotoxic or cytostatic properties and their direct inhibitory effects on tumor cells are well documented. Numerous studies have revealed that HDACIs have potent immunomodulatory activity in tumor-bearing animals and cancer patients, providing guidance to apply these agents in cancer immunotherapies. Here, we summarize recent reports addressing the effects of HDACIs on tumor cell immunogenicity, and on different components of the host immune system. In addition, we discuss the complexity of the immunomodulatory activity of these agents, which depends on the class specificity of the HDACIs, different experimental settings and the target immune cell populations.
Collapse
Affiliation(s)
- Li Shen
- Genitourinary Program, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Ashley Orillion
- Genitourinary Program, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA.,Genitourinary Program, Indiana University Melvin & Bren Simon Cancer Center, Indianapolis, IN, 46202, USA
| | - Roberto Pili
- Genitourinary Program, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA.,Genitourinary Program, Indiana University Melvin & Bren Simon Cancer Center, Indianapolis, IN, 46202, USA
| |
Collapse
|
109
|
Hronek J, Reed M. Nursing Roles in Cardiac Safety: Romidepsin in Patients With T-Cell Lymphoma. Oncol Nurs Forum 2016; 43:227-34. [DOI: 10.1188/16.onf.227-234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
110
|
Abstract
Aberrant DNA methylation is a characteristic feature of cancer including blood malignancies. Mutations in the DNA methylation regulators DNMT3A, TET1/2 and IDH1/2 are recurrent in leukemia and lymphoma. Specific and distinct DNA methylation patterns characterize subtypes of AML and lymphoma. Regulatory regions such as promoter CpG islands, CpG shores and enhancers show changes in methylation during transformation. However, the reported poor correlation between changes in methylation and gene expression in many mouse models and human studies reflects the complexity in the precise molecular mechanism for why aberrant DNA methylation promotes malignancies. This review will summarize current concepts regarding the mechanisms behind aberrant DNA methylation in hematopoietic malignancy and discuss its importance in cancer prognosis, tumor heterogeneity and relapse.
Collapse
Affiliation(s)
- Maria Guillamot
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY, 10016, USA
| | - Luisa Cimmino
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY, 10016, USA
| | - Iannis Aifantis
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
111
|
Niavarani A, Herold T, Reyal Y, Sauerland MC, Buchner T, Hiddemann W, Bohlander SK, Valk PJM, Bonnet D. A 4-gene expression score associated with high levels of Wilms Tumor-1 (WT1) expression is an adverse prognostic factor in acute myeloid leukaemia. Br J Haematol 2016; 172:401-11. [PMID: 26597595 PMCID: PMC4833185 DOI: 10.1111/bjh.13836] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/22/2015] [Indexed: 11/29/2022]
Abstract
Wilms Tumor-1 (WT1) expression level is implicated in the prognosis of acute myeloid leukaemia (AML). We hypothesized that a gene expression profile associated with WT1 expression levels might be a good surrogate marker. We identified high WT1 gene sets by comparing the gene expression profiles in the highest and lowest quartiles of WT1 expression in two large AML studies. Two high WT1 gene sets were found to be highly correlated in terms of the altered genes and expression profiles. We identified a 17-probe set signature of the high WT1 set as the optimal prognostic predictor in the first AML set, and showed that it was able to predict prognosis in the second AML series after adjustment for European LeukaemiaNet genetic groups. The gene signature also proved to be of prognostic value in a third AML series of 163 samples assessed by RNA sequencing, demonstrating its cross-platform consistency. This led us to derive a 4-gene expression score, which faithfully predicted adverse outcome. In conclusion, a short gene signature associated with high WT1 expression levels and the resultant 4-gene expression score were found to be predictive of adverse prognosis in AML. This study provides new clues to the molecular pathways underlying high WT1 states in leukaemia.
Collapse
Affiliation(s)
- Ahmadreza Niavarani
- Digestive Oncology Research CenterDigestive Disease Research Institute (DDRI)Shariati HospitalTehran University of Medical SciencesTehranIran
- Haematopoietic Stem Cell LaboratoryLondon Research InstituteCancer Research UKLondonUnited Kingdom
| | - Tobias Herold
- Department of Internal Medicine 3University Hospital GrosshadernLudwig‐Maximilians‐UniversitätMunichGermany
| | - Yasmin Reyal
- Department of HaematologyUniversity College London Hospitals NHS TrustLondonUK
| | - Maria C. Sauerland
- Institute of Biostatistics and Clinical ResearchUniversity of MünsterMünsterGermany
- Department of Medicine A ‐ Haematology, Oncology and PneumologyUniversity of MünsterMünsterGermany
| | - Thomas Buchner
- Department of Molecular Medicine and PathologyThe University of AucklandAucklandNew Zealand
| | - Wolfgang Hiddemann
- Department of Internal Medicine 3University Hospital GrosshadernLudwig‐Maximilians‐UniversitätMunichGermany
| | - Stefan K. Bohlander
- Department of Molecular Medicine and PathologyThe University of AucklandAucklandNew Zealand
| | - Peter J. M. Valk
- Department of HaematologyErasmus University Medical Centre Cancer InstituteRotterdamthe Netherlands
| | - Dominique Bonnet
- Haematopoietic Stem Cell LaboratoryLondon Research InstituteCancer Research UKLondonUnited Kingdom
| |
Collapse
|
112
|
Aslani S, Mahmoudi M, Karami J, Jamshidi AR, Malekshahi Z, Nicknam MH. Epigenetic alterations underlying autoimmune diseases. Autoimmunity 2016; 49:69-83. [DOI: 10.3109/08916934.2015.1134511] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
113
|
Cang S, Xu X, Ma Y, Liu D, Chiao JW. Hypoacetylation, hypomethylation, and dephosphorylation of H2B histones and excessive histone deacetylase activity in DU-145 prostate cancer cells. J Hematol Oncol 2016; 9:3. [PMID: 26759222 PMCID: PMC4709959 DOI: 10.1186/s13045-016-0233-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/04/2016] [Indexed: 12/31/2022] Open
Abstract
Background Hypoacetylation on histone H3 of human prostate cancer cells has been described. Little is known about the modifications of other histones from prostate cancer cells. Methods Histones were isolated from the prostate cancer cell line DU-145 and the non-malignant prostatic cell line RC170N/h. Post-translational modifications of histone H2B were determined by liquid chromatography-mass spectrometry (LC-MS)/MS. Results The histone H2B of the prostate cancer cell line DU-145 was found to have hypoacetylation, hypomethylation, and dephosphorylation as compared to the non-malignant prostatic cell line RC170N/h. H2B regained acetylation on multiple lysine residues, phosphorylation on Thr19, and methylation on Lys23 and Lys43 in the DU-145 cells after sodium butyrate treatment. Conclusions The histone H2B of DU-145 prostate cancer cells are hypoacetylated, hypomethylated, and dephosphorylated. Histone deacetylase inhibitor reversed this phenotype. Epigenetic agent may therefore be useful for prostate cancer therapy and worth further investigation. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0233-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shundong Cang
- Department of Oncology, The People's Hospital of Henan Province, Zhengzhou, Henan, 450052, China.,Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA
| | - Xiaobin Xu
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, 02118, USA.,Present address: Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Yuehua Ma
- Department of Oncology, The People's Hospital of Henan Province, Zhengzhou, Henan, 450052, China.,Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA
| | - Delong Liu
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA.
| | - J W Chiao
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA.
| |
Collapse
|
114
|
The Therapeutic Potential of AN-7, a Novel Histone Deacetylase Inhibitor, for Treatment of Mycosis Fungoides/Sezary Syndrome Alone or with Doxorubicin. PLoS One 2016; 11:e0146115. [PMID: 26752418 PMCID: PMC4709199 DOI: 10.1371/journal.pone.0146115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/13/2015] [Indexed: 12/12/2022] Open
Abstract
The 2 histone deacetylase inhibitors (HDACIs) approved for the treatment of cutaneous T-cell lymphoma (CTCL) including mycosis fungoides/sezary syndrome (MF/SS), suberoylanilide hydroxamic acid (SAHA) and romidepsin, are associated with low rates of overall response and high rates of adverse effects. Data regarding combination treatments with HDACIs is sparse. Butyroyloxymethyl diethylphosphate (AN-7) is a novel HDACI, which was found to have selective anticancer activity in several cell lines and animal models. The aim of this study was to compare the anticancer effects of AN-7 and SAHA, either alone or combined with doxorubicin, on MF/SS cell lines and peripheral blood lymphocytes (PBL) from patients with Sezary syndrome (SPBL). MyLa cells, Hut78 cells, SPBL, and PBL from healthy normal individuals (NPBL) were exposed to the test drugs, and the findings were analyzed by a viability assay, an apoptosis assay, and Western blot. AN-7 was more selectively toxic to MyLa cells, Hut78 cells, and SPBL (relative to NPBL) than SAHA and also acted more rapidly. Both drugs induced apoptosis in MF/SS cell lines, SAHA had a greater effect on MyLa cell line, while AN-7 induced greater apoptosis in SPBL; both caused an accumulation of acetylated histone H3, but AN-7 was associated with earlier kinetics; and both caused a downregulation of the HDAC1 protein in MF/SS cell lines. AN-7 acted synergistically with doxorubicin in both MF/SS cell lines and SPBL, and antagonistically with doxorubicin in NPBL. By contrast, SAHA acted antagonistically with doxorubicin on MF/SS cell lines, SPBL, and NPBL, leaving <50% viable cells. In conclusion, AN-7 holds promise as a therapeutic agent in MF/SS and has several advantages over SAHA. Our data provide a rationale for combining AN-7, but not SAHA, with doxorubicin to induce the cell death in MF/SS.
Collapse
|
115
|
Ellert-Miklaszewska A, Dallavalle S, Musso L, Martinet N, Wojnicki K, Kaminska B. Identification of new scaffolds with anti-tumor action toward human glioblastoma cells. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00477f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Compounds containing an isothiazolonaphthoquinone core and HDAC inhibitors with an indolyl-substituted biphenyl-4-yl-acrylohydroxamic acid are promising drug candidates against malignant brain tumors, glioblastomas.
Collapse
Affiliation(s)
- Aleksandra Ellert-Miklaszewska
- Laboratory of Molecular Biology
- Neurobiology Center
- The Nencki Institute of Experimental Biology of Polish Academy of Sciences
- 02-093 Warsaw
- Poland
| | - Sabrina Dallavalle
- Department of Food
- Environmental and Nutritional Sciences
- Division of Chemistry and Molecular Biology
- 20133 Milan
- Italy
| | - Loana Musso
- Department of Food
- Environmental and Nutritional Sciences
- Division of Chemistry and Molecular Biology
- 20133 Milan
- Italy
| | - Nadine Martinet
- CNRS UMR 7272
- Institut de Chimie
- Université de Nice-Sophia Antipolis
- Nice
- France
| | - Kamil Wojnicki
- Laboratory of Molecular Biology
- Neurobiology Center
- The Nencki Institute of Experimental Biology of Polish Academy of Sciences
- 02-093 Warsaw
- Poland
| | - Bozena Kaminska
- Laboratory of Molecular Biology
- Neurobiology Center
- The Nencki Institute of Experimental Biology of Polish Academy of Sciences
- 02-093 Warsaw
- Poland
| |
Collapse
|
116
|
Takada M, Fujimoto M, Motomura H, Hosomi K. Inverse Association between Sodium Channel-Blocking Antiepileptic Drug Use and Cancer: Data Mining of Spontaneous Reporting and Claims Databases. Int J Med Sci 2016; 13:48-59. [PMID: 26816494 PMCID: PMC4716819 DOI: 10.7150/ijms.13834] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 11/27/2015] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Voltage-gated sodium channels (VGSCs) are drug targets for the treatment of epilepsy. Recently, a decreased risk of cancer associated with sodium channel-blocking antiepileptic drugs (AEDs) has become a research focus of interest. The purpose of this study was to test the hypothesis that the use of sodium channel-blocking AEDs are inversely associated with cancer, using different methodologies, algorithms, and databases. METHODS A total of 65,146,507 drug-reaction pairs from the first quarter of 2004 through the end of 2013 were downloaded from the US Food and Drug Administration Adverse Event Reporting System. The reporting odds ratio (ROR) and information component (IC) were used to detect an inverse association between AEDs and cancer. Upper limits of the 95% confidence interval (CI) of < 1 and < 0 for the ROR and IC, respectively, signified inverse associations. Furthermore, using a claims database, which contains 3 million insured persons, an event sequence symmetry analysis (ESSA) was performed to identify an inverse association between AEDs and cancer over the period of January 2005 to May 2014. The upper limit of the 95% CI of adjusted sequence ratio (ASR) < 1 signified an inverse association. RESULTS In the FAERS database analyses, significant inverse associations were found between sodium channel-blocking AEDs and individual cancers. In the claims database analyses, sodium channel-blocking AED use was inversely associated with diagnoses of colorectal cancer, lung cancer, gastric cancer, and hematological malignancies, with ASRs of 0.72 (95% CI: 0.60 - 0.86), 0.65 (0.51 - 0.81), 0.80 (0.65 - 0.98), and 0.50 (0.37 - 0.66), respectively. Positive associations between sodium channel-blocking AEDs and cancer were not found in the study. CONCLUSION Multi-methodological approaches using different methodologies, algorithms, and databases suggest that sodium channel-blocking AED use is inversely associated with colorectal cancer, lung cancer, gastric cancer, and hematological malignancies.
Collapse
Affiliation(s)
- Mitsutaka Takada
- Division of Clinical Drug Informatics, School of Pharmacy, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Mai Fujimoto
- Division of Clinical Drug Informatics, School of Pharmacy, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Haruka Motomura
- Division of Clinical Drug Informatics, School of Pharmacy, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Kouichi Hosomi
- Division of Clinical Drug Informatics, School of Pharmacy, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| |
Collapse
|
117
|
Treating Colon Cancer Cells with FK228 Reveals a Link between Histone Lysine Acetylation and Extensive Changes in the Cellular Proteome. Sci Rep 2015; 5:18443. [PMID: 26675280 PMCID: PMC4682073 DOI: 10.1038/srep18443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/18/2015] [Indexed: 01/17/2023] Open
Abstract
The therapeutic value of FK228 as a cancer treatment option is well known, and various types of cancer have been shown to respond to this drug. However, the complete mechanism of FK228 and the affect it has on histone lysine acetylation and the colon cancer cell proteome are largely unknown. In the present study, we used stable isotope labeling by amino acids in cell culture (SILAC) and affinity enrichment followed by high-resolution liquid chromatograph-mass spectrometer (LC-MS)/MS analysis to quantitate the changes in the lysine acetylome in HCT-8 cells after FK228 treatment. A total of 1,194 lysine acetylation sites in 751 proteins were quantified, with 115 of the sites in 85 proteins being significantly upregulated and 38 of the sites in 32 proteins being significantly downregulated in response to FK228 treatment. Interestingly, 47 histone lysine acetylation sites were identified in the core histone proteins. We also found a novel lysine acetylation site on H2BK121. These significantly altered proteins are involved in multiple biological functions as well as a myriad of metabolic and enzyme-regulated pathways. Taken together, the link between FK228 function and the downstream changes in the HCT-8 cell proteome observed in response to FK228 treatment is established.
Collapse
|
118
|
Ling Y, Xu C, Luo L, Cao J, Feng J, Xue Y, Zhu Q, Ju C, Li F, Zhang Y, Zhang Y, Ling X. Novel β-Carboline/Hydroxamic Acid Hybrids Targeting Both Histone Deacetylase and DNA Display High Anticancer Activity via Regulation of the p53 Signaling Pathway. J Med Chem 2015; 58:9214-27. [PMID: 26555243 DOI: 10.1021/acs.jmedchem.5b01052] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel series of hybrids from β-carboline and hydroxamic acid were designed and synthesized. Several compounds (5m, 11b-d, and 11h) not only exerted significant antiproliferation activity against four human colorectal cancer (CRC) cell lines but also showed histone deacetylase inhibitory effects in vitro. The most potent compound, 11c, exhibited anticancer potency sevenfold higher than that of SAHA. 11c triggered more significant cancer cell apoptosis than did SAHA by cleavage of both PARP and caspase 3 in a dose-dependent manner. Furthermore, 11c simultaneously increased the acetylation of histone H3 and α-tubulin, enhanced expression of DNA damage markers histone H2AX phosphorylation and p-p53 (Ser15), and activated p53 signaling pathway in HCT116 cells. Finally, 11c showed low acute toxicity in mice and inhibited the growth of implanted human CRC in mice more potently than did SAHA. Together, 11c possessed potent antitumor activity and may be a promising candidate for the potential treatment of human CRC.
Collapse
Affiliation(s)
- Yong Ling
- State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, P.R. China
| | - Chenjun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, P.R. China
| | | | | | | | | | | | | | - Fengzhi Li
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute , Buffalo, New York, USA
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, P.R. China
| | | | - Xiang Ling
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute , Buffalo, New York, USA
| |
Collapse
|
119
|
Giaginis C, Damaskos C, Koutsounas I, Zizi-Serbetzoglou A, Tsoukalas N, Patsouris E, Kouraklis G, Theocharis S. Histone deacetylase (HDAC)-1, -2, -4 and -6 expression in human pancreatic adenocarcinoma: associations with clinicopathological parameters, tumor proliferative capacity and patients' survival. BMC Gastroenterol 2015; 15:148. [PMID: 26502922 PMCID: PMC4621854 DOI: 10.1186/s12876-015-0379-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/15/2015] [Indexed: 01/01/2023] Open
Abstract
Background Histone deacetylases (HDACs) have been associated with malignant tumor development and progression in humans. HDAC inhibitors (HDACIs) are currently being explored as anti-cancer agents in clinical trials. The present study aimed to evaluate the clinical significance of HDAC-1, −2, −4 and −6 protein expression in pancreatic adenocarcinoma. Methods HDAC-1, −2, −4 and −6 protein expression was assessed immunohistochemically on 70 pancreatic adenocarcinoma tissue specimens and was statistically analyzed with clinicopathological characteristics and patients’ survival. Results Enhanced HDAC-1 expression was significantly associated with increased tumor proliferative capacity (p = 0.0238) and borderline with the absence of lymph node metastases (p = 0.0632). Elevated HDAC-4 expression was significantly associated with the absence of organ metastases (p = 0.0453) and borderline with the absence of lymph node metastases (p = 0.0571) and tumor proliferative capacity (p = 0.0576). Enhanced HDAC-6 expression was significantly associated with earlier histopathological stage (p = 0.0115) and borderline with smaller tumor size (p = 0.0864). Pancreatic adenocarcinoma patients with enhanced HDAC-1 and −6 expression showed significantly longer survival times compared to those with low expression (p = 0.0022 and p = 0.0113, respectively), while a borderline association concerning HDAC-2 expression was noted (p = 0.0634). Conclusions The present study suggested that HDACs may be implicated in pancreatic malignant disease progression, being considered of clinical utility with potential use as therapeutic targets.
Collapse
Affiliation(s)
- Constantinos Giaginis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece. .,Department of Food Science and Nutrition, School of Environment, University of the Aegean, Mitropoliti Ioakeim 2, 81400, Myrina, Limnos, Greece.
| | - Christos Damaskos
- Second Department of Propedeutic Surgery, Medical School, University of Athens, Athens, Greece
| | - Ioannis Koutsounas
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Nicolaos Tsoukalas
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstratios Patsouris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Gregorios Kouraklis
- Second Department of Propedeutic Surgery, Medical School, University of Athens, Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
120
|
Szymanski W, Ourailidou ME, Velema WA, Dekker FJ, Feringa BL. Light-Controlled Histone Deacetylase (HDAC) Inhibitors: Towards Photopharmacological Chemotherapy. Chemistry 2015; 21:16517-16524. [PMID: 26418117 DOI: 10.1002/chem.201502809] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Indexed: 02/06/2023]
Abstract
Cancer treatment suffers from limitations that have a major impact on the patient's quality of life and survival. In the case of chemotherapy, the systemic distribution of cytotoxic drugs reduces their efficacy and causes severe side effects due to nonselective toxicity. Photopharmacology allows a novel approach to address these problems because it employs external, local activation of chemotherapeutic agents by using light. The development of photoswitchable histone deacetylase (HDAC) inhibitors as potential antitumor agents is reported herein. Analogues of the clinically used chemotherapeutic agents vorinostat, panobinostat, and belinostat were designed with a photoswitchable azobenzene moiety incorporated into their structure. The most promising compound exhibits high inhibitory potency in the thermodynamically less stable cis form and a significantly lower activity for the trans form, both in terms of HDAC activity and proliferation of HeLa cells. This approach offers a clear prospect towards local photoactivation of HDAC inhibition to avoid severe side effects in chemotherapy.
Collapse
Affiliation(s)
- Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry University of Groningen Nijenborgh 4, 9747 AG, Groningen (The Netherlands).,Department of Radiology University of Groningen, University Medical Center Groningen Hanzeplein 1, 9713 GZ, Groningen (The Netherlands)
| | - Maria E Ourailidou
- Department of Pharmaceutical Gene Modulation University of Groningen Antonius Deusinglaan 1, 9713 AV Groningen (The Netherlands)
| | - Willem A Velema
- Centre for Systems Chemistry, Stratingh Institute for Chemistry University of Groningen Nijenborgh 4, 9747 AG, Groningen (The Netherlands)
| | - Frank J Dekker
- Department of Pharmaceutical Gene Modulation University of Groningen Antonius Deusinglaan 1, 9713 AV Groningen (The Netherlands)
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry University of Groningen Nijenborgh 4, 9747 AG, Groningen (The Netherlands)
| |
Collapse
|
121
|
Groebner JL, Tuma PL. The Altered Hepatic Tubulin Code in Alcoholic Liver Disease. Biomolecules 2015; 5:2140-59. [PMID: 26393662 PMCID: PMC4598792 DOI: 10.3390/biom5032140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 01/01/2023] Open
Abstract
The molecular mechanisms that lead to the progression of alcoholic liver disease have been actively examined for decades. Because the hepatic microtubule cytoskeleton supports innumerable cellular processes, it has been the focus of many such mechanistic studies. It has long been appreciated that α-tubulin is a major target for modification by highly reactive ethanol metabolites and reactive oxygen species. It is also now apparent that alcohol exposure induces post-translational modifications that are part of the natural repertoire, mainly acetylation. In this review, the modifications of the "tubulin code" are described as well as those adducts by ethanol metabolites. The potential cellular consequences of microtubule modification are described with a focus on alcohol-induced defects in protein trafficking and enhanced steatosis. Possible mechanisms that can explain hepatic dysfunction are described and how this relates to the onset of liver injury is discussed. Finally, we propose that agents that alter the cellular acetylation state may represent a novel therapeutic strategy for treating liver disease.
Collapse
Affiliation(s)
- Jennifer L Groebner
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA.
| | - Pamela L Tuma
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA.
| |
Collapse
|
122
|
Chen HP, Zhao YT, Zhao TC. Histone deacetylases and mechanisms of regulation of gene expression. Crit Rev Oncog 2015; 20:35-47. [PMID: 25746103 DOI: 10.1615/critrevoncog.2015012997] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years it has become widely recognized that histone modification plays a pivotal role in controlling gene expression and is involved in a wide spectrum of disease regulation. Histone acetylation is a major modification that affects gene transcription and is controlled by histone acetyltransferases (HATs) and histone deacetylases (HDACs). HATs acetylate lysines of histone proteins, resulting in the relaxation of chromatin structure, and they also facilitate gene activation. Conversely, HDACs remove acetyl groups from hyperacetylated histones and suppress general gene transcription. In addition to histones, numerous nonhistone proteins can be acetylated and deacetylated, and they also are involved in the regulation of a wide range of diseases. To date there are 18 HDACs in mammals classified into 4 classes based on homology to yeast HDACs. Accumulating evidence has revealed that HDACs play crucial roles in a variety of biological processes including inflammation, cell proliferation, apoptosis, and carcinogenesis. In this review we summarize the current state of knowledge of HDACs in carcinogenesis and describe the involvement of HDACs in cancer-associated molecular processes. It is hoped than an understanding of the role of HDACs in cancer will lead to the design of more potent and specific drugs targeting selective HDAC proteins for the treatment of the disease.
Collapse
Affiliation(s)
- Hong Ping Chen
- Department of Surgery, Boston University Medical School, Boston University, Roger Williams Medical Center, Providence, RI; Department of Histology and Embryology, Medical College, Nanchang University, Nanchang, China
| | - Yu Tina Zhao
- Department of Surgery, Boston University Medical School, Boston University, Roger Williams Medical Center, Providence, RI
| | - Ting C Zhao
- Department of Surgery, Boston University Medical School, Boston University, Roger Williams Medical Center, Providence, RI
| |
Collapse
|
123
|
Makita N, Ninomiya I, Tsukada T, Okamoto K, Harada S, Nakanuma S, Sakai S, Makino I, Kinoshita J, Hayashi H, Oyama K, Nakagawara H, Miyashita T, Tajima H, Takamura H, Fushida S, Ohta T. Inhibitory effects of valproic acid in DNA double-strand break repair after irradiation in esophageal squamous carcinoma cells. Oncol Rep 2015; 34:1185-1192. [PMID: 26135807 DOI: 10.3892/or.2015.4089] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/15/2015] [Indexed: 12/24/2022] Open
Abstract
Radiation therapy is one of the most promising therapeutic strategies in unresectable esophageal squamous cell carcinoma (ESCC). The histone deacetylase (HDAC) inhibitor has been shown to enhance radiosensitivity. Valproic acid (VPA) is a well-known drug used to treat seizure disorders and epilepsy, and has been shown to inhibit HDACs. We recently reported that a clinically safe dose of VPA enhances radiation‑induced cytotoxicity in human ESCC cells. However, the mechanism of radiosensitizing effect of VPA has not yet been confirmed. The present study examined the effect of VPA on DNA double-strand break (DSB) repair after radiation in the human ESCC cell lines KES, TE9 and TE11 by examining H2AX phosphorylation (γH2AX) levels as a marker of radiation‑induced DSBs. The present study also examined whether VPA inhibited radiation-induced DNA DSB repair by suppressing non-homologous end joining (NHEJ), focusing particularly on the acetylation of Ku70. VPA was shown to prolong γH2AX levels after irradiation in all three ESCC cell lines. Moreover, prolonged γH2AX foci formation after irradiation was also observed by immunocytochemistry following VPA pretreatment in KES and TE9 cells. VPA was shown to induce Ku70 acetylation after irradiation in all three ESCC cell lines. Our results suggest that VPA prolonged radiation‑induced DSBs by inhibiting NHEJ in DSB repair pathways in ESCC. VPA could therefore be used as an effective radiosensitizer in ESCC radiotherapy.
Collapse
Affiliation(s)
- Naoki Makita
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Itasu Ninomiya
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Tomoya Tsukada
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Koichi Okamoto
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Shinichi Harada
- Center for Biomedical Research and Education, School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Shinichi Nakanuma
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Seisho Sakai
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Isamu Makino
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Jun Kinoshita
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Hironori Hayashi
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Katsunobu Oyama
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Hisatoshi Nakagawara
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Tomoharu Miyashita
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Hidehiro Tajima
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Hiroyuki Takamura
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Sachio Fushida
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Tetsuo Ohta
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| |
Collapse
|
124
|
Geeleher P, Loboda A, Lenkala D, Wang F, LaCroix B, Karovic S, Wang J, Nebozhyn M, Chisamore M, Hardwick J, Maitland ML, Huang RS. Predicting Response to Histone Deacetylase Inhibitors Using High-Throughput Genomics. J Natl Cancer Inst 2015; 107:djv247. [PMID: 26296641 DOI: 10.1093/jnci/djv247] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 08/03/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Many disparate biomarkers have been proposed as predictors of response to histone deacetylase inhibitors (HDI); however, all have failed when applied clinically. Rather than this being entirely an issue of reproducibility, response to the HDI vorinostat may be determined by the additive effect of multiple molecular factors, many of which have previously been demonstrated. METHODS We conducted a large-scale gene expression analysis using the Cancer Genome Project for discovery and generated another large independent cancer cell line dataset across different cancers for validation. We compared different approaches in terms of how accurately vorinostat response can be predicted on an independent out-of-batch set of samples and applied the polygenic marker prediction principles in a clinical trial. RESULTS Using machine learning, the small effects that aggregate, resulting in sensitivity or resistance, can be recovered from gene expression data in a large panel of cancer cell lines.This approach can predict vorinostat response accurately, whereas single gene or pathway markers cannot. Our analyses recapitulated and contextualized many previous findings and suggest an important role for processes such as chromatin remodeling, autophagy, and apoptosis. As a proof of concept, we also discovered a novel causative role for CHD4, a helicase involved in the histone deacetylase complex that is associated with poor clinical outcome. As a clinical validation, we demonstrated that a common dose-limiting toxicity of vorinostat, thrombocytopenia, can be predicted (r = 0.55, P = .004) several days before it is detected clinically. CONCLUSION Our work suggests a paradigm shift from single-gene/pathway evaluation to simultaneously evaluating multiple independent high-throughput gene expression datasets, which can be easily extended to other investigational compounds where similar issues are hampering clinical adoption.
Collapse
Affiliation(s)
- Paul Geeleher
- Department of Medicine (PG, DL, FW, BL, SK, JW, MLM, RSH), Committee on Clinical Pharmacology and Pharmacogenomics (MLM, RSH), and the Comprehensive Cancer Center (MLM, RSH), University of Chicago, Chicago, IL; Oncology Clinical Research, Merck Research Laboratories, North Wales, PA (AL, MN, MC, JH)
| | - Andrey Loboda
- Department of Medicine (PG, DL, FW, BL, SK, JW, MLM, RSH), Committee on Clinical Pharmacology and Pharmacogenomics (MLM, RSH), and the Comprehensive Cancer Center (MLM, RSH), University of Chicago, Chicago, IL; Oncology Clinical Research, Merck Research Laboratories, North Wales, PA (AL, MN, MC, JH)
| | - Divya Lenkala
- Department of Medicine (PG, DL, FW, BL, SK, JW, MLM, RSH), Committee on Clinical Pharmacology and Pharmacogenomics (MLM, RSH), and the Comprehensive Cancer Center (MLM, RSH), University of Chicago, Chicago, IL; Oncology Clinical Research, Merck Research Laboratories, North Wales, PA (AL, MN, MC, JH)
| | - Fan Wang
- Department of Medicine (PG, DL, FW, BL, SK, JW, MLM, RSH), Committee on Clinical Pharmacology and Pharmacogenomics (MLM, RSH), and the Comprehensive Cancer Center (MLM, RSH), University of Chicago, Chicago, IL; Oncology Clinical Research, Merck Research Laboratories, North Wales, PA (AL, MN, MC, JH)
| | - Bonnie LaCroix
- Department of Medicine (PG, DL, FW, BL, SK, JW, MLM, RSH), Committee on Clinical Pharmacology and Pharmacogenomics (MLM, RSH), and the Comprehensive Cancer Center (MLM, RSH), University of Chicago, Chicago, IL; Oncology Clinical Research, Merck Research Laboratories, North Wales, PA (AL, MN, MC, JH)
| | - Sanja Karovic
- Department of Medicine (PG, DL, FW, BL, SK, JW, MLM, RSH), Committee on Clinical Pharmacology and Pharmacogenomics (MLM, RSH), and the Comprehensive Cancer Center (MLM, RSH), University of Chicago, Chicago, IL; Oncology Clinical Research, Merck Research Laboratories, North Wales, PA (AL, MN, MC, JH)
| | - Jacqueline Wang
- Department of Medicine (PG, DL, FW, BL, SK, JW, MLM, RSH), Committee on Clinical Pharmacology and Pharmacogenomics (MLM, RSH), and the Comprehensive Cancer Center (MLM, RSH), University of Chicago, Chicago, IL; Oncology Clinical Research, Merck Research Laboratories, North Wales, PA (AL, MN, MC, JH)
| | - Michael Nebozhyn
- Department of Medicine (PG, DL, FW, BL, SK, JW, MLM, RSH), Committee on Clinical Pharmacology and Pharmacogenomics (MLM, RSH), and the Comprehensive Cancer Center (MLM, RSH), University of Chicago, Chicago, IL; Oncology Clinical Research, Merck Research Laboratories, North Wales, PA (AL, MN, MC, JH)
| | - Michael Chisamore
- Department of Medicine (PG, DL, FW, BL, SK, JW, MLM, RSH), Committee on Clinical Pharmacology and Pharmacogenomics (MLM, RSH), and the Comprehensive Cancer Center (MLM, RSH), University of Chicago, Chicago, IL; Oncology Clinical Research, Merck Research Laboratories, North Wales, PA (AL, MN, MC, JH)
| | - James Hardwick
- Department of Medicine (PG, DL, FW, BL, SK, JW, MLM, RSH), Committee on Clinical Pharmacology and Pharmacogenomics (MLM, RSH), and the Comprehensive Cancer Center (MLM, RSH), University of Chicago, Chicago, IL; Oncology Clinical Research, Merck Research Laboratories, North Wales, PA (AL, MN, MC, JH)
| | - Michael L Maitland
- Department of Medicine (PG, DL, FW, BL, SK, JW, MLM, RSH), Committee on Clinical Pharmacology and Pharmacogenomics (MLM, RSH), and the Comprehensive Cancer Center (MLM, RSH), University of Chicago, Chicago, IL; Oncology Clinical Research, Merck Research Laboratories, North Wales, PA (AL, MN, MC, JH)
| | - R Stephanie Huang
- Department of Medicine (PG, DL, FW, BL, SK, JW, MLM, RSH), Committee on Clinical Pharmacology and Pharmacogenomics (MLM, RSH), and the Comprehensive Cancer Center (MLM, RSH), University of Chicago, Chicago, IL; Oncology Clinical Research, Merck Research Laboratories, North Wales, PA (AL, MN, MC, JH).
| |
Collapse
|
125
|
Sun L, Qian Q, Sun G, Mackey LV, Fuselier JA, Coy DH, Yu CY. Valproic acid induces NET cell growth arrest and enhances tumor suppression of the receptor-targeted peptide-drug conjugate via activating somatostatin receptor type II. J Drug Target 2015. [PMID: 26211366 DOI: 10.3109/1061186x.2015.1066794] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Human pancreatic carcinoids, a type of neuroendocrine tumors, are asymptomatic and difficult to diagnose, with the effects of traditional anti-cancer therapies being limited. The histone deacetylase (HDAC) inhibitor valproic acid (VPA) was evaluated for its effects alone and in combination with receptor-targeting peptide-drug conjugate via increasing drug internalization. MATERIALS AND METHODS The in vitro and in vivo assays were used to evaluate the effects of VPA and somatostatin receptor-targeting camptothecin-somatostatin conjugate (CPT-SST). RESULTS VPA induced proliferation suppression, cell apoptosis and cell cycle arrest. VPA acts as a HDAC inhibitor to induce a decrease of HDAC4 and an increase of acetylated histone 4 (AcH4). Meanwhile, most importantly, besides activating Notch signaling, VPA was observed to stimulate the expression of somatostatin receptor type 2 (SSTR2) that has been applied for receptor-targeting therapies. This characteristic was used for a combination therapy of VPA and CPT-SST. The combination displayed much more potent anti-tumor effects on carcinoid tumor growth by increasing SSTR2 density and drug internalization in target tumor cells. CONCLUSION The combination of VPA and a SSTR2-targeting agent provides us a promising approach in treatment of carcinoid tumors.
Collapse
Affiliation(s)
- Lichun Sun
- a Department of Pharmacy , The Fifth People's Hospital of Shanghai, Fudan University , Shanghai , China .,b Department of Medicine , Peptide Research Laboratories, Tulane Health Sciences Center , New Orleans , LA , USA , and
| | - Qingqing Qian
- a Department of Pharmacy , The Fifth People's Hospital of Shanghai, Fudan University , Shanghai , China
| | - Guangchun Sun
- a Department of Pharmacy , The Fifth People's Hospital of Shanghai, Fudan University , Shanghai , China
| | - L Vienna Mackey
- b Department of Medicine , Peptide Research Laboratories, Tulane Health Sciences Center , New Orleans , LA , USA , and
| | - Joseph A Fuselier
- b Department of Medicine , Peptide Research Laboratories, Tulane Health Sciences Center , New Orleans , LA , USA , and
| | - David H Coy
- b Department of Medicine , Peptide Research Laboratories, Tulane Health Sciences Center , New Orleans , LA , USA , and
| | - Cui-Yun Yu
- b Department of Medicine , Peptide Research Laboratories, Tulane Health Sciences Center , New Orleans , LA , USA , and.,c Department of Pharmacy , Institute of Pharmacy & Pharmacology, University of South China , Hengyang , China
| |
Collapse
|
126
|
Vaish V, Khare T, Verma M, Khare S. Epigenetic therapy for colorectal cancer. Methods Mol Biol 2015; 1238:771-82. [PMID: 25421691 DOI: 10.1007/978-1-4939-1804-1_40] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aberrations in epigenome that include alterations in DNA methylation, histone acetylation, and miRNA (microRNA) expression may govern the progression of colorectal cancer (CRC). These epigenetic changes affect every phase of tumor development from initiation to metastasis. Since epigenetic alterations can be reversed by DNA demethylating and histone acetylating agents, current status of the implication of epigenetic therapy in CRC is discussed in this article. Interestingly, DNA methyltransferase inhibitors (DNMTi) and histone deacetylase inhibitors (HDACi) have shown promising results in controlling cancer progression. The information provided here might be useful in developing personalized medicine approaches.
Collapse
Affiliation(s)
- Vivek Vaish
- Section of Gastroenterology and Hepatology, Department of Internal Medicine, University of Missouri, Columbia, MO, 65212, USA
| | | | | | | |
Collapse
|
127
|
Lu K, Chen N, Zhou XX, Ge XL, Feng LL, Li PP, Li XY, Geng LY, Wang X. The STAT3 inhibitor WP1066 synergizes with vorinostat to induce apoptosis of mantle cell lymphoma cells. Biochem Biophys Res Commun 2015; 464:292-8. [PMID: 26116769 DOI: 10.1016/j.bbrc.2015.06.145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/22/2015] [Indexed: 12/19/2022]
Abstract
Mantle cell lymphoma (MCL) is an aggressive B-cell non-Hodgkin lymphoma (NHL) characterized by the translocation t (11; 14) (q13; q32). Drug resistance remains a formidable obstacle to treatment and the median survival for MCL patients is between 3 and 5 years. Thus, there is an urgent need to discover novel approaches to MCL therapy. The signal transducer and activation of transcription 3 (STAT3) has been found to be constitutively activated in several subtypes of MCL cell lines and MCL tumors. WP1066, a small-molecule inhibitor of STAT3, exerted antitumor activity in hematological and solid malignancies by inhibiting key survival and growth signaling pathways. In the present study, we evaluated the antiproliferative and proapoptotic activity of WP1066 combined with pan-histone deacetylase (HDAC) inhibitor vorinostat (SAHA) in a panel of MCL cell lines. In addition, potential mechanisms involved were also explored. The outcome showed that combination of WP1066 with SAHA resulted in synergistic growth inhibition and apoptosis induction in MCL cell lines in vitro. Furthermore, combination of WP1066 with SAHA inhibited the constitutive STAT3 activation and modulated mRNA expressions of anti- and pro-apoptotic genes. Our findings suggest that agents targeting the STAT3 pathway such as WP1066 may be useful therapeutic drugs for MCL when combined with SAHA.
Collapse
Affiliation(s)
- Kang Lu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, PR China
| | - Na Chen
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, PR China
| | - Xiang-xiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, PR China
| | - Xue-ling Ge
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, PR China
| | - Li-li Feng
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, PR China
| | - Pei-pei Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, PR China
| | - Xin-yu Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, PR China
| | - Ling-yun Geng
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, PR China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, PR China; Institute of Diagnostics, Shandong University School of Medicine, Jinan, Shandong 250021, PR China.
| |
Collapse
|
128
|
Iyer SP, Foss FF. Romidepsin for the Treatment of Peripheral T-Cell Lymphoma. Oncologist 2015; 20:1084-91. [PMID: 26099743 DOI: 10.1634/theoncologist.2015-0043] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/13/2015] [Indexed: 11/17/2022] Open
Abstract
UNLABELLED Peripheral T-cell lymphoma (PTCL) is a heterogeneous group of non-Hodgkin lymphomas associated with poor prognosis in most subtypes. Diagnosis of this rare disease by expert hematopathologists improves accuracy of subtyping, and referral to academic or specialty centers is recommended. Many patients, however, will receive treatment in the community, and knowledge of approved agents is key to optimizing therapeutic approaches for all patients. There is no current standard of care for patients with PTCL and no approved therapies for first-line treatment. Although many patients initially respond to induction chemotherapy, responses are often brief, and many patients relapse or become treatment refractory. For patients with relapsed or refractory PTCL, achievement of durable responses is challenging, and there are few treatment options. Romidepsin is a histone deacetylase inhibitor approved by the U.S. Food and Drug Administration for the treatment of patients with cutaneous T-cell lymphoma who have received one prior systemic therapy or more and patients with PTCL who have received one prior therapy or more. Approval of romidepsin for PTCL was based on a pivotal phase II study of patients with relapsed or refractory PTCL (n = 131) that demonstrated an objective response rate of 25% including 15% with complete response; responses lasted a median of >2 years. Long-term responses to romidepsin were achieved in patients regardless of baseline characteristics, including subtype, heavy pretreatment, response to prior therapy, or advanced disease. Common adverse events included hematologic abnormalities, gastrointestinal or asthenic conditions, and infections; romidepsin was not correlated with clinically meaningful QT prolongation or electrocardiogram abnormalities. IMPLICATIONS FOR PRACTICE Due to the rarity, severity, and heterogeneous nature of peripheral T-cell lymphoma (PTCL), diagnosis by expert hematopathologists is preferred, and referral to specialty centers is recommended. Many patients, however, will receive treatment in the community, and community oncologists play a key role in the recognition and treatment of PTCL. Knowledge of approved agents is key for optimizing therapeutic approaches. This review provides an overview of PTCL and an in-depth examination of romidepsin, a histone deacetylase inhibitor approved for the treatment of relapsed or refractory PTCL, and highlights difficulties of diagnosis and optimization of treatment modalities for patients with PTCL.
Collapse
Affiliation(s)
- Swaminathan P Iyer
- Houston Methodist Cancer Center, Houston, Texas, USA; Yale Cancer Center, New Haven, Connecticut, USA
| | - Francine F Foss
- Houston Methodist Cancer Center, Houston, Texas, USA; Yale Cancer Center, New Haven, Connecticut, USA
| |
Collapse
|
129
|
Kim EJ, Kim YH, Rook AH, Lerner A, Duvic M, Reddy S, Robak T, Becker JC, Samtsov A, McCulloch W, Waksman J, Whittaker S. Clinically significant responses achieved with romidepsin across disease compartments in patients with cutaneous T-cell lymphoma. Leuk Lymphoma 2015; 56:2847-54. [PMID: 25791237 PMCID: PMC4732431 DOI: 10.3109/10428194.2015.1014360] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Cutaneous T-cell lymphoma (CTCL) is a rare heterogeneous group of non-Hodgkin lymphomas that arises in the skin but can progress to systemic disease (lymph nodes, blood, viscera). Historically, in clinical trials of CTCL there has been little consistency in how responses were defined in each disease “compartment”; some studies only assessed responses in the skin. The histone deacetylase inhibitor romidepsin is approved by the US Food and Drug Administration for the treatment of CTCL in patients who have received at least one prior systemic therapy. Phase II studies that led to approval used rigorous composite end points that incorporated disease assessments in all compartments. The objective of this analysis was to thoroughly examine the activity of romidepsin within each disease compartment in patients with CTCL. Romidepsin was shown to have clinical activity across disease compartments and is suitable for use in patients with CTCL having skin involvement only, erythroderma, lymphadenopathy and/or blood involvement.
Collapse
Affiliation(s)
| | - Youn H Kim
- b Stanford Cancer Center , Stanford , CA , USA
| | | | | | - Madeleine Duvic
- d The University of Texas M. D. Anderson Cancer Center , Houston , TX , USA
| | - Sunil Reddy
- b Stanford Cancer Center , Stanford , CA , USA
| | | | | | - Alexey Samtsov
- g State Educational Institution for Higher Professional Education Military Medical Academy , Saint Petersburg , Russia
| | | | - Joel Waksman
- i Brightech International LLC , Somerset , NJ , USA
| | | |
Collapse
|
130
|
Lanzillotta A, Porrini V, Bellucci A, Benarese M, Branca C, Parrella E, Spano PF, Pizzi M. NF-κB in Innate Neuroprotection and Age-Related Neurodegenerative Diseases. Front Neurol 2015; 6:98. [PMID: 26042083 PMCID: PMC4438602 DOI: 10.3389/fneur.2015.00098] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/21/2015] [Indexed: 12/20/2022] Open
Abstract
NF-κB factors are cardinal transcriptional regulators of inflammation and apoptosis, involved in the brain programing of systemic aging and in brain damage. The composition of NF-κB active dimers and epigenetic mechanisms modulating histone acetylation, finely condition neuronal resilience to brain insults. In stroke models, the activation of NF-κB/c-Rel promotes neuroprotective effects by transcription of specific anti-apoptotic genes. Conversely, aberrant activation of NF-κB/RelA showing reduced level of total acetylation, but site-specific acetylation on lysine 310, triggers the expression of pro-apoptotic genes. Constitutive knockout of c-Rel shatters the resilience of substantia nigra (SN) dopaminergic (DA) neurons to aging and induces a parkinsonian like pathology in mice. c-rel(-/-) mice show increased level of aberrantly acetylated RelA in the basal ganglia, neuroinflammation, accumulation of alpha-synuclein, and iron. Moreover, they develop motor deficits responsive to l-DOPA treatment and associated with loss of DA neurons in the SN. Here, we discuss the effect of unbalanced activation of RelA and c-Rel during aging and propose novel challenges for the development of therapeutic strategies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Annamaria Lanzillotta
- Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Brescia, Italy
| | - Vanessa Porrini
- Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Brescia, Italy
- IRCCS, San Camillo Hospital, Venice, Italy
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Brescia, Italy
| | - Marina Benarese
- Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Brescia, Italy
| | - Caterina Branca
- Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Brescia, Italy
| | - Edoardo Parrella
- Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Brescia, Italy
| | - Pier Franco Spano
- Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Brescia, Italy
- IRCCS, San Camillo Hospital, Venice, Italy
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Brescia, Italy
- IRCCS, San Camillo Hospital, Venice, Italy
| |
Collapse
|
131
|
Lorenz V, Hessenkemper W, Rödiger J, Kyrylenko S, Kraft F, Baniahmad A. Sodium butyrate induces cellular senescence in neuroblastoma and prostate cancer cells. Horm Mol Biol Clin Investig 2015; 7:265-72. [PMID: 25961265 DOI: 10.1515/hmbci.2011.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 05/30/2011] [Indexed: 12/31/2022]
Abstract
Cellular senescence leads to an irreversible block of cellular division capacity both in cell culture and in vivo. The induction of an irreversible cell cycle arrest is very useful for treatment of cancer. Histone deacetylases (HDACs) are considered as therapeutic targets to treat cancer patients. HDAC inhibitors repress cancer growth and are used in various clinical trials. Here, we analyzed whether sodium butyrate (NaBu), an inhibitor of class I and II HDACs, induces cellular senescence in neuroblastoma and prostate cancer (PCa) including an androgen-dependent as well as an androgen-independent human PCa cell line. We found that the HDAC inhibitors NaBu and valproic acid (VPA) induce cellular senescence in tumor cells. Interestingly, also an inhibitor of SIRT1, a class HDAC III, induces cellular senescence. Both neuroblastoma and human prostate cancer cell lines express senescence markers, such as the Senescence Associated-β-galactosidase (SA-β-Gal) and Senescence Associated Heterochromatin Foci (SAHF). Furthermore, NaBu down-regulates the proto-oncogenes c-Myc, Cyclin D1 and E2F1 mRNA levels. The mRNA level of the cell cycle inhibitor p16 remains unchanged whereas that of the tumor suppressor p21 is strongly up-regulated. Interestingly, NaBu treatment robustly increases reactive oxygen species (ROS) levels. These results indicate an epigenetic regulation and an association of HDAC inhibition and ROS production with cellular senescence. The data underline that tumor cells can be driven towards cellular senescence by HDAC inhibitors, which may further arise as a potent possibility for tumor suppression.
Collapse
|
132
|
Miller HC, Kidd M, Castellano L, Frilling A. Molecular genetic findings in small bowel neuroendocrine neoplasms: a review of the literature. INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2015. [DOI: 10.2217/ije.14.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Small bowel neuroendocrine neoplasms (SBNEN) are the most common small bowel tumor and have an increasing incidence. Despite many treatment options, therapeutic strategy remains a key clinical challenge due to the paucity of large-scale, randomized controlled trials. The heterogeneity of SBNEN coupled with a lack of detailed information about the tumor biology, impedes patient stratification into groups based on tumor phenotypes or treatment response. More detailed analysis of the genetic and epigenetic characteristics of SBNEN, will allow treatment to move toward a more personalized medicine approach through the identification of novel biomarkers and therapeutic targets, with the aim to increase survival.
Collapse
Affiliation(s)
- Helen C Miller
- Department of Surgery & Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0HS, UK
| | - Mark Kidd
- Department of Surgery, Yale University, School of Medicine, 333 Cedar Street, New Haven, CT 06520–8062, USA
| | - Leandro Castellano
- Department of Surgery & Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0HS, UK
| | - Andrea Frilling
- Department of Surgery & Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0HS, UK
| |
Collapse
|
133
|
Sager PT, Balser B, Wolfson J, Nichols J, Pilot R, Jones S, Burris HA. Electrocardiographic effects of class 1 selective histone deacetylase inhibitor romidepsin. Cancer Med 2015; 4:1178-85. [PMID: 25914207 PMCID: PMC4559029 DOI: 10.1002/cam4.467] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/17/2015] [Accepted: 03/24/2015] [Indexed: 01/04/2023] Open
Abstract
Romidepsin is a histone deacetylase inhibitor approved by the FDA for the treatment of patients with cutaneous or peripheral T-cell lymphoma who have received prior systemic therapy. The objective of this analysis was to evaluate the potential QTc effects of romidepsin. Patients with advanced malignancy received 4-h infusions of 14 mg/m2 romidepsin on days 1, 8, and 15 of a 28-day cycle. In cycle 2, a subset of patients received 1-h infusions of 8–12 mg/m2 romidepsin. Patients were administered antiemetics before each romidepsin dose and electrolyte supplementation as needed. Electrocardiogram readings were performed prior to antiemetic administration, prior to romidepsin administration, and at specified time points over the subsequent 24 h. Romidepsin exposure and heart rate were also assessed. In the electrocardiogram-evaluable population, 26 patients received romidepsin at 14 mg/m2 over 4 h. The maximum mean increases from the preantiemetic baseline for QTcF and heart rate were 10.1 msec (upper 90% CI, 14.5 msec) and 18.2 beats per minute, respectively. No patient in this study had an absolute QTcF value >450 msec and only one patient had an increase from the preantiemetic baseline of >60 msec. There was a mild reduction in the PR interval and no meaningful changes in the QRS interval. Despite the use of QT-prolonging antiemetics, treatment with romidepsin did not markedly prolong the QTc interval through 24 h. Increases in calculated QTc may have been exaggerated as a consequence of transient increases in heart rate.
Collapse
Affiliation(s)
- Philip T Sager
- Stanford University School of Medicine, San Francisco, California
| | | | | | | | | | - Suzanne Jones
- Sarah Cannon Research Institute, Nashville, Tennessee
| | | |
Collapse
|
134
|
Kitazono S, Fujiwara Y, Nakamichi S, Mizugaki H, Nokihara H, Yamamoto N, Yamada Y, Inukai E, Nakamura O, Tamura T. A phase I study of resminostat in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol 2015; 75:1155-61. [PMID: 25847480 DOI: 10.1007/s00280-015-2741-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 03/26/2015] [Indexed: 11/26/2022]
Abstract
PURPOSE This study was performed to evaluate the safety and determine the recommended dose (RD) of resminostat monotherapy, an oral histone deacetylase (HDAC) inhibitor, in Japanese patients with advanced solid tumors. METHODS Resminostat was administered to patients with advanced solid tumors on a 14-day cycle consisting of once-daily administration on days 1-5. The dose was initiated at 400 mg and increased to 600 mg and then 800 mg. Treatment with resminostat was continued until disease progression or discontinuation for any other reason. Dose-limiting toxicities (DLTs) were assessed according to the adverse drug reactions occurring in the first cycle. Secondary objectives included the pharmacokinetics, pharmacodynamics, and efficacy. RESULTS A total of 12 patients were enrolled in the study and received resminostat. No DLTs were reported in any patient. The maximum tolerated dose was not reached. Frequently reported grade 3/4 adverse drug reactions were as follows: lymphocytopenia (33.3 %), thrombocytopenia (25.0 %), neutropenia (16.7 %), and leukocytopenia (16.7 %). Pharmacokinetic analysis revealed that there was no accumulation of the drug over the 5-day administration period and no significant difference in pharmacokinetic parameters between the single dose and multiple doses. Measurement of acetylated H4 histone protein levels in peripheral blood mononuclear cells demonstrated that resminostat inhibited HDAC activity at all the doses assessed. No patients had a complete or partial response, whereas three patients had stable disease. CONCLUSIONS Resminostat was safely administered to Japanese patients with advanced solid tumors. The RD of resminostat monotherapy in Japanese patients was estimated to be 800 mg.
Collapse
Affiliation(s)
- Satoru Kitazono
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Horwitz S, Coiffier B, Foss F, Prince HM, Sokol L, Greenwood M, Caballero D, Morschhauser F, Pinter-Brown L, Iyer SP, Shustov A, Nichols J, Balser J, Balser B, Pro B. Utility of ¹⁸fluoro-deoxyglucose positron emission tomography for prognosis and response assessments in a phase 2 study of romidepsin in patients with relapsed or refractory peripheral T-cell lymphoma. Ann Oncol 2015; 26:774-779. [PMID: 25605745 PMCID: PMC4374388 DOI: 10.1093/annonc/mdv010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/19/2014] [Accepted: 12/23/2014] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND For patients with peripheral T-cell lymphoma (PTCL), the value of (18)fluoro-deoxyglucose positron emission tomography (FDG-PET) scans for assessing prognosis and response to treatment remains unclear. The utility of FDG-PET, in addition to conventional radiology, was examined as a planned exploratory end point in the pivotal phase 2 trial of romidepsin for the treatment of relapsed/refractory PTCL. PATIENTS AND METHODS Patients received romidepsin at a dose of 14 mg/m(2) on days 1, 8, and 15 of 28-day cycles. The primary end point was the rate of confirmed/unconfirmed complete response (CR/CRu) as assessed by International Workshop Criteria (IWC) using conventional radiology. For the exploratory PET end point, patients with at least baseline FDG-PET scans were assessed by IWC + PET criteria. RESULTS Of 130 patients, 110 had baseline FDG-PET scans, and 105 were PET positive at baseline. The use of IWC + PET criteria increased the objective response rate to 30% compared with 26% by conventional radiology. Durations of response were well differentiated by both conventional radiology response criteria [CR/CRu versus partial response (PR), P = 0.0001] and PET status (negative versus positive, P < 0.0001). Patients who achieved CR/CRu had prolonged progression-free survival (PFS, median 25.9 months) compared with other response groups (P = 0.0007). Patients who achieved PR or stable disease (SD) had similar PFS (median 7.2 and 6.3 months, respectively, P = 0.6427). When grouping PR and SD patients by PET status, patients with PET-negative versus PET-positive disease had a median PFS of 18.2 versus 7.1 months (P = 0.0923). CONCLUSIONS Routine use of FDG-PET does not obviate conventional staging, but may aid in determining prognosis and refine response assessments for patients with PTCL, particularly for those who do not achieve CR/CRu by conventional staging. The optimal way to incorporate FDG-PET scans for patients with PTCL remains to be determined. TRIAL REGISTRATION NCT00426764.
Collapse
MESH Headings
- Antibiotics, Antineoplastic/therapeutic use
- Depsipeptides/therapeutic use
- Drug Resistance, Neoplasm/drug effects
- Fluorodeoxyglucose F18/pharmacokinetics
- Follow-Up Studies
- Humans
- Lymphoma, T-Cell, Peripheral/diagnostic imaging
- Lymphoma, T-Cell, Peripheral/drug therapy
- Lymphoma, T-Cell, Peripheral/mortality
- Lymphoma, T-Cell, Peripheral/pathology
- Neoplasm Staging
- Positron-Emission Tomography/statistics & numerical data
- Prognosis
- Prospective Studies
- Radiopharmaceuticals/pharmacokinetics
- Remission Induction
- Survival Rate
- Tissue Distribution
Collapse
Affiliation(s)
- S Horwitz
- Lymphoma Division, Memorial Sloan-Kettering Cancer Center, New York, USA.
| | - B Coiffier
- Department of Hematology, Hospices Civils de Lyon, Lyon, France
| | - F Foss
- Hematology Department, Yale Cancer Center, New Haven, USA
| | - H M Prince
- Division of Cancer Medicine, Department of Haematology, Peter MacCallum Cancer Centre and University of Melbourne, Australia
| | - L Sokol
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, USA
| | - M Greenwood
- Department of Haematology, Royal North Shore Hospital, Sydney, Australia
| | - D Caballero
- Hematology Department, Hospital Universitario de Salamanca, Salamanca, Spain
| | - F Morschhauser
- Department of Hematology, Hôpital Claude Huriez, CHU de Lille, France
| | - L Pinter-Brown
- Division of Hematology-Oncology, UCLA Medical Center, Los Angeles
| | - S P Iyer
- Malignant Hematology, Houston Methodist Cancer Center, Houston
| | - A Shustov
- Division of Hematology, University of Washington, Seattle
| | | | | | | | - B Pro
- Division of Hematology, Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
136
|
Acetylation site specificities of lysine deacetylase inhibitors in human cells. Nat Biotechnol 2015; 33:415-23. [PMID: 25751058 DOI: 10.1038/nbt.3130] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/11/2014] [Indexed: 12/19/2022]
Abstract
Lysine deacetylases inhibitors (KDACIs) are used in basic research, and many are being investigated in clinical trials for treatment of cancer and other diseases. However, their specificities in cells are incompletely characterized. Here we used quantitative mass spectrometry (MS) to obtain acetylation signatures for 19 different KDACIs, covering all 18 human lysine deacetylases. Most KDACIs increased acetylation of a small, specific subset of the acetylome, including sites on histones and other chromatin-associated proteins. Inhibitor treatment combined with genetic deletion showed that the effects of the pan-sirtuin inhibitor nicotinamide are primarily mediated by SIRT1 inhibition. Furthermore, we confirmed that the effects of tubacin and bufexamac on cytoplasmic proteins result from inhibition of HDAC6. Bufexamac also triggered an HDAC6-independent, hypoxia-like response by stabilizing HIF1-α, providing a possible mechanistic explanation of its adverse, pro-inflammatory effects. Our results offer a systems view of KDACI specificities, providing a framework for studying function of acetylation and deacetylases.
Collapse
|
137
|
Han X, Wang S, Zhou W, Li Y, Lei W, Lv W. Synergistic combination of histone deacetylase inhibitor suberoylanilide hydroxamic acid and oncolytic adenovirus ZD55-TRAIL as a therapy against cervical cancer. Mol Med Rep 2015; 12:435-41. [PMID: 25684632 DOI: 10.3892/mmr.2015.3355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 01/21/2015] [Indexed: 11/06/2022] Open
Abstract
Oncolytic adenoviruses (OA) have been investigated as virotherapeutic agents for the treatment of cervical cancer and thus far results are promising. However, the cytotoxicity of the viruses requires improvement. The present study demonstrated that this can be achieved by combining ZD55-TRAIL, an OA containing the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene, with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). It was demonstrated that these agents act synergistically to kill HeLa cells by inducing G2 growth arrest and apoptosis. Notably, in a mouse xenograft model, ZD55-TRAIL/SAHA combination inhibited tumor growth. At the molecular level, it was found that upregulation of IκBα and the p50 and p65 subunits of nuclear factor-κB induced by ZD55-TRAIL, can be abrogated by SAHA treatment. These data strongly suggested that ZD55-TRAIL/SAHA co-treatment may serve as an effective therapeutic strategy against cervical cancer.
Collapse
Affiliation(s)
- Xiujun Han
- Institute of Oncology, Women's Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Shibing Wang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Wenjing Zhou
- Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Ying Li
- Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Wen Lei
- Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Weiguo Lv
- Institute of Oncology, Women's Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
138
|
Bilen MA, Fu S, Falchook GS, Ng CS, Wheler JJ, Abdelrahim M, Erguvan-Dogan B, Hong DS, Tsimberidou AM, Kurzrock R, Naing A. Phase I trial of valproic acid and lenalidomide in patients with advanced cancer. Cancer Chemother Pharmacol 2015; 75:869-74. [PMID: 25666183 DOI: 10.1007/s00280-015-2695-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 01/30/2015] [Indexed: 11/28/2022]
Abstract
PURPOSE The objectives of this study were to evaluate the tolerability and efficacy of valproic acid (VPA) and lenalidomide. METHODS In this 3+3 design study, VPA was administered daily on a 7-day-on, 7-day-off schedule, and lenalidomide was administered daily for 28 days. Because of the response noted during the dose-escalation phase, 12 additional patients with adenoid cystic carcinoma (ACC) received the maximum tolerated dose (MTD) in a dose-expansion phase. RESULTS Twenty-six patients with advanced cancer (14 men/12 women), median age of 56 years (range 38-70 years), and a median number of two prior therapies (range 0-12) were enrolled. The most common toxicities were fatigue, rash, neutropenia, thrombocytopenia, and change in mental status. Dose-limiting toxic (DLT) effects were grade III confusion (n = 3), somnolence (n = 1), and gait disturbance (n = 1). The MTD was reached at VPA 30 mg/kg and lenalidomide 25 mg. Although only two of the 12 patients from the dose-expansion phase had DLT during the first cycle at the MTD, during subsequent cycles the majority of patients required dose reduction of VPA to 5-20 mg/kg because of fatigue and drowsiness. No significant tumor reductions were noticed in patients with ACC, but seven of these patients had stable disease over four cycles. Of non-ACC patients, one patient with melanoma and one patient with parathyroid carcinoma had stable disease for six cycles and eight cycles, respectively. CONCLUSIONS Lenalidomide combined with VPA was well tolerated. We recommend starting VPA at 5 mg/kg and titrating upward to 20 mg/kg. No significant tumor reductions were noticed in patients with ACC.
Collapse
Affiliation(s)
- Mehmet Asim Bilen
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Kim TH, Kim HS, Kang YJ, Yoon S, Lee J, Choi WS, Jung JH, Kim HS. Psammaplin A induces Sirtuin 1-dependent autophagic cell death in doxorubicin-resistant MCF-7/adr human breast cancer cells and xenografts. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1850:401-410. [PMID: 25445714 DOI: 10.1016/j.bbagen.2014.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/16/2014] [Accepted: 11/06/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Psammaplin A (PsA) is a natural product isolated from marine sponges, which has been demonstrated to have anticancer activity against several human cancer cell lines via the induction of cell cycle arrest and apoptosis. New drugs that are less toxic and more effective against multidrug-resistant cancers are urgently needed. METHODS We tested cell proliferation, cell cycle progression and autophagic cell death pathway in doxorubicin-resistant MCF-7 (MCF-7/adr) human breast cancer cells. The potency of PsA was further determined using an in vivo xenograft model. RESULTS AND CONCLUSION PsA significantly inhibited MCF-7/adr cells proliferation in a concentration-dependent manner, with accumulation of cells in G2/M phase of the cell cycle. PsA significantly decreased SIRT1 enzyme activity and reduced expression of SIRT1 protein in the cultured cells with greater potency than sirtinol or salermide. Acetylation of p53, a putative target of SIRT1, increased significantly following PsA treatment. In addition, PsA markedly increased the expression levels of autophagy-related proteins. In support of this, it was found that PsA significantly increased the expression of damage-regulated autophagy modulator (DRAM), a p53-induced protein. GENERAL SIGNIFICANCE The results of this study suggest that PsA is sufficient to overcome multidrug-resistant cancer via SIRT1-mediated autophagy in MCF-7/adr breast cancer cells, indicating that PsA has therapeutic potential for clinical use.
Collapse
Affiliation(s)
- Tae Hyung Kim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - Hyuk Soon Kim
- School of Medicine, Konkuk University, Chungju 380-701, Republic of Korea
| | - Yoon Jong Kang
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - Sungpil Yoon
- Research Institute, National Cancer Center, 809 Madu 1-dong, Ilsan-gu, Goyang-si, Gyeonggi-do 411-764, Republic of Korea
| | - Jaewon Lee
- College of Pharmacy, Pusan National University, San 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Wahn Soo Choi
- School of Medicine, Konkuk University, Chungju 380-701, Republic of Korea
| | - Jee H Jung
- College of Pharmacy, Pusan National University, San 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Hyung Sik Kim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746, Republic of Korea.
| |
Collapse
|
140
|
Lu K, Fang XS, Feng LL, Jiang YJ, Zhou XX, Liu X, Li PP, Chen N, Ding M, Wang N, Zhang J, Wang X. The STAT3 inhibitor WP1066 reverses the resistance of chronic lymphocytic leukemia cells to histone deacetylase inhibitors induced by interleukin-6. Cancer Lett 2015; 359:250-8. [PMID: 25636517 DOI: 10.1016/j.canlet.2015.01.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/14/2015] [Accepted: 01/17/2015] [Indexed: 10/24/2022]
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine produced by a variety of cell types, including fibroblasts, endothelial cells, lymphocytes, and bone marrow stromal cells (BMSCs). Levels of IL-6 are increased in serum of CLL patients and correlated with adverse clinical features and short survival. In our study, we observed that IL-6 induced the resistance of CLL cells to pan-histone deacetylase (HDAC) inhibitors vorinostat (SAHA) and panobinostat (LBH589). Furthermore, low concentrations of SAHA and LBH589 enhanced the activation of the signal transducer and activator of transcription 3 (STAT3) signaling pathway induced by IL-6 in CLL cells. All of these effects were blocked by the STAT3-selective inhibitor, WP1066. Meanwhile, WP1066 decreased the expressions of Mcl-1 and Bcl-xL protein induced by IL-6 with or without low concentrations of HDAC inhibitors. Co-culture of CLL cells with BMSCs could also facilitate the activation of STAT3 and protected CLL cells from apoptosis when treated with HDAC inhibitors, and this cytoprotection was reversed by WP1066. The present study indicated that IL-6 or co-culture with BMSCs prevented HDAC inhibitor-induced apoptosis of CLL cells. This prevention was mediated by activation of the STAT3 signaling pathway. Moreover, WP1066 reversed the resistance of CLL cells to SAHA and LBH589 induced by either IL-6 or co-culture with BMSCs. Our findings suggest that targeting the STAT3 pathway may be a novel way to improve the efficacy of the HDAC inhibitor in CLL patients by overcoming antiapoptotic signaling of the microenvironment.
Collapse
Affiliation(s)
- Kang Lu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Xiao-sheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Li-li Feng
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Yu-jie Jiang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Xiang-xiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Xin Liu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Pei-pei Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Na Chen
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Mei Ding
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Na Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Jie Zhang
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China; Institute of Diagnostics, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
141
|
Kyzar EJ, Pandey SC. Molecular mechanisms of synaptic remodeling in alcoholism. Neurosci Lett 2015; 601:11-9. [PMID: 25623036 DOI: 10.1016/j.neulet.2015.01.051] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 01/21/2023]
Abstract
Alcohol use and alcohol addiction represent dysfunctional brain circuits resulting from neuroadaptive changes during protracted alcohol exposure and its withdrawal. Alcohol exerts a potent effect on synaptic plasticity and dendritic spine formation in specific brain regions, providing a neuroanatomical substrate for the pathophysiology of alcoholism. Epigenetics has recently emerged as a critical regulator of gene expression and synaptic plasticity-related events in the brain. Alcohol exposure and withdrawal induce changes in crucial epigenetic processes in the emotional brain circuitry (amygdala) that may be relevant to the negative affective state defined as the "dark side" of addiction. Here, we review the literature concerning synaptic plasticity and epigenetics, with a particular focus on molecular events related to dendritic remodeling during alcohol abuse and alcoholism. Targeting epigenetic processes that modulate synaptic plasticity may yield novel treatments for alcoholism.
Collapse
Affiliation(s)
- Evan J Kyzar
- Department of Psychiatry, University of Illinois at Chicago, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Subhash C Pandey
- Department of Psychiatry, University of Illinois at Chicago, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA; Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
142
|
Chernet BT, Levin M. Transmembrane voltage potential of somatic cells controls oncogene-mediated tumorigenesis at long-range. Oncotarget 2015; 5:3287-306. [PMID: 24830454 PMCID: PMC4102810 DOI: 10.18632/oncotarget.1935] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The microenvironment is increasingly recognized as a crucial aspect of cancer. In contrast and complement to the field's focus on biochemical factors and extracellular matrix, we characterize a novel aspect of host:tumor interaction - endogenous bioelectric signals among non-excitable somatic cells. Extending prior work focused on the bioelectric state of cancer cells themselves, we show for the first time that the resting potentials of distant cells are critical for oncogene-dependent tumorigenesis. In the Xenopus laevis tadpole model, we used human oncogenes such as mutant KRAS to drive formation of tumor-like structures that exhibited overproliferation, increased nuclear size, hypoxia, acidity, and leukocyte attraction. Remarkably, misexpression of hyperpolarizing ion channels at distant sites within the tadpole significantly reduced the incidence of these tumors. The suppression of tumorigenesis could also be achieved by hyperpolarization using native CLIC1 chloride channels, suggesting a treatment modality not requiring gene therapy. Using a dominant negative approach, we implicate HDAC1 as the mechanism by which resting potential changes affect downstream cell behaviors. Based on published data on the voltage-mediated changes of butyrate flux through the SLC5A8 transporter, we present a model linking resting potentials of host cells to the ability of oncogenes to initiate tumorigenesis. Antibiotic data suggest that the relevant butyrate is generated by a native bacterial species, identifying a novel link between the microbiome and cancer that is mediated by alterations in bioelectric signaling.
Collapse
Affiliation(s)
- Brook T Chernet
- Center for Regenerative and Developmental Biology and Department of Biology Tufts University 200 Boston Avenue,Suite 4600 Medford, MA 02155 U.S.A
| | | |
Collapse
|
143
|
Zhang Y, Xu W. Isoform-selective histone deacetylase inhibitors: the trend and promise of disease treatment. Epigenomics 2015; 7:5-7. [PMID: 25687460 DOI: 10.2217/epi.14.62] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Yingjie Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 Wenhuaxi Road, Ji'nan, Shandong 250012, PR China
| | | |
Collapse
|
144
|
Barbarotta L, Hurley K. Romidepsin for the Treatment of Peripheral T-Cell Lymphoma. J Adv Pract Oncol 2015; 6:22-36. [PMID: 26413372 PMCID: PMC4577031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Peripheral T-cell lymphomas (PTCLs) are a rare, heterogeneous group of T-cell- or natural killer cell-derived non-Hodgkin lymphomas. The majority of patients with PTCL experience an aggressive disease course and poor overall survival. Historically, PTCL has been treated with chemotherapy regimens used to treat B-cell lymphomas; however, a lack of durable responses to frontline therapies and few effective options for salvage treatment have led to the development of newer therapies. Romidepsin is a structurally unique, potent, bicyclic class 1 selective histone deacetylase (HDAC) inhibitor that has demonstrated durable clinical responses in patients with relapsed/refractory PTCL, leading to its approval by the US Food and Drug Administration in 2011 for the treatment of PTCL in patients who have received at least one prior therapy. Here, the authors provide an overview of PTCL, review the role of HDAC inhibitors as anticancer agents, discuss romidepsin use in PTCL, and highlight considerations for advanced practitioners (including the management of side effects).
Collapse
Affiliation(s)
- Lisa Barbarotta
- 1Hematology-Oncology Service, Smilow Cancer Hospital, Yale New Haven, Connecticut; 2Avera Medical Group, Hematology and Bone Marrow Transplantation, Sioux Falls, South Dakota
| | - Kristen Hurley
- 1Hematology-Oncology Service, Smilow Cancer Hospital, Yale New Haven, Connecticut; 2Avera Medical Group, Hematology and Bone Marrow Transplantation, Sioux Falls, South Dakota
| |
Collapse
|
145
|
Kulandaivelu U, Chilakamari LM, Jadav SS, Rao TR, Jayaveera K, Shireesha B, Hauser AT, Senger J, Marek M, Romier C, Jung M, Jayaprakash V. Hydroxamates of para-aminobenzoic acid as selective inhibitors of HDAC8. Bioorg Chem 2014; 57:116-120. [DOI: 10.1016/j.bioorg.2014.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 01/31/2023]
|
146
|
Thaler F, Mercurio C. Towards selective inhibition of histone deacetylase isoforms: what has been achieved, where we are and what will be next. ChemMedChem 2014; 9:523-6. [PMID: 24730063 DOI: 10.1002/cmdc.201300413] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Histone deacetylases (HDACs) are widely studied targets for the treatment of cancer and other diseases. Up to now, over twenty HDAC inhibitors have entered clinical studies and two of them have already reached the market, namely the hydroxamic acid derivative SAHA (vorinostat, Zolinza) and the cyclic depsipeptide FK228 (romidepsin, Istodax) that have been approved for the treatment of cutaneous T-cell lymphoma (CTCL). A common aspect of the first HDAC inhibitors is the absence of any particular selectivity towards specific isozymes. Some of molecules resulted to be “pan”-HDAC inhibitors, while others are class I selective. In the meantime, the knowledge of HDAC biology has continuously progressed. Key advances in the structural biology of various isozymes, reliable molecular homology models as well as suitable biological assays have provided new tools for drug discovery activities. This Minireview aims at surveying these recent developments as well as the design, synthesis and biological characterization of isoform-selective derivatives.
Collapse
|
147
|
Chu Q, Han N, Yuan X, Nie X, Wu H, Chen Y, Guo M, Yu S, Wu K. DACH1 inhibits cyclin D1 expression, cellular proliferation and tumor growth of renal cancer cells. J Hematol Oncol 2014; 7:73. [PMID: 25322986 PMCID: PMC4203876 DOI: 10.1186/s13045-014-0073-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/22/2014] [Indexed: 12/15/2022] Open
Abstract
Background Renal cell carcinoma (RCC) is a complex with diverse biological characteristics and distinct molecular signature. New target therapies to molecules that drive RCC initiation and progression have achieved promising responses in some patients, but the total effective rate is still far from satisfaction. Dachshund (DACH1) network is a key signaling pathway for kidney development and has recently been identified as a tumor suppressor in several cancer types. However, its role in renal cell carcinoma has not been fully investigated. Methods Immunohistochemical staining for DACH1, PCNA and cyclin D1 was performed on human renal tissue microaraays and correlation with clinic-pathological characteristics was analyzed. In vitro proliferation, apoptosis and in vivo tumor growth were evaluated on human renal cancer cell lines with decitabine treatment or ectopic expression of DACH1. Downstream targets and potential molecular mechanism were investigated through western blot, immunoprecipitation and reporter gene assays. Results Expression of DACH1 was significantly decreased in human renal carcinoma tissue. DACH1 protein abundance was inversely correlated with the expression of PCNA and cyclin D1, tumor grade, and TNM stage. Restoration of DACH1 function in renal clear cell cancer cells inhibited in vitro cellular proliferation, S phase progression, clone formation, and in vivo tumor growth. In mechanism, DACH1 repressed cyclin D1 transcription through association with AP-1 protein. Conclusion Our results indicated that DACH1 was a novel molecular marker of RCC and it attributed to the malignant behavior of renal cancer cells. Re-activation of DACH1 may represent a potential therapeutic strategy.
Collapse
Affiliation(s)
- Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| | - Na Han
- Department of Oncology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| | - Xun Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| | - Xin Nie
- Department of Oncology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| | - Hua Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| | - Yu Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| | - Mingzhou Guo
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853, China.
| | - Shiying Yu
- Department of Oncology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| |
Collapse
|
148
|
Monitoring Tumor Response After Histone Deacetylase Inhibitor Treatment Using 3′-Deoxy-3′-[18F]-fluorothymidine PET. Mol Imaging Biol 2014; 17:394-402. [PMID: 25323103 DOI: 10.1007/s11307-014-0774-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
149
|
Chan CT, Qi J, Smith W, Paranol R, Mazitschek R, West N, Reeves R, Chiosis G, Schreiber SL, Bradner JE, Paulmurugan R, Gambhir SS. Syntheses and discovery of a novel class of cinnamic hydroxamates as histone deacetylase inhibitors by multimodality molecular imaging in living subjects. Cancer Res 2014; 74:7475-86. [PMID: 25320008 DOI: 10.1158/0008-5472.can-14-0197] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Histone deacetylases (HDAC) that regulate gene expression are being explored as cancer therapeutic targets. In this study, we focused on HDAC6 based on its ability to inhibit cancerous Hsp90 chaperone activities by disrupting Hsp90/p23 interactions. To identify novel HDAC6 inhibitors, we used a dual-luciferase reporter system in cell culture and living mice by bioluminescence imaging (BLI). On the basis of existing knowledge, a library of hydrazone compounds was generated for screening by coupling cinnamic hydroxamates with aldehydes and ketones. Potency and selectivity were determined by in vitro HDAC profiling assays, with further evaluation to inhibit Hsp90(α/β)/p23 interactions by BLI. In this manner, we identified compound 1A12 as a dose-dependent inhibitor of Hsp90(α/β)/p23 interactions, UKE-1 myeloid cell proliferation, p21(waf1) upregulation, and acetylated histone H3 levels. 1A12 was efficacious in tumor xenografts expressing Hsp90(α)/p23 reporters relative to carrier control-treated mice as determined by BLI. Small animal (18)F-FDG PET/CT imaging on the same cohort showed that 1A12 also inhibited glucose metabolism relative to control subjects. Ex vivo analyses of tumor lysates showed that 1A12 administration upregulated acetylated-H3 by approximately 3.5-fold. Taken together, our results describe the discovery and initial preclinical validation of a novel selective HDAC inhibitor.
Collapse
Affiliation(s)
- C T Chan
- Department of Radiology, Stanford University School of Medicine, Stanford, California. Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California. Bio-X Program, Stanford University School of Medicine, Stanford, California
| | - J Qi
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - W Smith
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - R Paranol
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - R Mazitschek
- Harvard Medical School, Boston, Massachusetts. Massachusetts General Hospital, Boston, Massachusetts. Broad Institute, Cambridge, Massachusetts
| | - N West
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - R Reeves
- Department of Radiology, Stanford University School of Medicine, Stanford, California. Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California. Bio-X Program, Stanford University School of Medicine, Stanford, California
| | - G Chiosis
- Department of Medicine and Program in Molecular Pharmacology and Medical Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York
| | | | - J E Bradner
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts. Broad Institute, Cambridge, Massachusetts
| | - R Paulmurugan
- Department of Radiology, Stanford University School of Medicine, Stanford, California. Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California. Bio-X Program, Stanford University School of Medicine, Stanford, California
| | - S S Gambhir
- Department of Radiology, Stanford University School of Medicine, Stanford, California. Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California. Bio-X Program, Stanford University School of Medicine, Stanford, California. Department of Bioengineering, Stanford University School of Medicine, Stanford, California. Division of Nuclear Medicine, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
150
|
Del Bufalo D, Desideri M, De Luca T, Di Martile M, Gabellini C, Monica V, Busso S, Eramo A, De Maria R, Milella M, Trisciuoglio D. Histone deacetylase inhibition synergistically enhances pemetrexed cytotoxicity through induction of apoptosis and autophagy in non-small cell lung cancer. Mol Cancer 2014; 13:230. [PMID: 25301686 PMCID: PMC4198757 DOI: 10.1186/1476-4598-13-230] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 09/24/2014] [Indexed: 01/04/2023] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide. Pemetrexed, a multi-target folate antagonist, has demonstrated efficacy in NSCLC histological subtypes characterized by low thymidylate synthase (TS) expression. Among many other potential targets, histone deacetylase inhibitors (HDACi) modulate TS expression, potentially sensitizing to the cytotoxic action of anti-cancer drugs that target the folate pathway, such as pemetrexed. Since high levels of TS have been linked to clinical resistance to pemetrexed in NSCLC, herein we investigated the molecular and functional effects of combined pemetrexed and ITF2357, a pan-HDACi currently in clinical trials as an anti-cancer agent. Results In NSCLC cell lines, HDAC inhibition by ITF2357 induced histone and tubulin acetylation and downregulated TS expression at the mRNA and protein level. In combination experiments in vitro ITF2357 and pemetrexed demonstrated sequence-dependent synergistic growth-inhibitory effects, with the sequence pemetrexed followed by ITF2357 inducing a strikingly synergistic reduction in cell viability and induction of both apoptosis and autophagy in all cell line models tested, encompassing both adenocarcinoma and squamous cell carcinoma. Conversely, simultaneous administration of both drugs achieved frankly antagonistic effects, while the sequence of ITF2357 followed by pemetrexed had additive to slightly synergistic growth-inhibitory effects only in certain cell lines. Similarly, highly synergistic growth inhibition was also observed in patient-derived lung cancer stem cells (LCSC) exposed to pemetrexed followed by ITF2357. In terms of molecular mechanisms of interaction, the synergistic growth-inhibitory effects observed were only partially related to TS modulation by ITF2357, as genetic silencing of TS expression potentiated growth inhibition by either pemetrexed or ITF2357 and, to a lesser extent, by their sequential combination. Genetic and pharmacological approaches provided an interesting link between the autophagic and apoptotic pathways, and showed that sequential pemetrexed/ITF2357 causes a toxic form of autophagy with consequent activation of a caspase-dependent apoptotic program. In vivo experiments in NSCLC xenografts confirmed that sequential pemetrexed/ITF2357 is feasible and results in increased inhibition of tumor growth and increased mice survival. Conclusions Overall, these data provide a strong rationale for the clinical development of sequential schedules employing pemetrexed followed by HDACi in NSCLC. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-230) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Donatella Del Bufalo
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|