101
|
Bashiardes S, Zilberman-Schapira G, Elinav E. Use of Metatranscriptomics in Microbiome Research. Bioinform Biol Insights 2016; 10:19-25. [PMID: 27127406 PMCID: PMC4839964 DOI: 10.4137/bbi.s34610] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 03/02/2016] [Accepted: 03/07/2016] [Indexed: 12/21/2022] Open
Abstract
The human intestinal microbiome is a microbial ecosystem that expresses as many as 100 times more genes than the human host, thereby constituting an important component of the human holobiome, which contributes to multiple health and disease processes. As most commensal species are difficult or impossible to culture, genomic characterization of microbiome composition and function, under various environmental conditions, comprises a central tool in understanding its roles in health and disease. The first decade of microbiome research was mainly characterized by usage of DNA sequencing-based 16S rDNA and shotgun metagenome sequencing, allowing for the elucidation of microbial composition and genome structure. Technological advances in RNA-seq have recently provided us with an ability to gain insight into the genes that are actively expressed in complex bacterial communities, enabling the elucidation of the functional changes that dictate the microbiome functions at given contexts, its interactions with the host, and functional alterations that accompany the conversion of a healthy microbiome toward a disease-driving configuration. Here, we highlight some of the key metatranscriptomics strategies that are implemented to determine microbiota gene expression and its regulation and discuss the advantages and potential challenges associated with these approaches.
Collapse
Affiliation(s)
- Stavros Bashiardes
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Eran Elinav
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
102
|
Schulze S, Schleicher J, Guthke R, Linde J. How to Predict Molecular Interactions between Species? Front Microbiol 2016; 7:442. [PMID: 27065992 PMCID: PMC4814556 DOI: 10.3389/fmicb.2016.00442] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/18/2016] [Indexed: 12/21/2022] Open
Abstract
Organisms constantly interact with other species through physical contact which leads to changes on the molecular level, for example the transcriptome. These changes can be monitored for all genes, with the help of high-throughput experiments such as RNA-seq or microarrays. The adaptation of the gene expression to environmental changes within cells is mediated through complex gene regulatory networks. Often, our knowledge of these networks is incomplete. Network inference predicts gene regulatory interactions based on transcriptome data. An emerging application of high-throughput transcriptome studies are dual transcriptomics experiments. Here, the transcriptome of two or more interacting species is measured simultaneously. Based on a dual RNA-seq data set of murine dendritic cells infected with the fungal pathogen Candida albicans, the software tool NetGenerator was applied to predict an inter-species gene regulatory network. To promote further investigations of molecular inter-species interactions, we recently discussed dual RNA-seq experiments for host-pathogen interactions and extended the applied tool NetGenerator (Schulze et al., 2015). The updated version of NetGenerator makes use of measurement variances in the algorithmic procedure and accepts gene expression time series data with missing values. Additionally, we tested multiple modeling scenarios regarding the stimuli functions of the gene regulatory network. Here, we summarize the work by Schulze et al. (2015) and put it into a broader context. We review various studies making use of the dual transcriptomics approach to investigate the molecular basis of interacting species. Besides the application to host-pathogen interactions, dual transcriptomics data are also utilized to study mutualistic and commensalistic interactions. Furthermore, we give a short introduction into additional approaches for the prediction of gene regulatory networks and discuss their application to dual transcriptomics data. We conclude that the application of network inference on dual-transcriptomics data is a promising approach to predict molecular inter-species interactions.
Collapse
Affiliation(s)
- Sylvie Schulze
- Research Group Systems Biology and Bioinformatics, Leibniz-Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute Jena, Germany
| | - Jana Schleicher
- Research Group Systems Biology and Bioinformatics, Leibniz-Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute Jena, Germany
| | - Reinhard Guthke
- Research Group Systems Biology and Bioinformatics, Leibniz-Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute Jena, Germany
| | - Jörg Linde
- Research Group Systems Biology and Bioinformatics, Leibniz-Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute Jena, Germany
| |
Collapse
|
103
|
A novel enrichment strategy reveals unprecedented number of novel transcription start sites at single base resolution in a model prokaryote and the gut microbiome. BMC Genomics 2016; 17:199. [PMID: 26951544 PMCID: PMC4782308 DOI: 10.1186/s12864-016-2539-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/25/2016] [Indexed: 01/27/2023] Open
Abstract
Background The initiating nucleotide found at the 5’ end of primary transcripts has a distinctive triphosphorylated end that distinguishes these transcripts from all other RNA species. Recognizing this distinction is key to deconvoluting the primary transcriptome from the plethora of processed transcripts that confound analysis of the transcriptome. The currently available methods do not use targeted enrichment for the 5′end of primary transcripts, but rather attempt to deplete non-targeted RNA. Results We developed a method, Cappable-seq, for directly enriching for the 5' end of primary transcripts and enabling determination of transcription start sites at single base resolution. This is achieved by enzymatically modifying the 5′ triphosphorylated end of RNA with a selectable tag. We first applied Cappable-seq to E. coli, achieving up to 50 fold enrichment of primary transcripts and identifying an unprecedented 16539 transcription start sites (TSS) genome-wide at single base resolution. We also applied Cappable-seq to a mouse cecum sample and identified TSS in a microbiome. Conclusions Cappable-seq allows for the first time the capture of the 5′ end of primary transcripts. This enables a unique robust TSS determination in bacteria and microbiomes. In addition to and beyond TSS determination, Cappable-seq depletes ribosomal RNA and reduces the complexity of the transcriptome to a single quantifiable tag per transcript enabling digital profiling of gene expression in any microbiome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2539-z) contains supplementary material, which is available to authorized users.
Collapse
|
104
|
Itävaara M, Salavirta H, Marjamaa K, Ruskeeniemi T. Geomicrobiology and Metagenomics of Terrestrial Deep Subsurface Microbiomes. ADVANCES IN APPLIED MICROBIOLOGY 2016; 94:1-77. [PMID: 26917241 DOI: 10.1016/bs.aambs.2015.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fractures in the deep subsurface of Earth's crust are inhabited by diverse microbial communities that participate in biogeochemical cycles of the Earth. Life on Earth, which arose c. 3.5-4.0 billion years ago, reaches down at least 5 km in the crust. Deep mines, caves, and boreholes have provided scientists with opportunities to sample deep subsurface microbiomes and to obtain information on the species diversity and functions. A wide variety of bacteria, archaea, eukaryotes, and viruses are now known to reside in the crust, but their functions are still largely unknown. The crust at different depths has varying geological composition and hosts endemic microbiomes accordingly. The diversity is driven by geological formations and gases evolving from deeper depths. Cooperation among different species is still mostly unexplored, but viruses are known to restrict density of bacterial and archaeal populations. Due to the complex growth requirements of the deep subsurface microbiomes, the new knowledge about their diversity and functions is mostly obtained by molecular methods, eg, meta'omics'. Geomicrobiology is a multidisciplinary research area combining disciplines from geology, mineralogy, geochemistry, and microbiology. Geomicrobiology is concerned with the interaction of microorganisms and geological processes. At the surface of mineralogical or rock surfaces, geomicrobial processes occur mainly under aerobic conditions. In the deep subsurface, however, the environmental conditions are reducing and anaerobic. The present chapter describes the world of microbiomes in deep terrestrial geological environments as well as metagenomic and metatranscriptomic methods suitable for studies of these enigmatic communities.
Collapse
Affiliation(s)
- M Itävaara
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - H Salavirta
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - K Marjamaa
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | | |
Collapse
|
105
|
Rebollar EA, Antwis RE, Becker MH, Belden LK, Bletz MC, Brucker RM, Harrison XA, Hughey MC, Kueneman JG, Loudon AH, McKenzie V, Medina D, Minbiole KPC, Rollins-Smith LA, Walke JB, Weiss S, Woodhams DC, Harris RN. Using "Omics" and Integrated Multi-Omics Approaches to Guide Probiotic Selection to Mitigate Chytridiomycosis and Other Emerging Infectious Diseases. Front Microbiol 2016; 7:68. [PMID: 26870025 PMCID: PMC4735675 DOI: 10.3389/fmicb.2016.00068] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/14/2016] [Indexed: 12/20/2022] Open
Abstract
Emerging infectious diseases in wildlife are responsible for massive population declines. In amphibians, chytridiomycosis caused by Batrachochytrium dendrobatidis, Bd, has severely affected many amphibian populations and species around the world. One promising management strategy is probiotic bioaugmentation of antifungal bacteria on amphibian skin. In vivo experimental trials using bioaugmentation strategies have had mixed results, and therefore a more informed strategy is needed to select successful probiotic candidates. Metagenomic, transcriptomic, and metabolomic methods, colloquially called "omics," are approaches that can better inform probiotic selection and optimize selection protocols. The integration of multiple omic data using bioinformatic and statistical tools and in silico models that link bacterial community structure with bacterial defensive function can allow the identification of species involved in pathogen inhibition. We recommend using 16S rRNA gene amplicon sequencing and methods such as indicator species analysis, the Kolmogorov-Smirnov Measure, and co-occurrence networks to identify bacteria that are associated with pathogen resistance in field surveys and experimental trials. In addition to 16S amplicon sequencing, we recommend approaches that give insight into symbiont function such as shotgun metagenomics, metatranscriptomics, or metabolomics to maximize the probability of finding effective probiotic candidates, which can then be isolated in culture and tested in persistence and clinical trials. An effective mitigation strategy to ameliorate chytridiomycosis and other emerging infectious diseases is necessary; the advancement of omic methods and the integration of multiple omic data provide a promising avenue toward conservation of imperiled species.
Collapse
Affiliation(s)
- Eria A. Rebollar
- Department of Biology, James Madison UniversityHarrisonburg, VA, USA
| | - Rachael E. Antwis
- Unit for Environmental Sciences and Management, North-West UniversityPotchefstroom, South Africa
- Institute of Zoology, Zoological Society of LondonLondon, UK
- School of Environment and Life Sciences, University of SalfordSalford, UK
| | - Matthew H. Becker
- Center for Conservation and Evolutionary Genetics, Smithsonian Conservation Biology Institute, National Zoological ParkWashington, DC, USA
| | - Lisa K. Belden
- Department of Biological Sciences, Virginia TechBlacksburg, VA, USA
| | - Molly C. Bletz
- Zoological Institute, Technische Universität BraunschweigBraunschweig, Germany
| | | | | | - Myra C. Hughey
- Department of Biological Sciences, Virginia TechBlacksburg, VA, USA
| | - Jordan G. Kueneman
- Department of Ecology and Evolutionary Biology, University of ColoradoBoulder, CO, USA
| | - Andrew H. Loudon
- Department of Zoology, Biodiversity Research Centre, University of British ColumbiaVancouver, BC, Canada
| | - Valerie McKenzie
- Department of Ecology and Evolutionary Biology, University of ColoradoBoulder, CO, USA
| | - Daniel Medina
- Department of Biological Sciences, Virginia TechBlacksburg, VA, USA
| | | | - Louise A. Rollins-Smith
- Department of Pathology, Microbiology and Immunology and Department of Pediatrics, Vanderbilt University School of Medicine, Department of Biological Sciences, Vanderbilt UniversityNashville, TN, USA
| | - Jenifer B. Walke
- Department of Biological Sciences, Virginia TechBlacksburg, VA, USA
| | - Sophie Weiss
- Department of Chemical and Biological Engineering, University of Colorado at BoulderBoulder, CO, USA
| | | | - Reid N. Harris
- Department of Biology, James Madison UniversityHarrisonburg, VA, USA
| |
Collapse
|
106
|
Addis MF, Tanca A, Uzzau S, Oikonomou G, Bicalho RC, Moroni P. The bovine milk microbiota: insights and perspectives from -omics studies. MOLECULAR BIOSYSTEMS 2016; 12:2359-72. [DOI: 10.1039/c6mb00217j] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent findings and future perspectives of -omics studies on the bovine milk microbiota, focusing on its impact on animal health.
Collapse
Affiliation(s)
- M. F. Addis
- Porto Conte Ricerche
- SP 55 Porto Conte/Capo Caccia
- 07041 Alghero
- Italy
| | - A. Tanca
- Porto Conte Ricerche
- SP 55 Porto Conte/Capo Caccia
- 07041 Alghero
- Italy
| | - S. Uzzau
- Porto Conte Ricerche
- SP 55 Porto Conte/Capo Caccia
- 07041 Alghero
- Italy
- Università degli Studi di Sassari
| | - G. Oikonomou
- Epidemiology and Population Health
- Institute of Infection and Global Health
- University of Liverpool
- Liverpool
- UK
| | - R. C. Bicalho
- Cornell University
- Department of Population Medicine and Diagnostic Sciences
- College of Veterinary Medicine
- Ithaca
- USA
| | - P. Moroni
- Cornell University
- Department of Population Medicine and Diagnostic Sciences
- College of Veterinary Medicine
- Ithaca
- USA
| |
Collapse
|
107
|
Lin X, Ding H, Zeng Q. Transcriptomic response during phage infection of a marine cyanobacterium under phosphorus-limited conditions. Environ Microbiol 2015; 18:450-60. [DOI: 10.1111/1462-2920.13104] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 10/20/2015] [Accepted: 10/23/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Xingqin Lin
- Division of Life Science; The Hong Kong University of Science and Technology; Clear Water Bay Hong Kong China
| | - Huiming Ding
- Department of Civil and Environmental Engineering; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Qinglu Zeng
- Division of Life Science; The Hong Kong University of Science and Technology; Clear Water Bay Hong Kong China
| |
Collapse
|
108
|
Garrido D, Ruiz-Moyano S, Lemay DG, Sela DA, German JB, Mills DA. Comparative transcriptomics reveals key differences in the response to milk oligosaccharides of infant gut-associated bifidobacteria. Sci Rep 2015; 5:13517. [PMID: 26337101 PMCID: PMC4559671 DOI: 10.1038/srep13517] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/27/2015] [Indexed: 12/15/2022] Open
Abstract
Breast milk enhances the predominance of Bifidobacterium species in the infant gut, probably due to its large concentration of human milk oligosaccharides (HMO). Here we screened infant-gut isolates of Bifidobacterium longum subsp. infantis and Bifidobacterium bifidum using individual HMO, and compared the global transcriptomes of representative isolates on major HMO by RNA-seq. While B. infantis displayed homogeneous HMO-utilization patterns, B. bifidum were more diverse and some strains did not use fucosyllactose (FL) or sialyllactose (SL). Transcriptomes of B. bifidum SC555 and B. infantis ATCC 15697 showed that utilization of pooled HMO is similar to neutral HMO, while transcriptomes for growth on FL were more similar to lactose than HMO in B. bifidum. Genes linked to HMO-utilization were upregulated by neutral HMO and SL, but not by FL in both species. In contrast, FL induced the expression of alternative gene clusters in B. infantis. Results also suggest that B. bifidum SC555 does not utilize fucose or sialic acid from HMO. Surprisingly, expression of orthologous genes differed between both bifidobacteria even when grown on identical substrates. This study highlights two major strategies found in Bifidobacterium species to process HMO, and presents detailed information on the close relationship between HMO and infant-gut bifidobacteria.
Collapse
Affiliation(s)
- Daniel Garrido
- Department of Viticulture &Enology, One Shields Ave. Davis, CA 95616, United States.,Foods for Health Institute, One Shields Ave. Davis, CA 95616, United States.,Department of Chemical and Bioprocess Engineering, School of Engineering, Av. Vicuña Mackenna 4860, Santiago, Chile.,Programa ASIS, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile
| | - Santiago Ruiz-Moyano
- Department of Viticulture &Enology, One Shields Ave. Davis, CA 95616, United States.,Foods for Health Institute, One Shields Ave. Davis, CA 95616, United States
| | - Danielle G Lemay
- Foods for Health Institute, One Shields Ave. Davis, CA 95616, United States.,Genome Center, University of California, One Shields Ave. Davis, CA 95616, United States
| | - David A Sela
- Department of Viticulture &Enology, One Shields Ave. Davis, CA 95616, United States.,Foods for Health Institute, One Shields Ave. Davis, CA 95616, United States.,Department of Food Science, University of Massachusetts, Amherst, MA 01003
| | - J Bruce German
- Food Science &Technology, One Shields Ave. Davis, CA 95616, United States.,Foods for Health Institute, One Shields Ave. Davis, CA 95616, United States
| | - David A Mills
- Department of Viticulture &Enology, One Shields Ave. Davis, CA 95616, United States.,Food Science &Technology, One Shields Ave. Davis, CA 95616, United States.,Foods for Health Institute, One Shields Ave. Davis, CA 95616, United States
| |
Collapse
|
109
|
Bao G, Wang M, Doak TG, Ye Y. Strand-specific community RNA-seq reveals prevalent and dynamic antisense transcription in human gut microbiota. Front Microbiol 2015; 6:896. [PMID: 26388849 PMCID: PMC4555090 DOI: 10.3389/fmicb.2015.00896] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/17/2015] [Indexed: 01/17/2023] Open
Abstract
Metagenomics and other meta-omics approaches (including metatranscriptomics) provide insights into the composition and function of microbial communities living in different environments or animal hosts. Metatranscriptomics research provides an unprecedented opportunity to examine gene regulation for many microbial species simultaneously, and more importantly, for the majority that are unculturable microbial species, in their natural environments (or hosts). Current analyses of metatranscriptomic datasets focus on the detection of gene expression levels and the study of the relationship between changes of gene expression and changes of environment. As a demonstration of utilizing metatranscriptomics beyond these common analyses, we developed a computational and statistical procedure to analyze the antisense transcripts in strand-specific metatranscriptomic datasets. Antisense RNAs encoded on the DNA strand opposite a gene’s CDS have the potential to form extensive base-pairing interactions with the corresponding sense RNA, and can have important regulatory functions. Most studies of antisense RNAs in bacteria are rather recent, are mostly based on transcriptome analysis, and have been applied mainly to single bacterial species. Application of our approaches to human gut-associated metatranscriptomic datasets allowed us to survey antisense transcription for a large number of bacterial species associated with human beings. The ratio of protein coding genes with antisense transcription ranges from 0 to 35.8% (median = 10.0%) among 47 species. Our results show that antisense transcription is dynamic, varying between human individuals. Functional enrichment analysis revealed a preference of certain gene functions for antisense transcription, and transposase genes are among the most prominent ones (but we also observed antisense transcription in bacterial house-keeping genes).
Collapse
Affiliation(s)
- Guanhui Bao
- School of Informatics and Computing, Indiana University Bloomington, IN, USA
| | - Mingjie Wang
- School of Informatics and Computing, Indiana University Bloomington, IN, USA
| | - Thomas G Doak
- Department of Biology, Indiana University Bloomington, IN, USA ; National Center for Genome Analysis Support, Indiana University Bloomington, IN, USA
| | - Yuzhen Ye
- School of Informatics and Computing, Indiana University Bloomington, IN, USA
| |
Collapse
|
110
|
Ye Y, Tang H. Utilizing de Bruijn graph of metagenome assembly for metatranscriptome analysis. Bioinformatics 2015; 32:1001-8. [PMID: 26319390 PMCID: PMC4896364 DOI: 10.1093/bioinformatics/btv510] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/24/2015] [Indexed: 11/26/2022] Open
Abstract
Motivation: Metagenomics research has accelerated the studies of microbial organisms, providing insights into the composition and potential functionality of various microbial communities. Metatranscriptomics (studies of the transcripts from a mixture of microbial species) and other meta-omics approaches hold even greater promise for providing additional insights into functional and regulatory characteristics of the microbial communities. Current metatranscriptomics projects are often carried out without matched metagenomic datasets (of the same microbial communities). For the projects that produce both metatranscriptomic and metagenomic datasets, their analyses are often not integrated. Metagenome assemblies are far from perfect, partially explaining why metagenome assemblies are not used for the analysis of metatranscriptomic datasets. Results: Here, we report a reads mapping algorithm for mapping of short reads onto a de Bruijn graph of assemblies. A hash table of junction k-mers (k-mers spanning branching structures in the de Bruijn graph) is used to facilitate fast mapping of reads to the graph. We developed an application of this mapping algorithm: a reference-based approach to metatranscriptome assembly using graphs of metagenome assembly as the reference. Our results show that this new approach (called TAG) helps to assemble substantially more transcripts that otherwise would have been missed or truncated because of the fragmented nature of the reference metagenome. Availability and implementation: TAG was implemented in C++ and has been tested extensively on the Linux platform. It is available for download as open source at http://omics.informatics.indiana.edu/TAG. Contact:yye@indiana.edu
Collapse
Affiliation(s)
- Yuzhen Ye
- School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - Haixu Tang
- School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
111
|
Reck M, Tomasch J, Deng Z, Jarek M, Husemann P, Wagner-Döbler I. Stool metatranscriptomics: A technical guideline for mRNA stabilisation and isolation. BMC Genomics 2015; 16:494. [PMID: 26140923 PMCID: PMC4490624 DOI: 10.1186/s12864-015-1694-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 06/11/2015] [Indexed: 02/08/2023] Open
Abstract
Background The complex microbiome of the gut has an enormous impact on human health. Analysis of the transcriptional activity of microorganisms through mRNA sequencing (metatranscriptomics) opens a completely new window into their activity in vivo, but it is highly challenging due to numerous technical and bioinformatical obstacles. Here we present an optimized pipeline for extraction of high quality mRNA from stool samples. Results Comparison of three commercially available RNA extraction kits with the method of Zoetendal revealed that the Powermicrobiome Kit (MoBio) performed best with respect to RNA yield and purity. Next, the influence of the stabilization reagent during sample storage for up to 15 days was studied. RIN analysis and qRT-PCR of spiked-in and indigenous genes revealed that RNA Later preserved mRNA integrity most efficiently, while samples conserved in RNA Protect showed substantial mRNA decay. Using the optimized pipeline developed here, recovery rates for spiked-in E.coli cells expressing fluorescing proteins were 8.7-9.7 % for SuperfolderGFP and 14.7-17.8 % for mCherry. The mRNA of stabilized stool samples as well as of snap-frozen controls was sequenced with Illumina Hiseq, yielding on average 74 million reads per sample. PCoA analysis, taxonomic classification using Kraken and functional classification using bwa showed that the transcriptomes of samples conserved in RNA Later were unchanged for up to 6 days even at room temperature, while RNA Protect was inefficient for storage durations exceeding 24 h. However, our data indicate that RNA Later introduces a bias which is then maintained throughout storage, while RNA Protect conserved samples are initially more similar to the snap frozen controls. RNA Later conserved samples had a reduced abundance of e.g. Prevotellaceae transcripts and were depleted for e.g. COG category “Carbohydrate transport and metabolism”. Conclusion Since the overall similarity between all stool transcriptional profiles studied here was >0.92, these differences are unlikely to affect global comparisons, but should be taken into account when rare but critically important members of the stool microbiome are being studied. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1694-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael Reck
- Research Group Microbial Communication, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | - Jürgen Tomasch
- Research Group Microbial Communication, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | - Zhiluo Deng
- Research Group Microbial Communication, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | - Michael Jarek
- Research Group Genome Analysis, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | - Peter Husemann
- Research Group Genome Analysis, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | - Irene Wagner-Döbler
- Research Group Microbial Communication, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | | |
Collapse
|
112
|
Bikel S, Valdez-Lara A, Cornejo-Granados F, Rico K, Canizales-Quinteros S, Soberón X, Del Pozo-Yauner L, Ochoa-Leyva A. Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systems-level understanding of human microbiome. Comput Struct Biotechnol J 2015; 13:390-401. [PMID: 26137199 PMCID: PMC4484546 DOI: 10.1016/j.csbj.2015.06.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 02/07/2023] Open
Abstract
The advances in experimental methods and the development of high performance bioinformatic tools have substantially improved our understanding of microbial communities associated with human niches. Many studies have documented that changes in microbial abundance and composition of the human microbiome is associated with human health and diseased state. The majority of research on human microbiome is typically focused in the analysis of one level of biological information, i.e., metagenomics or metatranscriptomics. In this review, we describe some of the different experimental and bioinformatic strategies applied to analyze the 16S rRNA gene profiling and shotgun sequencing data of the human microbiome. We also discuss how some of the recent insights in the combination of metagenomics, metatranscriptomics and viromics can provide more detailed description on the interactions between microorganisms and viruses in oral and gut microbiomes. Recent studies on viromics have begun to gain importance due to the potential involvement of viruses in microbial dysbiosis. In addition, metatranscriptomic combined with metagenomic analysis have shown that a substantial fraction of microbial transcripts can be differentially regulated relative to their microbial genomic abundances. Thus, understanding the molecular interactions in the microbiome using the combination of metagenomics, metatranscriptomics and viromics is one of the main challenges towards a system level understanding of human microbiome.
Collapse
Affiliation(s)
- Shirley Bikel
- Unidad de Genómica de Poblaciones Aplicada la Salud, Facultad de Química, UNAM, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F. 14610, Mexico ; Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Avenida Universidad 2001, Cuernavaca C.P. 62210, Mexico
| | - Alejandra Valdez-Lara
- Unidad de Genómica de Poblaciones Aplicada la Salud, Facultad de Química, UNAM, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F. 14610, Mexico ; Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Avenida Universidad 2001, Cuernavaca C.P. 62210, Mexico
| | - Fernanda Cornejo-Granados
- Unidad de Genómica de Poblaciones Aplicada la Salud, Facultad de Química, UNAM, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F. 14610, Mexico ; Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Avenida Universidad 2001, Cuernavaca C.P. 62210, Mexico
| | - Karina Rico
- Unidad de Genómica de Poblaciones Aplicada la Salud, Facultad de Química, UNAM, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F. 14610, Mexico
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada la Salud, Facultad de Química, UNAM, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F. 14610, Mexico
| | - Xavier Soberón
- Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F., Mexico
| | | | - Adrián Ochoa-Leyva
- Unidad de Genómica de Poblaciones Aplicada la Salud, Facultad de Química, UNAM, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F. 14610, Mexico ; Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Avenida Universidad 2001, Cuernavaca C.P. 62210, Mexico
| |
Collapse
|
113
|
Imashimizu M, Takahashi H, Oshima T, McIntosh C, Bubunenko M, Court DL, Kashlev M. Visualizing translocation dynamics and nascent transcript errors in paused RNA polymerases in vivo. Genome Biol 2015; 16:98. [PMID: 25976475 PMCID: PMC4457086 DOI: 10.1186/s13059-015-0666-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/05/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Transcription elongation is frequently interrupted by pausing signals in DNA, with downstream effects on gene expression. Transcription errors also induce prolonged pausing, which can lead to a destabilized genome by interfering with DNA replication. Mechanisms of pausing associated with translocation blocks and misincorporation have been characterized in vitro, but not in vivo. RESULTS We investigate the pausing pattern of RNA polymerase (RNAP) in Escherichia coli by a novel approach, combining native elongating transcript sequencing (NET-seq) with RNase footprinting of the transcripts (RNET-seq). We reveal that the G-dC base pair at the 5' end of the RNA-DNA hybrid interferes with RNAP translocation. The distance between the 5' G-dC base pair and the 3' end of RNA fluctuates over a three-nucleotide width. Thus, the G-dC base pair can induce pausing in post-translocated, pre-translocated, and backtracked states of RNAP. Additionally, a CpG sequence of the template DNA strand spanning the active site of RNAP inhibits elongation and induces G-to-A errors, which leads to backtracking of RNAP. Gre factors efficiently proofread the errors and rescue the backtracked complexes. We also find that pausing events are enriched in the 5' untranslated region and antisense transcription of mRNA genes and are reduced in rRNA genes. CONCLUSIONS In E. coli, robust transcriptional pausing involves RNAP interaction with G-dC at the upstream end of the RNA-DNA hybrid, which interferes with translocation. CpG DNA sequences induce transcriptional pausing and G-to-A errors.
Collapse
Affiliation(s)
- Masahiko Imashimizu
- Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Hiroki Takahashi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan.
| | - Taku Oshima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Ikoma, Nara, 630-0192, Japan.
| | - Carl McIntosh
- Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Mikhail Bubunenko
- Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Donald L Court
- Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Mikhail Kashlev
- Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
114
|
Abstract
Community composition within the human microbiome varies across individuals, but it remains unknown if this variation is sufficient to uniquely identify individuals within large populations or stable enough to identify them over time. We investigated this by developing a hitting set-based coding algorithm and applying it to the Human Microbiome Project population. Our approach defined body site-specific metagenomic codes: sets of microbial taxa or genes prioritized to uniquely and stably identify individuals. Codes capturing strain variation in clade-specific marker genes were able to distinguish among 100s of individuals at an initial sampling time point. In comparisons with follow-up samples collected 30-300 d later, ∼30% of individuals could still be uniquely pinpointed using metagenomic codes from a typical body site; coincidental (false positive) matches were rare. Codes based on the gut microbiome were exceptionally stable and pinpointed >80% of individuals. The failure of a code to match its owner at a later time point was largely explained by the loss of specific microbial strains (at current limits of detection) and was only weakly associated with the length of the sampling interval. In addition to highlighting patterns of temporal variation in the ecology of the human microbiome, this work demonstrates the feasibility of microbiome-based identifiability-a result with important ethical implications for microbiome study design. The datasets and code used in this work are available for download from huttenhower.sph.harvard.edu/idability.
Collapse
|
115
|
Sequencing and beyond: integrating molecular 'omics' for microbial community profiling. Nat Rev Microbiol 2015; 13:360-72. [PMID: 25915636 DOI: 10.1038/nrmicro3451] [Citation(s) in RCA: 432] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
High-throughput DNA sequencing has proven invaluable for investigating diverse environmental and host-associated microbial communities. In this Review, we discuss emerging strategies for microbial community analysis that complement and expand traditional metagenomic profiling. These include novel DNA sequencing strategies for identifying strain-level microbial variation and community temporal dynamics; measuring multiple 'omic' data types that better capture community functional activity, such as transcriptomics, proteomics and metabolomics; and combining multiple forms of omic data in an integrated framework. We highlight studies in which the 'multi-omics' approach has led to improved mechanistic models of microbial community structure and function.
Collapse
|
116
|
Functional dynamics of the gut microbiome in elderly people during probiotic consumption. mBio 2015; 6:mBio.00231-15. [PMID: 25873374 PMCID: PMC4453556 DOI: 10.1128/mbio.00231-15] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A mechanistic understanding of the purported health benefits conferred by consumption of probiotic bacteria has been limited by our knowledge of the resident gut microbiota and its interaction with the host. Here, we detail the impact of a single-organism probiotic, Lactobacillus rhamnosus GG ATCC 53103 (LGG), on the structure and functional dynamics (gene expression) of the gut microbiota in a study of 12 healthy individuals, 65 to 80 years old. The analysis revealed that while the overall community composition was stable as assessed by 16S rRNA profiling, the transcriptional response of the gut microbiota was modulated by probiotic treatment. Comparison of transcriptional profiles based on taxonomic composition yielded three distinct transcriptome groups that displayed considerable differences in functional dynamics. The transcriptional profile of LGG in vivo was remarkably concordant across study subjects despite the considerable interindividual nature of the gut microbiota. However, we identified genes involved in flagellar motility, chemotaxis, and adhesion from Bifidobacterium and the dominant butyrate producers Roseburia and Eubacterium whose expression was increased during probiotic consumption, suggesting that LGG may promote interactions between key constituents of the microbiota and the host epithelium. These results provide evidence for the discrete functional effects imparted by a specific single-organism probiotic and challenge the prevailing notion that probiotics substantially modify the resident microbiota within nondiseased individuals in an appreciable fashion. Probiotic bacteria have been used for over a century to promote digestive health. Many individuals report that probiotics alleviate a number of digestive issues, yet little evidence links how probiotic microbes influence human health. Here, we show how the resident microbes that inhabit the healthy human gut respond to a probiotic. The well-studied probiotic Lactobacillus rhamnosus GG ATCC 53103 (LGG) was administered in a clinical trial, and a suite of measurements of the resident microbes were taken to evaluate potential changes over the course of probiotic consumption. We found that LGG transiently enriches for functions to potentially promote anti-inflammatory pathways in the resident microbes.
Collapse
|
117
|
Shishkin AA, Giannoukos G, Kucukural A, Ciulla D, Busby M, Surka C, Chen J, Bhattacharyya RP, Rudy RF, Patel MM, Novod N, Hung DT, Gnirke A, Garber M, Guttman M, Livny J. Simultaneous generation of many RNA-seq libraries in a single reaction. Nat Methods 2015; 12:323-5. [PMID: 25730492 DOI: 10.1038/nmeth.3313] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/08/2015] [Indexed: 11/09/2022]
Abstract
Although RNA-seq is a powerful tool, the considerable time and cost associated with library construction has limited its utilization for various applications. RNAtag-Seq, an approach to generate multiple RNA-seq libraries in a single reaction, lowers time and cost per sample, and it produces data on prokaryotic and eukaryotic samples that are comparable to those generated by traditional strand-specific RNA-seq approaches.
Collapse
Affiliation(s)
- Alexander A Shishkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | | | - Alper Kucukural
- Bioinformatics Core, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Dawn Ciulla
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Michele Busby
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Christine Surka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Jenny Chen
- 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. [2] Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Robert F Rudy
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Milesh M Patel
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Nathaniel Novod
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Deborah T Hung
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Andreas Gnirke
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Manuel Garber
- 1] Bioinformatics Core, University of Massachusetts Medical School, Worcester, Massachusetts, USA. [2] Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Jonathan Livny
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
118
|
Wang H, Ayala JC, Benitez JA, Silva AJ. RNA-seq analysis identifies new genes regulated by the histone-like nucleoid structuring protein (H-NS) affecting Vibrio cholerae virulence, stress response and chemotaxis. PLoS One 2015; 10:e0118295. [PMID: 25679988 PMCID: PMC4332508 DOI: 10.1371/journal.pone.0118295] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/13/2015] [Indexed: 12/20/2022] Open
Abstract
The histone-like nucleoid structuring protein (H-NS) functions as a transcriptional silencer by binding to AT-rich sequences at bacterial promoters. However, H-NS repression can be counteracted by other transcription factors in response to environmental changes. The identification of potential toxic factors, the expression of which is prevented by H-NS could facilitate the discovery of new regulatory proteins that may contribute to the emergence of new pathogenic variants by anti-silencing. Vibrio cholerae hns mutants of the El Tor biotype exhibit altered virulence, motility and environmental stress response phenotypes compared to wild type. We used an RNA-seq analysis approach to determine the basis of the above hns phenotypes and identify new targets of H-NS transcriptional silencing. H-NS affected the expression of 18% of all predicted genes in a growth phase-dependent manner. Loss of H-NS resulted in diminished expression of numerous genes encoding methyl-accepting chemotaxis proteins as well as chemotaxis toward the attractants glycine and serine. Deletion of hns also induced an endogenous envelope stress response resulting in elevated expression of rpoE encoding the extracytoplamic sigma factor E (σE). The RNA-seq analysis identified new genes directly repressed by H-NS that can affect virulence and biofilm development in the El Tor biotype cholera bacterium. We show that H-NS and the quorum sensing regulator HapR silence the transcription of the vieSAB three-component regulatory system in El Tor biotype V. cholerae. We also demonstrate that H-NS directly represses the transcription of hlyA (hemolysin), rtxCA (the repeat in toxin or RTX), rtxBDE (RTX transport) and the biosynthesis of indole. Of these genes, H-NS occupancy at the hlyA promoter was diminished by overexpression of the transcription activator HlyU. We discuss the role of H-NS transcriptional silencing in phenotypic differences exhibited by V. cholerae biotypes.
Collapse
Affiliation(s)
- Hongxia Wang
- Morehouse School of Medicine Department of Microbiology, Biochemistry and Immunology, Atlanta, Georgia, United States of America
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Julio C. Ayala
- University of Alabama at Birmingham Department of Microbiology, Birmingham, Alabama, United States of America
| | - Jorge A. Benitez
- Morehouse School of Medicine Department of Microbiology, Biochemistry and Immunology, Atlanta, Georgia, United States of America
| | - Anisia J. Silva
- Morehouse School of Medicine Department of Microbiology, Biochemistry and Immunology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
119
|
Rienksma RA, Suarez-Diez M, Mollenkopf HJ, Dolganov GM, Dorhoi A, Schoolnik GK, Martins Dos Santos VA, Kaufmann SH, Schaap PJ, Gengenbacher M. Comprehensive insights into transcriptional adaptation of intracellular mycobacteria by microbe-enriched dual RNA sequencing. BMC Genomics 2015; 16:34. [PMID: 25649146 PMCID: PMC4334782 DOI: 10.1186/s12864-014-1197-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 12/22/2014] [Indexed: 02/06/2023] Open
Abstract
Background The human pathogen Mycobacterium tuberculosis has the capacity to escape eradication by professional phagocytes. During infection, M. tuberculosis resists the harsh environment of phagosomes and actively manipulates macrophages and dendritic cells to ensure prolonged intracellular survival. In contrast to other intracellular pathogens, it has remained difficult to capture the transcriptome of mycobacteria during infection due to an unfavorable host-to-pathogen ratio. Results We infected the human macrophage-like cell line THP-1 with the attenuated M. tuberculosis surrogate M. bovis Bacillus Calmette–Guérin (M. bovis BCG). Mycobacterial RNA was up to 1000-fold underrepresented in total RNA preparations of infected host cells. We employed microbial enrichment combined with specific ribosomal RNA depletion to simultaneously analyze the transcriptional responses of host and pathogen during infection by dual RNA sequencing. Our results confirm that mycobacterial pathways for cholesterol degradation and iron acquisition are upregulated during infection. In addition, genes involved in the methylcitrate cycle, aspartate metabolism and recycling of mycolic acids were induced. In response to M. bovis BCG infection, host cells upregulated de novo cholesterol biosynthesis presumably to compensate for the loss of this metabolite by bacterial catabolism. Conclusions Dual RNA sequencing allows simultaneous capture of the global transcriptome of host and pathogen, during infection. However, mycobacteria remained problematic due to their relatively low number per host cell resulting in an unfavorable bacterium-to-host RNA ratio. Here, we use a strategy that combines enrichment for bacterial transcripts and dual RNA sequencing to provide the most comprehensive transcriptome of intracellular mycobacteria to date. The knowledge acquired into the pathogen and host pathways regulated during infection may contribute to a solid basis for the deployment of novel intervention strategies to tackle infection. Electronic supplementary material The online version of this article (doi:10.1186/s12864-014-1197-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rienk A Rienksma
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research Centre, Dreijenplein 10, 6703, HB, Wageningen, the Netherlands.
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research Centre, Dreijenplein 10, 6703, HB, Wageningen, the Netherlands.
| | - Hans-Joachim Mollenkopf
- Core Facility Microarray/Genomics, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany.
| | - Gregory M Dolganov
- Department of Microbiology and Immunology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305-5124, USA.
| | - Anca Dorhoi
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany.
| | - Gary K Schoolnik
- Department of Microbiology and Immunology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305-5124, USA.
| | - Vitor Ap Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research Centre, Dreijenplein 10, 6703, HB, Wageningen, the Netherlands. .,LifeGlimmer GmbH, Markelstrasse 38, 12163, Berlin, Germany.
| | - Stefan He Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany.
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research Centre, Dreijenplein 10, 6703, HB, Wageningen, the Netherlands.
| | - Martin Gengenbacher
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany. .,Present address: Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore.
| |
Collapse
|
120
|
High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. mBio 2015; 6:mBio.02288-14. [PMID: 25626903 PMCID: PMC4324309 DOI: 10.1128/mbio.02288-14] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Understanding the structure, functions, activities and dynamics of microbial communities in natural environments is one of the grand challenges of 21st century science. To address this challenge, over the past decade, numerous technologies have been developed for interrogating microbial communities, of which some are amenable to exploratory work (e.g., high-throughput sequencing and phenotypic screening) and others depend on reference genes or genomes (e.g., phylogenetic and functional gene arrays). Here, we provide a critical review and synthesis of the most commonly applied “open-format” and “closed-format” detection technologies. We discuss their characteristics, advantages, and disadvantages within the context of environmental applications and focus on analysis of complex microbial systems, such as those in soils, in which diversity is high and reference genomes are few. In addition, we discuss crucial issues and considerations associated with applying complementary high-throughput molecular technologies to address important ecological questions.
Collapse
|
121
|
D'Argenio V, Salvatore F. The role of the gut microbiome in the healthy adult status. Clin Chim Acta 2015; 451:97-102. [PMID: 25584460 DOI: 10.1016/j.cca.2015.01.003] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/06/2015] [Indexed: 02/07/2023]
Abstract
The gut microbiome, which hosts up to 1000 bacterial species that encode about 5 million genes, perform many of the functions required for host physiology and survival. Consequently, it is also known as "our forgotten organ". The recent development of next-generation sequencing technologies has greatly improved metagenomic research. In particular, it has increased our knowledge about the microbiome and its mutually beneficial relationships with the human host. Microbial colonization begins immediately at birth. Although influenced by a variety of stimuli, namely, diet, physical activity, travel, illness, hormonal cycles and therapies, the microbiome is practically stable in healthy adults. This suggests that the microbiome plays a role in the maintenance of a healthy state in adulthood. Quantitative and qualitative alterations in the composition of the gut microbiome could lead to pathological dysbiosis, and have been related to an increasing number of intestinal and extra-intestinal diseases. With the increase in knowledge about gut microbiome functions, it is becoming increasingly more possible to develop novel diagnostic, prognostic and, most important, therapeutic strategies based on microbiome manipulation.
Collapse
Affiliation(s)
- Valeria D'Argenio
- CEINGE-Biotecnologie Avanzate, via G. Salvatore 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy
| | - Francesco Salvatore
- CEINGE-Biotecnologie Avanzate, via G. Salvatore 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy; IRCCS-Fondazione SDN, 80143 Naples, Italy.
| |
Collapse
|
122
|
Del Chierico F, Ancora M, Marcacci M, Cammà C, Putignani L, Conti S. Choice of next-generation sequencing pipelines. Methods Mol Biol 2015; 1231:31-47. [PMID: 25343857 DOI: 10.1007/978-1-4939-1720-4_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The next-generation sequencing (NGS) technologies are revolutionary tools which have made possible achieving remarkable advances in genetics since the beginning of the twenty-first century. Thanks to the possibility to produce large amount of sequence data, these tools are going to completely substitute other high-throughput technologies. Moreover, the large applications of NGS protocols are increasing the genetic decoding of biological systems through studies of genome anatomy and gene mapping, coupled to the transcriptome pictures. The application of NGS pipelines such as (1) de-novo genomic sequencing by mate-paired and whole-genome shotgun strategies; (2) specific gene sequencing on large bacterial communities; and (3) RNA-seq methods including whole transcriptome sequencing and Serial Analysis of Gene Expression (Sage-analysis) are fundamental in the genome-wide fields like metagenomics. Recently, the availability of these advanced protocols has allowed to overcome the usual sequencing technical issues related to the mapping specificity over standard shotgun library sequencing, the detection of large structural genomes variations and bridging sequencing gaps, as well as more precise gene annotation. In this chapter we will discuss how to manage a successful NGS pipeline from the planning of sequencing projects through the choice of the platforms up to the data analysis management.
Collapse
Affiliation(s)
- F Del Chierico
- Unit of Parasitology & Unit of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | | | | | | | | |
Collapse
|
123
|
Tsementzi D, Poretsky R, Rodriguez-R LM, Luo C, Konstantinidis KT. Evaluation of metatranscriptomic protocols and application to the study of freshwater microbial communities. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:640-655. [PMID: 25756118 DOI: 10.1111/1758-2229.12180] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Metatranscriptomics of environmental samples enables the identification of community activities without a priori knowledge of taxonomic or functional composition. However, several technical challenges associated with the RNA preparation protocols can affect the relative representation of transcripts and data interpretation. Here, seven replicate metatranscriptomes from planktonic freshwater samples (Lake Lanier, USA) were sequenced to evaluate technical and biological reproducibility of different RNA extraction protocols. Organic versus bead-beating extraction showed significant enrichment for low versus high G + C% mRNA populations respectively. The sequencing data were best modelled by a negative binomial distribution to account for the large technical and biological variation observed. Despite the variation, the transcriptional activities of populations that persisted in year-round metagenomes from the same site consistently showed distinct expression patterns, reflecting different ecologic strategies and allowing us to test prevailing models on the contribution of both rare biosphere and abundant members to community activity. For instance, abundant members of the Verrucomicrobia phylum systematically showed low transcriptional activity compared with other abundant taxa. Our results provide a practical guide to the analysis of metatranscriptomes and advance understanding of the activity and ecology of abundant and rare members of temperate freshwater microbial communities.
Collapse
|
124
|
Functional optimization of gene clusters by combinatorial design and assembly. Nat Biotechnol 2014; 32:1241-9. [PMID: 25419741 DOI: 10.1038/nbt.3063] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 10/07/2014] [Indexed: 01/21/2023]
Abstract
Large microbial gene clusters encode useful functions, including energy utilization and natural product biosynthesis, but genetic manipulation of such systems is slow, difficult and complicated by complex regulation. We exploit the modularity of a refactored Klebsiella oxytoca nitrogen fixation (nif) gene cluster (16 genes, 103 parts) to build genetic permutations that could not be achieved by starting from the wild-type cluster. Constraint-based combinatorial design and DNA assembly are used to build libraries of radically different cluster architectures by varying part choice, gene order, gene orientation and operon occupancy. We construct 84 variants of the nifUSVWZM operon, 145 variants of the nifHDKY operon, 155 variants of the nifHDKYENJ operon and 122 variants of the complete 16-gene pathway. The performance and behavior of these variants are characterized by nitrogenase assay and strand-specific RNA sequencing (RNA-seq), and the results are incorporated into subsequent design cycles. We have produced a fully synthetic cluster that recovers 57% of wild-type activity. Our approach allows the performance of genetic parts to be quantified simultaneously in hundreds of genetic contexts. This parallelized design-build-test-learn cycle, which can access previously unattainable regions of genetic space, should provide a useful, fast tool for genetic optimization and hypothesis testing.
Collapse
|
125
|
Vikram A, Lipus D, Bibby K. Produced water exposure alters bacterial response to biocides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13001-13009. [PMID: 25279933 DOI: 10.1021/es5036915] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microbial activity during the holding and reuse of wastewater from hydraulic fracturing operations, termed produced water, may lead to issues with corrosion, sulfide release, and fouling. Biocides are applied to control biological activity, often with limited efficacy, which is typically attributed to chemical interactions with the produced water. However, it is unknown whether there is a biologically driven mechanism to biocide tolerance in produced water. Here, we demonstrate that produced water exposure results in an enhanced tolerance against the typically used biocide glutaraldehyde and increased susceptibility to the oxidative biocide hypochlorite in a native and a model bacteria and that this altered resistance is due to the salinity of the produced water. In addition, we elucidate the genetic response of the model organism Pseudomonas fluorescens to produced water exposure to provide a mechanistic interpretation of the altered biocide resistance. The RNA-seq data demonstrated the induction of genes involved in osmotic stress, energy production and conversion, membrane integrity, and protein transport following produced water exposure, which facilitates bacterial survival and alters biocide tolerance. Efforts to fundamentally understand biocide resistance mechanisms, which enable the optimization of biocide application, hold significant implications for greening of the fracturing process through encouraging produced water recycling. Specifically, these results suggest the necessity of optimizing biocide application at the level of individual shale plays, rather than historical experience, based upon produced water characteristics and salinity.
Collapse
Affiliation(s)
- Amit Vikram
- Department of Civil and Environmental Engineering, and §Department of Computational and Systems Biology, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | | | | |
Collapse
|
126
|
Alberti A, Belser C, Engelen S, Bertrand L, Orvain C, Brinas L, Cruaud C, Giraut L, Da Silva C, Firmo C, Aury JM, Wincker P. Comparison of library preparation methods reveals their impact on interpretation of metatranscriptomic data. BMC Genomics 2014; 15:912. [PMID: 25331572 PMCID: PMC4213505 DOI: 10.1186/1471-2164-15-912] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/13/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Metatranscriptomics is rapidly expanding our knowledge of gene expression patterns and pathway dynamics in natural microbial communities. However, to cope with the challenges of environmental sampling, various rRNA removal and cDNA synthesis methods have been applied in published microbial metatranscriptomic studies, making comparisons arduous. Whereas efficiency and biases introduced by rRNA removal methods have been relatively well explored, the impact of cDNA synthesis and library preparation on transcript abundance remains poorly characterized. The evaluation of potential biases introduced at this step is challenging for metatranscriptomic samples, where data analyses are complex, for example because of the lack of reference genomes. RESULTS Herein, we tested four cDNA synthesis and Illumina library preparation protocols on a simplified mixture of total RNA extracted from four bacterial species. In parallel, RNA from each microbe was tested individually. cDNA synthesis was performed on rRNA depleted samples using the TruSeq Stranded Total RNA Library Preparation, the SMARTer Stranded RNA-Seq, or the Ovation RNA-Seq V2 System. A fourth experiment was made directly from total RNA using the Encore Complete Prokaryotic RNA-Seq. The obtained sequencing data were analyzed for: library complexity and reproducibility; rRNA removal efficiency and bias; the number of genes detected; coverage uniformity; and the impact of protocols on expression biases. Significant variations, especially in organism representation and gene expression patterns, were observed among the four methods. TruSeq generally performed best, but is limited by its requirement of hundreds of nanograms of total RNA. The SMARTer method appears the best solution for smaller amounts of input RNA. For very low amounts of RNA, the Ovation System provides the only option; however, the observed biases emphasized its limitations for quantitative analyses. CONCLUSIONS cDNA and library preparation methods may affect the outcome and interpretation of metatranscriptomic data. The most appropriate method should be chosen based on the available quantity of input RNA and the quantitative or non-quantitative objectives of the study. When low amounts of RNA are available, as in most metatranscriptomic studies, the SMARTer method seems to be the best compromise to obtain reliable results. This study emphasized the difficulty in comparing metatranscriptomic studies performed using different methods.
Collapse
Affiliation(s)
- Adriana Alberti
- />CEA-Institut de Génomique, Genoscope, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706 F-91057, Evry Cedex, France
| | - Caroline Belser
- />CEA-Institut de Génomique, Genoscope, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706 F-91057, Evry Cedex, France
| | - Stéfan Engelen
- />CEA-Institut de Génomique, Genoscope, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706 F-91057, Evry Cedex, France
| | - Laurie Bertrand
- />CEA-Institut de Génomique, Genoscope, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706 F-91057, Evry Cedex, France
| | - Céline Orvain
- />CEA-Institut de Génomique, Genoscope, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706 F-91057, Evry Cedex, France
| | - Laura Brinas
- />CEA-Institut de Génomique, Genoscope, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706 F-91057, Evry Cedex, France
| | - Corinne Cruaud
- />CEA-Institut de Génomique, Genoscope, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706 F-91057, Evry Cedex, France
| | - Laurène Giraut
- />CEA-Institut de Génomique, Genoscope, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706 F-91057, Evry Cedex, France
| | - Corinne Da Silva
- />CEA-Institut de Génomique, Genoscope, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706 F-91057, Evry Cedex, France
| | - Cyril Firmo
- />CEA-Institut de Génomique, Genoscope, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706 F-91057, Evry Cedex, France
| | - Jean-Marc Aury
- />CEA-Institut de Génomique, Genoscope, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706 F-91057, Evry Cedex, France
| | - Patrick Wincker
- />CEA-Institut de Génomique, Genoscope, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706 F-91057, Evry Cedex, France
- />Université d’Evry, UMR 8030, CP5706 Evry, France
- />Centre National de la Recherche Scientifique (CNRS), UMR 8030, CP5706 Evry, France
| |
Collapse
|
127
|
Gagic D, Maclean PH, Li D, Attwood GT, Moon CD. Improving the genetic representation of rare taxa within complex microbial communities using
DNA
normalization methods. Mol Ecol Resour 2014; 15:464-76. [DOI: 10.1111/1755-0998.12321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 07/28/2014] [Accepted: 08/13/2014] [Indexed: 01/29/2023]
Affiliation(s)
- Dragana Gagic
- AgResearch Ltd Grasslands Research Centre Palmerston North New Zealand
| | | | - Dong Li
- AgResearch Ltd Grasslands Research Centre Palmerston North New Zealand
| | - Graeme T. Attwood
- AgResearch Ltd Grasslands Research Centre Palmerston North New Zealand
| | - Christina D. Moon
- AgResearch Ltd Grasslands Research Centre Palmerston North New Zealand
| |
Collapse
|
128
|
Abstract
BACKGROUND Metatranscriptomic sequencing is a highly sensitive bioassay of functional activity in a microbial community, providing complementary information to the metagenomic sequencing of the community. The acquisition of the metatranscriptomic sequences will enable us to refine the annotations of the metagenomes, and to study the gene activities and their regulation in complex microbial communities and their dynamics. RESULTS In this paper, we present TransGeneScan, a software tool for finding genes in assembled transcripts from metatranscriptomic sequences. By incorporating several features of metatranscriptomic sequencing, including strand-specificity, short intergenic regions, and putative antisense transcripts into a Hidden Markov Model, TranGeneScan can predict a sense transcript containing one or multiple genes (in an operon) or an antisense transcript. CONCLUSION We tested TransGeneScan on a mock metatranscriptomic data set containing three known bacterial genomes. The results showed that TranGeneScan performs better than metagenomic gene finders (MetaGeneMark and FragGeneScan) on predicting protein coding genes in assembled transcripts, and achieves comparable or even higher accuracy than gene finders for microbial genomes (Glimmer and GeneMark). These results imply, with the assistance of metatranscriptomic sequencing, we can obtain a broad and precise picture about the genes (and their functions) in a microbial community. AVAILABILITY TransGeneScan is available as open-source software on SourceForge at https://sourceforge.net/projects/transgenescan/.
Collapse
Affiliation(s)
- Wazim Mohammed Ismail
- School of Informatics and Computing, Indiana University, 150 S. Woodlawn Avenue, IN 47401 Bloomington, USA
| | - Yuzhen Ye
- School of Informatics and Computing, Indiana University, 150 S. Woodlawn Avenue, IN 47401 Bloomington, USA
| | - Haixu Tang
- School of Informatics and Computing, Indiana University, 150 S. Woodlawn Avenue, IN 47401 Bloomington, USA
| |
Collapse
|
129
|
Slinger BL, Deiorio-Haggar K, Anthony JS, Gilligan MM, Meyer MM. Discovery and validation of novel and distinct RNA regulators for ribosomal protein S15 in diverse bacterial phyla. BMC Genomics 2014; 15:657. [PMID: 25104606 PMCID: PMC4137082 DOI: 10.1186/1471-2164-15-657] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/30/2014] [Indexed: 11/25/2022] Open
Abstract
Background Autogenous cis-regulators of ribosomal protein synthesis play a critical role in maintaining the stoichiometry of ribosome components. Structured portions within an mRNA transcript typically interact with specific ribosomal proteins to prevent expression of the entire operon, thus balancing levels of ribosomal proteins across transcriptional units. Three distinct RNA structures from different bacterial phyla have demonstrated interactions with S15 to regulate gene expression; however, these RNAs are distributed across a small fraction of bacterial diversity. Results We used comparative genomics in combination with analysis of existing transcriptomic data to identify three novel putative RNA structures associated with the S15 coding region in microbial genomes. These structures are completely distinct from those previously published and encompass potential regulatory regions including ribosome-binding sites. To validate the biological relevance of our findings, we demonstrate that an example of the Alphaproteobacterial RNA from Rhizobium radiobacter specifically interacts with S15 in vitro, and allows in vivo regulation of gene expression in an E. coli reporter system. In addition, structural probing and nuclease protection assays confirm the predicted secondary structure and indicate nucleotides required for protein interaction. Conclusions This work illustrates the importance of integrating comparative genomic and transcriptomic approaches during de novo ncRNA identification and reveals a diversity of distinct natural RNA regulators that support analogous biological functions. Furthermore, this work indicates that many additional uncharacterized RNA regulators likely exist within bacterial genomes and that the plasticity of RNA structure allows unique, and likely independently derived, solutions to the same biological problem. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-657) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Michelle M Meyer
- Biology Department, Boston College, Chestnut Hill, MA 02135, USA.
| |
Collapse
|
130
|
Abstract
Recent advances in meta-omics and particularly metatranscriptomic approaches have enabled detailed studies of the structure and function of microbial communities in many ecosystems. Molecular analyses of peat soils, ecosystems important to the global carbon balance, are still challenging due to the presence of coextracted substances that inhibit enzymes used in downstream applications. We sampled layers at different depths from two high-Arctic peat soils in Svalbard for metatranscriptome preparation. Here we show that enzyme inhibition in the preparation of metatranscriptomic libraries can be circumvented by linear amplification of diluted template RNA. A comparative analysis of mRNA-enriched and nonenriched metatranscriptomes showed that mRNA enrichment resulted in a 2-fold increase in the relative abundance of mRNA but biased the relative distribution of mRNA. The relative abundance of transcripts for cellulose degradation decreased with depth, while the transcripts for hemicellulose debranching increased, indicating that the polysaccharide composition of the peat was different in the deeper and older layers. Taxonomic annotation revealed that Actinobacteria and Bacteroidetes were the dominating polysaccharide decomposers. The relative abundances of 16S rRNA and mRNA transcripts of methanogenic Archaea increased substantially with depth. Acetoclastic methanogenesis was the dominating pathway, followed by methanogenesis from formate. The relative abundances of 16S rRNA and mRNA assigned to the methanotrophic Methylococcaceae, primarily Methylobacter, increased with depth. In conclusion, linear amplification of total RNA and deep sequencing constituted the preferred method for metatranscriptomic preparation to enable high-resolution functional and taxonomic analyses of the active microbiota in Arctic peat soil.
Collapse
|
131
|
Wang H, Tomasch J, Jarek M, Wagner-Döbler I. A dual-species co-cultivation system to study the interactions between Roseobacters and dinoflagellates. Front Microbiol 2014; 5:311. [PMID: 25009539 PMCID: PMC4069834 DOI: 10.3389/fmicb.2014.00311] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 06/06/2014] [Indexed: 11/29/2022] Open
Abstract
Some microalgae in nature live in symbiosis with microorganisms that can enhance or inhibit growth, thus influencing the dynamics of phytoplankton blooms. In spite of the great ecological importance of these interactions, very few defined laboratory systems are available to study them in detail. Here we present a co-cultivation system consisting of the toxic phototrophic dinoflagellate Prorocentrum minimum and the photoheterotrophic alphaproteobacterium Dinoroseobacter shibae. In a mineral medium lacking a carbon source, vitamins for the bacterium and the essential vitamin B12 for the dinoflagellate, growth dynamics reproducibly went from a mutualistic phase, where both algae and bacteria grow, to a pathogenic phase, where the algae are killed by the bacteria. The data show a “Jekyll and Hyde” lifestyle that had been proposed but not previously demonstrated. We used RNAseq and microarray analysis to determine which genes of D. shibae are transcribed and differentially expressed in a light dependent way at an early time-point of the co-culture when the bacterium grows very slowly. Enrichment of bacterial mRNA for transcriptome analysis was optimized, but none of the available methods proved capable of removing dinoflagellate ribosomal RNA completely. RNAseq showed that a phasin encoding gene (phaP1) which is part of the polyhydroxyalkanoate (PHA) metabolism operon represented approximately 10% of all transcripts. Five genes for aerobic anoxygenic photosynthesis were down-regulated in the light, indicating that the photosynthesis apparatus was functional. A betaine-choline-carnitine-transporter (BCCT) that may be used for dimethylsulfoniopropionate (DMSP) uptake was the highest up-regulated gene in the light. The data suggest that at this early mutualistic phase of the symbiosis, PHA degradation might be the main carbon and energy source of D. shibae, supplemented in the light by degradation of DMSP and aerobic anoxygenic photosynthesis.
Collapse
Affiliation(s)
- Hui Wang
- Helmholtz-Centre for Infection Research Braunschweig, Germany
| | - Jürgen Tomasch
- Helmholtz-Centre for Infection Research Braunschweig, Germany
| | - Michael Jarek
- Helmholtz-Centre for Infection Research Braunschweig, Germany
| | | |
Collapse
|
132
|
Archer SK, Shirokikh NE, Preiss T. Selective and flexible depletion of problematic sequences from RNA-seq libraries at the cDNA stage. BMC Genomics 2014; 15:401. [PMID: 24886553 PMCID: PMC4045971 DOI: 10.1186/1471-2164-15-401] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/16/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A major hurdle to transcriptome profiling by deep-sequencing technologies is that abundant transcripts, such as rRNAs, can overwhelm the libraries, severely reducing transcriptome-wide coverage. Methods for depletion of such unwanted sequences typically require treatment of RNA samples prior to library preparation, are costly and not suited to unusual species and applications. Here we describe Probe-Directed Degradation (PDD), an approach that employs hybridisation to DNA oligonucleotides at the single-stranded cDNA library stage and digestion with Duplex-Specific Nuclease (DSN). RESULTS Targeting Saccharomyces cerevisiae rRNA sequences in Illumina HiSeq libraries generated by the split adapter method we show that PDD results in efficient removal of rRNA. The probes generate extended zones of depletion as a function of library insert size and the requirements for DSN cleavage. Using intact total RNA as starting material, probes can be spaced at the minimum anticipated library size minus 20 nucleotides to achieve continuous depletion. No off-target bias is detectable when comparing PDD-treated with untreated libraries. We further provide a bioinformatics tool to design suitable PDD probe sets. CONCLUSION We find that PDD is a rapid procedure that results in effective and specific depletion of unwanted sequences from deep-sequencing libraries. Because PDD acts at the cDNA stage, handling of fragile RNA samples can be minimised and it should further be feasible to remediate existing libraries. Importantly, PDD preserves the original RNA fragment boundaries as is required for nucleotide-resolution footprinting or base-cleavage studies. Finally, as PDD utilises unmodified DNA oligonucleotides it can provide a low-cost option for large-scale projects, or be flexibly customised to suit different depletion targets, sample types and organisms.
Collapse
Affiliation(s)
| | | | - Thomas Preiss
- Genome Biology Department, The John Curtin School of Medical Research (JCSMR), The Australian National University, Acton, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
133
|
Hierarchical expression of genes controlled by the Bacillus subtilis global regulatory protein CodY. Proc Natl Acad Sci U S A 2014; 111:8227-32. [PMID: 24843172 DOI: 10.1073/pnas.1321308111] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Global regulators that bind strategic metabolites allow bacteria to adapt rapidly to dynamic environments by coordinating the expression of many genes. We report an approach for determining gene regulation hierarchy using the regulon of the Bacillus subtilis global regulatory protein CodY as proof of principle. In theory, this approach can be used to measure the dynamics of any bacterial transcriptional regulatory network that is affected by interaction with a ligand. In B. subtilis, CodY controls dozens of genes, but the threshold activities of CodY required to regulate each gene are unknown. We hypothesized that targets of CodY are differentially regulated based on varying affinity for the protein's many binding sites. We used RNA sequencing to determine the transcription profiles of B. subtilis strains expressing mutant CodY proteins with different levels of residual activity. In parallel, we quantified intracellular metabolites connected to central metabolism. Strains producing CodY variants F71Y, R61K, and R61H retained varying degrees of partial activity relative to the WT protein, leading to gene-specific, differential alterations in transcript abundance for the 223 identified members of the CodY regulon. Using liquid chromatography coupled to MS, we detected significant increases in branched-chain amino acids and intermediates of arginine, proline, and glutamate metabolism, as well as decreases in pyruvate and glycerate as CodY activity decreased. We conclude that a spectrum of CodY activities leads to programmed regulation of gene expression and an apparent rerouting of carbon and nitrogen metabolism, suggesting that during changes in nutrient availability, CodY prioritizes the expression of specific pathways.
Collapse
|
134
|
Abstract
Although the composition of the human microbiome is now well-studied, the microbiota's >8 million genes and their regulation remain largely uncharacterized. This knowledge gap is in part because of the difficulty of acquiring large numbers of samples amenable to functional studies of the microbiota. We conducted what is, to our knowledge, one of the first human microbiome studies in a well-phenotyped prospective cohort incorporating taxonomic, metagenomic, and metatranscriptomic profiling at multiple body sites using self-collected samples. Stool and saliva were provided by eight healthy subjects, with the former preserved by three different methods (freezing, ethanol, and RNAlater) to validate self-collection. Within-subject microbial species, gene, and transcript abundances were highly concordant across sampling methods, with only a small fraction of transcripts (<5%) displaying between-method variation. Next, we investigated relationships between the oral and gut microbial communities, identifying a subset of abundant oral microbes that routinely survive transit to the gut, but with minimal transcriptional activity there. Finally, systematic comparison of the gut metagenome and metatranscriptome revealed that a substantial fraction (41%) of microbial transcripts were not differentially regulated relative to their genomic abundances. Of the remainder, consistently underexpressed pathways included sporulation and amino acid biosynthesis, whereas up-regulated pathways included ribosome biogenesis and methanogenesis. Across subjects, metatranscriptional profiles were significantly more individualized than DNA-level functional profiles, but less variable than microbial composition, indicative of subject-specific whole-community regulation. The results thus detail relationships between community genomic potential and gene expression in the gut, and establish the feasibility of metatranscriptomic investigations in subject-collected and shipped samples.
Collapse
|
135
|
Intracellular concentrations of 65 species of transcription factors with known regulatory functions in Escherichia coli. J Bacteriol 2014; 196:2718-27. [PMID: 24837290 DOI: 10.1128/jb.01579-14] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The expression pattern of the Escherichia coli genome is controlled in part by regulating the utilization of a limited number of RNA polymerases among a total of its approximately 4,600 genes. The distribution pattern of RNA polymerase changes from modulation of two types of protein-protein interactions: the interaction of core RNA polymerase with seven species of the sigma subunit for differential promoter recognition and the interaction of RNA polymerase holoenzyme with about 300 different species of transcription factors (TFs) with regulatory functions. We have been involved in the systematic search for the target promoters recognized by each sigma factor and each TF using the newly developed Genomic SELEX system. In parallel, we developed the promoter-specific (PS)-TF screening system for identification of the whole set of TFs involved in regulation of each promoter. Understanding the regulation of genome transcription also requires knowing the intracellular concentrations of the sigma subunits and TFs under various growth conditions. This report describes the intracellular levels of 65 species of TF with known function in E. coli K-12 W3110 at various phases of cell growth and at various temperatures. The list of intracellular concentrations of the sigma factors and TFs provides a community resource for understanding the transcription regulation of E. coli under various stressful conditions in nature.
Collapse
|
136
|
Morgan XC, Huttenhower C. Meta'omic analytic techniques for studying the intestinal microbiome. Gastroenterology 2014; 146:1437-1448.e1. [PMID: 24486053 DOI: 10.1053/j.gastro.2014.01.049] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/03/2014] [Accepted: 01/24/2014] [Indexed: 12/16/2022]
Abstract
Nucleotide sequencing has become increasingly common and affordable, and is now a vital tool for studies of the human microbiome. Comprehensive microbial community surveys such as MetaHit and the Human Microbiome Project have described the composition and molecular functional profile of the healthy (normal) intestinal microbiome. This knowledge will increase our ability to analyze host and microbial DNA (genome) and RNA (transcriptome) sequences. Bioinformatic and statistical tools then can be used to identify dysbioses that might cause disease, and potential treatments. Analyses that identify perturbations in specific molecules can leverage thousands of culture-based isolate genomes to contextualize culture-independent sequences, or may integrate sequence data with whole-community functional assays such as metaproteomic or metabolomic analyses. We review the state of available systems-level models for studies of the intestinal microbiome, along with analytic techniques and tools that can be used to determine its functional capabilities in healthy and unhealthy individuals.
Collapse
Affiliation(s)
- Xochitl C Morgan
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts; The Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts; The Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
137
|
Amman F, Wolfinger MT, Lorenz R, Hofacker IL, Stadler PF, Findeiß S. TSSAR: TSS annotation regime for dRNA-seq data. BMC Bioinformatics 2014; 15:89. [PMID: 24674136 PMCID: PMC4098767 DOI: 10.1186/1471-2105-15-89] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 03/24/2014] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Differential RNA sequencing (dRNA-seq) is a high-throughput screening technique designed to examine the architecture of bacterial operons in general and the precise position of transcription start sites (TSS) in particular. Hitherto, dRNA-seq data were analyzed by visualizing the sequencing reads mapped to the reference genome and manually annotating reliable positions. This is very labor intensive and, due to the subjectivity, biased. RESULTS Here, we present TSSAR, a tool for automated de novo TSS annotation from dRNA-seq data that respects the statistics of dRNA-seq libraries. TSSAR uses the premise that the number of sequencing reads starting at a certain genomic position within a transcriptional active region follows a Poisson distribution with a parameter that depends on the local strength of expression. The differences of two dRNA-seq library counts thus follow a Skellam distribution. This provides a statistical basis to identify significantly enriched primary transcripts.We assessed the performance by analyzing a publicly available dRNA-seq data set using TSSAR and two simple approaches that utilize user-defined score cutoffs. We evaluated the power of reproducing the manual TSS annotation. Furthermore, the same data set was used to reproduce 74 experimentally validated TSS in H. pylori from reliable techniques such as RACE or primer extension. Both analyses showed that TSSAR outperforms the static cutoff-dependent approaches. CONCLUSIONS Having an automated and efficient tool for analyzing dRNA-seq data facilitates the use of the dRNA-seq technique and promotes its application to more sophisticated analysis. For instance, monitoring the plasticity and dynamics of the transcriptomal architecture triggered by different stimuli and growth conditions becomes possible.The main asset of a novel tool for dRNA-seq analysis that reaches out to a broad user community is usability. As such, we provide TSSAR both as intuitive RESTful Web service ( http://rna.tbi.univie.ac.at/TSSAR) together with a set of post-processing and analysis tools, as well as a stand-alone version for use in high-throughput dRNA-seq data analysis pipelines.
Collapse
Affiliation(s)
- Fabian Amman
- Bioinformatics Group, Department of Computer Science and the Interdisciplinary Center for Bioinformatic, University of Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
138
|
Duran-Pinedo AE, Chen T, Teles R, Starr JR, Wang X, Krishnan K, Frias-Lopez J. Community-wide transcriptome of the oral microbiome in subjects with and without periodontitis. ISME JOURNAL 2014; 8:1659-72. [PMID: 24599074 DOI: 10.1038/ismej.2014.23] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/10/2014] [Accepted: 01/20/2014] [Indexed: 01/05/2023]
Abstract
Despite increasing knowledge on phylogenetic composition of the human microbiome, our understanding of the in situ activities of the organisms in the community and their interactions with each other and with the environment remains limited. Characterizing gene expression profiles of the human microbiome is essential for linking the role of different members of the bacterial communities in health and disease. The oral microbiome is one of the most complex microbial communities in the human body and under certain circumstances, not completely understood, the healthy microbial community undergoes a transformation toward a pathogenic state that gives rise to periodontitis, a polymicrobial inflammatory disease. We report here the in situ genome-wide transcriptome of the subgingival microbiome in six periodontally healthy individuals and seven individuals with periodontitis. The overall picture of metabolic activities showed that iron acquisition, lipopolysaccharide synthesis and flagellar synthesis were major activities defining disease. Unexpectedly, the vast majority of virulence factors upregulated in subjects with periodontitis came from organisms that are not considered major periodontal pathogens. One of the organisms whose gene expression profile was characterized was the uncultured candidate division TM7, showing an upregulation of putative virulence factors in the diseased community. These data enhance understanding of the core activities that are characteristic of periodontal disease as well as the role that individual organisms in the subgingival community play in periodontitis.
Collapse
Affiliation(s)
| | - Tsute Chen
- 1] Department of Microbiology, Forsyth Institute, Cambridge, MA, USA [2] Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
| | - Ricardo Teles
- 1] Department of Microbiology, Forsyth Institute, Cambridge, MA, USA [2] Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
| | - Jacqueline R Starr
- 1] Department of Microbiology, Forsyth Institute, Cambridge, MA, USA [2] Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
| | - Xiaoshan Wang
- 1] Department of Microbiology, Forsyth Institute, Cambridge, MA, USA [2] Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
| | | | - Jorge Frias-Lopez
- 1] Department of Microbiology, Forsyth Institute, Cambridge, MA, USA [2] Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
| |
Collapse
|
139
|
Shimada T, Yamazaki Y, Tanaka K, Ishihama A. The whole set of constitutive promoters recognized by RNA polymerase RpoD holoenzyme of Escherichia coli. PLoS One 2014; 9:e90447. [PMID: 24603758 PMCID: PMC3946193 DOI: 10.1371/journal.pone.0090447] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/01/2014] [Indexed: 01/08/2023] Open
Abstract
The promoter selectivity of Escherichia coli RNA polymerase is determined by the sigma subunit with promoter recognition activity. The model prokaryote Escherichia coli contains seven species of the sigma subunit, each recognizing a specific set of promoters. The major sigma subunit, sigma-70 encoded by rpoD, plays a major role in transcription of growth-related genes. Concomitant with the increase in detection of promoters functioning in vivo under various stressful conditions, the variation is expanding in the consensus sequence of RpoD promoters. In order to identify the canonical sequence of "constitutive promoters" that are recognized by the RNA polymerase holoenzyme containing RpoD sigma in the absence of supporting transcription factors, an in vitro mixed transcription assay was carried out using a whole set of variant promoters, each harboring one base replacement, within the model promoter with the conserved -35 and -10 sequences of RpoD promoters. The consensus sequences, TTGACA(-35) and TATAAT(-10), were identified to be ideal for the maximum level of open complex formation and the highest rate of promoter opening, respectively. For identification of the full range of constitutive promoters on the E. coli genome, a total of 2,701 RpoD holoenzyme-binding sites were identified by Genomic SELEX screening, and using the reconfirmed consensus promoter sequence, a total of maximum 669 constitutive promoters were identified, implying that the majority of hitherto identified promoters represents the TF-dependent "inducible promoters". One unique feature of the constitutive promoters is the high level of promoter sequence conservation, about 85% carrying five-out-of-six agreements with -35 or -10 consensus sequence. The list of constitutive promoters provides the community resource toward estimation of the inducible promoters that operate under various stressful conditions in nature.
Collapse
Affiliation(s)
- Tomohiro Shimada
- Department of Frontier Biosience, Hosei University, Koganai, Tokyo, Japan
- Micro-Nano Technology Research Center, Hosei University, Koganai, Tokyo, Japan
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuda, Yokohama, Japan
| | - Yukiko Yamazaki
- Genetics Strains Research Institute, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kan Tanaka
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuda, Yokohama, Japan
| | - Akira Ishihama
- Department of Frontier Biosience, Hosei University, Koganai, Tokyo, Japan
- Micro-Nano Technology Research Center, Hosei University, Koganai, Tokyo, Japan
| |
Collapse
|
140
|
Bongers G, Pacer ME, Geraldino TH, Chen L, He Z, Hashimoto D, Furtado GC, Ochando J, Kelley KA, Clemente JC, Merad M, van Bakel H, Lira SA. Interplay of host microbiota, genetic perturbations, and inflammation promotes local development of intestinal neoplasms in mice. ACTA ACUST UNITED AC 2014; 211:457-72. [PMID: 24590763 PMCID: PMC3949565 DOI: 10.1084/jem.20131587] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The preferential localization of some neoplasms, such as serrated polyps (SPs), in specific areas of the intestine suggests that nongenetic factors may be important for their development. To test this hypothesis, we took advantage of transgenic mice that expressed HB-EGF throughout the intestine but developed SPs only in the cecum. Here we show that a host-specific microbiome was associated with SPs and that alterations of the microbiota induced by antibiotic treatment or by embryo transfer rederivation markedly inhibited the formation of SPs in the cecum. Mechanistically, development of SPs was associated with a local decrease in epithelial barrier function, bacterial invasion, production of antimicrobials, and increased expression of several inflammatory factors such as IL-17, Cxcl2, Tnf-α, and IL-1. Increased numbers of neutrophils were found within the SPs, and their depletion significantly reduced polyp growth. Together these results indicate that nongenetic factors contribute to the development of SPs and suggest that the development of these intestinal neoplasms in the cecum is driven by the interplay between genetic changes in the host, an inflammatory response, and a host-specific microbiota.
Collapse
|
141
|
Rodríguez Cubillos AE, Perlaza-Jiménez L, Bernal Giraldo AJ. RNA-Seq Data Analysis in Prokaryotes: A Review for Non-experts. ACTA BIOLÓGICA COLOMBIANA 2014. [DOI: 10.15446/abc.v19n2.41010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
142
|
Zhu L, Xu Y, Ferretti JJ, Kreth J. Probing oral microbial functionality--expression of spxB in plaque samples. PLoS One 2014; 9:e86685. [PMID: 24489768 PMCID: PMC3906080 DOI: 10.1371/journal.pone.0086685] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/17/2013] [Indexed: 11/19/2022] Open
Abstract
The Human Oral Microbiome Database (HOMD) provides an extensive collection of genome sequences from oral bacteria. The sequence information is a static snapshot of the microbial potential of the so far sequenced species. A major challenge is to connect the microbial potential encoded in the metagenome to an actual function in the in vivo oral biofilm. In the present study we took a reductionist approach and identified a considerably conserved metabolic gene, spxB to be encoded by a majority of oral streptococci using the HOMD metagenome information. spxB encodes the pyruvate oxidase responsible for the production of growth inhibiting amounts of hydrogen peroxide (H2O2) and has previously been shown as important in the interspecies competition in the oral biofilm. Here we demonstrate a strong correlation of H2O2 production and the presence of the spxB gene in dental plaque. Using Real-Time RT PCR we show that spxB is expressed in freshly isolated human plaque samples from several donors and that the expression is relative constant when followed over time in one individual. This is the first demonstration of an oral community encoded gene expressed in vivo suggesting a functional role of spxB in oral biofilm physiology. This also demonstrates a possible strategy to connect the microbial potential of the metagenome to its functionality in future studies by identifying similar highly conserved genes in the oral microbial community.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Periodontics, College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Yifan Xu
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Surgical Oncology, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Joseph J. Ferretti
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Jens Kreth
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Oral Biology, College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
143
|
Biller SJ, Schubotz F, Roggensack SE, Thompson AW, Summons RE, Chisholm SW. Bacterial vesicles in marine ecosystems. Science 2014; 343:183-6. [PMID: 24408433 DOI: 10.1126/science.1243457] [Citation(s) in RCA: 344] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many heterotrophic bacteria are known to release extracellular vesicles, facilitating interactions between cells and their environment from a distance. Vesicle production has not been described in photoautotrophs, however, and the prevalence and characteristics of vesicles in natural ecosystems is unknown. Here, we report that cultures of Prochlorococcus, a numerically dominant marine cyanobacterium, continuously release lipid vesicles containing proteins, DNA, and RNA. We also show that vesicles carrying DNA from diverse bacteria are abundant in coastal and open-ocean seawater samples. Prochlorococcus vesicles can support the growth of heterotrophic bacterial cultures, which implicates these structures in marine carbon flux. The ability of vesicles to deliver diverse compounds in discrete packages adds another layer of complexity to the flow of information, energy, and biomolecules in marine microbial communities.
Collapse
Affiliation(s)
- Steven J Biller
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
144
|
O'Neil D, Glowatz H, Schlumpberger M. Ribosomal RNA depletion for efficient use of RNA-seq capacity. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2014; Chapter 4:Unit 4.19. [PMID: 23821444 DOI: 10.1002/0471142727.mb0419s103] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ribosomal RNA (rRNA) is the most highly abundant component of RNA, comprising the majority (>80% to 90%) of the molecules present in a total RNA sample. Depletion of this rRNA fraction is desirable prior to performing an RNA-seq reaction, so that sequencing capacity can be focused on more informative parts of the transcriptome. This unit describes an rRNA depletion method based on selective hybridization of oligonucleotides to rRNA, recognition with a hybrid-specific antibody, and removal of the antibody-hybrid complex on magnetic beads.
Collapse
|
145
|
Nydam SD, Shah DH, Call DR. Transcriptome analysis of Vibrio parahaemolyticus in type III secretion system 1 inducing conditions. Front Cell Infect Microbiol 2014; 4:1. [PMID: 24478989 PMCID: PMC3895804 DOI: 10.3389/fcimb.2014.00001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/02/2014] [Indexed: 12/16/2022] Open
Abstract
Vibrio parahaemolyticus is an emerging bacterial pathogen capable of causing inflammatory gastroenteritis, wound infections, and septicemia. As a food-borne illness, infection is most frequently associated with the consumption of raw or undercooked seafood, particularly shellfish. It is the primary cause of Vibrio-associated food-borne illness in the United States and the leading cause of food-borne illness in Japan. The larger of its two chromosomes harbors a set of genes encoding type III section system 1 (T3SS1), a virulence factor present in all V. parahaemolyticus strains that is similar to the Yersinia ysc T3SS. T3SS1 translocates effector proteins into eukaryotic cells where they induce changes to cellular physiology and modulate host-pathogen interactions. T3SS1 is also responsible for cytotoxicity toward several different cultured cell lines as well as mortality in a mouse model. Herein we used RNA-seq to obtain global transcriptome patterns of V. parahaemolyticus under conditions that either induce [growth in Dulbecco's Modified Eagle Medium (DMEM) media, in trans expression of transcriptional regulator exsA] or repress T3SS1 expression (growth in LB-S media, in trans exsD expression) and during infection of HeLa cells over time. Comparative transcriptomic analysis demonstrated notable differences in the expression patterns under inducing conditions and was also used to generate an expression profile of V. parahaemolyticus during infection of HeLa cells. In addition, we identified several new genes that are associated with T3SS1 expression and may warrant further study.
Collapse
Affiliation(s)
- Seth D Nydam
- Department of Veterinary Microbiology and Pathology, Washington State University Pullman, WA, USA ; Paul G. Allen School for Global Animal Health, Washington State University Pullman, WA, USA
| | - Devendra H Shah
- Department of Veterinary Microbiology and Pathology, Washington State University Pullman, WA, USA ; Paul G. Allen School for Global Animal Health, Washington State University Pullman, WA, USA
| | - Douglas R Call
- Department of Veterinary Microbiology and Pathology, Washington State University Pullman, WA, USA ; Paul G. Allen School for Global Animal Health, Washington State University Pullman, WA, USA
| |
Collapse
|
146
|
Bhagwat AA, Ying ZI, Smith A. Evaluation of Ribosomal RNA Removal Protocols for <i>Salmonella</i> RNA-Seq Projects. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/aim.2014.41006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
147
|
Fodor A. Utilizing “Omics” Tools to Study the Complex Gut Ecosystem. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 817:25-38. [DOI: 10.1007/978-1-4939-0897-4_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
148
|
|
149
|
Humphrys MS, Creasy T, Sun Y, Shetty AC, Chibucos MC, Drabek EF, Fraser CM, Farooq U, Sengamalay N, Ott S, Shou H, Bavoil PM, Mahurkar A, Myers GSA. Simultaneous transcriptional profiling of bacteria and their host cells. PLoS One 2013; 8:e80597. [PMID: 24324615 PMCID: PMC3851178 DOI: 10.1371/journal.pone.0080597] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/14/2013] [Indexed: 02/06/2023] Open
Abstract
We developed an RNA-Seq-based method to simultaneously capture prokaryotic and eukaryotic expression profiles of cells infected with intracellular bacteria. As proof of principle, this method was applied to Chlamydia trachomatis-infected epithelial cell monolayers in vitro, successfully obtaining transcriptomes of both C. trachomatis and the host cells at 1 and 24 hours post-infection. Chlamydiae are obligate intracellular bacterial pathogens that cause a range of mammalian diseases. In humans chlamydiae are responsible for the most common sexually transmitted bacterial infections and trachoma (infectious blindness). Disease arises by adverse host inflammatory reactions that induce tissue damage & scarring. However, little is known about the mechanisms underlying these outcomes. Chlamydia are genetically intractable as replication outside of the host cell is not yet possible and there are no practical tools for routine genetic manipulation, making genome-scale approaches critical. The early timeframe of infection is poorly understood and the host transcriptional response to chlamydial infection is not well defined. Our simultaneous RNA-Seq method was applied to a simplified in vitro model of chlamydial infection. We discovered a possible chlamydial strategy for early iron acquisition, putative immune dampening effects of chlamydial infection on the host cell, and present a hypothesis for Chlamydia-induced fibrotic scarring through runaway positive feedback loops. In general, simultaneous RNA-Seq helps to reveal the complex interplay between invading bacterial pathogens and their host mammalian cells and is immediately applicable to any bacteria/host cell interaction.
Collapse
Affiliation(s)
- Michael S. Humphrys
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Todd Creasy
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Yezhou Sun
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Amol C. Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Marcus C. Chibucos
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Elliott F. Drabek
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Claire M. Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Umar Farooq
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Naomi Sengamalay
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Sandy Ott
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Huizhong Shou
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Patrik M. Bavoil
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, United States of America
| | - Anup Mahurkar
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Garry S. A. Myers
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
150
|
Investigating the responses of Cronobacter sakazakii to garlic-drived organosulfur compounds: a systematic study of pathogenic-bacterium injury by use of high-throughput whole-transcriptome sequencing and confocal micro-raman spectroscopy. Appl Environ Microbiol 2013; 80:959-71. [PMID: 24271174 DOI: 10.1128/aem.03460-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We present the results of a study using high-throughput whole-transcriptome sequencing (RNA-seq) and vibrational spectroscopy to characterize and fingerprint pathogenic-bacterium injury under conditions of unfavorable stress. Two garlic-derived organosulfur compounds were found to be highly effective antimicrobial compounds against Cronobacter sakazakii, a leading pathogen associated with invasive infection of infants and causing meningitis, necrotizing entercolitis, and bacteremia. RNA-seq shows changes in gene expression patterns and transcriptomic response, while confocal micro-Raman spectroscopy characterizes macromolecular changes in the bacterial cell resulting from this chemical stress. RNA-seq analyses showed that the bacterial response to ajoene differed from the response to diallyl sulfide. Specifically, ajoene caused downregulation of motility-related genes, while diallyl sulfide treatment caused an increased expression of cell wall synthesis genes. Confocal micro-Raman spectroscopy revealed that the two compounds appear to have the same phase I antimicrobial mechanism of binding to thiol-containing proteins/enzymes in bacterial cells generating a disulfide stretching band but different phase II antimicrobial mechanisms, showing alterations in the secondary structures of proteins in two different ways. Diallyl sulfide primarily altered the α-helix and β-sheet, as reflected in changes in amide I, while ajoene altered the structures containing phenylalanine and tyrosine. Bayesian probability analysis validated the ability of principal component analysis to differentiate treated and control C. sakazakii cells. Scanning electron microscopy confirmed cell injury, showing significant morphological variations in cells following treatments by these two compounds. Findings from this study aid in the development of effective intervention strategies to reduce the risk of C. sakazakii contamination in the food production environment and on food contact surfaces, reducing the risks to susceptible consumers.
Collapse
|