101
|
Joseph JP, Harishankar MK, Pillai AA, Devi A. Hypoxia induced EMT: A review on the mechanism of tumor progression and metastasis in OSCC. Oral Oncol 2018; 80:23-32. [PMID: 29706185 DOI: 10.1016/j.oraloncology.2018.03.004] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/19/2018] [Accepted: 03/07/2018] [Indexed: 12/22/2022]
Abstract
Hypoxia, a condition of low oxygen tension in tissues, has emerged as a crucial factor in tumor pathophysiology. Hypoxic microenvironment gives rise to altered cellular metabolism and triggers varied molecular responses. These responses promote tumor progression and confer radiation resistance and chemo resistance to tumors. The predominant molecules that are associated with hypoxia research are the hypoxia inducible factors (HIFs). HIFs are known to regulate a large group of genes that are involved in cell survival, proliferation, motility, metabolism, pH regulation, extracellular matrix function, inflammatory cell recruitment and angiogenesis by inducing the expression of their downstream target genes. The process of epithelial to mesenchymal transition (EMT) has been associated with metastasis in cancer. Reports also suggest that hypoxia triggers EMT in several types of cancer including breast cancer, prostate cancer and oral cancer. Oral cancer is a predominant cancer in Central and South East Asia. However, in the recent times, the incidence rates of oral cancer have been increasing in Northern and Eastern Europe as well. This review articulates the role of hypoxia and the associated factors like HIFs in inducing EMT in oral cancer (OSCC).
Collapse
Affiliation(s)
- Joel P Joseph
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, India; School of Regenerative Medicine, Manipal Academy of Higher Education, Yelahanka, Bengaluru 560065, India
| | - M K Harishankar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Aruthra Arumugam Pillai
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Arikketh Devi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, India.
| |
Collapse
|
102
|
Maziveyi M, Dong S, Baranwal S, Alahari SK. Nischarin regulates focal adhesion and Invadopodia formation in breast cancer cells. Mol Cancer 2018; 17:21. [PMID: 29415725 PMCID: PMC5803897 DOI: 10.1186/s12943-018-0764-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 02/03/2023] Open
Abstract
Background During metastasis, tumor cells move through the tracks of extracellular matrix (ECM). Focal adhesions (FAs) are the protein complexes that link the cell cytoskeleton to the ECM and their presence is necessary for cell attachment. The tumor suppressor Nischarin interacts with a number of signaling proteins such as Integrin α5, PAK1, LIMK1, LKB1, and Rac1 to prevent cancer cell migration. Although previous findings have shown that Nischarin exerts this migratory inhibition by interacting with other proteins, the effects of these interactions on the entire FA machinery are unknown. Methods RT-PCR, Western Blotting, invadopodia assays, and immunofluorescence were used to examine FA gene expression and determine whether Nischarin affects cell attachment, as well as the proteins that regulate it. Results Our data show that Nischarin prevents cell migration and invasion by altering the expression of key focal adhesion proteins. Furthermore, we have found that Nischarin-expressing cells have reduced ability to attach the ECM, which in turn leads to a decrease in invadopodia-mediated matrix degradation. Conclusions These experiments demonstrate an important role of Nischarin in regulating cell attachment, which adds to our understanding of the early events of the metastatic process in breast cancer. Electronic supplementary material The online version of this article (10.1186/s12943-018-0764-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mazvita Maziveyi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA, 70112, USA
| | - Shengli Dong
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA, 70112, USA
| | - Somesh Baranwal
- Department of Biochemistry and Microbial Science, Central University of Punjab, Bathinda, 151001, India
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
103
|
Cai Y, Lu J, Tang F. Overexpression of MICAL2, a novel tumor-promoting factor, accelerates tumor progression through regulating cell proliferation and EMT. J Cancer 2018; 9:521-527. [PMID: 29483957 PMCID: PMC5820919 DOI: 10.7150/jca.22355] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/20/2017] [Indexed: 12/11/2022] Open
Abstract
Molecule interacting with CasL 2 (MICAL2), a microtubule associated monooxygenase, is involved in cell growth, axon guidance, vesicle trafficking and apoptosis. Recent studies have demonstrated that MICAL2 is highly expressed in tumor and accelerates tumor progression and it is deemed to be a novel tumor-promoting factor. MICAL2 overexpression increases cell proliferation to accelerate tumor growth, and MICAL2 also promotes epithelial-mesenchymal transition (EMT)-related proteins to increase cancer cell metastasis. On mechanism, MICAL2 induces EMT by regulating SRF (serum response factor)/MRTF-A (myocardin related transcription factor A) signaling, Semaphorin/Plexin pathway and inducing ROS (Reactive oxygen species) production. In the present review, we introduced MICAL family, expatiated the structure and functions of MICALs, and summarized the mechanisms of MICAL2 involving tumor progression. The challenges and perspectives for MICAL2 in tumor are also discussed.
Collapse
Affiliation(s)
- Yongqiang Cai
- Clinical Laboratory and Medical Research Center, Zhuhai Hospital, Jinan University, Zhuhai 519000, Guangdong, China
| | - Jinping Lu
- Clinical Laboratory and Medical Research Center, Zhuhai Hospital, Jinan University, Zhuhai 519000, Guangdong, China
| | - Faqing Tang
- Clinical Laboratory and Medical Research Center, Zhuhai Hospital, Jinan University, Zhuhai 519000, Guangdong, China
| |
Collapse
|
104
|
Kim JA, Choi DK, Min JS, Kang I, Kim JC, Kim S, Ahn JK. VBP1 represses cancer metastasis by enhancing HIF-1α degradation induced by pVHL. FEBS J 2017; 285:115-126. [PMID: 29121446 DOI: 10.1111/febs.14322] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 10/13/2017] [Accepted: 11/06/2017] [Indexed: 01/06/2023]
Abstract
von Hippel-Lindau-binding protein 1 (VBP1) physically interacts with pVHL, an E3-ubiquitin ligase, which degrades HIF-1α in an oxygen-dependent manner. HIF-1 is a key regulator of adaptive responses to a lack of oxygen that controls glucose metabolism, angiogenesis, proliferation, invasion, and metastasis. However, the role of VBP1 in pVHL-mediated degradation of HIF-1α is not yet known. In this study, we show that VBP1 enhances the stability of pVHL and facilitates pVHL-mediated ubiquitination of HIF-1α. Furthermore, VBP1 suppresses HIF-1α-induced epithelial-mesenchymal transition in vitro and tumor metastasis in vivo. These findings suggest that VBP1 is a bona fide tumor suppressor protein associated with HIF-1α regulation.
Collapse
Affiliation(s)
- Ji Ae Kim
- Department of Microbiology & Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Korea
| | - Da Kyung Choi
- Department of Microbiology & Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Korea
| | - Jung Sun Min
- Department of Microbiology & Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Korea
| | - Inho Kang
- Department of Microbiology & Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Korea
| | - Jin Chul Kim
- Department of Microbiology & Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Korea.,Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Semi Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Korea
| | - Jeong Keun Ahn
- Department of Microbiology & Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Korea
| |
Collapse
|
105
|
Laedrach C, Salhia B, Cihoric N, Zlobec I, Tapia C. Immunophenotypic profile of tumor buds in breast cancer. Pathol Res Pract 2017; 214:25-29. [PMID: 29254793 PMCID: PMC7474545 DOI: 10.1016/j.prp.2017.11.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Tumor buds are associated with lympho-vascular invasion and lymph node metastases leading to the assumption that they are involved in the early metastatic process. Hence, it would be important to know if tumor buds can be targeted with the most widely used targeted therapies in breast cancer (BC) and if changes in hormone and Her2 status occur. The aim of this study was to answer these questions by determining whether hormone receptor (HR) and Her2 status are expressed in the tumor buds of a large cohort of BCs. DESIGN We constructed a tumor bud next-generation tissue microarray (ngTMA) consisting of n = 199 BCs of non-special type. Generally, two 1 mm punches were taken from the tumor bud areas in the periphery (PTB) and within the tumor center (ITB). HR and Her2 status was assessed using immunohistochemistry and fluorescence in situ hybridization, respectively. HR status was positive if ≥1% of tumor bud cells were positive. Her2 status was considered positive if bud cells showed strong complete membranous Her2 over-expression or Her2 amplification. RESULTS Most tumor buds were positive for estrogen (ER) (PTB: 86%; ITB: 88.3) and progesterone receptor (PgR) (PTB: 72%; ITB: 72.8%) and Her2 was positive in: PTB 11.5% and ITB 11%. A difference between the main tumor mass and tumor buds (PTB and ITB) was seen for PgR in 3.5% of cases (n = 7). No differences were seen for ER and Her2 between tumor buds and main tumor mass. CONCLUSION Most tumor buds (96.5%) share the same HR and Her2 expression profile of the main tumor mass, implying that tumor buds relay on the same pathways as the main tumor mass and might be equally responsive to targeted therapies.
Collapse
Affiliation(s)
- C Laedrach
- Intstitute of Pathology, University of Bern, Bern, Switzerland
| | - B Salhia
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - N Cihoric
- Department of Radio-Oncology, Inselspital, Bern, Switzerland; Breast Center, Inselspital, Bern, Switzerland
| | - I Zlobec
- Intstitute of Pathology, University of Bern, Bern, Switzerland
| | - C Tapia
- Intstitute of Pathology, University of Bern, Bern, Switzerland; Breast Center, Inselspital, Bern, Switzerland; Department of Molecular Pathology, UT MD Anderson Cancer Center, Houston, TX, USA; Department of Investigational Cancer Therapeutics, UT MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
106
|
Zhou Q, Guo X, Choksi R. Activation of Focal Adhesion Kinase and Src Mediates Acquired Sorafenib Resistance in A549 Human Lung Adenocarcinoma Xenografts. J Pharmacol Exp Ther 2017; 363:428-443. [PMID: 29021381 DOI: 10.1124/jpet.117.240507] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 10/02/2017] [Indexed: 01/07/2023] Open
Abstract
Despite encouraging clinical results with sorafenib monotherapy in patients with KRAS-mutant non-small-cell lung cancer (NSCLC), the overall survival benefit of this drug is limited by the inevitable development of acquired resistance. The exact mechanism underlying acquired sorafenib resistance in KRAS-mutant NSCLC is unclear. In this study, the mechanism of acquired sorafenib resistance was explored using a biologically relevant xenograft model, which was established by using the A549 human lung adenocarcinoma cell line and an in vivo-derived, sorafenib-resistant A549 subline (A549/SRFres). Results from the initial study demonstrated that sorafenib treatment significantly decreased E-cadherin (P < 0.05) levels but significantly increased matrix metallopeptidase 9 (MMP9) levels (P < 0.01) in A549/SRFres tumors, whereas expression levels of phospho-protein kinase B (AKT), phospho-focal adhesion kinase (FAK), and phospho-Src were elevated in sorafenib-treated A549 and A549/SRFres tumors. We next examined whether concomitant dasatinib treatment could overcome acquired sorafenib resistance by blocking the FAK/Src escape route that mediates resistance. Despite the observed in vitro synergy between sorafenib and dasatinib, the in vivo antitumor effect of half-dose sorafenib-dasatinib combination therapy was inferior to that of the full-dose sorafenib treatment. Although the sorafenib-dasatinib combination effectively inhibited Src and AKT phosphorylation, it did not block the Y576/577-FAK phosphorylation, nor did it decrease vimentin protein expression; unexpectedly, it increased Y397-FAK phosphorylation and MMP9 protein expression in tumors. These results suggest that acquired sorafenib resistance in KRAS-mutant A549 xenografts involves the compensatory activation of FAK and Src, and Src inhibition alone is insufficient to diminish sorafenib-promoted epithelial-mesenchymal transition process and invasive potentials in tumors.
Collapse
Affiliation(s)
- Qingyu Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Xiaofang Guo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Riya Choksi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida
| |
Collapse
|
107
|
Gopal SK, Greening DW, Hanssen EG, Zhu HJ, Simpson RJ, Mathias RA. Oncogenic epithelial cell-derived exosomes containing Rac1 and PAK2 induce angiogenesis in recipient endothelial cells. Oncotarget 2017; 7:19709-22. [PMID: 26919098 PMCID: PMC4991413 DOI: 10.18632/oncotarget.7573] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/06/2016] [Indexed: 01/06/2023] Open
Abstract
The metastatic cascade describes the escape of primary tumour cells to distant secondary sites. Cells at the leading tumour edge are thought to undergo epithelial-mesenchymal transition (EMT), to enhance their motility and invasion for spreading. Whether EMT cells directly promote tumour angiogenesis, and the role of exosomes (30-150 nm extracellular vesicles) remains largely unknown. We examined the functional effects of exosomes from MDCK cells, MDCK cells stably expressing YBX1 (MDCKYBX1, intermediate EMT), and Ras-transformed MDCK cells (21D1 cells, complete EMT). 2F-2B cell motility and tube formation (length and branching) was significantly increased following supplementation with MDCKYBX1 or 21D1 exosomes, but not MDCK exosomes. Next, Matrigel™ plugs containing exosome-supplemented 2F-2B cells were subcutaneously injected into mice. Systemic perfusion was only observed for plugs supplemented with MDCKYBX1 or 21D1 exosomes. Comparative proteomics revealed that 21D1 exosomes contained VEGF-associated proteins, while MDCKYBX1 exosomes were enriched with activated Rac1 and PAK2. To validate, 2F-2B cells and HUVECs were pre-treated with PAK inhibitors prior to exosome supplementation. PAK inhibition nullified the effects of MDCKYBX1 exosomes by reducing the tube length and branching to baseline levels. By contrast, the effects of 21D1 exosomes were not significantly decreased. Our results demonstrate for the first time that oncogenic cells undergoing EMT can communicate with endothelial cells via exosomes, and establish exosomal Rac1/PAK2 as angiogenic promoters that may function from early stages of the metastatic cascade.
Collapse
Affiliation(s)
- Shashi K Gopal
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - David W Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Eric G Hanssen
- Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Hong-Jian Zhu
- Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - Richard J Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Rommel A Mathias
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
108
|
Carnosol controls the human glioblastoma stemness features through the epithelial-mesenchymal transition modulation and the induction of cancer stem cell apoptosis. Sci Rep 2017; 7:15174. [PMID: 29123181 PMCID: PMC5680298 DOI: 10.1038/s41598-017-15360-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/25/2017] [Indexed: 12/18/2022] Open
Abstract
A high cell proliferation rate, invasiveness and resistance to chemotherapy are the main features of glioblastoma (GBM). GBM aggressiveness has been widely associated both with a minor population of cells presenting stem-like properties (cancer stem-like cells, CSCs) and with the ability of tumor cells to acquire a mesenchymal phenotype (epithelial-mesenchymal transition, EMT). Carnosol (CAR), a natural inhibitor of MDM2/p53 complex, has been attracted attention for its anti-cancer effects on several tumor types, including GBM. Herein, the effects of CAR on U87MG-derived CSC viability and stemness features were evaluated. CAR decreased the rate of CSC formation and promoted the CSC apoptotic cell death through p53 functional reactivation. Moreover, CAR was able to control the TNF-α/TGF-β-induced EMT, counteracting the effects of the cytokine on EMT master regulator genes (Slug, Snail, Twist and ZEB1) and modulating the activation of miR-200c, a key player in the EMT process. Finally, CAR was able to increase the temozolomide (TMZ) anti-proliferative effects. These findings demonstrate that CAR affected the different intracellular mechanism of the complex machinery that regulates GBM stemness. For the first time, the diterpene was highlighted as a promising lead for the development of agents able to decrease the stemness features, thus controlling GBM aggressiveness.
Collapse
|
109
|
Li X, Li P, Liu C, Ren Y, Tang X, Wang K, He J. Sinomenine hydrochloride inhibits breast cancer metastasis by attenuating inflammation-related epithelial-mesenchymal transition and cancer stemness. Oncotarget 2017; 8:13560-13574. [PMID: 28088791 PMCID: PMC5355120 DOI: 10.18632/oncotarget.14593] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/03/2017] [Indexed: 12/21/2022] Open
Abstract
Sinomenine hydrochloride (SH) has been investigated for its anti-tumor growth effect. We have previously reported that SH inhibited breast cancer cell proliferation via MAPKs signaling. However, whether SH could inhibit tumor metastasis has not been fully explored. In this study, we found that SH suppressed the metastasis potential of breast cancer cells. The wound healing and transwell assays showed that SH inhibited the migration and invasion ability of both 4T1 and MDA-MB-231 breast cancer cells. The orthotopic mouse model of 4T1 and the experimental mouse model of MDA-MB-231-luc (MDA-MB-231 cell line expressing firefly luciferase) demonstrated that SH treatment inhibited breast cancer metastasis by inhibiting epithelial–mesenchymal transition (EMT) and cancer stem cell (CSC) properties without obvious hepatotoxicity and renal toxicity. We also found that SH decreased spleen volume and weight in both mouse models, especially in the 4T1 mouse model. IL-6, a strong inflammatory factor causing EMT, was remarkably reduced. Overall, this anti-metastasis effect of SH could be possibly caused by attenuating inflammatory reaction, which led to inhibition of EMT and CSC characteristics of breast cancer cells. This study, together with our previous one, provides more evidence of SH as a potential drug for breast cancer therapy.
Collapse
Affiliation(s)
- Xiao Li
- Department of Breast Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Pingping Li
- Translational Medical Center, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Chao Liu
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Yu Ren
- Department of Breast Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Xiaojiang Tang
- Department of Breast Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Ke Wang
- Department of Breast Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Jianjun He
- Department of Breast Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| |
Collapse
|
110
|
Chockley PJ, Keshamouni VG. Immunological Consequences of Epithelial-Mesenchymal Transition in Tumor Progression. THE JOURNAL OF IMMUNOLOGY 2017; 197:691-8. [PMID: 27431984 DOI: 10.4049/jimmunol.1600458] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/18/2016] [Indexed: 12/26/2022]
Abstract
Microenvironments that tumor cells encounter are different during the stages of cancer progression-primary tumor, metastasis, and at the metastatic site. This suggests potential differences in immune surveillance of primary tumor and metastasis. Epithelial-mesenchymal transition (EMT) is a key reversible process in which cancer cells transition into highly motile and invasive cells for dissemination. Only a tiny proportion successfully metastasize, supporting the notion of metastasis-specific immune surveillance. EMT involves extensive molecular reprogramming of cells conferring many clinically relevant features to cancer cells and affects tumor cell interactions within the tumor microenvironment. We review the impact of tumor immune infiltrates on tumor cell EMT and the consequences of EMT in shaping the immune microenvironment of tumors. The usefulness of EMT as a model to investigate metastasis-specific immune surveillance mechanisms are also explored. Finally, we discuss potential implications of EMT for tumor immunogenicity, as well as current immunotherapies and future strategies.
Collapse
Affiliation(s)
- Peter J Chockley
- Graduate Program in Immunology, University of Michigan Medical Center, Ann Arbor, MI 48109; and
| | - Venkateshwar G Keshamouni
- Graduate Program in Immunology, University of Michigan Medical Center, Ann Arbor, MI 48109; and Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109
| |
Collapse
|
111
|
Markopoulos GS, Roupakia E, Tokamani M, Chavdoula E, Hatziapostolou M, Polytarchou C, Marcu KB, Papavassiliou AG, Sandaltzopoulos R, Kolettas E. A step-by-step microRNA guide to cancer development and metastasis. Cell Oncol (Dordr) 2017; 40:303-339. [DOI: 10.1007/s13402-017-0341-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2017] [Indexed: 01/17/2023] Open
|
112
|
Cai WX, Zheng LW, Huang HZ, Zwahlen RA. Evidence of phenotypic stability after transduction of fluorescent proteins in two human tongue cancer cell lines. Arch Oral Biol 2017; 79:48-54. [PMID: 28288391 DOI: 10.1016/j.archoralbio.2017.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 01/06/2023]
Abstract
OBJECTIVES This study investigated the phenotypic stability and biological properties of two human tongue cancer cell lines after transduction of fluorescent proteins. DESIGN The human tongue cancer cell lines UM1 and UM2 were cultured with GFP and RFP lentiviral particles stock for 72h. Cells with successful transduction of fluorescent proteins were selected in a medium containing G418 antibiotics for two weeks. The proliferation rates of parental and transduced cell lines were evaluated by their population doubling time (PDT). Transduction efficiency was assessed by fluorescence microscope and flow cytometry. The transduced cells in passage 1, 2, 10, 20 and 30 were collected to check the stability of fluorescent protein expression. Phenotypic stability of the transduced cells was detected by means of cell morphology, cell surface markers and cell function evaluating essay. RESULTS The proliferation rates of the transduced cell lines showed no significant difference compared to their parental cells. Successful transduction with high efficiency (99% up) was demonstrated. High fluorescence expression on both transduced cells was detected until the thirtieth generation. UM1 and UM1-GFP displayed mesenchymal cell characteristics, while UM2 and UM2-RFP cell lines showed properties characteristic of epithelial. CONCLUSIONS Two human tongue cancer cell lines of epithelial and mesenchymal phenotype respectively, have been successfully labelled with green and red fluorescent proteins. The fluorescence maintained a high expression rate over thirty generations without influencing the original morphological phenotype and cadherin expression.
Collapse
Affiliation(s)
- Wei-Xin Cai
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Li-Wu Zheng
- Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, PR China
| | - Hong-Zhang Huang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Roger A Zwahlen
- Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, PR China.
| |
Collapse
|
113
|
Mooney B, Abdul-Raof N, Tian YI, Xie Y. Restriction of Cancer Metastatic Potential Using Embryonic Stem Cells Encapsulated in Alginate Hydrogel Microstrands. ACS Biomater Sci Eng 2017; 3:1769-1779. [DOI: 10.1021/acsbiomaterials.7b00237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bridget Mooney
- Nanobioscience, Colleges
of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| | - Nurazhani Abdul-Raof
- Nanobioscience, Colleges
of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| | - Yangzi Isabel Tian
- Nanobioscience, Colleges
of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| | - Yubing Xie
- Nanobioscience, Colleges
of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| |
Collapse
|
114
|
Sistigu A, Di Modugno F, Manic G, Nisticò P. Deciphering the loop of epithelial-mesenchymal transition, inflammatory cytokines and cancer immunoediting. Cytokine Growth Factor Rev 2017; 36:67-77. [PMID: 28595838 DOI: 10.1016/j.cytogfr.2017.05.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 12/14/2022]
Abstract
Tumorigenesis and tumor progression relies on the dialectics between tumor cells, the extracellular matrix and its remodelling enzymes, neighbouring cells and soluble cues. The host immune response is crucial in eliminating or promoting tumor growth and the reciprocal coevolution of tumor and immune cells, during disease progression and in response to therapy, shapes tumor fate by activating innate and adaptive mechanisms. The phenotypic plasticity is a common feature of epithelial and immune cells and epithelial-mesenchymal transition (EMT) is a dynamic process, governed by microenvironmental stimuli, critical in tumor cell shaping, increased tumor cell heterogeneity and stemness. In this review we will outline how the dysregulation of microenvironmental signaling is crucial in determining tumor plasticity and EMT, arguing how therapy resistance hinges on these dynamics.
Collapse
Affiliation(s)
- Antonella Sistigu
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy; Department of General Pathology and Physiopathology, Università Cattolica del Sacro Cuore, largo Francesco Vito 1, 00168, Rome, Italy.
| | - Francesca Di Modugno
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy
| | - Gwenola Manic
- Department of Biology, University of Rome "Tor Vergata", via della Ricerca Scientifica 1, 00173, Rome, Italy
| | - Paola Nisticò
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
115
|
Torigata M, Yamakawa D, Takakura N. Elevated expression of Tie1 is accompanied by acquisition of cancer stemness properties in colorectal cancer. Cancer Med 2017; 6:1378-1388. [PMID: 28464467 PMCID: PMC5463078 DOI: 10.1002/cam4.1072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/13/2017] [Accepted: 03/12/2017] [Indexed: 12/15/2022] Open
Abstract
The Tie receptors 1 and 2 (Tie1/2) play crucial roles in embryonic angiogenesis. Recent studies suggest enhanced expression of Tie1 in several types of cancer and negative correlations between Tie1 levels and clinical outcome. These observations suggest important functions of Tie1 not only for vascular formation but also in tumorigenesis. Ligands for Tie2, that is angiopoietins 1-4, have been identified, but not for Tie1. To determine the molecular functions of Tie1, its detailed characterization in tumors would be helpful. Herein, we report that Tie1 is up-regulated in colorectal cancer. Detailed analysis using tumor-bearing models and immunohistochemistry combined with Flow cytometric analysis and cell sorting (FACS) revealed that Tie1 protein was expressed in a small population of malignant tumor cells. Intriguingly, Tie1 expression was observed and could be maintained only in vivo. Further analysis using sphere-formation culture revealed that Tie1-positive cells are enriched within the population of tumor cells with cancer stemness properties. Indeed, Tie1-positive tumor cells derived from a murine model overexpressed Lgr5, a typical stemness marker for colorectal cancer. Our results provide a novel insight into Tie1 function in tumorigenesis and suggest clinical applications to target cancer stem cells.
Collapse
Affiliation(s)
- Miku Torigata
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Daishi Yamakawa
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
116
|
Hypoxia Mediates Differential Response to Anti-EGFR Therapy in HNSCC Cells. Int J Mol Sci 2017; 18:ijms18050943. [PMID: 28468237 PMCID: PMC5454856 DOI: 10.3390/ijms18050943] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 01/01/2023] Open
Abstract
Despite advances in the head and neck squamous cell carcinoma (HNSCC) treatment modalities, drug resistance and cancer recurrence are often reported. Hypoxia signaling through hypoxia-inducible factor 1 (HIF-1) promotes angiogenesis and metastasis by inducing epithelial-mesenchymal-transition (EMT). The aim of this study was to evaluate the impact of hypoxia on response to therapy as well as EMT and expression of stem cell markers in HNSCC cells. Five HNSCC cell lines (UT-SCC-2, UT-SCC-14, LK0412, LK0827, and LK0923) were selected for this study. The treatment sensitivity for radiation, cisplatin, cetuximab, and dasatinib was assessed by crystal violet assay. Gene expression of EMT and cancer stem cell (CSC) markers as well as protein level of EGFR signaling molecules were analyzed by qPCR and western blotting, respectively. Unlike UT-SCC-14 and LK0827, the LK0412 cell line became significantly more sensitive to cetuximab in hypoxic conditions. This cetuximab sensitivity was efficiently reversed after suppression of HIF-1α with siRNA. Additionally, hypoxia-induced EMT and expression of stem cell markers in HNSCC cells was partially revoked by treatment with cetuximab or knockdown of HIF-1α. In summary, our study shows that hypoxia might have a positive influence on the anti-EGFR therapy effectiveness in HNSCC. However, due to heterogeneity of HNSCC lesions, targeting HIF-1α may not be sufficient to mediate such a response. Further studies identifying a trait of hypoxia-specific response to cetuximab in HNSCC are advisable.
Collapse
|
117
|
Su D, Liu Y, Song T. Knockdown of IQGAP1 inhibits proliferation and epithelial-mesenchymal transition by Wnt/β-catenin pathway in thyroid cancer. Onco Targets Ther 2017; 10:1549-1559. [PMID: 28352188 PMCID: PMC5359122 DOI: 10.2147/ott.s128564] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Thyroid cancer is the most common endocrine malignant disease with a high incidence rate. The expression of IQGAP1 is upregulated in various cancers, including thyroid cancer. However, the role and underlying mechanism of IQGAP1 in thyroid cancer are still not clear. Materials and methods The expression of IQGAP1 in thyroid cancer tissues and cells was determined by reverse transcription polymerase chain reaction and Western blot analysis. Cells were transfected with different siRNAs using Lipofectamine 2000 or were treated with various concentrations of XAV939. The effects of IQGAP1 knockdown on proliferation and epithelial–mesenchymal transition (EMT) of thyroid cancer cells were determined by MTT assay and Western blot analysis. Animal experiments were performed to investigate the effects of IQGAP1 knockdown on the growth of tumors in vivo. Results High IQGAP1 expression is found in thyroid cancer tissues and cells. Knockdown of IQGAP1 had inhibitory effects on cell proliferation and EMT, as well as on the Wnt/β-catenin pathway. Additionally, inactivation of the Wnt/β-catenin pathway by XAV939 or si-β-catenin suppressed cell proliferation and EMT. Furthermore, suppression of the Wnt/β-catenin pathway reversed the positive effects of pcDNA-IQGAP1 on cell proliferation and EMT in vitro. Moreover, downregulation of IQGAP1 suppressed tumor growth and EMT in SW579 tumor xenografts through the Wnt/β-catenin pathway in vivo. Conclusion Our study demonstrated that knockdown of IQGAP1 inhibited cell proliferation and EMT through blocking the Wnt/β-catenin pathway in thyroid cancer.
Collapse
Affiliation(s)
- Dongyue Su
- Department of Endocrinology, Huaihe Hospital of Henan University
| | - Yang Liu
- Department of Endocrinology, Huaihe Hospital of Henan University
| | - Tao Song
- Department of Orthopaedics, The People's Liberation Army 155 Hospital, Kaifeng, People's Republic of China
| |
Collapse
|
118
|
Oxidative stress indicated by elevated expression of Nrf2 and 8-OHdG promotes hepatocellular carcinoma progression. Med Oncol 2017; 34:57. [PMID: 28281193 DOI: 10.1007/s12032-017-0914-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 02/28/2017] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species (ROS) is excessively generated in tumors creating an oxidative stress in tumor microenvironment. We investigated hepatic expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and 8-hydroxydeoxyguanosine (8-OHdG) in hepatocellular carcinoma (HCC) patients, and asked if ROS epigenetically upregulated Nrf2 and enhanced aggressiveness in HCC cells. Expression of Nrf2 (n = 100) and 8-OHdG (n = 53) was remarkably increased in HCC tissues compared with the noncancerous hepatic tissues. Elevated expression of 8-OHdG was associated with poor survival in HCC patients. H2O2, as ROS representative, provoked oxidative stress in HepG2 cells, indicated by increased protein carbonyl content and decreased total antioxidant capacity. Nrf2 expression and 8-OHdG formation were markedly increased in the H2O2-treated cells compared with the untreated control. Co-treatment with antioxidants, tocopheryl acetate (TA) and S-adenosylmethionine (SAM) effectively attenuated expression of Nrf2 and 8-OHdG in H2O2-treated cells. HepG2 cells treated with H2O2 had significantly higher migration and invasion capabilities than the untreated control cells, and this aggressiveness was significantly inhibited by TA and SAM. Bisulfite sequencing revealed that CpG dinucleotides in Nrf2 promoter were unmethylated in the H2O2-treated cells similar to the untreated control. In conclusion, robust histological evidence of increased antioxidative response and oxidative DNA damage in human HCC tissues was demonstrated. Elevated oxidative DNA lesion 8-OHdG was associated with shorter survival. Experimentally, ROS enhanced Nrf2 expression, 8-OHdG formation and tumor progression in HCC cells. These effects were inhibited by antioxidants. Therefore, oxidative stress-reducing regimens might be beneficial to diminish the ROS-induced HCC progression.
Collapse
|
119
|
Lee JS, Yoo JE, Kim H, Rhee H, Koh MJ, Nahm JH, Choi JS, Lee KH, Park YN. Tumor stroma with senescence-associated secretory phenotype in steatohepatitic hepatocellular carcinoma. PLoS One 2017; 12:e0171922. [PMID: 28273155 PMCID: PMC5342190 DOI: 10.1371/journal.pone.0171922] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023] Open
Abstract
Senescence secretome was recently reported to promote liver cancer in an obese mouse model. Steatohepatitic hepatocellular carcinoma (SH-HCC), a new variant of HCC, has been found in metabolic syndrome patients, and pericellular fibrosis, a characteristic feature of SH-HCC, suggests that alteration of the tumor stroma might play an important role in SH-HCC development. Clinicopathological characteristics and tumor stroma showing senescence and senescence-associated secretory phenotype (SASP) were investigated in 21 SH-HCCs and 34 conventional HCCs (C-HCCs). The expression of α-smooth muscle actin (α-SMA), p21Waf1/Cif1, γ-H2AX, and IL-6 was investigated by immunohistochemistry or immunofluorescence. SH-HCCs were associated with older age, higher body mass index, and a higher incidence of metabolic syndrome, compared to C-HCC (P <0.05, all). The numbers of α-SMA-positive cancer-associated fibroblasts (CAFs) (P = 0.049) and α-SMA-positive CAFs co-expressing p21Waf1/Cif1 (P = 0.038), γ-H2AX (P = 0.065), and IL-6 (P = 0.048) were greater for SH-HCCs than C-HCCs. Additionally, non-tumoral liver from SH-HCCs showed a higher incidence of non-alcoholic fatty liver disease and a higher number of α-SMA-positive stellate cells expressing γ-H2AX and p21Waf1/Cif1 than that from C-HCCs (P <0.05, all). In conclusion, SH-HCCs are considered to occur more frequently in metabolic syndrome patients. Therein, senescent and damaged CAFs, as well as non-tumoral stellate cells, expressing SASP including IL-6 may contribute to the development of SH-HCC.
Collapse
Affiliation(s)
- Jee San Lee
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeong Eun Yoo
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Haeryoung Kim
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Hyungjin Rhee
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Myoung Ju Koh
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Hae Nahm
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Sub Choi
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kee-Ho Lee
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea
| | - Young Nyun Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
120
|
Shiraishi A, Tachi K, Essid N, Tsuboi I, Nagano M, Kato T, Yamashita T, Bando H, Hara H, Ohneda O. Hypoxia promotes the phenotypic change of aldehyde dehydrogenase activity of breast cancer stem cells. Cancer Sci 2017; 108:362-372. [PMID: 28012234 PMCID: PMC5378271 DOI: 10.1111/cas.13147] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 12/21/2022] Open
Abstract
Stable breast cancer cell (BCC) lines are valuable tools for the identification of breast cancer stem cell (BCSC) phenotypes that develop in response to several stimuli as well as for studying the basic mechanisms associated with the initiation and maintenance of BCSCs. However, the characteristics of individual, BCC‐derived BCSCs varies and these cells show distinct phenotypes depending on the different BCSC markers used for their isolation. Aldehyde dehydrogenase (ALDH) activity is just such a recognized biomarker of BCSCs with a CD44+/CD24− phenotype. We isolated BCSCs with high ALDH activity (CD44+/CD24−/Aldefluorpos) from a primary culture of human breast cancer tissue and observed that the cells had stem cell properties compared to BCSCs with no ALDH activity (CD44+/CD24−/Aldefluorneg). Moreover, we found AldefluorposBCSCs had a greater hypoxic response and subsequent induction of HIF‐1α expression compared to the AldefluornegBCSCs. We also found that knocking down HIF‐1α, but not HIF‐2α, in AldefluorposBCSCs led to a significant reduction of the stem cell properties through a decrease in the mRNA levels of genes associated with the epithelial‐mesenchymal transition. Indeed, HIF‐1α overexpression in AldefluornegBCSCs led to Slug and Snail mRNA increase and the associated repression of E‐cadherin and increase in Vimentin. Of note, prolonged hypoxic stimulation promoted the phenotypic changes of AldefluornegBCSCs including ALDH activity, tumorigenesis and metastasis, suggesting that hypoxia in the tumor environment may influence BCSC fate and breast cancer clinical outcomes.
Collapse
Affiliation(s)
- Akira Shiraishi
- Department of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kana Tachi
- Department of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Department of Breast-Thyroid-Endocrine Surgery, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Nesrine Essid
- Department of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ikki Tsuboi
- Department of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masumi Nagano
- Department of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Toshiki Kato
- Department of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Toshiharu Yamashita
- Department of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroko Bando
- Department of Breast-Thyroid-Endocrine Surgery, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hisato Hara
- Department of Breast-Thyroid-Endocrine Surgery, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Osamu Ohneda
- Department of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
121
|
Kashiwagi S, Asano Y, Goto W, Takada K, Takahashi K, Noda S, Takashima T, Onoda N, Tomita S, Ohsawa M, Hirakawa K, Ohira M. Use of Tumor-infiltrating lymphocytes (TILs) to predict the treatment response to eribulin chemotherapy in breast cancer. PLoS One 2017; 12:e0170634. [PMID: 28166544 PMCID: PMC5293550 DOI: 10.1371/journal.pone.0170634] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/06/2017] [Indexed: 12/18/2022] Open
Abstract
Background Eribulin mesylate (eribulin) is currently indicated for treatment of locally advanced or metastatic breast cancer (MBC). It is a cytotoxic agent with unique mechanisms that suppress epithelial-mesenchymal transition (EMT) of cancer cells. On the other hand, Tumor-infiltrating lymphocytes (TILs), which are considered indicators of immune response monitoring, have been reported as prognostic factors and predictors of therapeutic efficacy. We thought that eribulin, which has an EMT-inhibiting mechanism, may produce an antitumor effect by improving the immune microenvironment, and in this study investigated the effects of breast cancer eribulin chemotherapy on the immune microenvironment with TILs as a marker. Methods TILs was evaluated in 52 patients with MBC who underwent chemotherapy with eribulin. The correlation between TILs evaluated according to the standard method, and prognosis, including the efficacy of eribulin chemotherapy, was investigated retrospectively. Results Of the 52 MBC patients, 29 (55.8%) were in the high TILs group and 23 (44.2%) were in the low TILs group. The high TILs group included significantly more triple-negative breast cancer (TNBC) (p = 0.008) than the low TILs group. In an analysis of outcomes, TNBC patients in the high TILs group had significantly longer disease-free survival than TNBC patients in the low TILs group (p = 0.033, log-rank), but no significant differences were seen in all breast cancer patients (p = 0.489, log-rank) or in non-TNBC patients (p = 0.878, log-rank). In a multivariate analysis of recurrence in TNBC patients, being in the high TILs group was again an independent factor for a good outcome (p = 0.031, HR = 0.063). Conclusion The results of this study suggest that TILs may be useful as a predictive marker of the therapeutic effect of eribulin chemotherapy in TNBC.
Collapse
Affiliation(s)
- Shinichiro Kashiwagi
- Department of Surgical Oncology; Osaka City University Graduate School of Medicine, Osaka, Japan
- * E-mail:
| | - Yuka Asano
- Department of Surgical Oncology; Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Wataru Goto
- Department of Surgical Oncology; Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Koji Takada
- Department of Surgical Oncology; Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Katsuyuki Takahashi
- Department of Pharmacology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Satoru Noda
- Department of Surgical Oncology; Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tsutomu Takashima
- Department of Surgical Oncology; Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Naoyoshi Onoda
- Department of Surgical Oncology; Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shuhei Tomita
- Department of Pharmacology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masahiko Ohsawa
- Department of Diagnostic Pathology; Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kosei Hirakawa
- Department of Surgical Oncology; Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masaichi Ohira
- Department of Surgical Oncology; Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
122
|
Yoo JE, Kim YJ, Rhee H, Kim H, Ahn EY, Choi JS, Roncalli M, Park YN. Progressive Enrichment of Stemness Features and Tumor Stromal Alterations in Multistep Hepatocarcinogenesis. PLoS One 2017; 12:e0170465. [PMID: 28114366 PMCID: PMC5256873 DOI: 10.1371/journal.pone.0170465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 01/05/2017] [Indexed: 11/24/2022] Open
Abstract
Cancer stem cells (CSCs), a subset of tumor cells, contribute to an aggressive biological behavior, which is also affected by the tumor stroma. Despite the role of CSCs and the tumor stroma in hepatocellular carcinoma (HCC), features of stemness have not yet been studied in relation to tumor stromal alterations in multistep hepatocarcinogenesis. We investigated the expression status of stemness markers and tumor stromal changes in B viral carcinogenesis, which is the main etiology of HCC in Asia. Stemness features of tumoral hepatocytes (EpCAM, K19, Oct3/4, c-KIT, c-MET, and CD133), and tumor stromal cells expressing α-smooth muscle actin (α-SMA), CD68, CD163, and IL-6 were analyzed in 36 low grade dysplastic nodules (DNs), 48 high grade DNs, 30 early HCCs (eHCCs), and 51 progressed HCCs (pHCCs) by immunohistochemistry or real-time PCR. Stemness features (EpCAM and K19 in particular) were progressively acquired during hepatocarcinogenesis in combination with enrichment of stromal cells (CAFs, TAMs, IL-6+ cells). Stemness features were seen sporadically in DNs, more consistent in eHCCs, and peaked in pHCCs. Likewise, stromal cells were discernable in DNs, showed up as consistent cell densities in eHCCs and peaked in pHCCs. The stemness features and tumor stromal alterations also peaked in less differentiated or larger HCCs. In conclusion, progression of B viral multistep hepatocarcinogenesis is characterized by an enrichment of stemness features of neoplastic hepatocytes and a parallel alteration of the tumor stroma. The modulation of neoplastic hepatocytes and stromal cells was at low levels in precancerous lesions (DNs), consistently increased in incipient cancer (eHCCs) and peaked in pHCCs. Thus, in B viral hepatocarcinogenesis, interactions between CSCs and the tumor stroma, although starting early, seem to play a major role in tumor progression.
Collapse
Affiliation(s)
- Jeong Eun Yoo
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Joo Kim
- Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Hyungjin Rhee
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Haeryoung Kim
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Republic of Korea
| | - Ei Yong Ahn
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Sub Choi
- Department of Surgery, Yonsei Liver Cancer Special clinic, Yonsei University College of Medicine, Seoul, Korea
| | - Massimo Roncalli
- Department of Pathology, Humanitas Clinical and Research Hospital and Hunimed University of Rozzano, Milan, Italy
| | - Young Nyun Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
123
|
Cathepsin L is involved in X-ray-induced invasion and migration of human glioma U251 cells. Cell Signal 2016; 29:181-191. [PMID: 27989700 DOI: 10.1016/j.cellsig.2016.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 02/06/2023]
Abstract
An important therapeutic method of glioblastoma, the most common primary brain tumor, is radiotherapy. However, several studies reported recently that radiation could also promote the invasion and migration of malignant tumor. Herein, we have identified that a significant increase of migration and invasiveness of human glioma U251 cells undergoing X-ray was observed compared to controls, accompanied by the increase of cathepsin L (CTSL), which is a lysosomal cysteine protease overexpressed and secreted by tumor cells. To verify if there was a relationship between CTSL and the X-ray-induced glioma invasion, a CTSL specific inhibitor Z-FY-CHO or a short hairpin RNA interference was used to pretreat U251 cells. As a result, the cell invasion and migration was impaired via down-regulation of CTSL. Additionally, a marked reduction of the cell-signaling molecules Rho kinase was also detected compared with controls. We also found that CTSL is involved in EMT progress: both in vitro and in clinical specimens. Overall, our findings show that CTSL is an important protein which mediates cell invasion and migration of human glioma U251 cells induced by X-ray, and the inhibition of CTSL expression might diminish the invasion of U251 cells by reducing the activity of RhoA and CDC42 as well as EMT positive markers.
Collapse
|
124
|
Fan WH, Du FJ, Liu XJ, Chen N. Knockdown of FRAT1 inhibits hypoxia-induced epithelial-to-mesenchymal transition via suppression of the Wnt/β-catenin pathway in hepatocellular carcinoma cells. Oncol Rep 2016; 36:2999-3004. [PMID: 27666874 DOI: 10.3892/or.2016.5130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/29/2016] [Indexed: 11/06/2022] Open
Abstract
Hypoxia-induced epithelial-to-mesenchymal transition (EMT) in hepatocellular carcinoma (HCC) was investigated. Frequently rearranged in advanced T-cell lymphomas-1 (FRAT1) is a positive regulator of the Wnt/β-catenin signaling pathway and is overexpressed in many human tumors. However, the expression and role of FRAT1 in HCC has not been elucidated. In this study, we investigated the effect of FRAT1 on EMT process in HCC cells induced by hypoxia. Our results showed that FRAT1 is highly expressed in HCC tissues and cell lines. Hypoxia significantly induced FRAT1 expression in HCC cells. FRAT1 knockdown inhibited hypoxia-induced cell migration/invasion, downregulation of epithelial markers and upregulation of mesenchymal markers. Moreover, FRAT1 knockdown suppressed the expression levels of β-catenin, cyclin D1 and c-myc in HCC cells under the same hypoxic condition. Our results revealed that FRAT1 is a hypoxia factor that is critical for the induction of EMT in HCC cells. These data suggest a potential role for targeting FRAT1 in the prevention of hypoxia-induced HCC cancer progression and metastasis mediated by EMT.
Collapse
Affiliation(s)
- Wan-Hu Fan
- Department of Infectious Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Fen-Jing Du
- Department of Infectious Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiao-Jing Liu
- Department of Infectious Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Na Chen
- Department of Infectious Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
125
|
Park GB, Chung YH, Gong JH, Jin DH, Kim D. GSK-3β-mediated fatty acid synthesis enhances epithelial to mesenchymal transition of TLR4-activated colorectal cancer cells through regulation of TAp63. Int J Oncol 2016; 49:2163-2172. [PMID: 27599658 DOI: 10.3892/ijo.2016.3679] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/23/2016] [Indexed: 11/05/2022] Open
Abstract
Glycogen synthase kinase-3β (GSK-3β) in cancer cells is a critical regulatory component of both cellular metabolism and epithelial-mesenchymal transition (EMT) processes via regulation of the β-catenin/E-cadherin and phosphoinositide 3-kinase (PI3K)/AKT signaling pathway. Lipogenesis of cancer cells also plays a critical role in survival and metastasis. We investigated the role of GSK-3β-mediated intracellular fatty acid synthesis to control EMT in TLR4-activated colorectal cancer cells and the underlying regulatory mechanism. Engagement of TLR4 with lipopolysaccharide (LPS) in colon cancer cells promoted the induction of phosphorylated GSK-3β and related lipogenic enzymes as well as the expression of CD74, CD44 and macrophage inhibitory factor (MIF), but decreased expression of transcriptionally active p63 (TAp63). In addition, targeted inhibition of GSK-3β using SB216763 was accompanied by decreased intracellular fatty acid synthesis and blockage of CD74 and CD44 expression, whereas it reversed the level of TAp63. Although TAp63 overexpression had no effect on the expression of CD74 and CD44 in LPS-treated colon cancer cells, GSK-3β-dependent fatty acid synthesis and invasive activity were significantly suppressed. Notably, inhibition of CD44 or CD74 by siRNA not only attenuated de novo lipogenesis and migratory activity but also restored the expression of TAp63 in LPS-activated colon cancer cells. These results suggest that TAp63-mediated GSK-3β activation induced by TLR4 stimulation triggers migration and invasion of colon cancer cells through the regulation of lipid synthesis and GSK-3β-mediated CD74/CD44 expression could be a target to control fatty acid-related EMT process through the modulation of TAp63 expression.
Collapse
Affiliation(s)
- Ga Bin Park
- Department of Biochemistry, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Yoon Hee Chung
- Department of Anatomy, Chung‑Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Ji Hee Gong
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Dong-Hoon Jin
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Daejin Kim
- Department of Anatomy, Inje University College of Medicine, Busan 47392, Republic of Korea
| |
Collapse
|
126
|
Zhao L, Zhao J, Wang X, Chen Z, Peng K, Lu X, Meng L, Liu G, Guan G, Wang F. Serum response factor induces endothelial-mesenchymal transition in glomerular endothelial cells to aggravate proteinuria in diabetic nephropathy. Physiol Genomics 2016; 48:711-718. [PMID: 27565710 DOI: 10.1152/physiolgenomics.00082.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/19/2016] [Indexed: 12/25/2022] Open
Abstract
We investigated the expression and function of serum response factor (SRF) in endothelial-mesenchymal transition (EndMT) in glomerular endothelial cells (GEnCs) of diabetic nephropathy (DN). The expression of SRF, endothelial markers (VE-cadherin, CD31), and mesenchymal markers (α-SMA, FSP-1, fibronectin) was examined in GEnCs following high glucose or in renal cortex tissues of DN rats. SRF was upregulated by SRF plasmids and downregulated by CCG-1423 (a small molecule inhibitor of SRF) to investigate how SRF influenced EndMT in GEnCs of DN. Streptozocin (STZ) was used to generate diabetes mellitus DM in rats. In GEnCs after high glucose treatment and in renal cortex tissues of diabetic rats, SRF, α-SMA, FSP-1, and fibronectin increased, while VE-cadherin and CD31 declined. SRF overexpression in GEnCs induced expression of Snail, an important transcription factor mediating EndMT. Blockade of SRF reduced Snail induction, protected GEnCs from EndMT, and ameliorated proteinuria. Together, increased SRF activity provokes EndMT and barrier dysfunction of GEnCs in DN. Targeting SRF by small molecule inhibitor may be an attractive therapeutic strategy for DN.
Collapse
Affiliation(s)
- Long Zhao
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Shandong University, Jinan, People's Republic of China
| | - Jun Zhao
- Department of Nephrology, Shandong Weifang People's Hospital, Weifang, People's Republic of China; and
| | - Xueling Wang
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Shandong University, Jinan, People's Republic of China
| | - Zhixin Chen
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Shandong University, Jinan, People's Republic of China
| | - Kexin Peng
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Xiaohan Lu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Linghang Meng
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Shandong University, Jinan, People's Republic of China
| | - Gang Liu
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Shandong University, Jinan, People's Republic of China
| | - Guangju Guan
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Shandong University, Jinan, People's Republic of China;
| | - Fei Wang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| |
Collapse
|
127
|
Helal MAM, Shaheen NEM, Abu Zahra FA. Immunomodulatory capacity of the local mesenchymal stem cells transplantation after severe skeletal muscle injury in female rats. Immunopharmacol Immunotoxicol 2016; 38:414-422. [PMID: 27560658 DOI: 10.1080/08923973.2016.1222617] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
CONTEXT Cell therapy technique with stem cells is a very attractive strategy for the treatment of muscle disorders. OBJECTIVE The objective of this study was to investigate the mechanism of local transplantation of mesenchymal stem cells (MSCs) which could contribute to skeletal muscle healing. MATERIALS AND METHODS Female rats were divided into three equal groups as the following: group 1, the negative control group (untreated group), group 2, sham-treated group, rats with muscle injuries involving volumetric muscle loss (VML) of adductor brevis muscle and injected locally with phosphate-buffered saline (PBS) 0.5 ml without stem cells after 7 d of muscle injury, group 3, treated group, rats with VML and injected locally (intramuscular) with 1.5 × 106 bone marrow MSCs suspended in PBS 0.5 ml (1) after 7 d of muscle tissue injury. All animals were sacrificed after 4 weeks of stem cell transplantation. RESULTS In vitro culture the morphology of MSCs reached confluence and appeared as long spindle in shape on 9-14 d. Most of the cells did not express the hematopoietic cell marker, CD34 and CD45 but expressed MSCs marker CD44, CD90 and CD105. The remarkable increase of proliferating cell nuclear antigen positive nucleus was recorded in MSCs group as compared to PBS group. After 28 d of injection, administration of only PBS into the site of muscle injury caused up-regulation in the levels of interleukins IL-1β, IL-6, tumor necrosis factor alpha (TNF-α), transforming growth factor beta (TGF-β1), interferon alpha (IFN-α) and down-regulate the level of IL-10 in muscular tissue comparing to the untreated control. Bone marrow MSCs + PBS injected at the site of muscle injury significantly down-regulate the inflammatory cytokines levels IL-1β and IL-6 and TNF-α, TGF-β1 and IFN-α and up-regulate the level of IL-10. Collagen concentrations in the injured skeletal muscle estimated by enzyme-linked immuno sorbent assay and stained with Masson trichrome stain were increased with PBS group and decreased after transplantation of bone marrow MSCs in the site of injury. Muscle sections stained with H&E showed a higher number of centronucleated regenerating myofibers in the stem-cell-treated group than in the (PBS) and untreated control group. Microvasculature of skeletal muscle was decreased as demonstrated by immunostaining technique for CD34 in PBS group from untreated control. The MSCs group showed angiogenesis and marked increase of skeletal muscle microvasculature than PBS group. CONCLUSION MSCs can modify the local immunological responses and improve muscle regeneration by suppressing of inflammatory cytokines, activating of the anti-inflammatory cytokine, restoration of muscle fibers and angiogenesis. By means of increase in TGF-β production in response to muscle injury prevent the repair of injured fibers and increase connective tissue production (collagen fibers), thus propagating skeletal muscle weakness and fibrosis whereas MSCs + PBS injected at the site of muscle injury significantly down-regulate (TGF-β1) and hence the level of collagen (fibrosis or scar areas). MSCs are able to block the fibrotic signaling cascade by declining TGF-β1 and scar areas in the injured muscle.
Collapse
Affiliation(s)
- Mona A M Helal
- a Department of Zoology, Faculty of Women for Arts, Science & Education , Ain Shams University , Cairo , Egypt
| | - Noura E M Shaheen
- a Department of Zoology, Faculty of Women for Arts, Science & Education , Ain Shams University , Cairo , Egypt
| | - Fatma A Abu Zahra
- b Molecular Biology and Tissue Culture , Medical Research Center, Ain Shams University , Cairo , Egypt
| |
Collapse
|
128
|
Wang T, Yuan J, Zhang J, Tian R, Ji W, Zhou Y, Yang Y, Song W, Zhang F, Niu R. Anxa2 binds to STAT3 and promotes epithelial to mesenchymal transition in breast cancer cells. Oncotarget 2016; 6:30975-92. [PMID: 26307676 PMCID: PMC4741582 DOI: 10.18632/oncotarget.5199] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 08/09/2015] [Indexed: 12/31/2022] Open
Abstract
Overexpression of annexin A2 (Anxa2) is correlated with invasion and metastasis in breast cancer cells. In this study, breast cancer patients with upregulated Anxa2 exhibited poor overall and disease-free survival rates. Anxa2 expression was also positively correlated with the expression of epidermal growth factor receptor (EGFR) and epithelial–mesenchymal transition (EMT) markers in breast cancer tissues and cell lines. Moreover, knockdown of Anxa2 impaired EGF-induced EMT, as well as the migration and invasion of breast cancer cells in vitro. Meanwhile, Anxa2 depletion significantly ablated pulmonary metastasis in a severe combined immunodeficiency mouse model of breast cancer. Importantly, Anxa2 reduction inhibited EGF-induced activation of STAT3, which is required for EGF-induced EMT. Anxa2 directly bound to STAT3 and enhanced its transcriptional activity, thereby indicating that Anxa2 promotes EGF-induced EMT in a STAT3-dependent manner. Our findings provide clinical evidence that Anxa2 is a poor prognostic factor for breast cancer and reveal a novel mechanism through which Anxa2 promotes breast cancer metastasis.
Collapse
Affiliation(s)
- Tong Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Jie Yuan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Jie Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Ran Tian
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Wei Ji
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Yan Zhou
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Yi Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Weijie Song
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Fei Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Ruifang Niu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| |
Collapse
|
129
|
Dou C, Liu Z, Xu M, Jia Y, Wang Y, Li Q, Yang W, Zheng X, Tu K, Liu Q. miR-187-3p inhibits the metastasis and epithelial-mesenchymal transition of hepatocellular carcinoma by targeting S100A4. Cancer Lett 2016; 381:380-90. [PMID: 27544906 DOI: 10.1016/j.canlet.2016.08.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/29/2016] [Accepted: 08/12/2016] [Indexed: 02/07/2023]
Abstract
miR-187-3p, a novel cancer-related microRNA, was previously reported to play promoting or suppressive roles in different malignancies. However, the expression level, biological function, and underlying mechanisms of miR-187-3p in hepatocellular carcinoma (HCC) remain unknown. This study demonstrated that miR-187-3p was significantly down-regulated in HCC tissues and cell lines, and was associated with advanced TNM stage and metastasis in HCC. Functional studies confirmed that miR-187-3p could inhibit the metastasis of HCC both in vitro and in vivo. Moreover, we proved that miR-187-3p could prevent the epithelial-mesenchymal transition (EMT) of HCC cells. Mechanically, S100A4 was a direct downstream target of miR-187-3p, and mediated the functional influence of miR-187-3p in HCC. Furthermore, miR-187-3p and S100A4 expression was evidently correlated with adverse clinical features and poor prognosis of HCC. Lastly, we showed that hypoxia was responsible for the significantly decreased level of miR-187-3p in HCC, and miR-187-3p was involved in the promoting effects of hypoxia on the metastasis and EMT of HCC cells. Taken together, miR-187-3p inhibits the metastasis and EMT in HCC by targeting S100A4. miR-187-3p can serve as a prognostic indicator and a promising therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Changwei Dou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhikui Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Meng Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuli Jia
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yufeng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qing Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Wei Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xin Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
130
|
Zhao L, Chi L, Zhao J, Wang X, Chen Z, Meng L, Liu G, Guan G, Wang F. Serum response factor provokes epithelial-mesenchymal transition in renal tubular epithelial cells of diabetic nephropathy. Physiol Genomics 2016; 48:580-8. [PMID: 27260841 DOI: 10.1152/physiolgenomics.00058.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/03/2016] [Indexed: 12/25/2022] Open
Abstract
We investigated the role of serum response factor (SRF) in epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells (TECs) in diabetic nephropathy (DN). The expression of SRF, epithelial markers (E-cadherin and ZO-1), and mesenchymal markers (fibronectin, collagen-1, α-SMA, FSP-1) was examined in human proximal renal tubular epithelial cells (HK-2 cells) or renal medulla tissues following high glucose. SRF was upregulated by SRF plasmids and downregulated by CCG-1423 (a small molecule inhibitor of SRF) to investigate how SRF influenced EMT in TECs of DN. Streptozotocin was used to generate DM in rats. In HK-2 cells after high-glucose treatment and renal medulla tissues of diabetic rats, SRF, fibronectin, collagen-1, α-SMA, and FSP-1 increased, while E-cadherin and ZO-1 declined. SRF overexpression in HK-2 cells induced expression of Snail, an important transcription factor mediating EMT. Blockade of SRF by CCG-1423 reduced Snail induction and protected TECs from EMT both in vitro and in vivo. Together, increased SRF activity promotes EMT in TECs and dysfunction in DN. Targeting SRF by small molecule inhibitor may be an attractive therapeutic strategy for DN.
Collapse
Affiliation(s)
- Long Zhao
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Shandong University, Jinan, People's Republic of China
| | - Lingzhen Chi
- Department of Obstetrics, Shandong Wulian People's Hospital, Rizhao, People's Republic of China
| | - Jun Zhao
- Department of Nephrology, Shandong Weifang People's Hospital, Weifang, People's Republic of China; and
| | - Xueling Wang
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Shandong University, Jinan, People's Republic of China
| | - Zhixin Chen
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Shandong University, Jinan, People's Republic of China
| | - Linghang Meng
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Shandong University, Jinan, People's Republic of China
| | - Gang Liu
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Shandong University, Jinan, People's Republic of China
| | - Guangju Guan
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Shandong University, Jinan, People's Republic of China
| | - Fei Wang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| |
Collapse
|
131
|
Saafan H, Foerster S, Parra-Guillen ZP, Hammer E, Michaelis M, Cinatl J, Völker U, Fröhlich H, Kloft C, Ritter CA. Utilising the EGFR interactome to identify mechanisms of drug resistance in non-small cell lung cancer - Proof of concept towards a systems pharmacology approach. Eur J Pharm Sci 2016; 94:20-32. [PMID: 27112992 DOI: 10.1016/j.ejps.2016.04.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/26/2016] [Accepted: 04/22/2016] [Indexed: 11/17/2022]
Abstract
Drug treatment of epidermal growth factor receptor (EGFR) positive non-small cell lung cancer has improved substantially by targeting activating mutations within the receptor tyrosine kinase domain. However, the development of drug resistance still limits this approach. As root causes, large heterogeneity between tumour entities but also within tumour cells have been suggested. Therefore, approaches to identify these multitude and complex mechanisms are urgently required. Affinity purification coupled with high resolution mass spectrometry was applied to isolate and characterise the EGFR interactome from HCC4006 non-small cell lung cancer cells and their variant HCC4006rERLO0.5 adapted to grow in the presence of therapeutically relevant concentrations of erlotinib. Bioinformatics analyses were carried out to identify proteins and their related molecular functions that interact differentially with EGFR in the untreated state or when incubated with erlotinib prior to EGFR activation. Across all experimental conditions 375 proteins were detected to participate in the EGFR interactome, 90% of which constituted a complex protein interaction network that was bioinformatically reconstructed from literature data. Treatment of HCC4006rERLO0.5 cells carrying a resistance phenotype to erlotinib was associated with an increase of protein levels of members of the clathrin-associated adaptor protein family AP2 (AP2A1, AP2A2, AP2B1), structural proteins of cytoskeleton rearrangement as well as signalling molecules such as Shc. Validation experiments confirmed activation of the Ras-Raf-Mek-Erk (MAPK)-pathway, of which Shc is an initiating adaptor molecule, in HCC4006rERLO0.5 cells. Taken together, differential proteins in the EGFR interactome of HCC4006rERLO0.5 cells were identified that could be related to multiple resistance mechanisms including alterations in growth factor receptor expression, cellular remodelling processes suggesting epithelial-to-mesenchymal transition as well as alterations in downstream signalling. Knowledge of these mechanisms is a pivotal step to build an integrative model of drug resistance in a systems pharmacology manner and to be able to investigate the interplay of these mechanisms and ultimately recommend combinatorial treatment strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Hisham Saafan
- Insitute of Pharmacy, Clinical Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Sarah Foerster
- Insitute of Pharmacy, Clinical Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Zinnia P Parra-Guillen
- Institute of Pharmacy, Department of Clinical Pharmacy and Biochemistry, Freie Universitaet Berlin, Germany
| | - Elke Hammer
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine, Ernst-Moritz-Arndt-University of Greifswald, Germany
| | - Martin Michaelis
- Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury, UK
| | - Jindrich Cinatl
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Frankfurt/Main, Germany
| | - Uwe Völker
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine, Ernst-Moritz-Arndt-University of Greifswald, Germany
| | | | - Charlotte Kloft
- Institute of Pharmacy, Department of Clinical Pharmacy and Biochemistry, Freie Universitaet Berlin, Germany.
| | - Christoph A Ritter
- Insitute of Pharmacy, Clinical Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany.
| |
Collapse
|
132
|
Hou Y, Li X, Pan Z, Zu L, Fan Y, You J, Wang Y, Wang M, Chen P, Shen W, Zhou Q. [Nicotine Induced Lung Cancer Cells Epithelial-mesenchymal Transition
and Promote Its Vitro Invasion Potential]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 19:169-76. [PMID: 27118643 PMCID: PMC5999818 DOI: 10.3779/j.issn.1009-3419.2016.04.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
背景与目的 我们的前期研究发现尼古丁能诱导肺癌细胞上皮间质转化。本研究的目的是探讨尼古丁诱导的上皮间质转化(epithelial-mesenchymal transition, EMT)与肺癌侵袭之间的关系。 方法 应用不同浓度尼古丁处理肺腺癌A549细胞,应用Real-time PCR和Western blot方法检测EMT相关分子标志物E-钙粘蛋白(E-cadherin)和波形蛋白(Vimentin)mRNA和蛋白表达水平,应用免疫荧光技术检测β-链蛋白(β-catenin)蛋白表达位置的变化,应用划痕实验和Transwell小室侵袭实验检测尼古丁对肺癌细胞迁移侵袭能力的影响。 结果 尼古丁明显下调肺癌细胞株A549 E-cadherin mRNA和蛋白水平表达(P < 0.01, P < 0.01),并具有浓度和时间依赖性;尼古丁明显上调肺癌细胞株A549 Vimentin mRNA和蛋白水平表达(P < 0.01, P < 0.01);尼古丁诱导肺癌细胞株A549细胞β-catenin蛋白发生核转移;划痕实验和侵袭实验观察到尼古丁处理的肺癌细胞株A549细胞的迁移和侵袭能力明显增强(P < 0.01, P < 0.01)。 结论 尼古丁能够诱导肺癌细胞发生EMT,并且促进肺癌细胞株A549细胞的体外侵袭潜能。
Collapse
Affiliation(s)
- Yanxu Hou
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xuebing Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhenhua Pan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lingling Zu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yaguang Fan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jiacong You
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yuli Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Min Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Peirui Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wang Shen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qinghua Zhou
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China;Lung Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
133
|
Jeon SY, Hwang KA, Choi KC. Effect of steroid hormones, estrogen and progesterone, on epithelial mesenchymal transition in ovarian cancer development. J Steroid Biochem Mol Biol 2016; 158:1-8. [PMID: 26873134 DOI: 10.1016/j.jsbmb.2016.02.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/04/2016] [Accepted: 02/07/2016] [Indexed: 12/12/2022]
Abstract
As the primary female sex steroid hormones, estrogens and progesterone play important roles to regulate growth, differentiation, and function of a broad range of target tissues in the human body and maintain the function of female reproductive tissues. Ovarian cancer is the most cause of cancer death in gynecological malignancy. Despite enormous outcomes in the understanding of ovarian cancer pathology, this disease has resulted in poor survival rates since most patients are asymptomatic until the disease has been metastasized. The exact molecular events leading to metastasis of ovarian tumor cells have not yet been well elucidated, although it is recognized that the acquisition of capacity for migration and invasiveness would be a necessary prerequisite. During metastasis, epithelial-mesenchymal transition (EMT) is an important process, in which epithelial cells lose their intracellular adhesion and cell polarity and acquire increased motility and invasive properties to become mesenchymal like cells. The process of cancer cells to undergo EMT is regulated through the up- and down- regulation of a multiple cellular markers and signaling proteins. In this review, we focused the roles of women sex steroid hormones, estrogen and progesterone, in ovarian cancer, especially the ovarian cancer undergoing EMT and metastatic process. All things considered, we may suggest that progesterone is a potent hormone which inhibits the growth of human ovarian cancer cells and development to metastasis whereas estrogen may act as a risk factor of ovarian cancer progression and that progesterone therapy may be an alternative clinically effective tool for the treatment of human ovarian cancer.
Collapse
Affiliation(s)
- So-Ye Jeon
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
134
|
Inflammation increases NOTCH1 activity via MMP9 and is counteracted by Eicosapentaenoic Acid-free fatty acid in colon cancer cells. Sci Rep 2016; 6:20670. [PMID: 26864323 PMCID: PMC4749954 DOI: 10.1038/srep20670] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/17/2015] [Indexed: 12/13/2022] Open
Abstract
Aberrant NOTCH1 signalling is critically involved in multiple models of colorectal cancer (CRC) and a prominent role of NOTCH1 activity during inflammation has emerged. Epithelial to Mesenchymal Transition (EMT), a crucial event promoting malignant transformation, is regulated by inflammation and Metalloproteinase-9 (MMP9) plays an important role in this process. Eicosapentaenoic Acid (EPA), an omega-3 polyunsaturated fatty acid, was shown to prevent colonic tumors in different settings. We recently found that an extra-pure formulation of EPA as Free Fatty Acid (EPA-FFA) protects from colon cancer development in a mouse model of Colitis-Associated Cancer (CAC) through modulation of NOTCH1 signalling. In this study, we exposed colon cancer cells to an inflammatory stimulus represented by a cytokine-enriched Conditioned Medium (CM), obtained from THP1-differentiated macrophages. We found, for the first time, that CM strongly up-regulated NOTCH1 signalling and EMT markers, leading to increased invasiveness. Importantly, NOTCH1 signalling was dependent on MMP9 activity, upon CM exposure. We show that a non-cytotoxic pre-treatment with EPA-FFA antagonizes the effect of inflammation on NOTCH1 signalling, with reduction of MMP9 activity and invasiveness. In conclusion, our data suggest that, in CRC cells, inflammation induces NOTCH1 activity through MMP9 up-regulation and that this mechanism can be counteracted by EPA-FFA.
Collapse
|
135
|
Hino M, Kamo M, Saito D, Kyakumoto S, Shibata T, Mizuki H, Ishisaki A. Transforming growth factor-β1 induces invasion ability of HSC-4 human oral squamous cell carcinoma cells through the Slug/Wnt-5b/MMP-10 signalling axis. J Biochem 2016; 159:631-40. [PMID: 26861993 DOI: 10.1093/jb/mvw007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 12/18/2015] [Indexed: 12/17/2022] Open
Abstract
Molecular mechanism underlying the invasion of oral cancer cells remains to be clarified. We previously demonstrated that transforming growth factor-β1 (TGF-β1) induces the expression of mesenchymal markers in human oral squamous cell carcinoma HSC-4 cells. Intriguingly, the expression of the epithelial-mesenchymal transition-related transcription factor Slug was also significantly upregulated upon TGF-β1 stimulation. However, the mechanism by which Slug transduces the TGF-β1-induced signal to enhance the invasiveness of HSC-4 cells is poorly understood. Proteomic analysis revealed that the expression of matrix metalloproteinase (MMP)-10 was upregulated in TGF-β1-stimulated cells. Additionally, a Boyden chamber assay revealed that the TGF-β1-induced increase in invasiveness of HSC-4 cells was significantly inhibited by MMP-10 small interfering RNA (siRNA). Intriguingly, Slug siRNA suppressed TGF-β1-induced expression of MMP-10. These results suggest that TGF-β1 induces invasion in HSC-4 cells through the upregulation of MMP-10 expression in a Slug-dependent manner. On the other hand, Slug siRNA suppressed TGF-β1-induced Wnt-5b expression. Wnt-5b significantly induced MMP-10 expression, whereas Wnt-5b siRNA suppressed the TGF-β1-induced increase in invasiveness, suggesting that TGF-β1-induced expression of MMP-10 and the resulting upregulation of invasiveness are mediated by Wnt-5b. Overall, these results suggest that TGF-β1 stimulates HSC-4 cell invasion through the Slug/Wnt-5b/MMP-10 signalling axis.
Collapse
Affiliation(s)
- Masafumi Hino
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba-cho, Iwate 028-3694, Japan; Division of Oral and Maxillofacial Surgery, Department of Reconstructive Oral and Maxillofacial Surgery, School of Dentistry, Iwate Medical University, 1-3-27 Chuo-dori, Morioka, Iwate 020-8505, Japan, Japan
| | - Masaharu Kamo
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba-cho, Iwate 028-3694, Japan;
| | - Daishi Saito
- Division of Oral and Maxillofacial Surgery, Department of Reconstructive Oral and Maxillofacial Surgery, School of Dentistry, Iwate Medical University, 1-3-27 Chuo-dori, Morioka, Iwate 020-8505, Japan, Japan
| | - Seiko Kyakumoto
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba-cho, Iwate 028-3694, Japan
| | - Toshiyuki Shibata
- Department of Oral and Maxillofacial Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu-shi, Gifu 501-1194, Japan
| | - Harumi Mizuki
- Division of Oral and Maxillofacial Surgery, Department of Reconstructive Oral and Maxillofacial Surgery, School of Dentistry, Iwate Medical University, 1-3-27 Chuo-dori, Morioka, Iwate 020-8505, Japan, Japan
| | - Akira Ishisaki
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba-cho, Iwate 028-3694, Japan
| |
Collapse
|
136
|
Abstract
The two biological mechanisms that determine types of malignancy are infiltration and metastasis, for which tumour microenvironment plays a key role in developing and establishing the morphology, growth and invasiveness of a malignancy. The microenvironment is formed by complex tissue containing the extracellular matrix, tumour and non-tumour cells, a signalling network of cytokines, chemokines, growth factors, and proteases that control autocrine and paracrine communication among individual cells, facilitating tumour progression. During the development of the primary tumour, the tumour stroma and continuous genetic changes within the cells makes it possible for them to migrate, having to count on a pre-metastatic niche receptor that allows the tumour’s survival and distant growth. These niches are induced by factors produced by the primary tumour; if it is eradicated, the active niches become responsible for activating the latent disseminated cells. Due to the importance of these mechanisms, the strategies that develop tumour cells during tumour progression and the way in which the microenvironment influences the formation of metastasis are reviewed. It also suggests that the metastatic niche can be an ideal target for new treatments that make controlling metastasis possible.
Collapse
Affiliation(s)
- Francisco Arvelo
- Centro de Biociencias, Fundación Instituto de Estudios Avanzado [IDEA], Caracas 1015-A, Venezuela, Apartado 17606, Caracas 1015-A, Venezuela; Laboratorio de Cultivo de Tejidos y Biología de Tumores, Instituto de Biología Experimental, Universidad Central de Venezuela, Apartado 47114, Caracas, 1041-A, Venezuela
| | - Felipe Sojo
- Centro de Biociencias, Fundación Instituto de Estudios Avanzado [IDEA], Caracas 1015-A, Venezuela, Apartado 17606, Caracas 1015-A, Venezuela; Laboratorio de Cultivo de Tejidos y Biología de Tumores, Instituto de Biología Experimental, Universidad Central de Venezuela, Apartado 47114, Caracas, 1041-A, Venezuela
| | - Carlos Cotte
- Laboratorio de Cultivo de Tejidos y Biología de Tumores, Instituto de Biología Experimental, Universidad Central de Venezuela, Apartado 47114, Caracas, 1041-A, Venezuela
| |
Collapse
|
137
|
Zhang T, Liang L, Liu X, Wu JN, Chen J, Su K, Zheng Q, Huang H, Liao GQ. TGFβ1-Smad3-Jagged1-Notch1-Slug signaling pathway takes part in tumorigenesis and progress of tongue squamous cell carcinoma. J Oral Pathol Med 2016; 45:486-93. [PMID: 26764364 DOI: 10.1111/jop.12406] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND TGFβ1 and Smad3 play an important role in the process of EMT. TGFβ1 regulates the expression of Jagged1 by modulating Notch signaling. Jagged1 is related to tumor invasion, metastasis, chemotherapy resistance, and tumor immune escape. The aims of this study are to examine deregulation of TGFβ1-Smad3-Jagged1-Notch1-Slug signaling in TSCC and to investigate its roles in TSCC progression. MATERIALS AND METHODS Notch1, Smad3, Jagged1 and Slug proteins and mRNA expression were detected in specimens from 89 cases of patients. We analyzed the correlation between their expressions and histological grade, clinical stage and lymph node metastasis. RESULTS Notch1, Smad3, Jagged1 and Slug mRNA expressions in TSCC were higher than normal tissue (P <0.05). The protein expression of Notch1 and Smad3 in TSCC were higher (χ(2) =7.30, P <0.01 and χ(2) = 5.84, P <0.05). Notch1 and Smad3 expressions were correlated with clinical stage (χ(2) =18.81, P<0.01; χ(2) =22.29, P<0.01), but not Jagged1 (χ(2) =0.53, P>0.05). The Slug protein expression was correlated with clinical stage. The positive rate of Notch1 was higher in lymph node metastases positive cases (χ(2) =7.30, P<0.01). Moreover, higher expression of Jagged1 was found in lymph node positive cases (χ(2) =10.82, P<0.01). CONCLUSIONS The key protein expression in TGFβ1-Smad3-Jagged1-Notch1-Slug signaling pathway significantly correlated with the clinicopathological features of TSCC patients. It's potential as a biomarker and a novel therapeutic target for TSCC patients at risk of metastasis. It may play an irreplaceable role in TSCC progression which may attribute to promoting EMT which enhances cell migration, invasion and metastasis.
Collapse
Affiliation(s)
- Tonghan Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong, China
| | - Lizhong Liang
- Department of Oral and Maxillofacial Surgery, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Xiaoling Liu
- Department of Medicine Intensive Care Unit, Affiliated Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong, China
| | - Ji-Nan Wu
- Department of Oral and Maxillofacial Surgery, Affiliated Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong, China
| | - Jueyao Chen
- Department of Oral and Maxillofacial Surgery, Affiliated Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong, China
| | - Kui Su
- Department of Oral and Maxillofacial Surgery, Affiliated Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong, China
| | - Qiaoyi Zheng
- Department of Oral and Maxillofacial Surgery, Affiliated Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong, China
| | - Hongzhang Huang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Gui-Qing Liao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
138
|
Li H, Xu F, Li S, Zhong A, Meng X, Lai M. The tumor microenvironment: An irreplaceable element of tumor budding and epithelial-mesenchymal transition-mediated cancer metastasis. Cell Adh Migr 2016; 10:434-46. [PMID: 26743180 DOI: 10.1080/19336918.2015.1129481] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tumor budding occurs at the invasive front of cancer; the tumor cells involved have metastatic and stemness features, indicating a poor prognosis. Tumor budding is partly responsible for cancer metastasis, and its initiation is based on the epithelial-mesenchymal transition (EMT) process. The EMT process involves the conversion of epithelial cells into migratory and invasive cells, and is a profound event in tumorigenesis. The EMT, associated with the formation of cancer stem cells (CSCs) and resistance to therapy, results from a combination of gene mutation, epigenetic regulation, and microenvironmental control. Tumor budding can be taken to represent the EMT in vivo. The EMT process is under the influence of the tumor microenvironment as well as tumor cells themselves. Here, we demonstrate that the tumor microenvironment dominates EMT development and impacts cancer metastasis, as well as promotes CSC formation and mediates drug resistance. In this review, we mainly discuss components of the microenvironment, such as the extracellular matrix (ECM), inflammatory cytokines, metabolic products, and hypoxia, that are involved in and impact on the acquisition of tumor-cell motility and dissemination, the EMT, metastatic tumor-cell formation, tumor budding and CSCs, and cancer metastasis, including subsequent chemo-resistance. From our point of view, the tumor microenvironment now constitutes a promising target for cancer therapy.
Collapse
Affiliation(s)
- Hui Li
- a Department of Pathology , School of Medicine, Zhejiang University , Hangzhou , China.,b Key Laboratory of Disease Proteomics of Zhejiang Province , Hangzhou , China
| | - Fangying Xu
- a Department of Pathology , School of Medicine, Zhejiang University , Hangzhou , China.,b Key Laboratory of Disease Proteomics of Zhejiang Province , Hangzhou , China
| | - Si Li
- a Department of Pathology , School of Medicine, Zhejiang University , Hangzhou , China.,b Key Laboratory of Disease Proteomics of Zhejiang Province , Hangzhou , China
| | - Anjing Zhong
- a Department of Pathology , School of Medicine, Zhejiang University , Hangzhou , China.,b Key Laboratory of Disease Proteomics of Zhejiang Province , Hangzhou , China
| | - Xianwen Meng
- c State Key Laboratory of Plant Physiology and Biochemistry, Department of Bioinformatics, College of Life Sciences, Zhejiang University , Hangzhou , China
| | - Maode Lai
- a Department of Pathology , School of Medicine, Zhejiang University , Hangzhou , China.,b Key Laboratory of Disease Proteomics of Zhejiang Province , Hangzhou , China
| |
Collapse
|
139
|
Vergara D, Simeone P, Franck J, Trerotola M, Giudetti A, Capobianco L, Tinelli A, Bellomo C, Fournier I, Gaballo A, Alberti S, Salzet M, Maffia M. Translating epithelial mesenchymal transition markers into the clinic: Novel insights from proteomics. EUPA OPEN PROTEOMICS 2016; 10:31-41. [PMID: 29900098 PMCID: PMC5988589 DOI: 10.1016/j.euprot.2016.01.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/30/2015] [Accepted: 01/05/2016] [Indexed: 12/15/2022]
Abstract
The growing understanding of the molecular mechanisms underlying epithelial-to-mesenchymal transition (EMT) may represent a potential source of clinical markers. Despite EMT drivers have not yet emerged as candidate markers in the clinical setting, their association with established clinical markers may improve their specificity and sensitivity. Mass spectrometry-based platforms allow analyzing multiple samples for the expression of EMT candidate markers, and may help to diagnose diseases or monitor treatment efficiently. This review highlights proteomic approaches applied to elucidate the differences between epithelial and mesenchymal tumors and describes how these can be used for target discovery and validation.
Collapse
Affiliation(s)
- Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, 73100 Lecce, Italy.,Laboratory of Clinical Proteomic, "Giovanni Paolo II" Hospital, ASL-Lecce, Italy
| | - Pasquale Simeone
- Research Centre on Aging (Ce.S.I), Unit of Cytomorphology, "University G. d'Annunzio" Foundation, 66100 Chieti, Italy.,Department of Medicine and Aging Science, School of Medicine and Health Science, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Julien Franck
- U1192 INSERM, Laboratoire PRISM: Protéomique, Réponse Inflammatoire, Spectrométrie de Masse, Université Lille 1, Villeneuve D'Ascq, France
| | - Marco Trerotola
- Unit of Cancer Pathology, CeSI, Foundation University 'G. d'Annunzio', Chieti, Italy.,Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Anna Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, 73100 Lecce, Italy
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, 73100 Lecce, Italy
| | - Andrea Tinelli
- Department of Gynecology and Obstetrics, Division of Experimental Endoscopic Surgery, Imaging, Minimally Invasive Therapy and Technology, "Vito Fazzi" Hospital, ASL-Lecce, Italy.,International Translational Medicine and Biomodelling Research Group, Department of Applied Mathematics, Moscow Institute of Physics and Technology (MIPT), State University, Moscow, Russia
| | - Claudia Bellomo
- Department of Medical Biochemistry and Microbiology and Ludwig Institute for Cancer Research, Science for Life Laboratory, Biomedical Center, Uppsala University, Box 582, SE 75 123 Uppsala, Sweden
| | - Isabelle Fournier
- U1192 INSERM, Laboratoire PRISM: Protéomique, Réponse Inflammatoire, Spectrométrie de Masse, Université Lille 1, Villeneuve D'Ascq, France
| | - Antonio Gaballo
- CNR NANOTEC-Institute of Nanotechnology, Polo di Nanotecnologia c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
| | - Saverio Alberti
- Unit of Cancer Pathology, CeSI, Foundation University 'G. d'Annunzio', Chieti, Italy
| | - Michel Salzet
- U1192 INSERM, Laboratoire PRISM: Protéomique, Réponse Inflammatoire, Spectrométrie de Masse, Université Lille 1, Villeneuve D'Ascq, France
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, 73100 Lecce, Italy.,Laboratory of Clinical Proteomic, "Giovanni Paolo II" Hospital, ASL-Lecce, Italy
| |
Collapse
|
140
|
Zhao L, Wang X, Sun L, Nie H, Liu X, Chen Z, Guan G. Critical role of serum response factor in podocyte epithelial-mesenchymal transition of diabetic nephropathy. Diab Vasc Dis Res 2016; 13:81-92. [PMID: 26408645 DOI: 10.1177/1479164115588545] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
PURPOSE To investigate the expression and function of serum response factor in podocyte epithelial-mesenchymal transition of diabetic nephropathy. METHODS The expression of serum response factor, epithelial markers and mesenchymal markers was examined in podocytes or renal cortex tissues following high glucose. Serum response factor was upregulated by its plasmids and downregulated by CCG-1423 to investigate how it influenced podocyte epithelial-mesenchymal transition in diabetic nephropathy. Streptozotocin was used to generate diabetes mellitus in rats. RESULTS In podocytes after high glucose treatment, serum response factor and mesenchymal markers increased, while epithelial markers declined. Similar changes were observed in vivo. Serum response factor overexpression in podocytes induced expression of Snail, an important transcription factor mediating epithelial-mesenchymal transition. Blockade of serum response factor reduced Snail induction, protected podocytes from epithelial-mesenchymal transition and ameliorated proteinuria. CONCLUSION Together, increased serum response factor activity provokes podocytes' epithelial-mesenchymal transition and dysfunction in diabetic nephropathy. Targeting serum response factor by small-molecule inhibitor may be an attractive therapeutic strategy for diabetic nephropathy.
Collapse
Affiliation(s)
- Long Zhao
- Nephrology Research Institute, The Second Hospital of Shandong University, Shandong University, Jinan, People's Republic of China
| | - Xueling Wang
- Nephrology Research Institute, The Second Hospital of Shandong University, Shandong University, Jinan, People's Republic of China
| | - Lina Sun
- Nephrology Research Institute, The Second Hospital of Shandong University, Shandong University, Jinan, People's Republic of China
| | - Huibin Nie
- Nephrology Research Institute, The Second Hospital of Shandong University, Shandong University, Jinan, People's Republic of China
| | - Xiangchun Liu
- Nephrology Research Institute, The Second Hospital of Shandong University, Shandong University, Jinan, People's Republic of China
| | - Zhixin Chen
- Nephrology Research Institute, The Second Hospital of Shandong University, Shandong University, Jinan, People's Republic of China
| | - Guangju Guan
- Nephrology Research Institute, The Second Hospital of Shandong University, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
141
|
Jiang WG, Sanders AJ, Katoh M, Ungefroren H, Gieseler F, Prince M, Thompson SK, Zollo M, Spano D, Dhawan P, Sliva D, Subbarayan PR, Sarkar M, Honoki K, Fujii H, Georgakilas AG, Amedei A, Niccolai E, Amin A, Ashraf SS, Ye L, Helferich WG, Yang X, Boosani CS, Guha G, Ciriolo MR, Aquilano K, Chen S, Azmi AS, Keith WN, Bilsland A, Bhakta D, Halicka D, Nowsheen S, Pantano F, Santini D. Tissue invasion and metastasis: Molecular, biological and clinical perspectives. Semin Cancer Biol 2015; 35 Suppl:S244-S275. [PMID: 25865774 DOI: 10.1016/j.semcancer.2015.03.008] [Citation(s) in RCA: 351] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 12/12/2022]
Abstract
Cancer is a key health issue across the world, causing substantial patient morbidity and mortality. Patient prognosis is tightly linked with metastatic dissemination of the disease to distant sites, with metastatic diseases accounting for a vast percentage of cancer patient mortality. While advances in this area have been made, the process of cancer metastasis and the factors governing cancer spread and establishment at secondary locations is still poorly understood. The current article summarizes recent progress in this area of research, both in the understanding of the underlying biological processes and in the therapeutic strategies for the management of metastasis. This review lists the disruption of E-cadherin and tight junctions, key signaling pathways, including urokinase type plasminogen activator (uPA), phosphatidylinositol 3-kinase/v-akt murine thymoma viral oncogene (PI3K/AKT), focal adhesion kinase (FAK), β-catenin/zinc finger E-box binding homeobox 1 (ZEB-1) and transforming growth factor beta (TGF-β), together with inactivation of activator protein-1 (AP-1) and suppression of matrix metalloproteinase-9 (MMP-9) activity as key targets and the use of phytochemicals, or natural products, such as those from Agaricus blazei, Albatrellus confluens, Cordyceps militaris, Ganoderma lucidum, Poria cocos and Silybum marianum, together with diet derived fatty acids gamma linolenic acid (GLA) and eicosapentanoic acid (EPA) and inhibitory compounds as useful approaches to target tissue invasion and metastasis as well as other hallmark areas of cancer. Together, these strategies could represent new, inexpensive, low toxicity strategies to aid in the management of cancer metastasis as well as having holistic effects against other cancer hallmarks.
Collapse
Affiliation(s)
- W G Jiang
- Cardiff University, Cardiff, United Kingdom.
| | | | - M Katoh
- National Cancer Center, Tokyo, Japan
| | - H Ungefroren
- University Hospital Schleswig-Holstein, Lübeck, Germany
| | - F Gieseler
- University Hospital Schleswig-Holstein, Lübeck, Germany
| | - M Prince
- University of Michigan, Ann Arbor, MI, USA
| | | | - M Zollo
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, Naples, Italy; CEINGE Biotecnologie Avanzate, Naples, Italy
| | - D Spano
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - P Dhawan
- University of Nebraska Medical Center, Omaha, USA
| | - D Sliva
- Purdue Research Park, Indianapolis, IN, USA
| | | | - M Sarkar
- University of Miami, Miami, FL, USA
| | - K Honoki
- Nara Medical University, Kashihara, Japan
| | - H Fujii
- Nara Medical University, Kashihara, Japan
| | - A G Georgakilas
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - A Amedei
- University of Florence, Florence, Italy
| | | | - A Amin
- United Arab Emirates University, Al Ain, United Arab Emirates and Faculty of Science, Cairo University, Egypt
| | - S S Ashraf
- United Arab Emirates University, Al Ain, United Arab Emirates and Faculty of Science, Cairo University, Egypt
| | - L Ye
- Cardiff University, Cardiff, United Kingdom
| | - W G Helferich
- University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - X Yang
- University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - G Guha
- SASTRA University, Thanjavur, India
| | | | - K Aquilano
- University of Rome Tor Vergata, Rome, Italy
| | - S Chen
- Ovarian and Prostate Cancer Research Trust Laboratory, Surrey, United Kingdom
| | - A S Azmi
- Wayne State University, Detroit, MI, USA
| | - W N Keith
- University of Glasgow, Glasgow, United Kingdom
| | - A Bilsland
- University of Glasgow, Glasgow, United Kingdom
| | - D Bhakta
- SASTRA University, Thanjavur, India
| | - D Halicka
- New York Medical College, Valhalla, NY, USA
| | - S Nowsheen
- Mayo Clinic College of Medicine, Rochester, MN, USA
| | - F Pantano
- University Campus Bio-Medico, Rome, Italy
| | - D Santini
- University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
142
|
Peng B, Liu S, Guo C, Sun X, Sun MZ. ANXA5 level is linked to in vitro and in vivo tumor malignancy and lymphatic metastasis of murine hepatocarcinoma cell. Future Oncol 2015; 12:31-42. [PMID: 26615672 DOI: 10.2217/fon.15.289] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AIM To investigate ANXA5 overexpression on in vitro and in vivo malignancies of murine Hca-P cells. MATERIALS & METHODS Hca-P with low lymph node metastasis (LNM) potential was used as cell model. TEM, CCK-8 and Boyden transwell assays were performed for in vitro Hca-P behaviors. Hca-P-transplanted mouse model was established for in vivo experiment. RESULTS ANXA5-overexpressing monoclonal Anxa5-Hca-P-1, Anxa5-Hca-P-2 and Anxa5-Hca-P-3 cells were obtained. ANXA5 upregulation alters the proliferation, morphology and rough endoplasmic reticulum of Hca-P cells, enhances in vitro migration and invasions of Hca-P, promotes in vivo malignant degree and LNM rate of Anxa5-Hca-P-3-transplanted mice. CONCLUSION As a potential indicator for malignancy and lymphatic metastasis, ANXA5 overexpression increases in vitro migration and invasion of Hca-P cell, promotes in vivo malignancy, LNM rate and level of Hca-P-transplanted mice.
Collapse
Affiliation(s)
- Boya Peng
- Department of Biotechnology, Dalian Medical University, 9 West Section, Lvshun Southern Road, Dalian 116044, China
| | - Shuqing Liu
- Department of Biochemistry, Dalian Medical University, 9 West Section, Lvshun Southern Road, Dalian 116044, China
| | - Chunmei Guo
- Department of Biotechnology, Dalian Medical University, 9 West Section, Lvshun Southern Road, Dalian 116044, China
| | - Xujuan Sun
- Department of Biotechnology, Dalian Medical University, 9 West Section, Lvshun Southern Road, Dalian 116044, China
| | - Ming-Zhong Sun
- Department of Biotechnology, Dalian Medical University, 9 West Section, Lvshun Southern Road, Dalian 116044, China
| |
Collapse
|
143
|
Yao C, Li P, Song H, Song F, Qu Y, Ma X, Shi R, Wu J. CXCL12/CXCR4 Axis Upregulates Twist to Induce EMT in Human Glioblastoma. Mol Neurobiol 2015; 53:3948-3953. [PMID: 26179613 DOI: 10.1007/s12035-015-9340-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 07/01/2015] [Indexed: 12/24/2022]
Abstract
In recent decades, the chemokine receptor CXCR4 and its ligand CXCL12 have been extensively reported to be associated with tumorigenesis. In addition, Twist signaling induces the epithelial-mesenchymal transition (EMT) process in glioblastoma development. In the present study, in vitro assays were used to investigate the role of CXCR4 and Twist in human glioblastoma. We explored the impact of CXCR4 and Twist on human glioblastoma using in vitro protein and gene assays. We found the administration of CXCL12 upregulated the expression of p-ERK, p-AKT, Twist, N-cadherin, and MMP9 in U87 cells, whereas the increase of E-cadherin protein was affected. Subsequently, Twist activity and EMT signaling were directly influenced by PD98059 and LY294002. Most importantly, the genetic silencing of Twist inhibited CXCL12-induced EMT occurrence, including proliferation, migration, and tumor formation of U87 cells. In conclusion, CXCL12/CXCR4 pathway activates ERK and PI3K/AKT signaling to upregulate Twist pathway, leading to the progression of EMT in human glioblastoma. Our study creates a new stage for molecule-targeted therapy of human glioblastoma.
Collapse
Affiliation(s)
- Chengjun Yao
- Glioma Surgery Division, Neurological Surgery Department, Huashan Hospital, Shanghai Medical College, Fudan University, 12#, Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Panpan Li
- School of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Huishu Song
- School of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Fuxi Song
- School of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yalan Qu
- School of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xiaochen Ma
- School of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Ranran Shi
- School of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Jinsong Wu
- Glioma Surgery Division, Neurological Surgery Department, Huashan Hospital, Shanghai Medical College, Fudan University, 12#, Wulumuqi Zhong Road, Shanghai, 200040, China.
| |
Collapse
|
144
|
HPV-16 E6/E7 promotes cell migration and invasion in cervical cancer via regulating cadherin switch in vitro and in vivo. Arch Gynecol Obstet 2015; 292:1345-54. [PMID: 26093522 DOI: 10.1007/s00404-015-3787-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/08/2015] [Indexed: 01/06/2023]
Abstract
PURPOSE Cadherin switch, as a key hallmark of epithelial-mesenchymal transition (EMT), is characterized by reduced E-cadherin expression and increased N-cadherin or P-cadherin expression, and has been implicated in many aggressive tumors, but the importance and regulatory mechanism of cadherin switch in cervical cancer have not been investigated. Our study aimed to explore the role of cadherin switch by regulation of HPV-16 E6/E7 in progression and metastasis of cervical cancer. METHODS The expressions of E-cadherin and P-cadherin were examined by immunohistochemical staining in 40 cases of high-grade cervical lesions with HPV-16 infection only in which HPV-16 E6 and E7 expression had been detected using qRT-PCR method. Through modulating E6 and E7 expression using HPV-16 E6/E7 promoter-targeting siRNAs or expressed vector in vitro, cell growth, migration, and invasion were separately tested by MTT, wound-healing and transwell invasion assays, as well as the expressions of these cadherins by western blot analyses. Finally, the expressions of these cadherins in cancerous tissues of BALB/c-nu mouse model inoculated with the stable HPV-16 E6/E7 gene silencing Siha and Caski cells were also measured by immunohistochemical staining. RESULTS Pearson correlation coefficient analyses showed the strongly inverse correlation of E-cadherin expression and strongly positive correlation of P-cadherin expression with E6/E7 level in 40 cases of high-grade cervical lesions. Furthermore, the modulation of HPV-16 E6/E7 expression remarkably influenced cell proliferation, migration, and invasion, as well as the protein levels of E-cadherin and P-cadherin in cervical cell lines. Finally, the reduction of HPV-16 E6/E7 expression led to up-regulated expression of E-cadherin and down-regulated expression of P-cadherin in BALB/c-nu mouse model in vivo assay. CONCLUSIONS Our results unraveled the possibility that HPV-16 E6/E7 could promote cell invasive potential via regulating cadherin switching, and consequently contribute to progression and metastasis of cervical cancer.
Collapse
|
145
|
Vaz AP, Ponnusamy MP, Batra SK. Cancer stem cells and therapeutic targets: an emerging field for cancer treatment. Drug Deliv Transl Res 2015; 3:113-20. [PMID: 24077517 DOI: 10.1007/s13346-012-0095-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent paradigm in the field of cancer defines its origin from a small population of fast growing cells known as cancer stem cells (CSCs), and they are mainly responsible for disease aggressiveness, drug resistance and tumor relapse. The existence of CSCs has been proven in different types of cancer and possesses characteristic expression of a wide array of cell surface markers specific to the type of cancer. CSCs have been isolated and enriched using several surface markers in different cancer types. Self-renewal, drug resistance and the ability to transition from epithelial to mesenchymal phenotype are the major features attributed to this fraction of mutated stem cells. The CSC hypothesis proposes that these CSCs mimic stem cells by sharing similar pathways, such as Wnt, SHH, Notch and others. Further, the niche, which in this case is the tumor microenvironment, plays a very important role in the maintenance of CSCs. Altogether, this emerging field of research on CSCs is expected to unveil answers to the most difficult issues of one of the most dreadful diseases called cancer.
Collapse
Affiliation(s)
- Arokia Priyanka Vaz
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | | | | |
Collapse
|
146
|
Lee J, Ha S, Jung CK, Lee HH. High-mobility-group A2 overexpression provokes a poor prognosis of gastric cancer through the epithelial-mesenchymal transition. Int J Oncol 2015; 46:2431-8. [PMID: 25845850 DOI: 10.3892/ijo.2015.2947] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/19/2015] [Indexed: 11/06/2022] Open
Abstract
Tumor metastases are the ultimate target in cancer therapy. In epithelial malignancies, the expression of high-mobility-group A2 (HMGA2) is associated with disease progression and the epithelial-mesenchymal transition (EMT), which is involved in the metastatic process. The present study assessed the clinical and molecular effects of HMGA2 with the malignant tissues of 170 patients with gastric cancer and gastric cancer cells expressing HMGA2. HMGA2 expression was determined using immunohistochemistry and analyzed with respect to the clinicopathological data of patients with this tumor. In the gastric cancer cell line MKN28, in which HMGA2 was knocked down by two different short-hairpin RNAs, Transwell migration and invasion assays were conducted and western blotting was used to detect the altered expression of EMT markers. In patients with gastric cancer, HMGA2 overexpression correlated with tumor progression and was indicative of a significantly worse overall survival. Migration and invasion assays using HMGA2-knocked down MKN28 cells showed a reduction in cell migration and invasion. The upregulation of E-cadherin, an epithelial marker, and the downregulation of N-cadherin, a mesenchymal marker were observed in HMGA2-knocked down cells. In addition, expression of the transcriptional factors Snail and Zeb1 and of the EMT-pathway molecule β-catenin were decreased. HMGA2 overexpression, through its relationship to EMT, thus seems to aggravate invasion and metastasis in gastric cancer. It may therefore serve as a predictive marker in determining the clinical outcome of patients with gastric cancer and offer a promising therapeutic target.
Collapse
Affiliation(s)
- Junhyun Lee
- Division of Gastrointestinal Surgery, Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Shinjung Ha
- Division of Gastrointestinal Surgery, Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chan-Kwon Jung
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Han Hong Lee
- Division of Gastrointestinal Surgery, Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
147
|
Blackstone BN, Li R, Ackerman WE, Ghadiali SN, Powell HM, Kniss DA. Myoferlin depletion elevates focal adhesion kinase and paxillin phosphorylation and enhances cell-matrix adhesion in breast cancer cells. Am J Physiol Cell Physiol 2015; 308:C642-9. [PMID: 25631868 DOI: 10.1152/ajpcell.00276.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/21/2015] [Indexed: 02/02/2023]
Abstract
Breast cancer is the second leading cause of malignant death among women. A crucial feature of metastatic cancers is their propensity to lose adhesion to the underlying basement membrane as they transition to a motile phenotype and invade surrounding tissue. Attachment to the extracellular matrix is mediated by a complex of adhesion proteins, including integrins, signaling molecules, actin and actin-binding proteins, and scaffolding proteins. Focal adhesion kinase (FAK) is pivotal for the organization of focal contacts and maturation into focal adhesions, and disruption of this process is a hallmark of early cancer invasive potential. Our recent work has revealed that myoferlin (MYOF) mediates breast tumor cell motility and invasive phenotype. In this study we demonstrate that noninvasive breast cancer cell lines exhibit increased cell-substrate adhesion and that silencing of MYOF using RNAi in the highly invasive human breast cancer cell line MDA-MB-231 also enhances cell-substrate adhesion. In addition, we detected elevated tyrosine phosphorylation of FAK (FAK(Y397)) and paxillin (PAX(Y118)), markers of focal adhesion protein activation. Morphometric analysis of PAX expression revealed that RNAi-mediated depletion of MYOF resulted in larger, more elongated focal adhesions, in contrast to cells transduced with a control virus (MDA-231(LVC) cells), which exhibited smaller focal contacts. Finally, MYOF silencing in MDA-MB-231 cells exhibited a more elaborate ventral cytoskeletal structure near focal adhesions, typified by pronounced actin stress fibers. These data support the hypothesis that MYOF regulates cell adhesions and cell-substrate adhesion strength and may account for the high degree of motility in invasive breast cancer cells.
Collapse
Affiliation(s)
- B N Blackstone
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio
| | - R Li
- Laboratory of Perinatal Research and Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Wexner Medical Center and College of Medicine, The Ohio State University, Columbus, Ohio
| | - W E Ackerman
- Laboratory of Perinatal Research and Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Wexner Medical Center and College of Medicine, The Ohio State University, Columbus, Ohio
| | - S N Ghadiali
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio; Dorothy M. Davis Heart and Lung Research Institute and Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Wexner Medical Center and College of Medicine, The Ohio State University, Columbus, Ohio; and
| | - H M Powell
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio; Department of Materials Science and Engineering, College of Engineering, The Ohio State University, Columbus, Ohio
| | - D A Kniss
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio; Laboratory of Perinatal Research and Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Wexner Medical Center and College of Medicine, The Ohio State University, Columbus, Ohio;
| |
Collapse
|
148
|
Li G, Yang Y, Xu S, Ma L, He M, Zhang Z. Slug signaling is up-regulated by CCL21/CCR7 [corrected] to induce EMT in human chondrosarcoma. Med Oncol 2015; 32:478. [PMID: 25556164 DOI: 10.1007/s12032-014-0478-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 12/20/2014] [Indexed: 01/05/2023]
Abstract
In recent decades, the CXC chemokine receptor 7 (CCR7) [corrected] and its ligand CCL21 have been extensively reported to be associated with tumorigenesis. Meanwhile, Slug signaling induces the epithelial-mesenchymal transition (EMT) process in chondrosarcoma development. In the present study, we explored the functions of CCL21/CCR7 [corrected] in Slug-mediated EMT in the chondrosarcoma. We analyzed protein expression of CCR7 [corrected] and Slug in human chondrosarcoma samples. Effects of CCR7 [corrected] on chondrosarcoma cells were assessed by in vitro assays. Additionally, CCR7 [corrected] pathways were further investigated by pharmacological and genetic approaches. We found that the altered CCR7 [corrected] (81.7 %) and Slug (85.0 %) expression in human chondrosarcoma tissues were significantly associated with grade, recurrence, and 5-year overall survival. According to in vitro assays, CCL21 stimulation induced the expression of phosph-ERK, phosph-AKT, Slug and N-cadherin in SW1353 cells, while the expression of E-cadherin was down-regulated. Furthermore, Slug signaling modulated E- to N-cadherin switch, which was influenced by the kinase inhibitor PD98059 and LY294002. In addition, the genetic silencing of Slug inhibited the capacity of migration and invasion of SW1353 cells. In conclusion, CCL21/CCR7 [corrected] pathway activates ERK and PI3K/AKT signallings to up-regulate Slug pathway, leading to the occurrence of EMT process in human chondrosarcoma. This study lays a new foundation for molecule-targeted therapy of human chondrosarcoma.
Collapse
Affiliation(s)
- Guosong Li
- Department of Orthopedics, Longgang Orthopedics Hospital of Shenzhen, 243# Yangmeigang, Longgang Street, Longgang District, Shenzhen, 518116, Guangdong, China
| | | | | | | | | | | |
Collapse
|
149
|
Yuan X, Wu H, Han N, Xu H, Chu Q, Yu S, Chen Y, Wu K. Notch signaling and EMT in non-small cell lung cancer: biological significance and therapeutic application. J Hematol Oncol 2014; 7:87. [PMID: 25477004 PMCID: PMC4267749 DOI: 10.1186/s13045-014-0087-z] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/12/2014] [Indexed: 12/20/2022] Open
Abstract
Through epithelial-mesenchymal transition (EMT), cancer cells acquire enhanced ability of migration and invasion, stem cell like characteristics and therapeutic resistance. Notch signaling regulates cell-cell connection, cell polarity and motility during organ development. Recent studies demonstrate that Notch signaling plays an important role in lung cancer initiation and cross-talks with several transcriptional factors to enhance EMT, contributing to the progression of non-small cell lung cancer (NSCLC). Correspondingly, blocking of Notch signaling inhibits NSCLC migration and tumor growth by reversing EMT. Clinical trials have showed promising effect in some cancer patients received treatment with Notch1 inhibitor. This review attempts to provide an overview of the Notch signal in NSCLC: its biological significance and therapeutic application.
Collapse
Affiliation(s)
- Xun Yuan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 303, 1095 Jie Fang Avenue, Wuhan, 430030, P.R. China.
| | - Hua Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 303, 1095 Jie Fang Avenue, Wuhan, 430030, P.R. China.
| | - Na Han
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 303, 1095 Jie Fang Avenue, Wuhan, 430030, P.R. China.
| | - Hanxiao Xu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 303, 1095 Jie Fang Avenue, Wuhan, 430030, P.R. China.
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 303, 1095 Jie Fang Avenue, Wuhan, 430030, P.R. China.
| | - Shiying Yu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 303, 1095 Jie Fang Avenue, Wuhan, 430030, P.R. China.
| | - Yuan Chen
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 303, 1095 Jie Fang Avenue, Wuhan, 430030, P.R. China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 303, 1095 Jie Fang Avenue, Wuhan, 430030, P.R. China.
| |
Collapse
|
150
|
PRRX1 promotes epithelial-mesenchymal transition through the Wnt/β-catenin pathway in gastric cancer. Med Oncol 2014; 32:393. [PMID: 25428393 DOI: 10.1007/s12032-014-0393-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 11/19/2014] [Indexed: 12/30/2022]
Abstract
Carcinoma cells hijack the epithelial-mesenchymal transition (EMT) for tumor dissemination. Paired-related homeobox 1 (PRRX1) has been identified as a new EMT inducer. However, the function of PRRX1 in gastric cancer has not been elucidated. In this study, we observed that PRRX1 expression levels were upregulated and positively correlated with metastasis and EMT markers in human gastric cancer specimens. PRRX1 overexpression had distinct effects on the cell morphology, proliferation, migration and invasion of BGC823 and SGC7901 gastric cancer cells both in vitro and in xenografts. PRRX1 overexpression resulted in the regulation of the EMT molecular markers N-cadherin, E-cadherin and vimentin as well as the levels of intranuclear β-catenin and the Wnt/β-catenin target c-Myc. Furthermore, the inhibition of the Wnt/β-catenin pathway by XAV939 offset the effects of PRRX1 overexpression. These findings demonstrate that PRRX1 promotes EMT in gastric cancer cells through the activation of Wnt/β-catenin signaling and that PRRX1 upregulation is closely correlated with gastric cancer metastasis.
Collapse
|