101
|
Andræ F, Abbott D, Stridsklev S, Schmedes AV, Odsæter IH, Vanky E, Salvesen Ø. Sustained Maternal Hyperandrogenism During PCOS Pregnancy Reduced by Metformin in Non-obese Women Carrying a Male Fetus. J Clin Endocrinol Metab 2020; 105:5899825. [PMID: 32866967 PMCID: PMC7538101 DOI: 10.1210/clinem/dgaa605] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
Abstract
CONTEXT Large, longitudinal studies on androgen levels in pregnant women with polycystic ovary syndrome (PCOS) are lacking. While metformin has a mild androgen-lowering effect in non-pregnant women with PCOS, its effects on maternal androgen levels in pregnancy are less well understood. OBJECTIVE To describe androgen patterns in pregnant women with PCOS and in healthy control women, and to explore the potential effects of metformin on maternal androgen levels in PCOS. DESIGN AND SETTING A post hoc analysis from a randomized, placebo-controlled, multicenter study carried out at 11 secondary care centers and a longitudinal single-center study on healthy pregnant women in Norway. PARTICIPANTS A total of 262 women with PCOS and 119 controls. INTERVENTION The participants with PCOS were randomly assigned to metformin (2 g daily) or placebo, from first trimester to delivery. MAIN OUTCOME MEASURES Androstenedione (A4), testosterone (T), sex-hormone binding globulin (SHBG), and free testosterone index (FTI) at 4 time points in pregnancy. RESULTS Women with PCOS versus healthy controls had higher A4, T, and FTI, and lower SHBG at all measured time points in pregnancy. In the overall cohort of women with PCOS, metformin had no effect on A4, T, SHBG, and FTI. In subgroup analyses, metformin reduced A4 (P = 0.019) in nonobese women. Metformin also reduced A4 (P = 0.036), T (P = 0.023), and SHBG (P = 0.010) levels through pregnancy in mothers with a male fetus. CONCLUSION Metformin had no effect on maternal androgens in PCOS pregnancies. In subgroup analyses, a modest androgen-lowering effect was observed in nonobese women with PCOS. In PCOS women carrying a male fetus, metformin exhibited an androgen-lowering effect.
Collapse
Affiliation(s)
- Frida Andræ
- Department of Obstetrics and Gynecology, Nordlandssykehuset, Bodø, Norway
- Correspondence and Reprint Requests: Frida Andræ, Kvinneklinikken i Bodø, Nordlandssykehuset HF Postboks 1480, NO-8092 Bodø, Norway. E-mail:
| | - David Abbott
- Wisconsin National Primate Research Centre, University of Wisconsin, Madison, WI
| | - Solhild Stridsklev
- Department of Obstetrics and Gynecology, St Olavs hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Ingrid Hov Odsæter
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical Chemistry, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Eszter Vanky
- Department of Obstetrics and Gynecology, St Olavs hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Øyvind Salvesen
- Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
102
|
Scott H, Phillips TJ, Sze Y, Alfieri A, Rogers MF, Volpato V, Case CP, Brunton PJ. Maternal antioxidant treatment prevents the adverse effects of prenatal stress on the offspring's brain and behavior. Neurobiol Stress 2020; 13:100281. [PMID: 33344732 PMCID: PMC7739187 DOI: 10.1016/j.ynstr.2020.100281] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Maternal exposure to stress during pregnancy is associated with an increased risk of psychiatric disorders in the offspring in later life. The mechanisms through which the effects of maternal stress are transmitted to the fetus are unclear, however the placenta, as the interface between mother and fetus, is likely to play a key role. Using a rat model, we investigated a role for placental oxidative stress in conveying the effects of maternal social stress to the fetus and the potential for treatment using a nanoparticle-bound antioxidant to prevent adverse outcomes in the offspring. Maternal psychosocial stress increased circulating corticosterone in the mother, but not in the fetuses. Maternal stress also induced oxidative stress in the placenta, but not in the fetal brain. Blocking oxidative stress using an antioxidant prevented the prenatal stress-induced anxiety phenotype in the male offspring, and prevented sex-specific neurobiological changes, specifically a reduction in dendrite lengths in the hippocampus, as well as reductions in the number of parvalbumin-positive neurons and GABA receptor subunits in the hippocampus and basolateral amygdala of the male offspring. Importantly, many of these effects were mimicked in neuronal cultures by application of placental-conditioned medium or fetal plasma from stressed pregnancies, indicating molecules released from the placenta may mediate the effects of prenatal stress on the fetal brain. Indeed, both placenta-conditioned medium and fetal plasma contained differentially abundant microRNAs following maternal stress, and their predicted targets were enriched for genes relevant to nervous system development and psychiatric disorders. The results highlight placental oxidative stress as a key mediator in transmitting the maternal social stress effects on the offspring's brain and behavior, and offer a potential intervention to prevent stress-induced fetal programming of affective disorders. Social stress in pregnancy induces oxidative stress but is prevented by antioxidant. Prenatal stress induces behavioural, neuroanatomical and neurochemical changes. Maternal antioxidant treatment prevents stress-induced effects in the offspring. Maternal stress alters the balance of microRNAs secreted from the placenta. Placental oxidative stress mediates maternal social stress effects on the offspring.
Collapse
Affiliation(s)
- H Scott
- School of Clinical Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK
| | - T J Phillips
- School of Clinical Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Y Sze
- Division of Neurobiology, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - A Alfieri
- Division of Neurobiology, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - M F Rogers
- Intelligent Systems Laboratory, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB, UK
| | - V Volpato
- UK Dementia Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - C P Case
- School of Clinical Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK
| | - P J Brunton
- Division of Neurobiology, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.,Zhejiang University-University of Edinburgh Joint Institute, Zhejiang University School of Medicine, International Campus, Haining, Zhejiang, 314400, PR China
| |
Collapse
|
103
|
Konzman D, Abramowitz LK, Steenackers A, Mukherjee MM, Na HJ, Hanover JA. O-GlcNAc: Regulator of Signaling and Epigenetics Linked to X-linked Intellectual Disability. Front Genet 2020; 11:605263. [PMID: 33329753 PMCID: PMC7719714 DOI: 10.3389/fgene.2020.605263] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular identity in multicellular organisms is maintained by characteristic transcriptional networks, nutrient consumption, energy production and metabolite utilization. Integrating these cell-specific programs are epigenetic modifiers, whose activity is often dependent on nutrients and their metabolites to function as substrates and co-factors. Emerging data has highlighted the role of the nutrient-sensing enzyme O-GlcNAc transferase (OGT) as an epigenetic modifier essential in coordinating cellular transcriptional programs and metabolic homeostasis. OGT utilizes the end-product of the hexosamine biosynthetic pathway to modify proteins with O-linked β-D-N-acetylglucosamine (O-GlcNAc). The levels of the modification are held in check by the O-GlcNAcase (OGA). Studies from model organisms and human disease underscore the conserved function these two enzymes of O-GlcNAc cycling play in transcriptional regulation, cellular plasticity and mitochondrial reprogramming. Here, we review these findings and present an integrated view of how O-GlcNAc cycling may contribute to cellular memory and transgenerational inheritance of responses to parental stress. We focus on a rare human genetic disorder where mutant forms of OGT are inherited or acquired de novo. Ongoing analysis of this disorder, OGT- X-linked intellectual disability (OGT-XLID), provides a window into how epigenetic factors linked to O-GlcNAc cycling may influence neurodevelopment.
Collapse
Affiliation(s)
| | | | | | | | | | - John A. Hanover
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
104
|
Hwang SS, Dukhovny D, Gopal D, Cabral H, Farland LV, Stern JE. Sex differences in infant health following ART-treated, subfertile, and fertile deliveries. J Assist Reprod Genet 2020; 38:211-218. [PMID: 33185819 DOI: 10.1007/s10815-020-02004-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/02/2020] [Indexed: 01/15/2023] Open
Abstract
PURPOSE Among infants following ART-treated, subfertile, and fertile deliveries to determine (1) the presence and magnitude of sex differences in health outcomes and (2) whether the presence of sex differences varied among maternal fertility groups. METHODS Retrospective cohort analysis of infants born in Massachusetts (MA) in 2004-2013 who were conceived by ART. The Society for Assisted Reproductive Technology Clinic Outcome Reporting System was linked to the Pregnancy to Early Life Longitudinal data system, which links birth certificates to hospital discharge records for MA mothers and infants. Included were singletons born via ART-treated, subfertile, and fertile deliveries. Multivariable logistic regression was used to model the association between infant sex and health outcomes, controlling for maternal demographic and health characteristics. RESULTS A total of 16,034 ART-treated, 13,277 subfertile, and 620,375 fertile singleton live births were included. For all three groups, males had greater odds of being preterm (AOR range 1.15-1.2), having birth defects (AOR range 1.31-1.71), experiencing respiratory (AOR range 1.33-1.35) and neurologic (AOR range 1.24-1.3) conditions, and prolonged hospital stay (AOR range 1.19-1.25) compared to females. The interaction between maternal fertility group and infant sex for all infant outcomes was nonsignificant, denoting that the presence of sex differences among fertile, subfertile, and ART groups did not vary. CONCLUSION Sex differences in birth outcomes of infants following ART-treated, subfertile, and fertile deliveries exist but the magnitude of these differences does not vary among these maternal fertility groups.
Collapse
Affiliation(s)
- Sunah S Hwang
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, 13121 East 17th Avenue, Education 2 South, Mailstop 8402, Aurora, CO, 80045, USA.
| | - Dmitry Dukhovny
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Daksha Gopal
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Howard Cabral
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Leslie V Farland
- Departmet of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Judy E Stern
- Department of Obstetrics and Gynecology and Pathology, Dartmouth-Hitchcock, Lebanon, NH, USA
| |
Collapse
|
105
|
Novel sex-specific influence of parental factors on small-for-gestational-age newborns. Sci Rep 2020; 10:19226. [PMID: 33154528 PMCID: PMC7644766 DOI: 10.1038/s41598-020-76196-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/23/2020] [Indexed: 11/09/2022] Open
Abstract
Since fetal programming is sex-specific, there may also be sex-specific in parental influences on newborn birth weight. We aimed to investigate the influence of parental factors on small-for-gestational-age (SGA) infants of different sexes. Based on a pre-pregnancy cohort, multivariate logistic regression was used. 2275 couples were included for analysis. Significant associations were observed among paternal height, pre-pregnancy body mass index (BMI), and SGA in male infants; among maternal height, pre-pregnancy BMI, and SGA in female infants, and among other maternal factors and SGA in both male and female infants. Such sex specificity may be related to genetic, epigenetic, or hormonal influences between parents and infants. In conclusion, there is a sex specificity in the effect of parental height and pre-pregnancy BMI on SGA. The data suggest that future studies on infants should consider the sex-specific differences between the effects of genetic or environmental factors and infants.
Collapse
|
106
|
Examining Sex Differences in the Human Placental Transcriptome During the First Fetal Androgen Peak. Reprod Sci 2020; 28:801-818. [PMID: 33150487 DOI: 10.1007/s43032-020-00355-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/11/2020] [Indexed: 01/10/2023]
Abstract
Sex differences in human placenta exist from early pregnancy to term, however, it is unclear whether these differences are driven solely by sex chromosome complement or are subject to differential sex hormonal regulation. Here, we survey the human chorionic villus (CV) transcriptome for sex-linked signatures from 11 to 16 gestational weeks, corresponding to the first window of increasing testis-derived androgen production in male fetuses. Illumina HiSeq RNA sequencing was performed on Lexogen Quantseq 3' libraries derived from CV biopsies (n = 11 females, n = 12 males). Differential expression (DE) was performed to identify sex-linked transcriptional signatures, followed by chromosome mapping, pathway analysis, predicted protein interaction, and post-hoc linear regressions to identify transcripts that trend over time. We observe 322 transcripts DE between male and female CV from 11 to 16 weeks, with 22 transcripts logFC > 1. Contrary to our predictions, the difference between male and female expression of DE autosomal genes was more pronounced at the earlier gestational ages. In females, we found selective upregulation of extracellular matrix components, along with a number of X-linked genes. In males, DE transcripts centered on chromosome 19, with mitochondrial, immune, and pregnancy maintenance-related transcripts upregulated. Among the highest differentially expressed autosomal genes were CCRL2, LGALS13, and LGALS14, which are known to regulate immune cell interactions. Our results provide insight into sex-linked gene expression in late first and early second trimester developing human placenta and lay the groundwork to understand the mechanistic origins of sex differences in prenatal development.
Collapse
|
107
|
Sun Y, Tang Y, Xu X, Hu K, Zhang Z, Zhang Y, Yi Z, Zhu Q, Xu R, Zhang Y, Liu Z, Liu X. Lead exposure results in defective behavior as well as alteration of gut microbiota composition in flies and their offsprings. Int J Dev Neurosci 2020; 80:699-708. [PMID: 32966649 DOI: 10.1002/jdn.10067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/07/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Lead (Pb) has become one of the most dangerous metals to human health, especially to the nervous system as its persistent accumulation and high toxicity. However, how the gut microbiota influence the Pb-related neurotoxicity remains unclear. The aim of our study was to explore the link among Pb exposure, behavior changes, and gut microbiota. METHODS Using Drosophila melanogaster as model, climbing assay, social avoidance, social space, and short-term memory analysis were preformed to study the behavioral changes in flies exposed to Pb and their offspring. 16S rRNA sequencing was used to explore the changes in the gut microbiota of the flies with/without Pb-exposure. RESULTS The crawling ability, memory, and social interactions of Pb-exposed parent flies decreased significantly. For the offspring, behaviors were more significantly affected in male offspring whose male parent was exposed to Pb. The alpha diversity and the beta diversity of gut microbiota were significantly different between the Pb-exposed flies and the controls, as well as between the male offspring and the controls. Two genera, Lactobacillus and Bifidobacterium were found significantly decreased in the Pb-exposed flies when compared to the controls and significantly correlated with the learning and memory. Four genera, Bilophila, Coprococcus, Desulfovibrio, and Ruminococcus were found depleted in the female offspring of the Pb-exposed flies. CONCLUSIONS Lead exposure resulted in defective behavior and alteration of gut microbiota composition in flies and their offspring, alteration in gut microbiota might be the link between behavioral changes induced by Pb-exposure.
Collapse
Affiliation(s)
- Yu Sun
- Department of Pathogen-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Yi Tang
- Department of Pathogen-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Xinwen Xu
- Department of Pathogen-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Kehan Hu
- Department of Pathogen-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Zixiao Zhang
- Department of Pathogen-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Department of Pathogen-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Zhongyuan Yi
- Department of Pathogen-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Qihui Zhu
- Department of Pathogen-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Rui Xu
- Department of Pathogen-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Yumin Zhang
- Department of Endocrinology, Zhongda Hospital, Southeast University, Nanjing, China.,Department of Geriatric Endocrinology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Zhi Liu
- Department of Pathogen-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Xingyin Liu
- Department of Pathogen-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
108
|
Green MT, Martin RE, Kinkade JA, Schmidt RR, Bivens NJ, Tuteja G, Mao J, Rosenfeld CS. Maternal oxycodone treatment causes pathophysiological changes in the mouse placenta. Placenta 2020; 100:96-110. [PMID: 32891007 PMCID: PMC8112023 DOI: 10.1016/j.placenta.2020.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Pregnant women are increasingly being prescribed and abusing opioid drugs. As the primary communication organ between mother and conceptus, the placenta may be vulnerable to opioid effects but also holds the key to better understanding how these drugs affect long-term offspring health. We hypothesized that maternal treatment with oxycodone (OXY), the primary opioid at the center of the current crisis, deleteriously affects placental structure and gene expression patterns. METHODS Female mice were treated daily with 5 mg OXY/kg or saline solution (Control, CTL) for two weeks prior to breeding and until placenta were collected at embryonic age 12.5. A portion of the placenta was fixed for histology, and the remainder was frozen for RNA isolation followed by RNAseq. RESULTS Maternal OXY treatment reduced parietal trophoblast giant cell (pTGC) area and decreased the maternal blood vessel area within the labyrinth region. OXY exposure affected placental gene expression profiles in a sex dependent manner with female placenta showing up-regulation of many placental enriched genes, including Ceacam11, Ceacam14, Ceacam12, Ceacam13, Prl7b1, Prl2b1, Ctsq, and Tpbpa. In contrast, placenta of OXY exposed males had alteration of many ribosomal proteins. Weighted correlation network analysis revealed that in OXY female vs. CTL female comparison, select modules correlated with OXY-induced placental histological changes. Such associations were lacking in the male OXY vs. CTL male comparison. DISCUSSION Results suggest OXY exposure alters placental histology. In response to OXY exposure, female placenta responds by upregulating placental enriched transcripts that are either unchanged or downregulated in male placenta. Such changes may shield female offspring from developmental origins of health and disease-based diseases.
Collapse
Affiliation(s)
- Madison T Green
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Rachel E Martin
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Jessica A Kinkade
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Robert R Schmidt
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Nathan J Bivens
- DNA Core Facility, University of Missouri, Columbia, MO, 65211, USA
| | - Geetu Tuteja
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jiude Mao
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Cheryl S Rosenfeld
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA; Informatics Institute, University of Missouri, Columbia, MO, 65211, USA; Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, 65211, USA; Genetics Area Program, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
109
|
Young JL, Cai L. Implications for prenatal cadmium exposure and adverse health outcomes in adulthood. Toxicol Appl Pharmacol 2020; 403:115161. [PMID: 32721433 PMCID: PMC7453094 DOI: 10.1016/j.taap.2020.115161] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/18/2020] [Accepted: 07/22/2020] [Indexed: 02/08/2023]
Abstract
Cadmium is a ubiquitous, non-essential metal that has earned a spot on the World Health Organizations top 10 chemicals of major public health concern. The mechanisms of cadmium-induced adverse health outcomes, such as cardiovascular disease, renal toxicity and cancer, are well studied in adults. However, the implications for early life exposures to low-level cadmium leading to increased risk of developing diseases in adulthood remains elusive. Epidemiological investigation of the long term implications of cadmium-associated adverse birth outcomes are limited and studies do not extend into adulthood. This review will summarize the literature on the non-lethal, adverse health effects associated with prenatal and early life exposure to cadmium and the implications of these exposures in the development of diseases later in life. In addition, this review will highlight possible mechanisms responsible for these outcomes as well as address the inconsistencies in the literature. More recent studies have addressed sex as a biological variable, showing prenatal cadmium exposure elicits sex-specific outcomes that would otherwise be masked by pooling male and female data. Furthermore, researchers have begun to investigate the role of prenatal and early life cadmium exposures in the development of diet-induced diseases with evidence of altered essential metal homeostasis as a likely mechanism for cadmium-enhanced, diet-induced diseases. Although novel experimental models are beginning to be established to study the association between prenatal cadmium exposure and adverse health outcomes in adulthood, the studies are few, highlighting a major need for further investigation.
Collapse
Affiliation(s)
- Jamie L Young
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Lu Cai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Departments of Pediatrics and Radiation Oncology, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
110
|
Stenhouse C, Hogg CO, Ashworth CJ. Novel relationships between porcine fetal size, sex, and endometrial angiogenesis†. Biol Reprod 2020; 101:112-125. [PMID: 31093645 DOI: 10.1093/biolre/ioz068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/17/2019] [Accepted: 04/22/2019] [Indexed: 11/13/2022] Open
Abstract
It is hypothesized that growth restriction occurs due to inadequate vascularization of the feto-maternal interface. Evidence exists for sexual dimorphism in placental function although associations between fetal sex and the endometrium remain poorly investigated. This study investigated the relationship between porcine fetal size, sex and endometrial angiogenesis at multiple gestational days (GD). Endometrial samples supplying the lightest and closest to mean litter weight (CTMLW), male and female Large White X Landrace conceptuses or fetuses were obtained at GD18, 30, 45, 60, and 90 (n = 5-9 litters/GD). Immunohistochemistry for CD31 revealed a greater number of blood vessels in endometrium supplying females compared to those supplying males at GD45. Endometrial samples supplying the lightest fetuses had fewer blood vessels (GD60) and uterine glands (GD90) compared to those supplying the CTMLW fetuses. Quantitative PCR revealed decreased CD31 (GD60), HPSE and VEGFA (GD90) expression, alongside increased HIF1A (GD45) expression in endometrial samples supplying the lightest compared to the CTMLW fetuses. At GD30, PTGFR, CD31, and VEGFA mRNA expression was increased in samples supplying female fetuses compared to those supplying male fetuses. Intriguingly, decreased expression of ACP5, CD31, HIF1A, and VEGFA mRNAs was observed at GD60 in endometrial samples supplying female fetuses compared to those supplying their male littermates. Endothelial cell branching assays demonstrated impaired endothelial cell branching in response to conditioned media from endometrial samples supplying the lightest and female fetuses compared with the CTMLW and male fetuses, respectively. This study has highlighted that endometrial tissues supplying the lightest and female fetuses have impaired angiogenesis when compared with the CTMLW and female fetuses respectively. Importantly, the relationship between fetal size, sex and endometrial vascularity is dynamic and dependent upon the GD investigated.
Collapse
Affiliation(s)
- Claire Stenhouse
- Developmental Biology Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, UK
| | - Charis O Hogg
- Developmental Biology Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, UK
| | - Cheryl J Ashworth
- Developmental Biology Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, UK
| |
Collapse
|
111
|
Eaves L, Phookphan P, Rager J, Bangma J, Santos HP, Smeester L, O'Shea TM, Fry R. A role for microRNAs in the epigenetic control of sexually dimorphic gene expression in the human placenta. Epigenomics 2020; 12:1543-1558. [PMID: 32901510 PMCID: PMC7607407 DOI: 10.2217/epi-2020-0062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/03/2020] [Indexed: 12/15/2022] Open
Abstract
Aim: The contribution of miRNAs as epigenetic regulators of sexually dimorphic gene expression in the placenta is unknown. Materials & methods: 382 placentas from the extremely low gestational age newborns (ELGAN) cohort were evaluated for expression levels of 37,268 mRNAs and 2,102 miRNAs using genome-wide RNA-sequencing. Differential expression analysis was used to identify differences in the expression based on the sex of the fetus. Results: Sexually dimorphic expression was observed for 128 mRNAs and 59 miRNAs. A set of 25 miRNA master regulators was identified that likely contribute to the sexual dimorphic mRNA expression. Conclusion: These data highlight sex-dependent miRNA and mRNA patterning in the placenta and provide insight into a potential mechanism for observed sex differences in outcomes.
Collapse
Affiliation(s)
- Lauren Eaves
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Preeyaphan Phookphan
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
| | - Julia Rager
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jacqueline Bangma
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hudson P Santos
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- School of Nursing, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lisa Smeester
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas Michael O'Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rebecca Fry
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
112
|
Hammouz RY, Kostanek JK, Dudzisz A, Witas P, Orzechowska M, Bednarek AK. Differential expression of lung adenocarcinoma transcriptome with signature of tobacco exposure. J Appl Genet 2020; 61:421-437. [PMID: 32564237 PMCID: PMC7413900 DOI: 10.1007/s13353-020-00569-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/12/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022]
Abstract
Smoking accounts for almost 80-90% of lung cancer cases, which is also the most frequent cause of cancer-related deaths in humans. With over 60 carcinogens in tobacco smoke, cells dividing at the time of carcinogen exposure are at particular risk of neoplasia. The present study aimed to investigate global gene expression differences in lung adenocarcinoma (LUAD) tumour samples of current smokers and non-smokers, in an attempt to elucidate biological mechanisms underlying divergent smoking effects. Current and non-smoker tumour samples were analysed using bioinformatics tools, examining differences in molecular drivers of cancer initiation and progression, as well as evaluating the effect of smoking and sex on epithelial mesenchymal transition (EMT). As a result, we identified 1150 differentially expressed genes showing visible differences in the expression profiles between the smoking subgroups. The genes were primarily involved in cell cycle, DNA replication, DNA repair, VEGF, GnRH, ErbB and T cell receptor signalling pathways. Our results show that smoking clearly affected E2F transcriptional activity and DNA repair pathways including mismatch repair, base excision repair and homologous recombination. We observed that sex could modify the effects of PLA2G2A and PRG4 in LUAD tumour samples, whereas sex and smoking status might possibly have a biological effect on the EMT-related genes: HEY2, OLFM1, SFRP1 and STRAP. We also identified potential epigenetic changes smoking solely might have on EMT-related genes, which may serve as potential diagnostic and prognostic biomarkers for LUAD patients.
Collapse
Affiliation(s)
- Raneem Y. Hammouz
- Department of Molecular Carcinogenesis, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Joanna K. Kostanek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Aleksandra Dudzisz
- Department of Molecular Carcinogenesis, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Piotr Witas
- Department of Molecular Carcinogenesis, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Magdalena Orzechowska
- Department of Molecular Carcinogenesis, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Andrzej K. Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| |
Collapse
|
113
|
Bernhardsen GP, Stensrud T, Nystad W, Ekelund U. Pre- and post-natal factors and physical activity in childhood: The Norwegian Mother, Father and Child Cohort study. Scand J Med Sci Sports 2020; 30:2264-2274. [PMID: 32720380 DOI: 10.1111/sms.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 11/29/2022]
Abstract
Few studies have examined the possibility that pre- and post-natal factors may be non-linearly associated with later physical activity. We used data from the Norwegian Mother, Father and Child Cohort study (MoBa) and the Medical Birth Registry of Norway (MBRN), including 48 672 children with available data on leisure time physical activity (LTPA) at child's age 7 years. Restricted cubic and linear splines or linear regression was used to examine the associations between maternal pre-pregnancy BMI, birth weight for gestational age, and infant weight gain from birth to 1 year with LTPA (frequency/wk) in 7-year-old children. The results suggest no associations between maternal pre-pregnancy BMI, birth weight, and infant weight gain on subsequent LTPA in girls. Maternal pre-pregnancy BMI and birth weight may be non-linearly associated with LTPA in 7-year-old boys. Infant weight gain (change in weight z-score from birth to 1 year) may be weakly linearly associated with LTPA in boys. Pre- and post-natal factors may therefore influence LTPA in childhood differently in boys and girls. Maternal pre-pregnancy BMI and birth weight are positively associated with LTPA at the lower ends of the maternal pre-pregnancy BMI and birth weight continuums in boys. The negative associations at the higher ends of the continuums and the positive association between infant weight gain and LTPA in boys may not be important and needs further replication.
Collapse
Affiliation(s)
| | - Trine Stensrud
- Department of Sport Medicine, Norwegian School of Sports Sciences, Oslo, Norway
| | - Wenche Nystad
- Department of Non-communicable Diseases, Norwegian Institute of Public Health, Oslo, Norway
| | - Ulf Ekelund
- Department of Sport Medicine, Norwegian School of Sports Sciences, Oslo, Norway.,Department of Non-communicable Diseases, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
114
|
Cissé YM, Chan JC, Nugent BM, Banducci C, Bale TL. Brain and placental transcriptional responses as a readout of maternal and paternal preconception stress are fetal sex specific. Placenta 2020; 100:164-170. [PMID: 32980048 DOI: 10.1016/j.placenta.2020.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Despite a wealth of epidemiological evidence that cumulative parental lifetime stress experiences prior to conception are determinant of offspring developmental trajectories, there is a lack of insight on how these previous stress experiences are stored and communicated intergenerationally. Preconception experiences may impact offspring development through alterations in transcriptional regulation of the placenta, a major determinant of offspring growth and sex-specific developmental outcomes. We evaluated the lasting influence of maternal and paternal preconception stress (PCS) on the mid-gestation placenta and fetal brain, utilizing their transcriptomes as proximate readouts of intergenerational impact. METHODS To assess the combined vs. dominant influence of maternal and paternal preconception environment on sex-specific fetal development, we compared transcriptional outcomes using a breeding scheme of one stressed parent, both stressed parents, or no stressed parents as controls. RESULTS Interestingly, offspring sex affected the directionality of transcriptional changes in response to PCS, where male tissues showed a predominant downregulation, and female tissues showed an upregulation. There was also an intriguing effect of parental sex on placental programming where paternal PCS drove more effects in female placentas, while maternal PCS produced more transcriptional changes in male placentas. However, in the fetal brain, maternal PCS produced overall more changes in gene expression than paternal PCS, supporting the idea that the intrauterine environment may have a larger overall influence on the developing brain than it does on shaping the placenta. DISCUSSION Preconception experiences drive changes in the placental and the fetal brain transcriptome at a critical developmental timepoint. While not determinant, these altered transcriptional states may underlie sex-biased risk or resilience to stressful experiences later in life.
Collapse
Affiliation(s)
- Yasmine M Cissé
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Jennifer C Chan
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Bridget M Nugent
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Caitlin Banducci
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Tracy L Bale
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, 21201, United States.
| |
Collapse
|
115
|
Saoi M, Kennedy KM, Gohir W, Sloboda DM, Britz-McKibbin P. Placental Metabolomics for Assessment of Sex-specific Differences in Fetal Development During Normal Gestation. Sci Rep 2020; 10:9399. [PMID: 32523064 PMCID: PMC7286906 DOI: 10.1038/s41598-020-66222-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 05/17/2020] [Indexed: 02/07/2023] Open
Abstract
The placenta is a metabolically active interfacial organ that plays crucial roles in fetal nutrient delivery, gas exchange and waste removal reflecting dynamic maternal and fetal interactions during gestation. There is growing evidence that the sex of the placenta influences fetal responses to external stimuli in utero, such as changes in maternal nutrition and exposure to environmental stressors. However, the exact biochemical mechanisms associated with sex-specific metabolic adaptations during pregnancy and its link to placental function and fetal development remain poorly understood. Herein, multisegment injection-capillary electrophoresis-mass spectrometry is used as a high throughput metabolomics platform to characterize lyophilized placental tissue (~2 mg dried weight) from C57BL/6J mice fed a standardized diet. Over 130 authentic metabolites were consistently measured from placental extracts when using a nontargeted metabolomics workflow with stringent quality control and robust batch correction. Our work revealed distinct metabolic phenotype differences that exist between male (n = 14) and female (n = 14) placentae collected at embryonic day E18.5. Intracellular metabolites associated with fatty acid oxidation and purine degradation were found to be elevated in females as compared to male placentae (p < 0.05, effect size >0.40), including uric acid, valerylcarnitine, hexanoylcarnitine, and 3-hydroxyhexanolycarnitine. This murine model sheds new insights into sex-specific differences in placental mitochondrial function and protective mechanisms against deleterious oxidative stress that may impact fetal growth and birth outcomes later in life.
Collapse
Affiliation(s)
- Michelle Saoi
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada
| | - Katherine M Kennedy
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Wajiha Gohir
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.,Department of Pediatrics and Obstetrics and Gynecology, McMaster University, Hamilton, Canada.,Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Philip Britz-McKibbin
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada.
| |
Collapse
|
116
|
Basak S, Das MK, Duttaroy AK. Plastics derived endocrine-disrupting compounds and their effects on early development. Birth Defects Res 2020; 112:1308-1325. [PMID: 32476245 DOI: 10.1002/bdr2.1741] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Despite the fact that the estrogenic effects of bisphenols were first described 80 years ago, recent data about its potential negative impact on birth outcome parameters raises a strong rationale to investigate further. The adverse health effects of plastics recommend to measure the impacts of endocrine-disrupting compounds (EDCs) such as bisphenols (BPA, BPS, BPF), bis(2-ethylhexyl) phthalate, and dibutyl phthalate (DBP) in human health. Exposure to these compounds in utero may program the diseases of the testis, prostate, kidney and abnormalities in the immune system, and cause tumors, uterine hemorrhage during pregnancy and polycystic ovary. These compounds also control the processes of epigenetic transgenerational inheritance of adult-onset diseases by modulating DNA methylation and epimutations in reproductive cells. The early developmental stage is the most susceptible window for developmental and genomic programming. The critical stages of the events for a normal human birth lie between the many transitions occurring between spermatogenesis, egg fertilization and the fully formed fetus. As the cells begin to grow and differentiate, there are critical balances of hormones, and protein synthesis. Data are emerging on how these plastic-derived compounds affect embryogenesis, placentation and feto-placental development since pregnant women and unborn fetuses are often exposed to these factors during preconception and throughout gestation. Impaired early development that ultimately influences fetal outcomes is at the center of many developmental disorders and contributes an independent risk factor for adult chronic diseases. This review will summarize the current status on the impact of exposure to plastic derived EDCs on the growth, gene expression, epigenetic and angiogenic activities of the early fetal development process and their possible effects on birth outcomes.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Mrinal K Das
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
117
|
Maternal stress in relation to sex-specific expression of placental genes involved in nutrient transport, oxygen tension, immune response, and the glucocorticoid barrier. Placenta 2020; 96:19-26. [PMID: 32421529 DOI: 10.1016/j.placenta.2020.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/20/2020] [Accepted: 05/07/2020] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Murine models provide evidence that maternal stress during pregnancy can influence placenta morphology and function, including altered expression of genes involved in the maintenance and progression of pregnancy and fetal development. Corresponding research evaluating the impact of maternal stress on placental gene expression in humans is limited. We examined maternal stress in relation to placental expression of 17 candidate genes in a community-based sample. METHODS Participants included 60 mother-newborn pairs enrolled in the PRogramming of Intergenerational Stress Mechanisms pregnancy cohort based at the Mount Sinai Hospital in New York City. Placentas were collected immediately following delivery and gene expression was measured using a qPCR-based platform. Maternal experiences of traumatic and non-traumatic stress were measured using the Life Stressor Checklist-Revised (LSC-R) administered during a mid-pregnancy interview. We used multivariable linear regression to examine associations between LSC-R scores and expression of each gene in separate models in the sample overall and stratified by fetal sex. RESULTS Higher maternal stress was associated with significantly increased placental expression of the nutrient sensor gene OGT, the glucose transporter gene GLUT1, and the hypoxia sensor gene HIF3A. In models stratified by fetal sex, significant associations remained only among males. DISCUSSION This study represents one of the most comprehensive examinations of maternal lifetime traumatic and non-traumatic stress in relation to placental gene expression in human tissue. Our findings support that maternal stress may alter sex-specific placental expression of genes involved in critical developmental processes.
Collapse
|
118
|
Khambadkone SG, Cordner ZA, Tamashiro KLK. Maternal stressors and the developmental origins of neuropsychiatric risk. Front Neuroendocrinol 2020; 57:100834. [PMID: 32084515 PMCID: PMC7243665 DOI: 10.1016/j.yfrne.2020.100834] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/23/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
The maternal environment during pregnancy is critical for fetal development and perinatal perturbations can prime offspring disease risk. Here, we briefly review evidence linking two well-characterized maternal stressors - psychosocial stress and infection - to increased neuropsychiatric risk in offspring. In the current climate of increasing obesity and globalization of the Western-style diet, maternal overnutrition emerges as a pressing public health concern. We focus our attention on recent epidemiological and animal model evidence showing that, like psychosocial stress and infection, maternal overnutrition can also increase offspring neuropsychiatric risk. Using lessons learned from the psychosocial stress and infection literature, we discuss how altered maternal and placental physiology in the setting of overnutrition may contribute to abnormal fetal development and resulting neuropsychiatric outcomes. A better understanding of converging pathophysiological pathways shared between stressors may enable development of interventions against neuropsychiatric illnesses that may be beneficial across stressors.
Collapse
Affiliation(s)
- Seva G Khambadkone
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular & Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zachary A Cordner
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kellie L K Tamashiro
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular & Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
119
|
Rosenfeld CS. The placenta-brain-axis. J Neurosci Res 2020; 99:271-283. [PMID: 32108381 DOI: 10.1002/jnr.24603] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/25/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022]
Abstract
All mammalian species depend on the placenta, a transient organ, for exchange of gases, nutrients, and waste between the mother and conceptus. Besides serving as a conduit for such exchanges, the placenta produces hormones and other factors that influence maternal physiology and fetal development. To meet all of these adaptations, the placenta has evolved to become the most structurally diverse organ within all mammalian taxa. However, commonalities exist as to how placental responses promote survival against in utero threats and can alter the trajectory of fetal development, in particular the brain. Increasing evidence suggests that reactions of the placenta to various in utero stressors may lead to long-standing health outcomes, otherwise considered developmental origin of health and disease effects. Besides transferring nutrients and gases, the placenta produces neurotransmitters, including serotonin, dopamine, norepinephrine/epinephrine, that may circulate and influence brain development. Neurobehavioral disorders, such as autism spectrum disorders, likely trace their origins back to placental disturbances. This intimate relationship between the placenta and brain has led to coinage of the term, the placenta-brain-axis. This axis will be the focus herein, including how conceptus sex might influence it, and technologies employed to parse out the effects of placental-specific transcript expression changes on later neurobehavioral disorders. Ultimately, the placenta might provide a historical record of in utero threats the fetus confronted and a roadmap to understand how placenta responses to such encounters impacts the placental-brain-axis. Improved early diagnostic and preventative approaches may thereby be designed to mitigate such placental disruptions.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Biomedical Sciences, University of Missouri, Columbia, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,MU Informatics Institute, University of Missouri, Columbia, MO, USA.,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, USA.,Genetics Area Program, University of Missouri, Columbia, MO, USA
| |
Collapse
|
120
|
Yang W, Warrington NM, Taylor SJ, Whitmire P, Carrasco E, Singleton KW, Wu N, Lathia JD, Berens ME, Kim AH, Barnholtz-Sloan JS, Swanson KR, Luo J, Rubin JB. Sex differences in GBM revealed by analysis of patient imaging, transcriptome, and survival data. Sci Transl Med 2020; 11:11/473/eaao5253. [PMID: 30602536 DOI: 10.1126/scitranslmed.aao5253] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/20/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022]
Abstract
Sex differences in the incidence and outcome of human disease are broadly recognized but, in most cases, not sufficiently understood to enable sex-specific approaches to treatment. Glioblastoma (GBM), the most common malignant brain tumor, provides a case in point. Despite well-established differences in incidence and emerging indications of differences in outcome, there are few insights that distinguish male and female GBM at the molecular level or allow specific targeting of these biological differences. Here, using a quantitative imaging-based measure of response, we found that standard therapy is more effective in female compared with male patients with GBM. We then applied a computational algorithm to linked GBM transcriptome and outcome data and identified sex-specific molecular subtypes of GBM in which cell cycle and integrin signaling are the critical determinants of survival for male and female patients, respectively. The clinical relevance of cell cycle and integrin signaling pathway signatures was further established through correlations between gene expression and in vitro chemotherapy sensitivity in a panel of male and female patient-derived GBM cell lines. Together, these results suggest that greater precision in GBM molecular subtyping can be achieved through sex-specific analyses and that improved outcomes for all patients might be accomplished by tailoring treatment to sex differences in molecular mechanisms.
Collapse
Affiliation(s)
- Wei Yang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicole M Warrington
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sara J Taylor
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Paula Whitmire
- Precision Neurotherapeutics Innovation Program, Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Eduardo Carrasco
- Precision Neurotherapeutics Innovation Program, Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Kyle W Singleton
- Precision Neurotherapeutics Innovation Program, Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Ningying Wu
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA.,School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland OH, 44195, USA
| | | | - Albert H Kim
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jill S Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kristin R Swanson
- Precision Neurotherapeutics Innovation Program, Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, AZ 85054, USA.,School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Jingqin Luo
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA. .,Siteman Cancer Center Biostatistics Core, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA. .,Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
121
|
Endocrine-Disrupting Chemicals in Human Fetal Growth. Int J Mol Sci 2020; 21:ijms21041430. [PMID: 32093249 PMCID: PMC7073082 DOI: 10.3390/ijms21041430] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Fetal growth is regulated by a complex interaction of maternal, placental, and fetal factors. The effects and outcomes that chemicals, widely distributed in the environment, may have on the health status of both the mother and the fetus are not yet well defined. Mainly mixtures of chemical substances are found in the mothers and placenta. Exposure to endocrine-disrupting chemicals (EDCs) can be associated with fetal growth retardation, thyroid dysfunction, and neurological disorders. EDCs mostly interfere with insulin, glucocorticoid, estrogenic, and thyroid pathways, with subsequent effects on normal endocrine and metabolic functions, which cause changes in the epigenome and state of inflammation with life-long effects and consequences. International scientific societies recommend the implementation of research and of all possible preventive measures. This review briefly summarizes all these aspects.
Collapse
|
122
|
The effect of maternal dietary fat content and n-6: n-3 ratio on offspring growth and hepatic gene expression in the rat. Br J Nutr 2020; 123:1227-1238. [PMID: 32051042 DOI: 10.1017/s000711452000046x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
n-6 Fatty acids have been shown to exert pro-adipogenic effects, whereas n-3 fatty acids work in opposition. Increasing intakes of linoleic acid (LA; n-6) v. α-linolenic acid (ALA; n-3) in Western diets has led to the hypothesis that consumption of this diet during pregnancy may be contributing to adverse offspring health. This study investigated the effects of feeding a maternal dietary LA:ALA ratio similar to that of the Western diet (9:1) compared with a proposed 'ideal' ratio (about 1:1·5), at two total fat levels (18 v. 36 % fat, w/w), on growth and lipogenic gene expression in the offspring. Female Wistar rats were assigned to one of the four experimental groups throughout gestation and lactation. Offspring were culled at 1 and 2 weeks of age for sample collection. Offspring of dams consuming a 36 % fat diet were approximately 20 % lighter than those exposed to an 18 % fat diet (P < 0·001). Male, but not female, liver weight at 1 week was approximately 13 % heavier and had increased glycogen (P < 0·05), in offspring exposed to high LA (P < 0·01). Hepatic expression of lipogenic genes suggested an increase in lipogenesis in male offspring exposed to a 36 % fat maternal diet and in female offspring exposed to a low-LA diet, via increases in the expression of fatty acid synthase and sterol regulatory element-binding protein. Sexually dimorphic responses to altered maternal diet appeared to persist until 2 weeks of age. In conclusion, whilst maternal total fat content predominantly affected offspring growth, fatty acid ratio and total fat content had sexually dimorphic effects on offspring liver weight and composition.
Collapse
|
123
|
Derraik JGB, Maessen SE, Gibbins JD, Cutfield WS, Lundgren M, Ahlsson F. Large-for-gestational-age phenotypes and obesity risk in adulthood: a study of 195,936 women. Sci Rep 2020; 10:2157. [PMID: 32034195 PMCID: PMC7005699 DOI: 10.1038/s41598-020-58827-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/20/2020] [Indexed: 12/26/2022] Open
Abstract
While there is evidence that being born large-for-gestational-age (LGA) is associated with an increased risk of obesity later in life, the data are conflicting. Thus, we aimed to examine the associations between proportionality at birth and later obesity risk in adulthood. This was a retrospective study using data recorded in the Swedish Birth Register. Anthropometry in adulthood was assessed in 195,936 pregnant women at 10-12 weeks of gestation. All women were born at term (37-41 weeks of gestation). LGA was defined as birth weight and/or length ≥2.0 SDS. Women were separated into four groups: appropriate-for-gestational-age according to both weight and length (AGA - reference group; n = 183,662), LGA by weight only (n = 4,026), LGA by length only (n = 5,465), and LGA by both weight and length (n = 2,783). Women born LGA based on length, weight, or both had BMI 0.12, 1.16, and 1.08 kg/m2 greater than women born AGA, respectively. The adjusted relative risk (aRR) of obesity was 1.50 times higher for those born LGA by weight and 1.51 times for LGA by both weight and height. Length at birth was not associated with obesity risk. Similarly, women born LGA by ponderal index had BMI 1.0 kg/m2 greater and an aRR of obesity 1.39 times higher than those born AGA. Swedish women born LGA by weight or ponderal index had an increased risk of obesity in adulthood, irrespective of their birth length. Thus, increased risk of adult obesity seems to be identifiable from birth weight and ignoring proportionality.
Collapse
Affiliation(s)
- José G B Derraik
- Liggins Institute, University of Auckland, Auckland, New Zealand. .,A Better Start - National Science Challenge, University of Auckland, Auckland, New Zealand. .,Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden. .,Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China.
| | - Sarah E Maessen
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - John D Gibbins
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Wayne S Cutfield
- Liggins Institute, University of Auckland, Auckland, New Zealand.,A Better Start - National Science Challenge, University of Auckland, Auckland, New Zealand.,Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Maria Lundgren
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Fredrik Ahlsson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
124
|
Nichols AR, Rundle AG, Factor-Litvak P, Insel BJ, Hoepner L, Rauh V, Perera F, Widen EM. Prepregnancy obesity is associated with lower psychomotor development scores in boys at age 3 in a low-income, minority birth cohort. J Dev Orig Health Dis 2020; 11:49-57. [PMID: 31486358 PMCID: PMC6934918 DOI: 10.1017/s2040174419000412] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Whether maternal obesity and gestational weight gain (GWG) are associated with early-childhood development in low-income, urban, minority populations, and whether effects differ by child sex remain unknown. This study examined the impact of prepregnancy BMI and GWG on early childhood neurodevelopment in the Columbia Center for Children's Environmental Health Mothers and Newborns study. Maternal prepregnancy weight was obtained by self-report, and GWG was assessed from participant medical charts. At child age 3 years, the Psychomotor Development Index (PDI) and Mental Development Index (MDI) of the Bayley Scales of Infant Intelligence were completed. Sex-stratified linear regression models assessed associations between prepregnancy BMI and pregnancy weight gain z-scores with child PDI and MDI scores, adjusting for covariates. Of 382 women, 48.2% were normal weight before pregnancy, 24.1% overweight, 23.0% obese, and 4.7% underweight. At 3 years, mean scores on the PDI and MDI were higher among girls compared to boys (PDI: 102.3 vs. 97.2, P = 0.0002; MDI: 92.8 vs. 88.3, P = 0.0001). In covariate-adjusted models, maternal obesity was markedly associated with lower PDI scores in boys [b = -7.81, 95% CI: (-13.08, -2.55), P = 0.004], but not girls. Maternal BMI was not associated with MDI in girls or boys, and GWG was not associated with PDI or MDI among either sex (all-P > 0.05). We found that prepregnancy obesity was associated with lower PDI scores at 3 years in boys, but not girls. The mechanisms underlying this sex-specific association remain unclear, but due to elevated obesity exposure in urban populations, further investigation is warranted.
Collapse
Affiliation(s)
- Amy R Nichols
- Department of Nutritional Sciences, University of Texas at Austin, Austin, TX, USA
| | - Andrew G Rundle
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Beverly J Insel
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Lori Hoepner
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Environmental and Occupational Health Sciences, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Virginia Rauh
- Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Frederica Perera
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Elizabeth M Widen
- Department of Nutritional Sciences, University of Texas at Austin, Austin, TX, USA
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
125
|
Smith AL, Paul E, McGee D, Sinniah R, Flom E, Jackson-Humbles D, Harkema J, Racicot KE. Chronic, Elevated Maternal Corticosterone During Pregnancy in the Mouse Increases Allergic Airway Inflammation in Offspring. Front Immunol 2020; 10:3134. [PMID: 32038643 PMCID: PMC6985541 DOI: 10.3389/fimmu.2019.03134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022] Open
Abstract
Allergic asthma is a chronic pulmonary disorder fundamentally linked to immune dysfunction. Since the immune system begins developing in utero, prenatal exposures can affect immune programming and increase risk for diseases such as allergic asthma. Chronic psychosocial stress during pregnancy is one such risk factor, having been associated with increased risk for atopic diseases including allergic asthma in children. To begin to define the underlying causes of the association between maternal stress and allergic airway inflammation in offspring, we developed a mouse model of chronic heightened stress hormone during pregnancy. Continuous oral administration of corticosterone (CORT) to pregnant mice throughout the second half of pregnancy resulted in an ~2-fold increase in circulating hormone in dams with no concomitant increase in fetal circulation, similar to the human condition. To determine how prolonged heightened stress hormone affected allergic immunity in offspring, we induced allergic asthma with house dust mite (HDM) and examined the airway immune response to allergen. Female mice responded to HDM more frequently and had a more robust immune cell response compared to their male counterparts, irrespective of maternal treatment. Male offspring from CORT-treated dams had a greater number of inflammatory cells in the lung in response to HDM compared to males from control dams, while maternal treatment did not affect immune cell numbers in females. Alternatively, maternal CORT caused enhanced goblet cell hyperplasia in female offspring following HDM, an effect that was not observed in male offspring. In summary, prenatal exposure to mild, prolonged heightened stress hormone had sexually dimorphic effects on allergic inflammation in airways of adult offspring.
Collapse
Affiliation(s)
- Arianna L Smith
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Emmanuel Paul
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Devin McGee
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Ranuka Sinniah
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Emily Flom
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Devan Jackson-Humbles
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Jack Harkema
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Karen E Racicot
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| |
Collapse
|
126
|
Widen EM, Nichols AR, Kahn LG, Factor-Litvak P, Insel BJ, Hoepner L, Dube SM, Rauh V, Perera F, Rundle A. Prepregnancy obesity is associated with cognitive outcomes in boys in a low-income, multiethnic birth cohort. BMC Pediatr 2019; 19:507. [PMID: 31862007 PMCID: PMC6924019 DOI: 10.1186/s12887-019-1853-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/22/2019] [Indexed: 01/13/2023] Open
Abstract
Background Maternal obesity and high gestational weight gain (GWG) disproportionally affect low-income populations and may be associated with child neurodevelopment in a sex-specific manner. We examined sex-specific associations between prepregnancy BMI, GWG, and child neurodevelopment at age 7. Methods Data are from a prospective low-income cohort of African American and Dominican women (n = 368; 44.8% male offspring) enrolled during the second half of pregnancy from 1998 to 2006. Neurodevelopment was measured using the Wechsler Intelligence Scale for Children (WISC-IV) at approximately child age 7. Linear regression estimated associations between prepregnancy BMI, GWG, and child outcomes, adjusting for race/ethnicity, marital status, gestational age at delivery, maternal education, maternal IQ and child age. Results Overweight affected 23.9% of mothers and obesity affected 22.6%. At age 7, full-scale IQ was higher among girls (99.7 ± 11.6) compared to boys (96.9 ± 13.3). Among boys, but not girls, prepregnancy overweight and obesity were associated with lower full-scale IQ scores [overweight β: − 7.1, 95% CI: (− 12.1, − 2.0); obesity β: − 5.7, 95% CI: (− 10.7, − 0.7)]. GWG was not associated with full-scale IQ in either sex. Conclusions Prepregnancy overweight and obesity were associated with lower IQ among boys, but not girls, at 7 years. These findings are important considering overweight and obesity prevalence and the long-term implications of early cognitive development.
Collapse
Affiliation(s)
- Elizabeth M Widen
- Department of Nutritional Sciences, College of Natural Sciences, University of Texas at Austin, 103 W 24TH ST A2703, Austin, TX, 78712, USA. .,Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 West 168th Street, 12th Floor, New York, NY, 10032, USA.
| | - Amy R Nichols
- Department of Nutritional Sciences, College of Natural Sciences, University of Texas at Austin, 103 W 24TH ST A2703, Austin, TX, 78712, USA.,Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 West 168th Street, 12th Floor, New York, NY, 10032, USA
| | - Linda G Kahn
- Department of Pediatrics, New York University School of Medicine, 403 East 34th St, New York, NY, 10016, USA
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168 Street Room 1614, New York, NY, 10032, USA
| | - Beverly J Insel
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168 Street Room 1614, New York, NY, 10032, USA.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Lori Hoepner
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 West 168th Street, 12th Floor, New York, NY, 10032, USA.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.,Department of Environmental and Occupational Health Sciences, SUNY Downstate Medical Center, School of Public Health, 450 Clarkson Avenue, MSC 43, Brooklyn, NY, 11203, USA
| | - Sara M Dube
- Department of Nutritional Sciences, College of Natural Sciences, University of Texas at Austin, 103 W 24TH ST A2703, Austin, TX, 78712, USA.,Department of Nutritional Sciences, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA
| | - Virginia Rauh
- Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, 60 Haven Avenue, B-2, Room 213, New York, NY, 10032, USA
| | - Frederica Perera
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 West 168th Street, 12th Floor, New York, NY, 10032, USA.,Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168 Street Room 1614, New York, NY, 10032, USA
| | - Andrew Rundle
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 West 168th Street, 12th Floor, New York, NY, 10032, USA.,Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168 Street Room 1614, New York, NY, 10032, USA
| |
Collapse
|
127
|
Signes-Pastor AJ, Doherty BT, Romano ME, Gleason KM, Gui J, Baker E, Karagas MR. Prenatal exposure to metal mixture and sex-specific birth outcomes in the New Hampshire Birth Cohort Study. Environ Epidemiol 2019; 3:e068. [PMID: 31844832 PMCID: PMC6914313 DOI: 10.1097/ee9.0000000000000068] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In utero exposure to individual metals may impact fetal growth, though little is known about the effects of exposure to metal mixtures. Therefore, we investigated joint effects of in utero exposure to a mixture of As (arsenic), Mn (manganese), and Pb (lead) on newborn outcomes in a United States population. METHODS Concentrations of As, Mn, and Pb were determined in maternal postpartum toenail samples, a biomarker of in utero exposure, from 989 maternal-infant pairs (492 females and 497 males). Newborns' anthropometric characteristics, including head circumference, length, and weight, were obtained from medical records. The joint effects of the three metals were modeled using Bayesian kernel machine regression and linear regression. Both sex-combined and sex-stratified statistical analyses were performed. RESULTS We observed an inverted-U-shape association between maternal toenail Mn concentrations and newborn head circumference, particularly among female infants. Concentrations of Pb were related to reduced head circumference, weight, and length, especially among females at lower concentrations of the other metals. Overall, toenail As concentrations were related to reduced head circumference, especially among males, and an increase in birth length and weight among females. We found little evidence of As interactions with other metals within the mixture. CONCLUSIONS Our findings suggest that in utero metal mixture exposures may influence birth outcomes, and that such relations may differ by infant sex.
Collapse
Affiliation(s)
- Antonio J. Signes-Pastor
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire
| | - Brett T. Doherty
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire
| | - Megan E. Romano
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire
| | - Kelsey M. Gleason
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire
| | - Jiang Gui
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire
| | - Emily Baker
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire
| |
Collapse
|
128
|
Breton E, Gagné-Ouellet V, Thibeault K, Guérin R, Van Lieshout R, Perron P, Hivert M, Bouchard L. Placental NEGR1 DNA methylation is associated with BMI and neurodevelopment in preschool-age children. Epigenetics 2019; 15:323-335. [PMID: 31510847 DOI: 10.1080/15592294.2019.1666653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Studies have linked maternal pre-pregnancy obesity and hyperglycaemia with metabolic and neurodevelopmental complications in childhood. DNA methylation (DNAm) might enable foetal adaptations to environmental adversities through important gene loci. NEGR1 is involved in both energy balance and behaviour regulation. The aim of this study was to investigate associations between placental DNAm at the NEGR1 gene locus and childhood anthropometric and neurodevelopmental profiles in preschoolers. We analysed 276 mother-child dyads from Gen3G, a prospective birth cohort from Sherbrooke. At 3yo (40.4 ± 3.0 months), we measured body mass index (BMI) and the mothers reported on offspring neurobehavior using the Strengths and Difficulties Questionnaire (SDQ). We quantified DNAm levels at 30 CpGs at the NEGR1 locus using the MethylationEPIC Array in placental biopsies. DNAm at four CpGs located before NEGR1 second exon predicted child's BMI z-score (cg26153364: β=-0.16 ± 0.04; p=0.008, cg23166710: β=0.14 ± 0.08; p=0.03) and SDQ total score (cg04932878: β=0.22 ± 1.0; p= 3.0x10-4, cg16525738: β=-0.14 ± 0.18; p=0.01, cg23166710: β=-0.13 ± 0.36; p= 0.04), explaining 4.2% (p=0.003) and 7.3% (p= 1.3 x 10-4) of BMI-z and SDQ variances. cg23166710 was associated with both childhood phenotypes and correlated with NEGR1 placental expression (r=-0.22, p=0.04), suggesting its possible functional role. Together, maternal metabolic characteristics during pregnancy with NEGR1 DNAm levels explained 7.4% (p=4.2 x 10-4) of BMI-z and 14.2% (p=2.8 x 10-7) of SDQ variance at 3yo. This longitudinal study suggests that placental NEGR1 DNAm is associated with adiposity and neurodevelopment in preschool children and highlights its potential role in their comorbidity.
Collapse
Affiliation(s)
- E Breton
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - V Gagné-Ouellet
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - K Thibeault
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - R Guérin
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Medical Biology, CIUSSS Saguenay-Lac-Saint-Jean - Hôpital de Chicoutimi, Saguenay, QC, Canada
| | - Rj Van Lieshout
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - P Perron
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mf Hivert
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA, USA.,Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - L Bouchard
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Medical Biology, CIUSSS Saguenay-Lac-Saint-Jean - Hôpital de Chicoutimi, Saguenay, QC, Canada
| |
Collapse
|
129
|
Kim S, Cho YH, Won S, Ku JL, Moon HB, Park J, Choi G, Kim S, Choi K. Maternal exposures to persistent organic pollutants are associated with DNA methylation of thyroid hormone-related genes in placenta differently by infant sex. ENVIRONMENT INTERNATIONAL 2019; 130:104956. [PMID: 31272017 DOI: 10.1016/j.envint.2019.104956] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 06/09/2023]
Abstract
Exposure to persistent organic pollutants (POPs) during pregnancy is associated with a disruption in thyroid hormone balance. The placenta serves as an important environment for fetal development and also regulates thyroid hormone supply to the fetus. However, epigenetic changes of thyroid regulating genes in placenta have rarely been studied. This study was conducted to evaluate the association between several POP concentrations in maternal serum and DNA methylation of thyroid hormone-related genes in the placenta. The placenta samples were collected from 106 Korean mother at delivery, and the promoter methylation of the placental genes was measured by a bisulfite pyrosequencing. The deiodinase type 3 (DIO3), monocarboxylate transporter 8 (MCT8), and transthyretin (TTR) genes were selected as the target genes as they play an important role in the regulation of fetal thyroid balance. Because people are exposed to multiple chemicals at the same time, a multiple-POP model using principal component analysis (PCA) was applied to evaluate the association between the multiple POPs exposure and the epigenetic change in placenta. In addition, a single-POP model which includes one chemical each in the statistical model for association was conducted. Based on the single-POP models, serum concentrations of p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) and brominated diphenyl ether-47 (BDE-47) were significantly associated with an increase in placental DIO3 methylation, but only among female infants. Among male infants, a positive association between serum p,p'-DDT and MCT8 methylation level was found. According to the multiple-POP models, serum DDTs were positively associated with DIO3 methylation in the placenta of female infants, while a positive association with MCT8 methylation was observed in those of the male infants. Our observation showed that in utero exposure to DDTs may influence the DNA methylation of DIO3 and MCT8 genes in the placenta, in a sexually dimorphic manner. These alterations in placental epigenetic regulation may in part explain the thyroid hormone disruption observed among the newborns or infants followed by in utero exposure to POPs.
Collapse
Affiliation(s)
- Sujin Kim
- Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea; Institute of Environmental Technology, Department of Environmental Engineering, Seoul National University of Science & Technology, Seoul 01811, Republic of Korea
| | - Yoon Hee Cho
- Center for Environmental Health Sciences, Biomedical and Pharmaceutical Sciences, College of Health Professions and Biomedical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Sungho Won
- Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Ja-Lok Ku
- Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jeongim Park
- College of Natural Sciences, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Gyuyeon Choi
- Department of Obstetrics and Gynecology, College of Medicine, Soonchunhyang University Hospital, Seoul, 04401, Republic of Korea
| | - Sungkyoon Kim
- Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyungho Choi
- Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
130
|
Tekola-Ayele F, Workalemahu T, Gorfu G, Shrestha D, Tycko B, Wapner R, Zhang C, Louis GMB. Sex differences in the associations of placental epigenetic aging with fetal growth. Aging (Albany NY) 2019; 11:5412-5432. [PMID: 31395791 PMCID: PMC6710059 DOI: 10.18632/aging.102124] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/21/2019] [Indexed: 12/15/2022]
Abstract
Identifying factors that influence fetal growth in a sex-specific manner can help unravel mechanisms that explain sex differences in adverse neonatal outcomes and in-utero origins of cardiovascular disease disparities. Premature aging of the placenta, a tissue that supports fetal growth and exhibits sex-specific epigenetic changes, is associated with pregnancy complications. Using DNA methylation-based age estimator, we investigated the sex-specific relationship of placental epigenetic aging with fetal growth across 13-40 weeks gestation, neonatal size, and risk of low birth weight. Placental epigenetic age acceleration (PAA), the difference between DNA methylation age and gestational age, was associated with reduced fetal weight among males but with increased fetal weight among females. PAA was inversely associated with fetal weight, abdominal circumference, and biparietal diameter at 32-40 weeks among males but was positively associated with all growth measures among females across 13-40 weeks. A 1-week increase in PAA was associated with 2-fold (95% CI 1.2, 3.2) increased odds for low birth weight and 1.5-fold (95% CI 1.1, 2.0) increased odds for small-for-gestational age among males. In all, fetal growth was significantly reduced in males but not females exposed to a rapidly aging placenta. Epigenetic aging of the placenta may underlie sex differences in neonatal outcomes.
Collapse
Affiliation(s)
- Fasil Tekola-Ayele
- Epidemiology Branch, Division of Intramural Population Health Research, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tsegaselassie Workalemahu
- Epidemiology Branch, Division of Intramural Population Health Research, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gezahegn Gorfu
- Department of Clinical Laboratory Science, College of Nursing and Allied Health Sciences, Howard University, Washington, DC 20059, USA
| | - Deepika Shrestha
- Epidemiology Branch, Division of Intramural Population Health Research, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Benjamin Tycko
- Hackensack-Meridian Health Center for Discovery and Innovation and the Hackensack-Meridian Health School of Medicine at Seton Hall University, Nutley, NJ 07110, USA
| | - Ronald Wapner
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA
| | - Cuilin Zhang
- Epidemiology Branch, Division of Intramural Population Health Research, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Germaine M. Buck Louis
- Dean’s Office, College of Health and Human Services, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
131
|
Post-translational histone modifications and their interaction with sex influence normal brain development and elaboration of neuropsychiatric disorders. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1968-1981. [DOI: 10.1016/j.bbadis.2018.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023]
|
132
|
Huang S, Kuang J, Zhou F, Jia Q, Lu Q, Feng C, Yang W, Fan G. The association between prenatal cadmium exposure and birth weight: A systematic review and meta-analysis of available evidence. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:699-707. [PMID: 31108303 DOI: 10.1016/j.envpol.2019.05.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/13/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
We conducted a meta-analysis to evaluate the association between prenatal cadmium (Cd) exposure and birth weight. PubMed, Embase, China National Knowledge Infrastructure (CNKI), and Wanfang databases were searched for studies published before March 2019. We used a model-based method, standardizing effect size from linear regression models to include a maximum number of studies during our quantitative evaluations. As a result, 11 articles from the general population, containing 10 birth cohorts and one cross-sectional study, were included. Our meta-analysis demonstrated that a 50% increase of maternal urine Cd (UCd) would be associated with a 6.15 g decrease in neonatal birth weight (β = -6.15 g, 95% CI: -10.81, -1.49) as well as a 50% increase of maternal blood Cd (BCd) would be associated with an 11.57 g decrease (β = -11.57 g; 95% CI: -18.85, -4.30). Stratified analysis of UCd data indicated that the results of female newborns were statistically significant (β = -8.92 g, 95% CI: -17.51, -0.34), as was the first trimester (β = -11.34 g, 95% CI: -19.54, -3.14). Furthermore, increased UCd levels were associated with a higher rate of low birth weight (LBW) risk (OR = 1.12, 95% CI: 1.03, 1.22). This meta-analysis demonstrated that elevated maternal Cd levels are associated with decreased birth weight and higher LBW risk.
Collapse
Affiliation(s)
- Shouhe Huang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China; Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Jie Kuang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China; Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, China
| | - Fankun Zhou
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China; Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, China
| | - Qiyue Jia
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China; Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, China
| | - Qi Lu
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, China
| | - Chang Feng
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China; Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, China
| | - Wei Yang
- Nevada Center for Health Statistics and Informatics, School of Community Health Sciences, University of Nevada, Reno, USA
| | - Guangqin Fan
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China; Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
133
|
Bernhardsen GP, Stensrud T, Nystad W, Dalene KE, Kolle E, Ekelund U. Early life risk factors for childhood obesity-Does physical activity modify the associations? The MoBa cohort study. Scand J Med Sci Sports 2019; 29:1636-1646. [PMID: 31220367 PMCID: PMC6852336 DOI: 10.1111/sms.13504] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/08/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVES High maternal pre-pregnancy body mass index (BMI), high birth weight, and rapid infant weight gain are associated with increased risk of childhood obesity. We examined whether moderate-to-vigorous physical activity (MVPA) or vigorous physical activity (VPA) in 9- to 12-year-olds modified the associations between these early life risk factors and subsequent body composition and BMI. METHODS We used data from a sub-cohort of the Norwegian Mother and Child Cohort Study (MoBa), including 445 children with available data on accelerometer assessed physical activity (PA). All participants had data on BMI, 186 of them provided data on body composition (dual energy X-ray absorptiometry (DXA)). We used multiple regression analyses to examine the modifying effect of PA by including interaction terms. RESULTS Maternal pre-pregnancy BMI and infant weight gain were more strongly related to childhood body composition in boys than in girls. Higher VPA attenuated the association between maternal pre-pregnancy BMI and BMI in boys (low VPA: B = 0.32, 95% CI = 0.22, 0.41; high VPA B = 0.22, 95% CI = 0.12, 0.31). Birth weight was unrelated to childhood body composition, and there was no effect modification by PA. PA attenuated the associations between infant weight gain and childhood fat mass (low MVPA: B = 2.32, 95% CI = 0.48, 4.17; high MVPA: B = 1.00, 95% CI = 0.10, 1.90) and percent fat (low MVPA: B = 3.35, 95% CI = 0.56, 6.14; high MVPA: B = 1.41, 95% CI = -0.06, 2.87) in boys, but not girls. CONCLUSION Findings from this study suggest that MVPA and VPA may attenuate the increased risk of an unfavorable body composition and BMI due to high maternal pre-pregnancy BMI and rapid infant weight gain in boys, but not in girls.
Collapse
Affiliation(s)
| | - Trine Stensrud
- Department of Sport Medicine, Norwegian School of Sports Sciences, Oslo, Norway
| | - Wenche Nystad
- Department of Non-communicable Diseases, Norwegian Institute of Public Health, Oslo, Norway
| | - Knut Eirik Dalene
- Department of Sport Medicine, Norwegian School of Sports Sciences, Oslo, Norway
| | - Elin Kolle
- Department of Sport Medicine, Norwegian School of Sports Sciences, Oslo, Norway
| | - Ulf Ekelund
- Department of Sport Medicine, Norwegian School of Sports Sciences, Oslo, Norway.,Department of Non-communicable Diseases, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
134
|
Clark J, Martin E, Bulka CM, Smeester L, Santos HP, O'Shea TM, Fry RC. Associations between placental CpG methylation of metastable epialleles and childhood body mass index across ages one, two and ten in the Extremely Low Gestational Age Newborns (ELGAN) cohort. Epigenetics 2019; 14:1102-1111. [PMID: 31216936 DOI: 10.1080/15592294.2019.1633865] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Developmental Origins of Health and Disease (DOHaD) hypothesis posits that in utero and early life conditions can disrupt normal fetal development and program susceptibility to later-life disease. Metastable epialleles are genomic loci in which CpG methylation patterning is responsive to maternal diet and conserved across time and tissues. Thus, these sites could serve as 'signatures' of gestational environment conditions. Here, we sought to determine if methylation of metastable epialleles was associated with changes in childhood body mass index (BMI) z-scores across ages one, two and ten in the Extremely Low Gestational Age Newborns (ELGAN) cohort. CpG methylation of 250 probes (corresponding to 111 genes) within metastable epiallele regions was measured in placental tissue. Linear mixed effects models were fit to evaluate the overall and sex-stratified associations between methylation and changes in BMI z-score over time. In total, 26 probes were associated (p < 0.05) with changes in BMI z-score overall, including probes within Mesoderm Specific Transcript (MEST) and Histone Deacetylase 4 (HDAC4), which have previously been associated with childhood obesity and adipogenesis. Sex-stratified analyses revealed a significant association, after adjusting for multiple comparisons (q < 0.05), within female placentas for one probe annotated to the imprinted gene PLAG1 Like Zinc Finger 1 (PLAGL1). These findings suggest epigenetic marks may be involved in programming susceptibility to obesity in utero and highlight the potential to use placental tissues in predicting growth rate trajectories among premature infants.
Collapse
Affiliation(s)
- Jeliyah Clark
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina , Chapel Hill , NC , USA
| | - Elizabeth Martin
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park , NC , USA
| | - Catherine M Bulka
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina , Chapel Hill , NC , USA
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina , Chapel Hill , NC , USA.,Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina , Chapel Hill , NC , USA
| | - Hudson P Santos
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina , Chapel Hill , NC , USA.,School of Nursing, University of North Carolina , Chapel Hill , NC , USA
| | - T Michael O'Shea
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of North Carolina , Chapel Hill , NC , USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina , Chapel Hill , NC , USA.,Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina , Chapel Hill , NC , USA
| |
Collapse
|
135
|
Ullah MF, Ahmad A, Bhat SH, Abu-Duhier FM, Barreto GE, Ashraf GM. Impact of sex differences and gender specificity on behavioral characteristics and pathophysiology of neurodegenerative disorders. Neurosci Biobehav Rev 2019; 102:95-105. [DOI: 10.1016/j.neubiorev.2019.04.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/24/2019] [Accepted: 04/04/2019] [Indexed: 01/06/2023]
|
136
|
Microglia along sex lines: From brain colonization, maturation and function, to implication in neurodevelopmental disorders. Semin Cell Dev Biol 2019; 94:152-163. [PMID: 31201858 DOI: 10.1016/j.semcdb.2019.06.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/30/2022]
Abstract
In addition to their traditional role as immune sentinels, recent discoveries over the last decade have shown that microglial functions now include regulation of neuronal/glial cell migration, differentiation and maturation, as well as neuronal network formation. It was thus proposed that disruption of these microglial roles, during critical periods of brain development, could lead to the pathological onset of several neurodevelopmental disorders, including autism spectrum disorder, attention deficit hyperactivity disorder, epilepsy, schizophrenia, and major depressive disorder. The prevalence of these disorders exhibits a clear distinction along sex lines with very little known about the mechanisms underlying this difference. One of the fundamental discoveries that arose from recent research into the physiological roles of microglia in neurodevelopment is their sexual dimorphism, raising the intriguing possibility that sex differences in microglial colonization, maturation and/or function in the developing brain could underlie the emergence of various neurodevelopmental disorders. This review discusses the physiological roles of microglia across neurodevelopment, these roles in the two sexes, and the recent evidence that microglial sexually dimorphic nature may contribute, at least partially, to neurodevelopmental disorders.
Collapse
|
137
|
Skudder-Hill L, Ahlsson F, Lundgren M, Cutfield WS, Derraik JGB. Preterm Birth is Associated With Increased Blood Pressure in Young Adult Women. J Am Heart Assoc 2019; 8:e012274. [PMID: 31164036 PMCID: PMC6645636 DOI: 10.1161/jaha.119.012274] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/23/2019] [Indexed: 11/16/2022]
Abstract
Background While there is some evidence of elevated blood pressure later in life in preterm survivors, data on adult women are still lacking. Thus, we assessed the associations between preterm birth and blood pressure in young adult women. Methods and Results We studied 5232 young adult women who volunteered for military service in Sweden between 1990 and 2007. Anthropometric and clinic blood pressure data were collected during the medical examination at the time of conscription. There was a progressive decline in systolic and diastolic blood pressures, as well as in mean arterial pressure, with increasing gestational age. Women born preterm had an adjusted increase in systolic blood pressure of 3.8 mm Hg (95% CI , 2.5-5.1; P<0.0001) and mean arterial pressure of 1.9 mm Hg (95% CI , 0.9-2.8; P=0.0001) compared with young women born at term. Rates of systolic hypertension were also considerably higher in young women born preterm (14.0% versus 8.1%, P<0.0001), as were rates of isolated systolic hypertension. The adjusted relative risk of systolic hypertension in women born preterm was 1.72 (95% CI , 1.26-2.34; P<0.001) that of women born at term or post-term, but there was no significant difference in the risk of diastolic hypertension (adjusted relative risk, 1.60; 95% CI , 0.49-5.20). Conclusions Young adult women born preterm display elevated systolic blood pressure and an increased risk of hypertension compared with peers born at term or post-term.
Collapse
Affiliation(s)
| | - Fredrik Ahlsson
- 2 Department of Women's and Children's Health Uppsala University Uppsala Sweden
| | - Maria Lundgren
- 2 Department of Women's and Children's Health Uppsala University Uppsala Sweden
| | - Wayne S Cutfield
- 3 Liggins Institute University of Auckland New Zealand
- 4 A Better Start-National Science Challenge University of Auckland New Zealand
| | - José G B Derraik
- 2 Department of Women's and Children's Health Uppsala University Uppsala Sweden
- 3 Liggins Institute University of Auckland New Zealand
- 4 A Better Start-National Science Challenge University of Auckland New Zealand
- 5 Department of Endocrinology Children's Hospital at Zhejiang University School of Medicine Hangzhou China
| |
Collapse
|
138
|
Maternal gut microbiota is associated with newborn anthropometrics in a sex-specific manner. J Dev Orig Health Dis 2019; 10:659-666. [PMID: 31106719 DOI: 10.1017/s2040174419000138] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Maternal gut microbiota is thought to be one of the important factors in the developmental origins of health and disease (DOHaD) concept, but the effects of maternal gut microbiota on foetal growth are not well known. In this study, the association between maternal gut microbiota and foetal growth was investigated. Maternal and newborn information, as well as stool samples at the third trimester of pregnancy, were obtained from 51 mother-newborn pairs from the Chiba study of Mother and Child Health (C-MACH). Gut microbiota was analysed by 16S rRNA sequencing of stool samples and short-chain fatty acids (SCFAs) in stool were analysed by gas chromatography-tandem mass spectrometry. After adjustment for covariates, it was found that maternal gut microbial diversity had a positive association with head circumference in newborn males (Chao 1: adjusted r = 0.515, p = 0.029). Genus Parabacteroides and genus Eggerthella showed negative associations with newborn head circumference and weight, respectively in males (genus Parabacteroides: adjusted r = -0.598, p = 0.009, genus Eggerthella: adjusted r = -0.481, p = 0.043). On the other hand, genus Streptococcus showed a negative association with newborn height in females (adjusted r = -0.413, p = 0.040). In addition, hexanoate was involved in the association between maternal gut microbiota and newborn anthropometrics in the univariate analysis, but not in the multivariate analysis. These data suggest that maternal gut microbiota has sex-specific effects on foetal growth. Maternal gut microbiota is an important factor for optimal intrauterine growth.
Collapse
|
139
|
Franconi F, Campesi I, Colombo D, Antonini P. Sex-Gender Variable: Methodological Recommendations for Increasing Scientific Value of Clinical Studies. Cells 2019; 8:E476. [PMID: 31109006 PMCID: PMC6562815 DOI: 10.3390/cells8050476] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 02/08/2023] Open
Abstract
There is a clear sex-gender gap in the prevention and occurrence of diseases, and in the outcomes and treatments, which is relevant to women in the majority of cases. Attitudes concerning the enrollment of women in randomized clinical trials have changed over recent years. Despite this change, a gap still exists. This gap is linked to biological factors (sex) and psycho-social, cultural, and environmental factors (gender). These multidimensional, entangled, and interactive factors may influence the pharmacological response. Despite the fact that regulatory authorities recognize the importance of sex and gender, there is a paucity of research focusing on the racial/ethnic, socio-economic, psycho-social, and environmental factors that perpetuate disparities. Research and clinical practice must incorporate all of these factors to arrive at an intersectional and system-scenario perspective. We advocate for scientifically rigorous evaluations of the interplay between sex and gender as key factors in performing clinical trials, which are more adherent to real-life. This review proposes a set of 12 rules to improve clinical research for integrating sex-gender into clinical trials.
Collapse
Affiliation(s)
- Flavia Franconi
- Laboratory of Sex-gender Medicine, National Institute of Biostructures and Biosystems, 07100 Sassari, Italy.
| | - Ilaria Campesi
- Laboratory of Sex-gender Medicine, National Institute of Biostructures and Biosystems, 07100 Sassari, Italy.
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, 07100 Sassari, Italy.
| | - Delia Colombo
- Value and Access Head, Novartis Italia, 21040 Origgio, Italy.
| | | |
Collapse
|
140
|
Shawber CJ, Brown-Grant DA, Wu T, Kitajewski JK, Douglas NC. Dominant-negative inhibition of canonical Notch signaling in trophoblast cells does not disrupt placenta formation. Biol Open 2019; 8:bio.037721. [PMID: 30971411 PMCID: PMC6504009 DOI: 10.1242/bio.037721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Proper development and function of the mammalian placenta requires interactions between embryo-derived trophoblasts and uterine endothelial cells to form mosaic vessels that facilitate blood flow to a developing conceptus. Notch signaling utilizes a cell–cell contact dependent mechanism to drive cell behaviors, such as differentiation and invasion. In mice, Notch2 is needed for proper placentation and embryo survival. We used transgenic mice with a dominant-negative form of Mastermind-like1 and Cyp19-Cre and Tpbpa-Cre drivers to inhibit canonical Notch signaling in trophoblasts. Both Cre drivers resulted in robust placental expression of dominant-negative Mastermind-like1. All pregnancies progressed beyond mid-gestation and morphological analyses of placentas revealed no differences between mutants and controls. Our data suggest that mouse placentation occurs normally despite dominant negative inhibition of trophoblast canonical Notch signaling and that Notch2 signaling via the canonical pathway is not necessary for placentation. Summary: Using transgenic mice with a dominant-negative form of Mastermind-like1 and Cyp19-Cre and Tpbpa-Cre drivers, we found that dominant negative inhibition of canonical Notch signaling in trophoblast cells does not disrupt placenta formation.
Collapse
Affiliation(s)
- Carrie J Shawber
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Dex-Ann Brown-Grant
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Tracy Wu
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jan K Kitajewski
- Department of Physiology & Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Nataki C Douglas
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Women's Health, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| |
Collapse
|
141
|
Parisi F, Rousian M, Koning AH, Willemsen SP, Steegers EA, Steegers-Theunissen RP. Effect of human embryonic morphological development on fetal growth parameters: the Rotterdam Periconceptional Cohort (Predict Study). Reprod Biomed Online 2019; 38:613-620. [DOI: 10.1016/j.rbmo.2018.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/11/2018] [Accepted: 12/11/2018] [Indexed: 01/06/2023]
|
142
|
Mac Giollabhui N, Breen EC, Murphy SK, Maxwell SD, Cohn BA, Krigbaum NY, Cirillo PM, Perez C, Alloy LB, Drabick DAG, Ellman LM. Maternal inflammation during pregnancy and offspring psychiatric symptoms in childhood: Timing and sex matter. J Psychiatr Res 2019; 111:96-103. [PMID: 30690329 PMCID: PMC6644717 DOI: 10.1016/j.jpsychires.2019.01.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/21/2018] [Accepted: 01/07/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Maternal infection during pregnancy has been associated with increased risk of offspring psychopathology, including depression. As most infections do not cross the placenta, maternal immune responses to infection have been considered as potentially contributing to this relationship. This study examined whether gestational timing of maternal inflammation during pregnancy is associated with offspring internalizing and/or externalizing symptoms during childhood and, further, whether fetal sex moderated this relationship. METHOD Participants were 737 pregnant women and their offspring who were continuously followed through late childhood. Archived first and second trimester sera were analyzed for markers of inflammation [interleukin 8 (IL-8), IL-6, IL-1 receptor antagonist (IL-1ra), and soluble tumor necrosis factor receptor-II (sTNF-RII)]. When offspring were aged 9-11, mothers completed a questionnaire assessing psychological symptoms. RESULTS Multivariate regression analyses indicated that elevated IL-8 in the first trimester was associated with significantly higher levels of externalizing symptoms in offspring. Higher IL-1ra in the second trimester was associated with higher offspring internalizing symptoms. Further, second trimester IL-1ra was associated with increased internalizing symptoms in females only. CONCLUSION These findings demonstrate that elevated maternal inflammation during pregnancy is associated with the emergence of separate psychological phenotypes and that timing of exposure and fetal sex matter for offspring outcomes. Given that internalizing and externalizing symptoms in childhood increase risk for a variety of mental disorders later in development, these findings potentially have major implications for early intervention and prevention work.
Collapse
Affiliation(s)
| | - Elizabeth C Breen
- Cousins Center for Psychoneuroimmunology, Dept. of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, USA
| | - Shannon K Murphy
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Seth D Maxwell
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Barbara A Cohn
- Child Health and Development Studies, Public Health Institute, Oakland, CA, USA
| | - Nickilou Y Krigbaum
- Child Health and Development Studies, Public Health Institute, Oakland, CA, USA
| | - Piera M Cirillo
- Child Health and Development Studies, Public Health Institute, Oakland, CA, USA
| | - Christian Perez
- Cousins Center for Psychoneuroimmunology, Dept. of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, USA
| | - Lauren B Alloy
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | | | - Lauren M Ellman
- Department of Psychology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
143
|
Gingrich J, Pu Y, Ehrhardt R, Karthikraj R, Kannan K, Veiga-Lopez A. Toxicokinetics of bisphenol A, bisphenol S, and bisphenol F in a pregnancy sheep model. CHEMOSPHERE 2019; 220:185-194. [PMID: 30583211 PMCID: PMC6363860 DOI: 10.1016/j.chemosphere.2018.12.109] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 05/29/2023]
Abstract
Bisphenol A (BPA), S (BPS), and F (BPF) are among the most abundant bisphenols detected in humans, yet pregnancy toxicokinetics for BPS or BPF remain unknown. Because gestational BPS can disrupt placental function and result in reproductive and metabolic disorders in the progeny, the aim of the study was to investigate BPS and BPF toxicokinetics during pregnancy using an in vivo approach. Fetal catheterizations were conducted in pregnant sheep (n = 6) at mid-pregnancy and injected with either a single dose of BPS (n = 3, 0.5 mg/kg, s.c.), or a combination of BPS, BPF, and BPA (n = 3, 0.5 mg/kg for each chemical, s.c.). Maternal and fetal blood and urine and amniotic fluid were collected over 72 h and analyzed for bisphenols by HPLC-MS/MS. We observed significant differences in half-life, maximum concentration, and total body clearance in maternal circulation among bisphenols. Longer half-lives were observed in fetal vs. maternal circulation for all bisphenols. Fetal toxicokinetics differed among bisphenols with BPS having the longest fetal half-life. All bisphenols reached basal levels at 48 h in maternal plasma, but were still detectable in amniotic fluid, fetal urine, and fetal plasma at 72 h. In this first pregnancy toxicokinetic study of BPS and BPF we have demonstrated maternal and fetal toxicokinetic differences among all three bisphenols. Higher BPS persistence in the fetal compartment warrants studies into progeny adverse outcomes following gestational exposure. Additionally, toxicokinetic differences among bisphenols call for a more careful approach when extrapolating kinetic information from one bisphenol chemical to another.
Collapse
Affiliation(s)
- Jeremy Gingrich
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA; Department of Pharmacology and Toxicology, College of Natural Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Yong Pu
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA
| | - Richard Ehrhardt
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA; Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Rajendiran Karthikraj
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, NY 12201-0509, USA
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, NY 12201-0509, USA
| | - Almudena Veiga-Lopez
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
144
|
Barke TL, Money KM, Du L, Serezani A, Gannon M, Mirnics K, Aronoff DM. Sex modifies placental gene expression in response to metabolic and inflammatory stress. Placenta 2019; 78:1-9. [PMID: 30955704 PMCID: PMC6461364 DOI: 10.1016/j.placenta.2019.02.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/25/2019] [Accepted: 02/18/2019] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Metabolic stress (e.g., gestational diabetes mellitus (GDM) and obesity) and infections are common during pregnancy, impacting fetal development and the health of offspring. Such antenatal stresses can differentially impact male and female offspring. We sought to determine how metabolic stress and maternal immune activation (MIA), either alone or in combination, alters inflammatory gene expression within the placenta and whether the effects exhibited sexual dimorphism. METHODS Female C57BL/6 J mice were fed a normal diet or a high fat diet for 6 weeks prior to mating, with the latter diet inducing a GDM phenotype during pregnancy. Dams within each diet group at gestational day (GD) 12.5 received either an intraperitoneal injection of the viral mimic, polyinosinic:polycytidylic acid (poly(I:C)) or saline. Three hours post injection; placentae were collected and analyzed for changes in the expression of 248 unique immune genes. RESULTS Placental immune gene expression was significantly altered by GDM, MIA and the combination of the two (GDM+MIA). mRNA expression was generally lower in placentae of mice exposed to GDM alone compared with the other experimental groups, while mice exposed to MIA exhibited the highest transcript levels. Notably, fetal/placental sex influenced the responses of many immune genes to both metabolic and inflammatory stress. DISCUSSION GDM and MIA provoke inflammatory responses within the placenta and such effects exhibit sexual dimorphism. The combination of these stressors impacts the placenta differently than either condition alone. These findings may help explain sexual dimorphism observed in adverse pregnancy outcomes in human offspring exposed to similar stressors.
Collapse
Affiliation(s)
- Theresa L Barke
- Graduate Program in Microbiology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Kelli M Money
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Liping Du
- Center for Quantitative Sciences, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ana Serezani
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Maureen Gannon
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Karoly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - David M Aronoff
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
145
|
Naruse K, Tsunemi T, Kawahara N, Kobayashi H. Preliminary evidence of a paternal-maternal genetic conflict on the placenta: Link between imprinting disorder and multi-generational hypertensive disorders. Placenta 2019; 84:69-73. [PMID: 30846225 DOI: 10.1016/j.placenta.2019.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/21/2019] [Accepted: 02/19/2019] [Indexed: 01/07/2023]
Abstract
There has been great research progress on hypertensive disorders in pregnancy (HDP) in the last few decades. Failure of placentation, especially a lack of uterine spiral artery remodeling, is the main pathological finding of HDP. Currently, members of the vascular endothelial growth factor family are used as markers for the early prediction of onset of HDP. Epidemiologic research has also shown that HDP can have effects on the next generation infants, representing a Development Origins of Health and Disease-related disease. However, the precise pathogenic mechanism and the effect of HDP on the offspring remain unclear. The group of strong pro-inflammatory molecules known as "danger signals" have been shown to be released from the placental trophoblast surface and increase in the maternal circulation in HDP, which are then possibly transported into the fetal circulation. These signals, including fatty acids or adipocytokines, may alter the offspring's health in later life. Moreover, a hypoxic condition alters placental methylation, and the change may be passed onto the fetus. Although the genetic origin of the disease is still unknown, a hypothesis has been put forward that a paternal-maternal genetic conflict, mainly at imprinting lesion sites, may be a key factor for disease initiation. In particular, an imbalance in paternal and maternal factors may impede proper placentation, trophoblast invasion, decidualization or immune moderation so as to achieve better nutrition for the fetus (paternal) versus ensuring safe delivery and further pregnancy (maternal). Here, we review this research progress on HDP and focus on this novel genetic conflict concept, which is expected to provide new insight into the cause, pathophysiology, and multi-generational effects of HDP.
Collapse
Affiliation(s)
- Katsuhiko Naruse
- Department of Obstetrics and Gynecology, Nara Medical University, Japan; St.Barnabas' Hospital, Osaka, Japan.
| | - Taihei Tsunemi
- Department of Obstetrics and Gynecology, Nara Medical University, Japan
| | - Naoki Kawahara
- Department of Obstetrics and Gynecology, Nara Medical University, Japan
| | - Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Japan
| |
Collapse
|
146
|
Scorza P, Duarte CS, Hipwell AE, Posner J, Ortin A, Canino G, Monk C. Research Review: Intergenerational transmission of disadvantage: epigenetics and parents' childhoods as the first exposure. J Child Psychol Psychiatry 2019; 60:119-132. [PMID: 29473646 PMCID: PMC6107434 DOI: 10.1111/jcpp.12877] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND For decades, economists and sociologists have documented intergenerational transmission of socioeconomic disadvantage, demonstrating that economic, political, and social factors contribute to 'inherited hardship'. Drawing on biological factors, the developmental origins of adult health and disease model posits that fetal exposure to maternal prenatal distress associated with socioeconomic disadvantage compromises offspring's neurodevelopment, affecting short- and long-term physical and mental health, and thereby psychosocial standing and resources. Increasing evidence suggests that mother-to-child influence occurs prenatally, in part via maternal and offspring atypical HPA axis regulation, with negative effects on the maturation of prefrontal and subcortical neural circuits in the offspring. However, even this in utero timeframe may be insufficient to understand biological aspects of the transmission of factors contributing to disadvantage across generations. METHODS We review animal studies and emerging human research indicating that parents' childhood experiences may transfer epigenetic marks that could impact the development of their offspring independently of and in interaction with their offspring's perinatal and early childhood direct exposures to stress stemming from socioeconomic disadvantage and adversity. RESULTS Animal models point to epigenetic mechanisms by which traits that could contribute to disadvantage may be transmitted across generations. However, epigenetic pathways of parental childhood experiences influencing child outcomes in the next generation are only beginning to be studied in humans. With a focus on translational research, we point to design features and methodological considerations for human cohort studies to be able to test the intergenerational transmission hypothesis, and we illustrate this with existing longitudinal studies. CONCLUSIONS Epigenetic intergenerational transmission, if at play in human populations, could have policy implications in terms of reducing the continuation of disadvantage across generations. Further research is needed to address this gap in the understanding of the perpetuation of compromised lives across generations.
Collapse
Affiliation(s)
- Pamela Scorza
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Cristiane S Duarte
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Alison E Hipwell
- Department of Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan Posner
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Ana Ortin
- Department of Psychology, Hunter College, City University of New York, New York, NY, USA
| | - Glorisa Canino
- School of Medicine, University of Puerto Rico, San Juan, PR, USA
| | - Catherine Monk
- New York State Psychiatric Institute, New York, NY, USA
- Departments of Psychiatry and Obstetrics and Gynecology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
147
|
Olmos-Ortiz A, García-Quiroz J, Halhali A, Avila E, Zaga-Clavellina V, Chavira-Ramírez R, García-Becerra R, Caldiño-Soto F, Larrea F, Díaz L. Negative correlation between testosterone and TNF-α in umbilical cord serum favors a weakened immune milieu in the human male fetoplacental unit. J Steroid Biochem Mol Biol 2019; 186:154-160. [PMID: 30359690 DOI: 10.1016/j.jsbmb.2018.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/10/2018] [Accepted: 10/18/2018] [Indexed: 12/27/2022]
Abstract
Clinical and epidemiological evidence supports that pregnancies carrying a male fetus are more vulnerable to infections and preterm birth, probably due to testosterone immunosuppressive properties. In human placentas, testosterone lowers the expression of CYP27B1, the vitamin D (VD)-activating enzyme, diminishing cathelicidin synthesis, a potent VD-dependent antimicrobial peptide (AMP). VD also stimulates other AMPs, including defensins. To get insights into the increased male vulnerability mechanisms, we investigated the relationship between fetal sex and the immunoendocrine milieu at the fetoplacental unit. For this, umbilical vein serum and placental samples were collected from healthy newborns. In males' serum, testosterone levels were significantly higher and negatively associated with TNF-α, a cytokine that strengthens the immune response. Males showed lower serum TNF-α and increased levels and gene expression of the immunosuppressive cytokine IL-10. Only in female samples there was a positive association (P < 0.05) between AMPs and both TNF-α and CYP27B1 and between 25-hydroxyvitamin D3 and IL-1β serum levels. Accordingly, VD-metabolites (25-hydroxyvitamin D3, calcitriol) significantly stimulated IL-1β gene expression in cultured trophoblasts. Interestingly, IL-1β mRNA correlated positively with defensins (P < 0.05) in males, but not with cathelicidin expression, which was significantly diminished in comparison to females. Our data suggest that high umbilical serum testosterone and IL-10 in males could explain reduced TNF-α levels and lack of association between VD-dependent innate immunity markers and proinflammatory cytokines expression in the fetoplacental unit. Altogether, our observations imply a restricted basal immune milieu in males compared to females, which may help understand the higher male susceptibility to adverse perinatal outcomes.
Collapse
Affiliation(s)
- Andrea Olmos-Ortiz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, C.P. 14080, Ciudad de México, Mexico; Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales No. 800, Lomas de Virreyes, C.P. 11000, Ciudad de México, Mexico
| | - Janice García-Quiroz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, C.P. 14080, Ciudad de México, Mexico
| | - Ali Halhali
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, C.P. 14080, Ciudad de México, Mexico
| | - Euclides Avila
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, C.P. 14080, Ciudad de México, Mexico
| | - Verónica Zaga-Clavellina
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales No. 800, Lomas de Virreyes, C.P. 11000, Ciudad de México, Mexico
| | - Roberto Chavira-Ramírez
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, C.P. 14080, Ciudad de México, Mexico
| | - Rocío García-Becerra
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, C.P. 14080, Ciudad de México, Mexico; Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, Coyoacán 04360, Ciudad de México, Mexico
| | - Felipe Caldiño-Soto
- Jefatura de UTQ, UMAE Hospital de Gineco Obstetricia No. 4 "Luis Castelazo Ayala", IMSS, Av. Río Magdalena No. 289, Tizapán San Angel, C.P. 01090, Ciudad de México, Mexico
| | - Fernando Larrea
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, C.P. 14080, Ciudad de México, Mexico
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, C.P. 14080, Ciudad de México, Mexico.
| |
Collapse
|
148
|
Abstract
Sex differences exist in the regulation of energy homeostasis. Better understanding of the underlying mechanisms for sexual dimorphism in energy balance may facilitate development of gender-specific therapies for human diseases, e.g. obesity. Multiple organs, including the brain, liver, fat and muscle, play important roles in the regulations of feeding behavior, energy expenditure and physical activity, which therefore contribute to the maintenance of energy balance. It has been increasingly appreciated that this multi-organ system is under different regulations in male vs. female animals. Much of effort has been focused on roles of sex hormones (including androgens, estrogens and progesterone) and sex chromosomes in this sex-specific regulation of energy balance. Emerging evidence also indicates that other factors (not sex hormones/receptors and not encoded by the sex chromosomes) exist to regulate energy homeostasis differentially in males vs. females. In this review, we summarize factors and signals that have been shown to regulate energy homeostasis in a sexually dimorphic fashion and propose a framework where these factors and signals may be integrated to mediate sex differences in energy homeostasis.
Collapse
Affiliation(s)
- Chunmei Wang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030
| | - Yong Xu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030
| |
Collapse
|
149
|
Banu SK, Stanley JA, Taylor RJ, Sivakumar KK, Arosh JA, Zeng L, Pennathur S, Padmanabhan V. Sexually Dimorphic Impact of Chromium Accumulation on Human Placental Oxidative Stress and Apoptosis. Toxicol Sci 2019; 161:375-387. [PMID: 29069462 DOI: 10.1093/toxsci/kfx224] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Environmental contamination with hexavalent chromium (CrVI) is a growing problem both in the United States and developing countries. Hexavalent chromium is widely used in numerous industries. Environmental exposure to CrVI adversely affects pregnancy outcomes and subsequent health of 2 generations, resulting in higher pregnancy loss, spontaneous abortion and low birth rate. Pregnant women exposed to CrVI through occupational settings experience increased risk of spontaneous abortion, stillbirth, preterm birth, and neonatal death. Children of the CrVI exposed women experience respiratory problems, perinatal jaundice, and increased birth defects. Because placental dysfunction may have a role in such adverse pregnancy outcome, we tested the hypothesis that environmental Cr exposure in pregnant women results in Cr accumulation in the human placenta, which could increase placental oxidative stress by disrupting antioxidant machinery and inducing apoptosis. Studies using frozen, deidentified human term placenta samples indicated that: (1) Cr accumulates in human term placenta tissues and (2) increase in Cr accumulation is positively correlated with oxidative stress and apoptotic markers, and altered antioxidants levels. Interestingly, there was a sexual dimorphism in the correlation between Cr accumulation and oxidative stress, and expression of apoptotic and antioxidant markers. Mechanistic in vitro studies using human trophoblast cells BeWo confirmed the detrimental effects of Cr in altering antioxidant genes. For the first time, this study provides evidence in support of a positive correlation between Cr accumulation in the human placenta and accelerated oxidative stress, with a gender bias toward the male sex.
Collapse
Affiliation(s)
- Sakhila K Banu
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843
| | - Jone A Stanley
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843
| | - Robert J Taylor
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843
| | - Kirthiram K Sivakumar
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843
| | - Joe A Arosh
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843
| | - Lixia Zeng
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105
| | | |
Collapse
|
150
|
Neuroinflammation in preterm babies and autism spectrum disorders. Pediatr Res 2019; 85:155-165. [PMID: 30446768 DOI: 10.1038/s41390-018-0208-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 12/23/2022]
Abstract
Genetic anomalies have a role in autism spectrum disorders (ASD). Each genetic factor is responsible for a small fraction of cases. Environment factors, like preterm delivery, have an important role in ASD. Preterm infants have a 10-fold higher risk of developing ASD. Preterm birth is often associated with maternal/fetal inflammation, leading to a fetal/neonatal inflammatory syndrome. There are demonstrated experimental links between fetal inflammation and the later development of behavioral symptoms consistent with ASD. Preterm infants have deficits in connectivity. Most ASD genes encode synaptic proteins, suggesting that ASD are connectivity pathologies. Microglia are essential for normal synaptogenesis. Microglia are diverted from homeostatic functions towards inflammatory phenotypes during perinatal inflammation, impairing synaptogenesis. Preterm infants with ASD have a different phenotype from term born peers. Our original hypothesis is that exposure to inflammation in preterm infants, combined with at risk genetic background, deregulates brain development leading to ASD.
Collapse
|