101
|
Chunarkar-Patil P, Kaleem M, Mishra R, Ray S, Ahmad A, Verma D, Bhayye S, Dubey R, Singh HN, Kumar S. Anticancer Drug Discovery Based on Natural Products: From Computational Approaches to Clinical Studies. Biomedicines 2024; 12:201. [PMID: 38255306 PMCID: PMC10813144 DOI: 10.3390/biomedicines12010201] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/01/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Globally, malignancies cause one out of six mortalities, which is a serious health problem. Cancer therapy has always been challenging, apart from major advances in immunotherapies, stem cell transplantation, targeted therapies, hormonal therapies, precision medicine, and palliative care, and traditional therapies such as surgery, radiation therapy, and chemotherapy. Natural products are integral to the development of innovative anticancer drugs in cancer research, offering the scientific community the possibility of exploring novel natural compounds against cancers. The role of natural products like Vincristine and Vinblastine has been thoroughly implicated in the management of leukemia and Hodgkin's disease. The computational method is the initial key approach in drug discovery, among various approaches. This review investigates the synergy between natural products and computational techniques, and highlights their significance in the drug discovery process. The transition from computational to experimental validation has been highlighted through in vitro and in vivo studies, with examples such as betulinic acid and withaferin A. The path toward therapeutic applications have been demonstrated through clinical studies of compounds such as silvestrol and artemisinin, from preclinical investigations to clinical trials. This article also addresses the challenges and limitations in the development of natural products as potential anti-cancer drugs. Moreover, the integration of deep learning and artificial intelligence with traditional computational drug discovery methods may be useful for enhancing the anticancer potential of natural products.
Collapse
Affiliation(s)
- Pritee Chunarkar-Patil
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune 411046, Maharashtra, India
| | - Mohammed Kaleem
- Department of Pharmacology, Dadasaheb Balpande, College of Pharmacy, Nagpur 440037, Maharashtra, India;
| | - Richa Mishra
- Department of Computer Engineering, Parul University, Ta. Waghodia, Vadodara 391760, Gujarat, India;
| | - Subhasree Ray
- Department of Life Science, Sharda School of Basic Sciences and Research, Greater Noida 201310, Uttar Pradesh, India
| | - Aftab Ahmad
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pharmacovigilance and Medication Safety Unit, Center of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Devvret Verma
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarkhand, India;
| | - Sagar Bhayye
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune 411046, Maharashtra, India
| | - Rajni Dubey
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Himanshu Narayan Singh
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sanjay Kumar
- Biological and Bio-Computational Lab, Department of Life Science, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| |
Collapse
|
102
|
Wang M, Yu F, Zhang Y, Li P. Programmed cell death in tumor immunity: mechanistic insights and clinical implications. Front Immunol 2024; 14:1309635. [PMID: 38283351 PMCID: PMC10811021 DOI: 10.3389/fimmu.2023.1309635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Programmed cell death (PCD) is an evolutionarily conserved mechanism of cell suicide that is controlled by various signaling pathways. PCD plays an important role in a multitude of biological processes, such as cell turnover, development, tissue homeostasis and immunity. Some forms of PCD, including apoptosis, autophagy-dependent cell death, pyroptosis, ferroptosis and necroptosis, contribute to carcinogenesis and cancer development, and thus have attracted increasing attention in the field of oncology. Recently, increasing research-based evidence has demonstrated that PCD acts as a critical modulator of tumor immunity. PCD can affect the function of innate and adaptive immune cells, which leads to distinct immunological consequences, such as the priming of tumor-specific T cells, immunosuppression and immune evasion. Targeting PCD alone or in combination with conventional immunotherapy may provide new options to enhance the clinical efficacy of anticancer therapeutics. In this review, we introduce the characteristics and mechanisms of ubiquitous PCD pathways (e.g., apoptosis, autophagy-dependent cell death, pyroptosis and ferroptosis) and explore the complex interaction between these cell death mechanisms and tumor immunity based on currently available evidence. We also discuss the therapeutic potential of PCD-based approaches by outlining clinical trials targeting PCD in cancer treatment. Elucidating the immune-related effects of PCD on cancer pathogenesis will likely contribute to an improved understanding of oncoimmunology and allow PCD to be exploited for cancer treatment.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | | | | | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
103
|
Song B, Chen Q, Tong C, Li Y, Li S, Shen X, Niu W, Hao M, Ma Y, Wang Y. Research Progress on Immunomodulatory Effects of Poly (Lactic-co- Glycolic Acid) Nanoparticles Loaded with Traditional Chinese Medicine Monomers. Curr Drug Deliv 2024; 21:1050-1061. [PMID: 37818569 DOI: 10.2174/0115672018255493230922101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/17/2023] [Accepted: 07/19/2023] [Indexed: 10/12/2023]
Abstract
Immunomodulatory mechanisms are indispensable and key factors in maintaining the balance of the environment in humans. When the immune function of the immune system is impaired, autoimmune diseases occur. Excessive body fatigue, natural aging of the human body, malnutrition, genetic factors and other reasons cause low immune function, due to which the body is prone to being infected by bacteria or cancer. Clinically, the existing therapeutic drugs still have problems such as high toxicity, long treatment cycle, drug resistance and high price, so we still need to explore and develop a high efficiency and low toxicity drug. Poly(lactic-co-glycolic acid) (PLGA) refers to a nontoxic polymer compound that exhibits excellent biocompatibility. Traditional Chinese medicine (TCM) monomers come from natural plants, and have the characteristics of high efficiency and low toxicity. Applying PLGA to TCM monomers can make up for the defects of traditional dosage forms, improve bioavailability, reduce the frequency and dosage of drug use, and reduce toxicity and side effects, thus having the characteristics of sustained release and targeting. Accordingly, PLGA nanoparticles loaded with TCM monomers have been the focus of development. The previous research on drug loading advantages, preparation methods, and immune regulation of TCM PLGA nanoparticles is summarized in the following sections.
Collapse
Affiliation(s)
- Bocui Song
- Department of Pharmaceutical Engineering, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Qian Chen
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Chunyu Tong
- Department of Biological Science, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yuqi Li
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Shuang Li
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Xue Shen
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Wenqi Niu
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Meihan Hao
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Yunfei Ma
- Department of Pharmaceutical Engineering, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yanhong Wang
- Department of Biological Engineering, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
104
|
Alkan AH, Ensoy M, Cansaran-Duman D. Strategic and Innovative Roles of lncRNAs Regulated by Naturally-derived Small Molecules in Cancer Therapy. Curr Med Chem 2024; 31:6672-6691. [PMID: 37921177 DOI: 10.2174/0109298673264372230919102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/22/2023] [Accepted: 08/17/2023] [Indexed: 11/04/2023]
Abstract
In the field of precision and personalized medicine, the next generation sequencing method has begun to take an active place as genome-wide screening applications in the diagnosis and treatment of diseases. Studies based on the determination of the therapeutic efficacy of personalized drug use in cancer treatment in the size of the transcriptome and its extension, lncRNA, have been increasing rapidly in recent years. Targeting and/or regulating noncoding RNAs (ncRNAs) consisting of long noncoding RNAs (lncRNAs) are promising strategies for cancer treatment. Within the scope of rapidly increasing studies in recent years, it has been shown that many natural agents obtained from biological organisms can potentially alter the expression of many lncRNAs associated with oncogenic functions. Natural agents include effective small molecules that provide anti-cancer effects and have been used as chemotherapy drugs or in combination with standard anti-cancer drugs used in routine treatment. In this review, it was aimed to provide detailed information about the potential of natural agents to regulate and/or target non-coding RNAs and their mechanisms of action to provide an approach for cancer therapy. The discovery of novel anti-cancer targets and subsequent development of effective drugs or combination strategies that are still needed for most cancers will be promising for cancer treatment.
Collapse
Affiliation(s)
- Ayşe Hale Alkan
- Biotechnology Institute, Ankara University, Keçiören, Ankara, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science, Bartın University, Bartın, Turkey
| | - Mine Ensoy
- Biotechnology Institute, Ankara University, Keçiören, Ankara, Turkey
| | | |
Collapse
|
105
|
Meng Z, Chen J, Xu L, Xiao X, Zong L, Han Y, Jiang B. Study on Cytochrome P450 Metabolic Profile of Paclitaxel on Rats using QTOF-MS. Curr Drug Metab 2024; 25:330-339. [PMID: 39039675 DOI: 10.2174/0113892002308509240711100502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Paclitaxel (PTX) is a key drug used for chemotherapy for various cancers. The hydroxylation metabolites of paclitaxel are different between humans and rats. Currently, there is little information available on the metabolic profiles of CYP450 enzymes in rats. OBJECTIVE This study evaluated the dynamic metabolic profiles of PTX and its metabolites in rats and in vitro. METHODS Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) and LC-MS/MS were applied to qualitative and quantitative analysis of PTX and its metabolites in rats, liver microsomes and recombinant enzyme CYP3A1/3A2. Ten specific inhibitors [NF (CYP1A1), FFL (CYP1A2), MOP (CYP2A6), OND (CYP2B6), QCT (CYP2C8), SFP (CYP2C9), NKT (CYP2C19), QND (CYP2D6), MPZ (CYP2E1) and KTZ (CYP3A4)] were used to identify the metabolic pathway in vitro. RESULTS Four main hydroxylated metabolites of PTX were identified. Among them, 3'-p-OH PTX and 2-OH PTX were monohydroxylated metabolites identified in rats and liver microsome samples, and 6α-2-di-OH PTX and 6α-5"-di-OH PTX were dihydroxylated metabolites identified in rats. CYP3A recombinant enzyme studies showed that the CYP3A1/3A2 in rat liver microsomes was mainly responsible for metabolizing PTX into 3'-p- OH-PTX and 2-OH-PTX. However, 6α-OH PTX was not detected in rat plasma and liver microsome samples. CONCLUSION The results indicated that the CYP3A1/3A2 enzyme, metabolizing PTX into 3'-p-OH-PTX and 2- OH-PTX, is responsible for the metabolic of PTX in rats. The CYP2C8 metabolite 6α-OH PTX in humans was not detected in rat plasma in this study, which might account for the interspecies metabolic differences between rats and humans. This study will provide evidence for drug-drug interaction research in rats.
Collapse
Affiliation(s)
- Zhaoyang Meng
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yi Shan Road, Shanghai, 200233, P. R. China
- College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Shanghai, 201306, P. R. China
| | - Junjun Chen
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yi Shan Road, Shanghai, 200233, P. R. China
| | - Lingyan Xu
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yi Shan Road, Shanghai, 200233, P. R. China
| | - Xiao Xiao
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yi Shan Road, Shanghai, 200233, P. R. China
| | - Ling Zong
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yi Shan Road, Shanghai, 200233, P. R. China
| | - Yonglong Han
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yi Shan Road, Shanghai, 200233, P. R. China
| | - Bo Jiang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yi Shan Road, Shanghai, 200233, P. R. China
| |
Collapse
|
106
|
Wang Y, Luo X, Su H, Guan G, Liu S, Ren M. Technology Invention and Mechanism Analysis of Rapid Rooting of Taxus × media Rehder Branches Induced by Agrobacterium rhizogenes. Int J Mol Sci 2023; 25:375. [PMID: 38203546 PMCID: PMC10779043 DOI: 10.3390/ijms25010375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Taxus, a vital source of the anticancer drug paclitaxel, grapples with a pronounced supply-demand gap. Current efforts to alleviate the paclitaxel shortage involve expanding Taxus cultivation through cutting propagation. However, traditional cutting propagation of Taxus is difficult to root and time-consuming. Obtaining the roots with high paclitaxel content will cause tree death and resource destruction, which is not conducive to the development of the Taxus industry. To address this, establishing rapid and efficient stem rooting systems emerges as a key solution for Taxus propagation, facilitating direct and continuous root utilization. In this study, Agrobacterium rhizogenes were induced in the 1-3-year-old branches of Taxus × media Rehder, which has the highest paclitaxel content. The research delves into the rooting efficiency induced by different A. rhizogenes strains, with MSU440 and C58 exhibiting superior effects. Transcriptome and metabolome analyses revealed A. rhizogenes' impact on hormone signal transduction, amino acid metabolism, zeatin synthesis, and secondary metabolite synthesis pathways in roots. LC-MS-targeted quantitative detection showed no significant difference in paclitaxel and baccatin III content between naturally formed and induced roots. These findings underpin the theoretical framework for T. media rapid propagation, contributing to the sustainable advancement of the Taxus industry.
Collapse
Affiliation(s)
- Ying Wang
- Functional Plant Cultivation and Application Innovation Team, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610230, China; (Y.W.); (G.G.); (S.L.)
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Xiumei Luo
- Functional Plant Cultivation and Application Innovation Team, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610230, China; (Y.W.); (G.G.); (S.L.)
| | - Haotian Su
- Functional Plant Cultivation and Application Innovation Team, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610230, China; (Y.W.); (G.G.); (S.L.)
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| | - Ge Guan
- Functional Plant Cultivation and Application Innovation Team, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610230, China; (Y.W.); (G.G.); (S.L.)
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| | - Shuang Liu
- Functional Plant Cultivation and Application Innovation Team, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610230, China; (Y.W.); (G.G.); (S.L.)
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| | - Maozhi Ren
- Functional Plant Cultivation and Application Innovation Team, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610230, China; (Y.W.); (G.G.); (S.L.)
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
107
|
Yue D, Hirao H. Mechanism of Selective Aromatic Hydroxylation in the Metabolic Transformation of Paclitaxel Catalyzed by Human CYP3A4. J Chem Inf Model 2023; 63:7826-7836. [PMID: 38039955 DOI: 10.1021/acs.jcim.3c01630] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Paclitaxel (PTX) is heralded as one of the most successful natural-product drugs for the treatment of refractory cancers. In humans, the hepatic metabolic transformation of PTX is primarily mediated by two cytochrome P450 enzymes (P450s): CYP3A4 and CYP2C8. The impact of P450 metabolism on the anticancer effectiveness of PTX is significant. However, the precise mechanism underlying selective P450-catalyzed reactions in PTX metabolism remains elusive. To address this knowledge gap, we conducted molecular docking and molecular dynamics simulations using multiple crystal structures of CYP3A4, which originally contained other ligands. These methods enabled us to determine the most plausible binding structure of PTX within the enzyme. By further employing hybrid quantum mechanics and molecular mechanics calculations, we successfully identified two primary pathways for the reaction between compound I (Cpd I) of CYP3A4 and PTX. One of these pathways involves the formation of an epoxide, while the other proceeds through a ketone intermediate.
Collapse
Affiliation(s)
- Dongxiao Yue
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Hajime Hirao
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| |
Collapse
|
108
|
Verdú-Navarro F, Moreno-Cid JA, Weiss J, Egea-Cortines M. The advent of plant cells in bioreactors. FRONTIERS IN PLANT SCIENCE 2023; 14:1310405. [PMID: 38148861 PMCID: PMC10749943 DOI: 10.3389/fpls.2023.1310405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023]
Abstract
Ever since agriculture started, plants have been bred to obtain better yields, better fruits, or sustainable products under uncertain biotic and abiotic conditions. However, a new way to obtain products from plant cells emerged with the development of recombinant DNA technologies. This led to the possibility of producing exogenous molecules in plants. Furthermore, plant chemodiversity has been the main source of pharmacological molecules, opening a field of plant biotechnology directed to produce high quality plant metabolites. The need for different products by the pharma, cosmetics agriculture and food industry has pushed again to develop new procedures. These include cell production in bioreactors. While plant tissue and cell culture are an established technology, beginning over a hundred years ago, plant cell cultures have shown little impact in biotechnology projects, compared to bacterial, yeasts or animal cells. In this review we address the different types of bioreactors that are currently used for plant cell production and their usage for quality biomolecule production. We make an overview of Nicotiana tabacum, Nicotiana benthamiana, Oryza sativa, Daucus carota, Vitis vinifera and Physcomitrium patens as well-established models for plant cell culture, and some species used to obtain important metabolites, with an insight into the type of bioreactor and production protocols.
Collapse
Affiliation(s)
- Fuensanta Verdú-Navarro
- Bioprocessing R&D Department, Bionet, Parque Tecnológico Fuente Álamo, Fuente Álamo, Spain
- Genética Molecular, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Juan A. Moreno-Cid
- Bioprocessing R&D Department, Bionet, Parque Tecnológico Fuente Álamo, Fuente Álamo, Spain
| | - Julia Weiss
- Genética Molecular, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Marcos Egea-Cortines
- Genética Molecular, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| |
Collapse
|
109
|
Zhao J, Zhang S, Guo X, Li C, Yang B, Qu X, Wang S. PD-1 inhibitors combined with paclitaxel and cisplatin in first-line treatment of esophageal squamous cell carcinoma (ESCC): a network meta-analysis. BMC Cancer 2023; 23:1221. [PMID: 38082441 PMCID: PMC10714592 DOI: 10.1186/s12885-023-11715-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The combinations of PD-1 inhibitors with paclitaxel/cisplatinum (PD-1 + TP) and fluoropyrimidine/cisplatinum (PD-1 + FP) both have been shown to improve overall survival (OS) and progression-free survival (PFS) in patients with previously untreated, advanced esophageal squamous cell carcinoma (ESCC). However, there is no consensus on which chemotherapy regimen combined with PD-1 has better efficacy. To deal with this important issue in the first-line treatment of patients with ESCC, a network meta-analysis (NMA) was performed. METHODS Data were collected from eligible studies searched in Medline, Web of Science, PubMed, the Cochrane Library and Embase. The pooled hazard ratio (HR) for the OS, and PFS, odds ratio (OR) for the objective response rate (ORR) and ≥ 3 grade treatment-related adverse events (≥ 3TRAEs) were estimated to evaluate the efficacy of PD-1 inhibitors combined with TP or FP. RESULTS Five RCTs and one retrospective study involving 3685 patients and evaluating four treatments were included in this NMA. Compared to other treatments, PD-1 + TP was better. For the PFS, the HRs for PD-1 + TP compared to PD-1 + FP, TP and FP were 0.59 (0.44, 0.80), 0.56 (0.51, 0.61) and 0.45 (0.37, 0.56) respectively. For the OS, PD-1 + TP was also a better treatment compared to other treatments. The HRs were 0.74 (0.56, 0.96), 0.64 (0.57, 0.71), 0.53 (0.43, 0.67) respectively. For the ORR, there was no significant difference between PD-1 + TP and PD-1 + FP, and the ORs were 1.2 (0.69, 2.11). Compare with TP and FP, PD-1 + TP had an obvious advantage, ORs were 2.5 (2.04, 3.04) and 2.95 (1.91, 4.63). For ≥ 3TRAEs, PD-1 + TP compared to other treatments, ORs were 1.34 (0.74, 2.46) and 1.13 (0.92, 1.38) and 2.23 (1.35, 3.69). CONCLUSION PD-1 + TP significantly improved both PFS and OS compared to PD-1 + FP. Taking into account both efficacy and safety, PD-1 + TP may be a superior first-line treatment option for ESCC.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Simeng Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Xiaoyu Guo
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Ce Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Bowen Yang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China.
| | - Shuo Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
110
|
Hajareh Haghighi F, Binaymotlagh R, Fratoddi I, Chronopoulou L, Palocci C. Peptide-Hydrogel Nanocomposites for Anti-Cancer Drug Delivery. Gels 2023; 9:953. [PMID: 38131939 PMCID: PMC10742474 DOI: 10.3390/gels9120953] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
Cancer is the second leading cause of death globally, but conventional anticancer drugs have side effects, mainly due to their non-specific distribution in the body in both cancerous and healthy cells. To address this relevant issue and improve the efficiency of anticancer drugs, increasing attention is being devoted to hydrogel drug-delivery systems for different kinds of cancer treatment due to their high biocompatibility and stability, low side effects, and ease of modifications. To improve the therapeutic efficiency and provide multi-functionality, different types of nanoparticles (NPs) can be incorporated within the hydrogels to form smart hydrogel nanocomposites, benefiting the advantages of both counterparts and suitable for advanced anticancer applications. Despite many papers on non-peptide hydrogel nanocomposites, there is limited knowledge about peptide-based nanocomposites, specifically in anti-cancer drug delivery. The aim of this short but comprehensive review is, therefore, to focus attention on the synergies resulting from the combination of NPs with peptide-based hydrogels. This review, which includes a survey of recent advances in this kind of material, does not aim to be an exhaustive review of hydrogel technology, but it instead highlights recent noteworthy publications and discusses novel perspectives to provide valuable insights into the promising synergic combination of peptide hydrogels and NPs for the design of novel anticancer drug delivery systems.
Collapse
Affiliation(s)
- Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
| | - Roya Binaymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
111
|
Yang W, Wang Y, Tao K, Li R. Metabolite itaconate in host immunoregulation and defense. Cell Mol Biol Lett 2023; 28:100. [PMID: 38042791 PMCID: PMC10693715 DOI: 10.1186/s11658-023-00503-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/20/2023] [Indexed: 12/04/2023] Open
Abstract
Metabolic states greatly influence functioning and differentiation of immune cells. Regulating the metabolism of immune cells can effectively modulate the host immune response. Itaconate, an intermediate metabolite derived from the tricarboxylic acid (TCA) cycle of immune cells, is produced through the decarboxylation of cis-aconitate by cis-aconitate decarboxylase in the mitochondria. The gene encoding cis-aconitate decarboxylase is known as immune response gene 1 (IRG1). In response to external proinflammatory stimulation, macrophages exhibit high IRG1 expression. IRG1/itaconate inhibits succinate dehydrogenase activity, thus influencing the metabolic status of macrophages. Therefore, itaconate serves as a link between macrophage metabolism, oxidative stress, and immune response, ultimately regulating macrophage function. Studies have demonstrated that itaconate acts on various signaling pathways, including Keap1-nuclear factor E2-related factor 2-ARE pathways, ATF3-IκBζ axis, and the stimulator of interferon genes (STING) pathway to exert antiinflammatory and antioxidant effects. Furthermore, several studies have reported that itaconate affects cancer occurrence and development through diverse signaling pathways. In this paper, we provide a comprehensive review of the role IRG1/itaconate and its derivatives in the regulation of macrophage metabolism and functions. By furthering our understanding of itaconate, we intend to shed light on its potential for treating inflammatory diseases and offer new insights in this field.
Collapse
Affiliation(s)
- Wenchang Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaxin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Ruidong Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China.
| |
Collapse
|
112
|
Takeuchi K, Tabe S, Takahashi K, Aoshima K, Matsuo M, Ueno Y, Furukawa Y, Yamaguchi K, Ohtsuka M, Morinaga S, Miyagi Y, Yamaguchi T, Tanimizu N, Taniguchi H. Incorporation of human iPSC-derived stromal cells creates a pancreatic cancer organoid with heterogeneous cancer-associated fibroblasts. Cell Rep 2023; 42:113420. [PMID: 37955987 DOI: 10.1016/j.celrep.2023.113420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/27/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The aggressiveness of pancreatic ductal adenocarcinoma (PDAC) is affected by the tumor microenvironment (TME). In this study, to recapitulate the PDAC TME ex vivo, we cocultured patient-derived PDAC cells with mesenchymal and vascular endothelial cells derived from human induced pluripotent stem cells (hiPSCs) to create a fused pancreatic cancer organoid (FPCO) in an air-liquid interface. FPCOs were further induced to resemble two distinct aspects of PDAC tissue. Quiescent FPCOs were drug resistant, likely because the TME consisted of abundant extracellular matrix proteins that were secreted from the various types of cancer-associated fibroblasts (CAFs) derived from hiPSCs. Proliferative FPCOs could re-proliferate after anticancer drug treatment, suggesting that this type of FPCO would be useful for studying PDAC recurrence. Thus, we generated PDAC organoids that recapitulate the heterogeneity of PDAC tissue and are a potential platform for screening anticancer drugs.
Collapse
Affiliation(s)
- Kenta Takeuchi
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shunsuke Tabe
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kenta Takahashi
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Graduate School of Frontier Sciences, Computational Biology and Medical Science, Kashiwa, Chiba, Japan
| | - Kenji Aoshima
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Graduate School of Frontier Sciences, Computational Biology and Medical Science, Kashiwa, Chiba, Japan
| | - Megumi Matsuo
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yasuharu Ueno
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Soichiro Morinaga
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Kangawa, Japan
| | - Tomoyuki Yamaguchi
- School of Life Science, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Naoki Tanimizu
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Hideki Taniguchi
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan; Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
113
|
Gu HJ, Ahn JS, Ahn GJ, Shin SH, Ryu BY. Restoration of PM2.5-induced spermatogonia GC-1 cellular damage by parthenolide via suppression of autophagy and inflammation: An in vitro study. Toxicology 2023; 499:153651. [PMID: 37858773 DOI: 10.1016/j.tox.2023.153651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Particulate matter (PM) generated by environmental and air pollution is known to have detrimental effects on human health. Among these, PM2.5 particles (diameter < 2.5 µm) can breach the alveolar-capillary barrier and disseminate to other organs, posing significant health risks. Numerous studies have shown that PMs can harm various organs, including the reproductive system. Therefore, this study aimed to investigate the harmful effects of PM2.5 on mouse GC-1 spermatogonia cells (GC-1 spg cells) and to verify the ameliorative effects of parthenolide (PTL) treatment on damaged GC-1 spg cells. We observed a significant dose-dependent reduction in cell proliferation after PM2.5 concentration of 2.5 μg/cm2. Additionally, treatment with 20 μg/cm2 PM2.5 concentration significantly increased the expression of autophagy-related proteins ATG7, the ratio of LC3-II/LC3-I, and decreased phosphorylation of PI3K and AKT. Furthermore, PM2.5 exposure augmented inflammation mediator gene expressions, the phosphorylation of the inflammation-related transcription factor NF-κB p65 at Ser536, and ubiquitination. Treatment of PM2.5-exposed GC-1 spg cells with PTL significantly reduced NF-κB p65 phosphorylation and the expression of autophagy-related proteins ATG7 and LC3-II, leading to a statistically significant recovery in cell proliferation. Together, our findings elucidated the detrimental effects of PM2.5 exposure on male germ cells, and the restorative properties of PTL against air pollutants.
Collapse
Affiliation(s)
- Hyo Jin Gu
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea
| | - Jin Seop Ahn
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Gi Jeong Ahn
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea
| | - Seung Hee Shin
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea.
| |
Collapse
|
114
|
Wu Z, Fang Y, Wu J, Wang J, Ling Y, Liu T, Tong Q, Yao Y. Activation of Glycolysis by MCM10 Increases Stemness and Paclitaxel Resistance in Gastric Cancer Cells. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2023; 34:1107-1115. [PMID: 37860833 PMCID: PMC10724805 DOI: 10.5152/tjg.2023.23169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/31/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND/AIMS Chemotherapy is an essential avenue for curing malignancies; however, tumor cells acquire resistance to chemotherapeutic agents, eventually leading to chemotherapy failure. At present, paclitaxel (PTX) resistance seriously hinders the therapeutic efficacy of gastric cancer (GC). Investigating the molecular mechanism of PTX resistance in GC is critical. This study attempted to delineate the impact of MCM10 on GC resistance to PTX and its mechanism in GC. MATERIALS AND METHODS The expression of minichromosome maintenance complex component 10 (MCM10) in GC tissues, its enrichment pathways, and its correlation with glycolysis marker genes and stemness index (mRNAsi) were analyzed in a bioinformatics effort. Real-time quantitative polymerase chain reaction was used to assay the expression of MCM10 in cells. Cell counting kit-8 (CCK-8) was used to analyze cell viability and calculate the 50% inhibitor concentration (IC50) value. Western blot was used to measure the expression of MCM10, Hexokinase 2 (HK2) and stemness-related factors in cells. Sphere-forming assay was performed to study cell sphere-forming ability. Seahorse XF 96 was utilized to measure cell extracellular acidification and oxygen consumption rates. The content of glycolysisrelated products was tested with corresponding kits. RESULTS MCM10 was significantly upregulated in GC and enriched in the glycolysis pathway, and it was positively correlated with both glycolysis-related genes and stemness index. High expression of MCM10 increased sphere-forming ability of drug-resistant cells and GC resistance to PTX. The stimulation of PTX resistance and drug-resistant cell stemness in GC by high MCM10 expression was mediated by the glycolysis pathway. CONCLUSION MCM10 was upregulated in GC and drove stemness and PTX resistance in GC cells by activating glycolysis. These findings generated new insights into the development of PTX resistance in GC, implicating that targeting MCM10 may be a novel approach to improve GC sensitivity to PTX chemotherapy.
Collapse
Affiliation(s)
- Zhangqiang Wu
- Department of Surgical Oncology, Guang Fu Oncology Hospital, Jinhua, Zhejiang Province, China
| | - Yuejun Fang
- Department of Surgical Oncology, Guang Fu Oncology Hospital, Jinhua, Zhejiang Province, China
| | - Jun Wu
- Department of Surgical Oncology, Guang Fu Oncology Hospital, Jinhua, Zhejiang Province, China
| | - Jianjun Wang
- Department of Surgical Oncology, Guang Fu Oncology Hospital, Jinhua, Zhejiang Province, China
| | - Yingjie Ling
- Department of Surgical Oncology, Guang Fu Oncology Hospital, Jinhua, Zhejiang Province, China
| | - Tao Liu
- Department of Surgical Oncology, Guang Fu Oncology Hospital, Jinhua, Zhejiang Province, China
| | - Qin Tong
- Department of Surgical Oncology, Guang Fu Oncology Hospital, Jinhua, Zhejiang Province, China
| | - Yefeng Yao
- Department of Surgical Oncology, Guang Fu Oncology Hospital, Jinhua, Zhejiang Province, China
| |
Collapse
|
115
|
Xu J, Xu Y, Ye G, Qiu J. LncRNA-SNHG1 promotes paclitaxel resistance of gastric cancer cells through modulating the miR-216b-5p-hexokianse 2 axis. J Chemother 2023; 35:527-538. [PMID: 36548909 DOI: 10.1080/1120009x.2022.2157618] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) is one of the most malignant tumors with high incidence and poor prognosis. Currently, the combination of surgery with chemo- or radiotherapy is widely applied therapeutic strategy against GC. However, development of drug resistance severely limited the clinical application of chemotherapy. Small nucleolar RNA host gene 1 (SNHG1) has been reported to be frequently overexpressed in diverse human tumors. Yet, the biological roles and mechanisms of SNHG1 in chemoresistant GC remain unclear. Expressions of lncRNA and miRNA were detected by qRT-PCR. Responses of GC cells to Taxol treatments were evaluated by cell viability assay and apoptosis assay. Glucose metabolism rate was examined by glucose uptake and extracellular acidification rate (ECAR). The lncRNA-miRNA interaction was validated by RNA pull-down assay and luciferase assays. This study reports that expressions of SNHG1 were significantly elevated in patients with GC and gastric cancer cell lines. Silencing SNHG1 effectively suppressed GC cells migration and increased the Taxol sensitivity of GC cells. Moreover, we detected remarkedly upregulated SNHG1 expression and increased glucose metabolism in Taxol resistant cell line, MKN-45 TXR. Low glucose supply rendered Taxol resistant cells more susceptible to Taxol treatment compared with that from MKN-45 parental cells. Bioinformatical analysis, RNA pull-down and luciferase assays verified that SNHG1 functioned as a ceRNA of miR-216b-5p in GC cells. Consistently, we detected miR-216b-5p was significantly downregulated in GC tumor specimens and Taxol resistant GC cells. The hexokinase 2 (HK2), a glucose metabolism key enzyme, was predicted and validated as a direct target of miR-216b-5p in GC cells. Finally, restoration of miR-216b-5p in SNHG1-overexpressing MKN-45 TXR cells successfully overrode the SNHG1-promoted Taxol resistance through targeting the HK2-glycolysis axis. This study uncovered new biological roles and molecular mechanisms of the lncRNA-SNHG1-mediated Taxol resistance of gastric cancer, suggesting targeting the SNHG1-miR-216b-5p-HK2 axis could be a potentially therapeutic approach against chemoresistant gastric cancer.
Collapse
Affiliation(s)
- Jiewei Xu
- Department of General Surgery, Huzhou Central Hospital. Huzhou, Zhejiang, China
- Department of General Surgery, Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Yongcan Xu
- Department of General Surgery, Huzhou Central Hospital. Huzhou, Zhejiang, China
- Department of General Surgery, Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Guochao Ye
- Department of General Surgery, Huzhou Central Hospital. Huzhou, Zhejiang, China
- Department of General Surgery, Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Jian Qiu
- Department of Obstetrics and Gynecology, Huzhou Central Hospital, Huzhou, Zhejiang, China
- Department of Obstetrics and Gynecology, Affiliated Central Hospital of Huzhou University. Huzhou, Zhejiang, China
| |
Collapse
|
116
|
Li X, Wang G, Zhou X, Zhao H, Chen X, Cui Q, Li M, Gao X, Wei X, Ye L, Li D, Hong P. Targeting HSP90 with picropodophyllin suppresses gastric cancer tumorigenesis by disrupting the association of HSP90 and AKT. Phytother Res 2023; 37:4740-4754. [PMID: 37559472 DOI: 10.1002/ptr.7943] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 08/11/2023]
Abstract
Gastric cancer (GC) is one of the most common malignant tumors worldwide. Thus, the development of safe and effective therapeutic compounds for GC treatment is urgently required. Here, we aimed to examine the role of picropodophyllin (PPP), a compound extracted from the rhizome of Dysosma versipellis (Hance) M. Cheng ex Ying, on the proliferation of GC cells. Our study revealed that PPP inhibits the proliferation of GC cells in a dose-dependent manner by inducing apoptosis. Moreover, our study elucidated that PPP suppresses the growth of GC tumor xenografts with no side effects of observable toxicity. Mechanistically, PPP exerts its effects by blocking the AKT/mammalian target of rapamycin (mTOR) signaling pathway; these effects are markedly abrogated by the overexpression of constitutively active AKT. Furthermore, drug affinity responsive target stability (DARTS) and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) revealed that heat shock protein 90 (HSP90) may be a potential target of PPP. Surface plasmon resonance and immunoprecipitation assay validated that PPP directly targets HSP90 and disrupts the binding of HSP90 to AKT, thereby suppressing GC cell proliferation. Thus, our study revealed that PPP may be a promising therapeutic compound for GC treatment.
Collapse
Affiliation(s)
- Xiaoli Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Xiaolin Zhou
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Huijie Zhao
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Xiaojie Chen
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Qixiao Cui
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
- College of Stomatology, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Minjing Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Xihang Gao
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Xiaoyu Wei
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Lei Ye
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Pan Hong
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| |
Collapse
|
117
|
Nie Q, Chen W, Zhang T, Ye S, Ren Z, Zhang P, Wen J. Iron oxide nanoparticles induce ferroptosis via the autophagic pathway by synergistic bundling with paclitaxel. Mol Med Rep 2023; 28:198. [PMID: 37681444 PMCID: PMC10510030 DOI: 10.3892/mmr.2023.13085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
In recent years, inhibiting tumor cell activity by triggering cell ferroptosis has become a research hotspot. The development of generic targeted nanotherapeutics might bring new ideas for non‑invasive applications. Currently, the potential mechanism underlying the universal application of paclitaxel (PTX)‑loaded iron oxide nanoparticles (IONP@PTX) to different types of tumors is unclear. The present study aimed to prepare IONP@PTX for targeted cancer therapy and further explore the potential mechanisms underlying the inhibitory effects of this material on the NCI‑H446 human small cell lung cancer and brain M059K malignant glioblastoma cell lines. First, a CCK‑8 assay was performed to determine cell viability, and then the combination index for evaluating drug combination interaction effect was evaluated. Intracellular reactive oxygen species (ROS) and lipid peroxidation levels were monitored using a DCFH‑DA fluorescent probe and a C11‑BODIPY™ fluorescent probe, respectively. Furthermore, western blotting assay was performed to determine the expression of autophagy‑ and iron death‑related proteins. The experimental results showed that, compared with either IONP monotherapy, PTX monotherapy, or IONP + PTX, IONP@PTX exerted a synergistic effect on the viability of both cell types, with significantly increased total iron ion concentration, ROS levels and lipid peroxidation levels. IONP@PTX significantly increased the expression of autophagy‑related proteins Beclin 1 and histone deacetylase 6 (HDAC6) in both cell lines (P<0.05), increased the expression of light chain 3 (LC3)‑II/I in NCI‑H446 cells (P<0.05) and decreased that of sequestosome1 (p62) in M059K cells (P<0.05). Moreover, the addition of rapamycin enhanced the IONP@PTX‑induced the upregulation of Beclin 1, LC3‑II/I and HDAC6 and the downregulation of mTORC1 protein in both cell lines (P<0.05). Moreover, rapamycin enhanced the IONP@PTX‑induced downregulation of p62 protein in NCI‑H446 cells (P<0.05), suggesting that IONP@PTX induces ferroptosis, most likely through autophagy. Collectively, the present findings show that IONP works synergistically with PTX to induce ferroptosis via the autophagic pathway.
Collapse
Affiliation(s)
- Qi Nie
- Guangxi Clinical Medical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541104, P.R. China
| | - Wenqing Chen
- Guangxi Clinical Medical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541104, P.R. China
| | - Tianmei Zhang
- Guangxi Clinical Medical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Shangrong Ye
- Guangxi Clinical Medical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Zhongyu Ren
- Guangxi Clinical Medical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Peng Zhang
- Guangxi Clinical Medical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Jian Wen
- Guangxi Clinical Medical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541104, P.R. China
| |
Collapse
|
118
|
Feng W, He Z, Shi L, Zhu Z, Ma H. Significance of CD80 as a Prognostic and Immunotherapeutic Biomarker in Lung Adenocarcinoma. Biochem Genet 2023; 61:1937-1966. [PMID: 36892747 PMCID: PMC10517904 DOI: 10.1007/s10528-023-10343-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/02/2023] [Indexed: 03/10/2023]
Abstract
Lung adenocarcinoma (LUAD) is the primary cause of death among pulmonary cancer patients. Upregulation of CD80 may interact with cytotoxic T lymphocyte antigen 4 (CTLA4) to promote tumor progression and provide a potential target for biological antitumor therapy. However, the role of CD80 in LUAD is still unclear. To investigate the function of CD80 in LUAD, we collected transcriptomic data from 594 lung samples from The Cancer Genome Atlas of America (TCGA) database, along with the corresponding clinical information. We systematically explored the role of CD80 in LUAD using bioinformatics methods, including GO enrichment analysis, KEGG pathway analysis, Gene Set Enrichment Analysis (GSEA), co-expression analysis, and the CIBERSORT algorithm. Finally, we investigated the differences between the two subgroups of CD80 expression in terms of some drug sensitivity, using the pRRophetic package to screen small molecular drugs for therapeutic use. A predictive model based on CD80 for LUAD patients was successfully constructed. In addition, we discovered that the CD80-based prediction model was an independent prognostic factor. Co-expression analysis revealed 10 CD80-related genes, including oncogenes and immune-related genes. Functional analysis showed that the differentially expressed genes in patients with high CD80 expression were mainly located in immune-related signaling pathways. CD80 expression was also associated with immune cell infiltration and immune checkpoints. Highly expressing patients were more sensitive to several drugs, such as rapamycin, paclitaxel, crizotinib, and bortezomib. Finally, we found evidence that 15 different small molecular drugs may benefit the treatment of LUAD patients. This study found that elevated CD80 pairs could improve the prognosis of LUAD patients. CD80 is likely to be a potential as a prognostic and therapeutic target. The future use of small molecular drugs in combination with immune checkpoint blockade to enhance antitumor therapy and improve prognosis for LUAD patients is promising.
Collapse
Affiliation(s)
- Wei Feng
- First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ziyi He
- First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liang Shi
- First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zheng Zhu
- First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haitao Ma
- First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
119
|
Yang Y, Yang G, Li W, Xu H, Hao X, Zhang S, Ai X, Lei S, Wang Y. Immunotherapy as a later-line option for HER2-altered advanced non-small-cell lung cancer: taxane might be a favorable partner. Future Oncol 2023; 19:2251-2261. [PMID: 37909261 DOI: 10.2217/fon-2022-0879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Aim: To assess the effectiveness of different types of taxanes, including nab-paclitaxel, paclitaxel and docetaxel, and further compare the effectiveness of taxane-based chemotherapy, taxane-based chemotherapy plus angiogenesis inhibitors or taxane-based chemotherapy plus immune checkpoint inhibitors in HER2-altered non-small-cell lung cancer in the second- or third-line setting. Materials & methods: A total of 52 patients were included in the study. Progression-free survival was compared between subgroups. Results: A clinically meaningful improvement in progression-free survival was observed among patients in the nab-paclitaxel group compared with the docetaxel group. Taxane-based chemotherapy plus immune checkpoint inhibitors achieved longer progression-free survival than taxane-based chemotherapy. There was no difference between taxane-based chemotherapy plus immune checkpoint inhibitors and taxane-based chemotherapy plus angiogenesis inhibitors. Conclusion: Nab-paclitaxel appears to be a reasonable alternative to docetaxel. Chemotherapy plus immune checkpoint inhibitors might yield more survival benefits than chemotherapy alone.
Collapse
Affiliation(s)
- Yaning Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Chaoyang District, Beijing, 100021, China
| | - Guangjian Yang
- Department of Respiratory Medicine, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Weihua Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Chaoyang District, Beijing, 100021, China
| | - Haiyan Xu
- Department of Comprehensive Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Chaoyang District, Beijing, 100021, China
| | - Xuezhi Hao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Chaoyang District, Beijing, 100021, China
| | - Shuyang Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Chaoyang District, Beijing, 100021, China
| | - Xin Ai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Chaoyang District, Beijing, 100021, China
| | - Siyu Lei
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Chaoyang District, Beijing, 100021, China
| | - Yan Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Chaoyang District, Beijing, 100021, China
| |
Collapse
|
120
|
Cui Z, Zou F, Wang R, Wang L, Cheng F, Wang L, Pan R, Guan X, Zheng N, Wang W. Integrative bioinformatics analysis of WDHD1: a potential biomarker for pan-cancer prognosis, diagnosis, and immunotherapy. World J Surg Oncol 2023; 21:309. [PMID: 37759234 PMCID: PMC10523704 DOI: 10.1186/s12957-023-03187-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Although WD repeat and high-mobility group box DNA binding protein 1 (WDHD1) played an essential role in DNA replication, chromosome stability, and DNA damage repair, the panoramic picture of WDHD1 in human tumors remains unclear. Hence, this study aims to comprehensively characterize WDHD1 across 33 human cancers. METHODS Based on publicly available databases such as TCGA, GTEx, and HPA, we used a bioinformatics approach to systematically explore the genomic features and biological functions of WDHD1 in pan-cancer. RESULTS WDHD1 mRNA levels were significantly increased in more than 20 types of tumor tissues. Elevated WDHD1 expression was associated with significantly shorter overall survival (OS) in 10 tumors. Furthermore, in uterine corpus endometrial carcinoma (UCEC) and liver hepatocellular carcinoma (LIHC), WDHD1 expression was significantly associated with higher histological grades and pathological stages. In addition, WDHD1 had a high diagnostic value among 16 tumors (area under the ROC curve [AUC] > 0.9). Functional enrichment analyses suggested that WDHD1 probably participated in many oncogenic pathways such as E2F and MYC targets (false discovery rate [FDR] < 0.05), and it was involved in the processes of DNA replication and DNA damage repair (p.adjust < 0.05). WDHD1 expression also correlated with the half-maximal inhibitory concentrations (IC50) of rapamycin (4 out of 10 cancers) and paclitaxel (10 out of 10 cancers). Overall, WDHD1 was negatively associated with immune cell infiltration and might promote tumor immune escape. Our analysis of genomic alterations suggested that WDHD1 was altered in 1.5% of pan-cancer cohorts and the "mutation" was the predominant type of alteration. Finally, through correlation analysis, we found that WDHD1 might be closely associated with tumor heterogeneity, tumor stemness, mismatch repair (MMR), and RNA methylation modification, which were all processes associated with the tumor progression. CONCLUSIONS Our pan-cancer analysis of WDHD1 provides valuable insights into the genomic characterization and biological functions of WDHD1 in human cancers and offers some theoretical support for the future use of WDHD1-targeted therapies, immunotherapies, and chemotherapeutic combinations for the management of tumors.
Collapse
Affiliation(s)
- Zhiwei Cui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fan Zou
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Rongli Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lijun Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Feiyan Cheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lihui Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rumeng Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Guan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Nini Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
121
|
Asnaashari S, Amjad E, Sokouti B. Synergistic effects of flavonoids and paclitaxel in cancer treatment: a systematic review. Cancer Cell Int 2023; 23:211. [PMID: 37743502 PMCID: PMC10518113 DOI: 10.1186/s12935-023-03052-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/03/2023] [Indexed: 09/26/2023] Open
Abstract
Paclitaxel is a natural anticancer compound with minimal toxicity, the capacity to stabilize microtubules, and high efficiency that has remained the standard of treatment alongside platinum-based therapy as a remedy for a variety of different malignancies. In contrast, polyphenols such as flavonoids are also efficient antioxidant and anti-inflammatory and have now been shown to possess potent anticancer properties. Therefore, the synergistic effects of paclitaxel and flavonoids against cancer will be of interest. In this review, we use a Boolean query to comprehensively search the well-known Scopus database for literature research taking the advantage of paclitaxel and flavonoids simultaneously while treating various types of cancer. After retrieving and reviewing the intended investigations based on the input keywords, the anticancer mechanisms of flavonoids and paclitaxel and their synergistic effects on different targets raging from cell lines to animal models are discussed in terms of the corresponding involved signaling transduction. Most studies demonstrated that these signaling pathways will induce apoptotic / pro-apoptotic proteins, which in turn may activate several caspases leading to apoptosis. Finally, it can be concluded that the results of this review may be beneficial in serving as a theoretical foundation and reference for future studies of paclitaxel synthesis, anticancer processes, and clinical applications involving different clinical trials.
Collapse
Affiliation(s)
- Solmaz Asnaashari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Amjad
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Babak Sokouti
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
122
|
Hu X, Pan G, Luo J, Gao X, Mu Y, Wang Z, Hu X, Li C, Abbas MN, Zhang K, Zheng Y, Cui H. Kuwanon H Inhibits Melanoma Growth through Cytotoxic Endoplasmic Reticulum Stress and Impaired Autophagy Flux. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13768-13782. [PMID: 37672659 DOI: 10.1021/acs.jafc.3c02257] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Although great progress has been made recently in targeted and immune-based therapies, additional treatments are needed for most melanoma patients due to acquired chemoresistance, recurrence, or metastasis. Elevated autophagy is required for the pathogenesis of melanoma to attenuate metabolic stress, protecting cancer cells from chemotherapeutics or radiation. Thus, intervention with autophagy is a promising strategy for melanoma treatment. Here, we examined a novel antimelanoma natural compound named kuwanon H (KuH), which significantly inhibited melanoma cell growth in vitro/vivo. Mechanistically, KuH induced cytotoxic endoplasmic reticulum (ER) stress, which inhibited cell viability and induced apoptosis. Meanwhile, KuH-induced ER stress mediated autophagysome formation through the ATF4-DDIT3-TRIB3-AKT-MTOR axis. Importantly, KuH impaired autophagy flux, which contributed to the anticancer effects of KuH. Finally, our results showed that KuH enhanced the sensitivity of melanoma cells to cisplatin, both in vitro and in vivo, by impairing autophagy degradation of reactive oxygen species and damaged mitochondria. Our findings indicate that KuH is a promising candidate anticancer natural product for melanoma therapy.
Collapse
Affiliation(s)
- Xin Hu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Guangzhao Pan
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Jili Luo
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Xinyue Gao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Yuhang Mu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Zhi Wang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Xiaosong Hu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Chongyang Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Kui Zhang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Ying Zheng
- The Ninth People's Hospital of Chongqing, Chongqing 400700, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
123
|
Wang Y, Lu L, Ling C, Zhang P, Han R. Potential of Dietary HDAC2i in Breast Cancer Patients Receiving PD-1/PD-L1 Inhibitors. Nutrients 2023; 15:3984. [PMID: 37764768 PMCID: PMC10537481 DOI: 10.3390/nu15183984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Breast cancer (BC) is a lethal malignancy with high morbidity and mortality but lacks effective treatments thus far. Despite the introduction of immune checkpoint inhibitors (ICIs) (including PD-1/PD-L1 inhibitors), durable and optimal clinical benefits still remain elusive for a considerable number of BC patients. To break through such a dilemma, novel ICI-based combination therapy has been explored for enhancing the therapeutic effect. Recent evidence has just pointed out that the HDAC2 inhibitor (HDAC2i), which has been proven to exhibit an anti-cancer effect, can act as a sensitizer for ICIs therapy. Simultaneously, dietary intervention, as a crucial supportive therapy, has been reported to provide ingredients containing HDAC2 inhibitory activity. Thus, the novel integration of dietary intervention with ICIs therapy may offer promising possibilities for improving treatment outcomes. In this study, we first conducted the differential expression and prognostic analyses of HDAC2 and BC patients using the GENT2 and Kaplan-Meier plotter platform. Then, we summarized the potential diet candidates for such an integrated therapeutic strategy. This article not only provides a whole new therapeutic strategy for an HDAC2i-containing diet combined with PD-1/PD-L1 inhibitors for BC treatment, but also aims to ignite enthusiasm for exploring this field.
Collapse
Affiliation(s)
- Yuqian Wang
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06520, USA
- School of Medicine, Center for Biomedical Data Science, Yale University, 60 College Street, New Haven, CT 06520, USA
- Yale Cancer Center, Yale University, 60 College Street, New Haven, CT 06520, USA
| | - Changquan Ling
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Ping Zhang
- Center for Integrative Conservation, Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Xishuangbanna 666303, China
| | - Rui Han
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06520, USA
- School of Medicine, Center for Biomedical Data Science, Yale University, 60 College Street, New Haven, CT 06520, USA
- Yale Cancer Center, Yale University, 60 College Street, New Haven, CT 06520, USA
- Department of Oncology, The First Hospital Affiliated to Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
124
|
Fakhri S, Moradi SZ, Faraji F, Farhadi T, Hesami O, Iranpanah A, Webber K, Bishayee A. Current advances in nanoformulations of therapeutic agents targeting tumor microenvironment to overcome drug resistance. Cancer Metastasis Rev 2023; 42:959-1020. [PMID: 37505336 DOI: 10.1007/s10555-023-10119-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/13/2023] [Indexed: 07/29/2023]
Abstract
The tumor microenvironment (TME) plays a pivotal role in cancer development and progression. In this line, revealing the precise mechanisms of the TME and associated signaling pathways of tumor resistance could pave the road for cancer prevention and efficient treatment. The use of nanomedicine could be a step forward in overcoming the barriers in tumor-targeted therapy. Novel delivery systems benefit from enhanced permeability and retention effect, decreasing tumor resistance, reducing tumor hypoxia, and targeting tumor-associated factors, including immune cells, endothelial cells, and fibroblasts. Emerging evidence also indicates the engagement of multiple dysregulated mediators in the TME, such as matrix metalloproteinase, vascular endothelial growth factor, cytokines/chemokines, Wnt/β-catenin, Notch, Hedgehog, and related inflammatory and apoptotic pathways. Hence, investigating novel multitargeted agents using a novel delivery system could be a promising strategy for regulating TME and drug resistance. In recent years, small molecules from natural sources have shown favorable anticancer responses by targeting TME components. Nanoformulations of natural compounds are promising therapeutic agents in simultaneously targeting multiple dysregulated factors and mediators of TME, reducing tumor resistance mechanisms, overcoming interstitial fluid pressure and pericyte coverage, and involvement of basement membrane. The novel nanoformulations employ a vascular normalization strategy, stromal/matrix normalization, and stress alleviation mechanisms to exert higher efficacy and lower side effects. Accordingly, the nanoformulations of anticancer monoclonal antibodies and conventional chemotherapeutic agents also improved their efficacy and lessened the pharmacokinetic limitations. Additionally, the coadministration of nanoformulations of natural compounds along with conventional chemotherapeutic agents, monoclonal antibodies, and nanomedicine-based radiotherapy exhibits encouraging results. This critical review evaluates the current body of knowledge in targeting TME components by nanoformulation-based delivery systems of natural small molecules, monoclonal antibodies, conventional chemotherapeutic agents, and combination therapies in both preclinical and clinical settings. Current challenges, pitfalls, limitations, and future perspectives are also discussed.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6517838678, Iran
| | - Tara Farhadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Osman Hesami
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
125
|
Sun Y, Ma H. Application of three-dimensional cell culture technology in screening anticancer drugs. Biotechnol Lett 2023; 45:1073-1092. [PMID: 37421554 DOI: 10.1007/s10529-023-03410-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/10/2023]
Abstract
The drug development process involves a variety of drug activity evaluations, which can determine drug efficacy, strictly analyze the biological indicators after the drug action, and use these indicators as the preclinical drug evaluation criteria. At present, most of the screening of preclinical anticancer drugs mainly relies on traditional 2D cell culture. However, this traditional technology cannot simulate the tumor microenvironment in vivo, let alone reflect the characteristics of solid tumors in vivo, and has a relatively poor ability to predict drug activity. 3D cell culture is a technology between 2D cell culture and animal experiments, which can better reflect the biological state in vivo and reduce the consumption of animal experiments. 3D cell culture can link the individual study of cells with the study of the whole organism, reproduce in vitro the biological phenotype of cells in vivo more greatly, and thus predict the activity and resistance of anti-tumor drugs more accurately. In this paper, the common techniques of 3D cell culture are discussed, with emphasis on its main advantages and application in the evaluation of anti-tumor resistance, which can provide strategies for the screening of anti-tumor drugs.
Collapse
Affiliation(s)
- Yaqian Sun
- Oncology laboratory, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China.
| | - Haiyang Ma
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi, 030024, People's Republic of China
| |
Collapse
|
126
|
Mukherjee O, Rakshit S, Shanmugam G, Sarkar K. Role of chemotherapeutic drugs in immunomodulation of cancer. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100068. [PMID: 37692091 PMCID: PMC10491645 DOI: 10.1016/j.crimmu.2023.100068] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023] Open
Abstract
The immune system has a variety of potential effects on a tumor microenvironment and the course of chemotherapy may vary according to that. Anticancer treatments can encourage the release of unwanted signals from senescent tumor cells or the removal of immune-suppressive cells, which can lead to immune system activation. Hence, by inducing an immunological response and conversely making cancer cells more vulnerable to immune attack, chemotherapeutic agents can destroy cancer cells. Furthermore, chemotherapy can activate anticancer immune effectors directly or indirectly by thwarting immunosuppressive pathways. Therefore, in this review, we discuss how chemotherapeutic agents take part in immunomodulation and the molecular mechanisms underlying them. We also focus on the importance of carefully addressing the conflicting effects of chemotherapy on immune responses when developing successful combination treatments based on chemotherapy and immune modulators.
Collapse
Affiliation(s)
- Oishi Mukherjee
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Sudeshna Rakshit
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| |
Collapse
|
127
|
Khan MS, Gowda BHJ, Nasir N, Wahab S, Pichika MR, Sahebkar A, Kesharwani P. Advancements in dextran-based nanocarriers for treatment and imaging of breast cancer. Int J Pharm 2023; 643:123276. [PMID: 37516217 DOI: 10.1016/j.ijpharm.2023.123276] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Breast cancer is the most prevalent type of cancer worldwide,particularly among women, with substantial side effects after therapy. Despite the availability of numerous therapeutic approaches, particularly chemotherapy, the survival rates for breast cancer have declined over time. The therapies currently utilized for breast cancer treatment do not specifically target cancerous cells, resulting in significant adverse effects and potential harm to healthy cells alongside the cancer cells. As a result, nanoparticle-based drug delivery systems have emerged. Among various types of nanoparticles, natural polysaccharide-based nanoparticles have gained significant attention due to their ability to precisely control the drug release and achieve targeted drug delivery. Moreover, polysaccharides are biocompatible, biodegradable, easily modifiable, and renewable, which makes them a unique material for nanoformulation. In recent years, dextran and its derivatives have gained much interest in the field of breast cancer therapy. Dextran is a hydrophilic polysaccharide composed of a main chain formed by α-1,6 linked glucopyranoside residues and a side chain composed of residues linked in α-1,2/3/4 positions. Different dextran-antitumor medication conjugates enhancethe efficacy of anticancer agents. With this context, the present review provides brief insights into dextran and its modification. Further, it meticulously discusses the role of dextran-based nanoparticles in breast cancer therapy and imaging, followed by snippets on their toxicity. Lastly, it presents clinical trials and future perspectives of dextran-based nanoparticles in breast cancer treatment.
Collapse
Affiliation(s)
- Mohammad Sameer Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Nazim Nasir
- Department of Basic Medical Sciences, College of Applied Medical Sciences, Khamis Mushait, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Mallikarjuna Rao Pichika
- Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
128
|
McKinley S, Taylor A, Peeples C, Jacob M, Khaparde G, Walter Y, Ekpenyong A. Simulated Microgravity-Induced Changes to Drug Response in Cancer Cells Quantified Using Fluorescence Morphometry. Life (Basel) 2023; 13:1683. [PMID: 37629540 PMCID: PMC10455503 DOI: 10.3390/life13081683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Unlike plants that have special gravity-sensing cells, such special cells in animals are yet to be discovered. However, microgravity, the condition of apparent weightlessness, causes bone, muscular and immune system dysfunctions in astronauts following spaceflights. Decades of investigations show correlations between these organ and system-level dysfunctions with changes induced at the cellular level both by simulated microgravity as well as microgravity conditions in outer space. Changes in single bone, muscle and immune cells include morphological abnormalities, altered gene expression, protein expression, metabolic pathways and signaling pathways. These suggest that human cells mount some response to microgravity. However, the implications of such adjustments on many cellular functions and responses are not clear. Here, we addressed the question whether microgravity induces alterations to drug response in cancer cells. We used both adherent cancer cells (T98G) and cancer cells in suspension (K562) to confirm the known effects of simulated microgravity and then treated the K562 cells with common cancer drugs (hydroxyurea and paclitaxel) following 48 h of exposure to simulated microgravity via a NASA-developed rotary cell culture system. Through fluorescence-guided morphometry, we found that microgravity abolished a significant reduction (p < 0.01) in the nuclear-to-cytoplasm ratio of cancer cells treated with hydroxyurea. Our results call for more studies on the impact of microgravity on cellular drug response, in light of the growing need for space medicine, as space exploration grows.
Collapse
Affiliation(s)
- Spencer McKinley
- Biology Department, Creighton University, Omaha, NE 68178, USA; (S.M.); (A.T.); (M.J.); (G.K.)
| | - Adam Taylor
- Biology Department, Creighton University, Omaha, NE 68178, USA; (S.M.); (A.T.); (M.J.); (G.K.)
| | - Conner Peeples
- Physics Department, Creighton University, Omaha, NE 68178, USA; (C.P.); (Y.W.)
| | - Megha Jacob
- Biology Department, Creighton University, Omaha, NE 68178, USA; (S.M.); (A.T.); (M.J.); (G.K.)
| | - Gargee Khaparde
- Biology Department, Creighton University, Omaha, NE 68178, USA; (S.M.); (A.T.); (M.J.); (G.K.)
| | - Yohan Walter
- Physics Department, Creighton University, Omaha, NE 68178, USA; (C.P.); (Y.W.)
| | - Andrew Ekpenyong
- Physics Department, Creighton University, Omaha, NE 68178, USA; (C.P.); (Y.W.)
| |
Collapse
|
129
|
Khaled SS, Soliman HA, Abdel-Gabbar M, Ahmed NA, El-Nahass ES, Ahmed OM. Naringin and naringenin counteract taxol-induced liver injury in Wistar rats via suppression of oxidative stress, apoptosis and inflammation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90892-90905. [PMID: 37466839 PMCID: PMC10439847 DOI: 10.1007/s11356-023-28454-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/22/2023] [Indexed: 07/20/2023]
Abstract
This research aimed to evaluate the preventing effects of naringin, naringenin, and their combination on liver injury induced by Taxol (paclitaxel) in Wistar rats. Male Wistar rats received 2 mg/kg Taxol intraperitoneal injections twice weekly on the second and fifth days of each week for 6 weeks. During the same period as Taxol administration, rats were given naringin, naringenin, or a combination of the two (10 mg/kg b.wt) every other day. Treatment with naringin and/or naringenin reduced the abnormally high serum levels of total bilirubin, aspartate transaminase, alanine transaminase, alkaline phosphatase, lactate dehydrogenase, and gamma-glutamyl transferase in Taxol-treated rats. It also significantly increased the level of serum albumin, indicating an improvement in the liver. The perturbed histological liver changes were markedly improved due to the naringin and/or naringenin treatment in Taxol-administered rats. Additionally, the treatments reduced high hepatic lipid peroxidation and increased liver glutathione content as well as the activities of superoxide dismutase and glutathione peroxidase. Furthermore, the treatments reduced the levels of alpha-fetoprotein and caspase-3, a pro-apoptotic mediator. The naringin and naringenin mixture appeared more effective in improving organ function and structural integrity. In conclusion, naringin and naringenin are suggested to employ their hepatoprotective benefits via boosting the body's antioxidant defense system, reducing inflammation, and suppressing apoptosis.
Collapse
Affiliation(s)
- Shimaa S. Khaled
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Hanan A. Soliman
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Mohammed Abdel-Gabbar
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Noha A. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - El-Shaymaa El-Nahass
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Osama M. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| |
Collapse
|
130
|
Normandin K, Coulombe-Huntington J, St-Denis C, Bernard A, Bourouh M, Bertomeu T, Tyers M, Archambault V. Genetic enhancers of partial PLK1 inhibition reveal hypersensitivity to kinetochore perturbations. PLoS Genet 2023; 19:e1010903. [PMID: 37639469 PMCID: PMC10491399 DOI: 10.1371/journal.pgen.1010903] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/08/2023] [Accepted: 08/06/2023] [Indexed: 08/31/2023] Open
Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine kinase required for mitosis and cytokinesis. As cancer cells are often hypersensitive to partial PLK1 inactivation, chemical inhibitors of PLK1 have been developed and tested in clinical trials. However, these small molecule inhibitors alone are not completely effective. PLK1 promotes numerous molecular and cellular events in the cell division cycle and it is unclear which of these events most crucially depend on PLK1 activity. We used a CRISPR-based genome-wide screening strategy to identify genes whose inactivation enhances cell proliferation defects upon partial chemical inhibition of PLK1. Genes identified encode proteins that are functionally linked to PLK1 in multiple ways, most notably factors that promote centromere and kinetochore function. Loss of the kinesin KIF18A or the outer kinetochore protein SKA1 in PLK1-compromised cells resulted in mitotic defects, activation of the spindle assembly checkpoint and nuclear reassembly defects. We also show that PLK1-dependent CENP-A loading at centromeres is extremely sensitive to partial PLK1 inhibition. Our results suggest that partial inhibition of PLK1 compromises the integrity and function of the centromere/kinetochore complex, rendering cells hypersensitive to different kinetochore perturbations. We propose that KIF18A is a promising target for combinatorial therapies with PLK1 inhibitors.
Collapse
Affiliation(s)
- Karine Normandin
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | | | - Corinne St-Denis
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Alexandre Bernard
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Mohammed Bourouh
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Thierry Bertomeu
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Département de médecine, Université de Montréal, Montréal, Canada
| | - Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Canada
| |
Collapse
|
131
|
Sausen DG, Shechter O, Gallo ES, Dahari H, Borenstein R. Herpes Simplex Virus, Human Papillomavirus, and Cervical Cancer: Overview, Relationship, and Treatment Implications. Cancers (Basel) 2023; 15:3692. [PMID: 37509353 PMCID: PMC10378257 DOI: 10.3390/cancers15143692] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
There is a significant body of research examining the role of human papillomavirus (HPV) in the pathogenesis of cervical cancer, with a particular emphasis on the oncogenic proteins E5, E6, and E7. What is less well explored, however, is the relationship between cervical cancer and herpes simplex virus (HSV). To date, studies examining the role of HSV in cervical cancer pathogenesis have yielded mixed results. While several experiments have determined that HPV/HSV-2 coinfection results in a higher risk of developing cervical cancer, others have questioned the validity of this association. However, clarifying the potential role of HSV in the pathogenesis of cervical cancer may have significant implications for both the prevention and treatment of this disease. Should this relationship be clarified, treating and preventing HSV could open another avenue with which to prevent cervical cancer. The importance of this is highlighted by the fact that, despite the creation of an effective vaccine against HPV, cervical cancer still impacts 604,000 women and is responsible for 342,000 deaths annually. This review provides an overview of HSV and HPV infections and then delves into the possible links between HPV, HSV, and cervical cancer. It concludes with a summary of preventive measures against and recent treatment advances in cervical cancer.
Collapse
Affiliation(s)
- Daniel G. Sausen
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA; (D.G.S.); (O.S.)
| | - Oren Shechter
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA; (D.G.S.); (O.S.)
| | - Elisa S. Gallo
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
| | - Harel Dahari
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA;
| | - Ronen Borenstein
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA;
| |
Collapse
|
132
|
Fitzgerald DM, Zhang H, Bordeianu C, Colson YL, Grinstaff MW. Synthesis of Polyethylene Glycol-Poly(glycerol carbonate) Block Copolymeric Micelles as Surfactant-Free Drug Delivery Systems. ACS Macro Lett 2023; 12:974-979. [PMID: 37390500 PMCID: PMC11331582 DOI: 10.1021/acsmacrolett.3c00275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
We report the synthesis of block copolymers of monomethoxylated polyethylene glycol and poly(glycerol carbonate) (mPEG-b-PGC) via the ring-opening polymerization of benzyl glycidyl ether, monomethoxylated polyethylene glycol, and carbon dioxide using a cobalt salen catalyst. The resulting block copolymers display high polymer/cyclic carbonate selectivity (>99%) and, if two oxirane monomers are used, random incorporation into the polymer feed. The resulting diblock mPEG-b-PGC polymer shows promise as a nanocarrier for surfactant-free, sustained chemotherapeutic delivery. mPEG-b-PGC, with paclitaxel conjugated to the pendant primary alcohol of the glycerol polymer backbone, readily forms 175 nm diameter particles in solution and contains 4.6 wt % paclitaxel (PTX), which is released over 42 days. The mPEG-b-PGC polymer itself is noncytotoxic, whereas the PTX-loaded nanoparticles are cytotoxic to lung, breast, and ovarian cancer cell lines.
Collapse
Affiliation(s)
- Danielle M. Fitzgerald
- Departments of Chemistry and Biomedical Engineering Boston University, 590 Commonwealth Ave, Boston, MA, 02115
| | - Heng Zhang
- Departments of Chemistry and Biomedical Engineering Boston University, 590 Commonwealth Ave, Boston, MA, 02115
| | - Catalina Bordeianu
- Departments of Chemistry and Biomedical Engineering Boston University, 590 Commonwealth Ave, Boston, MA, 02115
| | - Yolonda L. Colson
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA 02214
| | - Mark W. Grinstaff
- Departments of Chemistry and Biomedical Engineering Boston University, 590 Commonwealth Ave, Boston, MA, 02115
| |
Collapse
|
133
|
Singh J, Meena A, Luqman S. New frontiers in the design and discovery of therapeutics that target calcium ion signaling: a novel approach in the fight against cancer. Expert Opin Drug Discov 2023; 18:1379-1392. [PMID: 37655549 DOI: 10.1080/17460441.2023.2251887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
INTRODUCTION The Ca2+ signaling toolkit is currently under investigation as a potential target for addressing the threat of cancer. A growing body of evidence suggests that calcium signaling plays a crucial role in promoting various aspects of cancer, including cell proliferation, progression, drug resistance, and migration-related activities. Consequently, focusing on these altered Ca2+ transporting proteins has emerged as a promising area of research for cancer treatment. AREAS COVERED This review highlights the existing research on the role of Ca2+-transporting proteins in cancer progression. It discusses the current studies evaluating Ca2+ channel/transporter/pump blockers, inhibitors, or regulators as potential anticancer drugs. Additionally, the review addresses specific gaps in our understanding of the field that may require further investigation. EXPERT OPINION Targeting specific Ca2+ signaling cascades could disrupt normal cellular activities, making cancer therapy complex and elusive. Therefore, there is a need for improvements in current Ca2+ signaling pathway focused medicines. While synthetic molecules and plant compounds show promise, they also come with certain limitations. Hence, exploring the framework of targeted drug delivery, structure-rationale-based designing, and repurposing potential drugs to target Ca2+ transporting proteins could potentially lead to a significant breakthrough in cancer treatment.
Collapse
Affiliation(s)
- Jyoti Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
134
|
Anand U, Dey A, Chandel AKS, Sanyal R, Mishra A, Pandey DK, De Falco V, Upadhyay A, Kandimalla R, Chaudhary A, Dhanjal JK, Dewanjee S, Vallamkondu J, Pérez de la Lastra JM. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis 2023; 10:1367-1401. [PMID: 37397557 PMCID: PMC10310991 DOI: 10.1016/j.gendis.2022.02.007] [Citation(s) in RCA: 534] [Impact Index Per Article: 267.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 11/28/2022] Open
Abstract
Cancer is an abnormal state of cells where they undergo uncontrolled proliferation and produce aggressive malignancies that causes millions of deaths every year. With the new understanding of the molecular mechanism(s) of disease progression, our knowledge about the disease is snowballing, leading to the evolution of many new therapeutic regimes and their successive trials. In the past few decades, various combinations of therapies have been proposed and are presently employed in the treatment of diverse cancers. Targeted drug therapy, immunotherapy, and personalized medicines are now largely being employed, which were not common a few years back. The field of cancer discoveries and therapeutics are evolving fast as cancer type-specific biomarkers are progressively being identified and several types of cancers are nowadays undergoing systematic therapies, extending patients' disease-free survival thereafter. Although growing evidence shows that a systematic and targeted approach could be the future of cancer medicine, chemotherapy remains a largely opted therapeutic option despite its known side effects on the patient's physical and psychological health. Chemotherapeutic agents/pharmaceuticals served a great purpose over the past few decades and have remained the frontline choice for advanced-stage malignancies where surgery and/or radiation therapy cannot be prescribed due to specific reasons. The present report succinctly reviews the existing and contemporary advancements in chemotherapy and assesses the status of the enrolled drugs/pharmaceuticals; it also comprehensively discusses the emerging role of specific/targeted therapeutic strategies that are presently being employed to achieve better clinical success/survival rate in cancer patients.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Arvind K. Singh Chandel
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Rupa Sanyal
- Department of Botany, Bhairab Ganguly College (affiliated to West Bengal State University), Kolkata, West Bengal 700056, India
| | - Amarnath Mishra
- Faculty of Science and Technology, Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida 201313, India
| | - Devendra Kumar Pandey
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Valentina De Falco
- Institute of Endocrinology and Experimental Oncology (IEOS), National Research Council (CNR), Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, Naples 80131, Italy
| | - Arun Upadhyay
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandar Sindari, Kishangarh Ajmer, Rajasthan 305817, India
| | - Ramesh Kandimalla
- CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
- Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana 506007, India
| | - Anupama Chaudhary
- Orinin-BioSystems, LE-52, Lotus Road 4, CHD City, Karnal, Haryana 132001, India
| | - Jaspreet Kaur Dhanjal
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-D), Okhla Industrial Estate, Phase III, New Delhi 110020, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Jayalakshmi Vallamkondu
- Department of Physics, National Institute of Technology-Warangal, Warangal, Telangana 506004, India
| | - José M. Pérez de la Lastra
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, IPNA-CSIC, San Cristóbal de La Laguna 38206, Tenerife, Spain
| |
Collapse
|
135
|
Sun WZ, Lin HW, Chen WY, Chien CL, Lai YL, Chen J, Chen YL, Cheng WF. Dual inhibition of BTLA and PD-1 can enhance therapeutic efficacy of paclitaxel on intraperitoneally disseminated tumors. J Immunother Cancer 2023; 11:e006694. [PMID: 37463789 PMCID: PMC10357656 DOI: 10.1136/jitc-2023-006694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Expression of immune checkpoints in the tumor microenvironment is one mechanism underlying paclitaxel (PTX) chemoresistance. This study aimed to investigate whether the addition of checkpoint blockade to PTX can improve the therapeutic efficacy against apparently disseminated intraperitoneal tumors. METHODS We analyzed the in vivo expression of various immune checkpoints in CD3+CD8+ cytotoxic T cells from tumor-bearing mice treated with or without PTX and validated the tumor-killing activities of selected checkpoint-expressing T-cell subpopulations ex vivo. The regulation of selected checkpoints was investigated in vitro. The therapeutic effects of inhibition of a targeted checkpoint pathway with antibodies added to PTX therapy were examined. RESULTS CD3+CD8+ T cells expressed with herpes virus entry mediator (HVEM), programmed cell death 1 (PD-1), and T-cell immunoglobulin domain and mucin domain 3 (TIM-3) in tumor-bearing hosts treated with PTX had effective tumoricidal activities. In addition to PTX and cytokines, B and T lymphocyte attenuator (BTLA) or homologous to lymphotoxin, exhibits inducible expression and competes with herpes simplex virus (HSV) glycoprotein D for binding to HVEM, a receptor expressed on T lymphocytes (LIGHT) interacting with HVEM can regulate the expression of PD-1 on CD3+CD8+ T cells. Interleukin (IL)-15 increased the percentage of HVEMhighgranzyme B (GZMB)+ cells among CD3+CD8+ T cells, which was suppressed by the BTLA/HVEM signal. LIGHT induced the percentage of HVEM+GZMB+ cells but not HVEMhighGZMB+ cells among CD3+CD8+ T cells. Expression of IL-15, BTLA, or LIGHT was detected in CD19+ B cells and regulated by damage-associated molecular patterns/Toll-like receptor interactions. In the tumor-bearing hosts treated with PTX, certain proportions of BTLA+ B or PD-1+ T lymphocytes were still noted. When dual inhibition of BTLA and PD-1 was added to PTX, the antitumor effects on intraperitoneally disseminated tumors can be significantly improved. CONCLUSIONS Dual blockade of BTLA on B cells and PD-1 on cytotoxic T cells may have clinical potential for enhancing the efficacy of PTX in the treatment of tumors with intraperitoneal spread, including epithelial ovarian carcinomas.
Collapse
Affiliation(s)
- Wei-Zen Sun
- Department of Anesthesiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Han-Wei Lin
- Department of Anesthesiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-Yu Chen
- Graduate Institute of Oncology,College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Liang Chien
- Graduate Institute of Anatomy and Cell Biology,College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Ling Lai
- Department of Obstetrics and Gynecology,College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, National Taiwan University Hospital Hsin-Chu Branch, Hsin‑Chu, Taiwan
| | - Jung Chen
- Department of Obstetrics and Gynecology,College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Li Chen
- Department of Obstetrics and Gynecology,College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, National Taiwan University Hospital Yun-Lin Branch, Yun‑Lin county, Taiwan
| | - Wen-Fang Cheng
- Graduate Institute of Oncology,College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Obstetrics and Gynecology,College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
136
|
Fang Y, Zhang X, Huang H, Zeng Z. The interplay between noncoding RNAs and drug resistance in hepatocellular carcinoma: the big impact of little things. J Transl Med 2023; 21:369. [PMID: 37286982 DOI: 10.1186/s12967-023-04238-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer-related death in people, and a common primary liver cancer. Lacking early diagnosis and a high recurrence rate after surgical resection, systemic treatment is still an important treatment method for advanced HCC. Different drugs have distinct curative effects, side effects and drug resistance due to different properties. At present, conventional molecular drugs for HCC have displayed some limitations, such as adverse drug reactions, insensitivity to some medicines, and drug resistance. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), have been well documented to be involved in the occurrence and progression of cancer. Novel biomarkers and therapeutic targets, as well as research into the molecular basis of drug resistance, are urgently needed for the management of HCC. We review current research on ncRNAs and consolidate the known roles regulating drug resistance in HCC and examine the potential clinical applications of ncRNAs in overcoming drug resistance barriers in HCC based on targeted therapy, cell cycle non-specific chemotherapy and cell cycle specific chemotherapy.
Collapse
Affiliation(s)
- Yuan Fang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, People's Republic of China
| | - XiaoLi Zhang
- Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - HanFei Huang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, People's Republic of China.
| | - Zhong Zeng
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, People's Republic of China.
| |
Collapse
|
137
|
Huang J, Zhu Y, Xiao H, Liu J, Li S, Zheng Q, Tang J, Meng X. Formation of a traditional Chinese medicine self-assembly nanostrategy and its application in cancer: a promising treatment. Chin Med 2023; 18:66. [PMID: 37280646 DOI: 10.1186/s13020-023-00764-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/06/2023] [Indexed: 06/08/2023] Open
Abstract
Traditional Chinese medicine (TCM) has been used for centuries to prevent and treat a variety of illnesses, and its popularity is increasing worldwide. However, the clinical applications of natural active components in TCM are hindered by the poor solubility and low bioavailability of these compounds. To address these issues, Chinese medicine self-assembly nanostrategy (CSAN) is being developed. Many active components of TCM possess self-assembly properties, allowing them to form nanoparticles (NPs) through various noncovalent forces. Self-assembled NPs (SANs) are also present in TCM decoctions, and they are closely linked to the therapeutic effects of these remedies. SAN is gaining popularity in the nano research field due to its simplicity, eco-friendliness, and enhanced biodegradability and biocompatibility compared to traditional nano preparation methods. The self-assembly of active ingredients from TCM that exhibit antitumour effects or are combined with other antitumour drugs has generated considerable interest in the field of cancer therapeutics. This paper provides a review of the principles and forms of CSAN, as well as an overview of recent reports on TCM that can be used for self-assembly. Additionally, the application of CSAN in various cancer diseases is summarized, and finally, a concluding summary and thoughts are proposed. We strongly believe that CSAN has the potential to offer fresh strategies and perspectives for the modernization of TCM.
Collapse
Affiliation(s)
- Ju Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yu Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Hang Xiao
- Capital Medical University, Beijing, People's Republic of China
| | - Jingwen Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Songtao Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Qiao Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
| | - Xiangrui Meng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
| |
Collapse
|
138
|
Klimas A, Gallagher BR, Wijesekara P, Fekir S, DiBernardo EF, Cheng Z, Stolz DB, Cambi F, Watkins SC, Brody SL, Horani A, Barth AL, Moore CI, Ren X, Zhao Y. Magnify is a universal molecular anchoring strategy for expansion microscopy. Nat Biotechnol 2023; 41:858-869. [PMID: 36593399 PMCID: PMC10264239 DOI: 10.1038/s41587-022-01546-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/05/2022] [Indexed: 01/03/2023]
Abstract
Expansion microscopy enables nanoimaging with conventional microscopes by physically and isotropically magnifying preserved biological specimens embedded in a crosslinked water-swellable hydrogel. Current expansion microscopy protocols require prior treatment with reactive anchoring chemicals to link specific labels and biomolecule classes to the gel. We describe a strategy called Magnify, which uses a mechanically sturdy gel that retains nucleic acids, proteins and lipids without the need for a separate anchoring step. Magnify expands biological specimens up to 11 times and facilitates imaging of cells and tissues with effectively around 25-nm resolution using a diffraction-limited objective lens of about 280 nm on conventional optical microscopes or with around 15 nm effective resolution if combined with super-resolution optical fluctuation imaging. We demonstrate Magnify on a broad range of biological specimens, providing insight into nanoscopic subcellular structures, including synaptic proteins from mouse brain, podocyte foot processes in formalin-fixed paraffin-embedded human kidney and defects in cilia and basal bodies in drug-treated human lung organoids.
Collapse
Affiliation(s)
- Aleksandra Klimas
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Brendan R Gallagher
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Piyumi Wijesekara
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Sinda Fekir
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Emma F DiBernardo
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Zhangyu Cheng
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Donna B Stolz
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Franca Cambi
- Veterans Administration Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology/PIND, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simon C Watkins
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven L Brody
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alison L Barth
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Christopher I Moore
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Yongxin Zhao
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
139
|
Zhang S, Liu Q, Chang M, Pan Y, Yahaya BH, Liu Y, Lin J. Chemotherapy impairs ovarian function through excessive ROS-induced ferroptosis. Cell Death Dis 2023; 14:340. [PMID: 37225709 DOI: 10.1038/s41419-023-05859-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/05/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023]
Abstract
Chemotherapy was conventionally applied to kill cancer cells, but regrettably, they also induce damage to normal cells with high-proliferative capacity resulting in cardiotoxicity, nephrotoxicity, peripheral nerve toxicity, and ovarian toxicity. Of these, chemotherapy-induced ovarian damages mainly include but are not limited to decreased ovarian reserve, infertility, and ovarian atrophy. Therefore, exploring the underlying mechanism of chemotherapeutic drug-induced ovarian damage will pave the way to develop fertility-protective adjuvants for female patients during conventional cancer treatment. Herein, we firstly confirmed the abnormal gonadal hormone levels in patients who received chemotherapy and further found that conventional chemotherapeutic drugs (cyclophosphamide, CTX; paclitaxel, Tax; doxorubicin, Dox and cisplatin, Cis) treatment significantly decreased both the ovarian volume of mice and the number of primordial and antral follicles and accompanied with the ovarian fibrosis and reduced ovarian reserve in animal models. Subsequently, Tax, Dox, and Cis treatment can induce the apoptosis of ovarian granulosa cells (GCs), likely resulting from excessive reactive oxygen species (ROS) production-induced oxidative damage and impaired cellular anti-oxidative capacity. Thirdly, the following experiments demonstrated that Cis treatment could induce mitochondrial dysfunction through overproducing superoxide in GCs and trigger lipid peroxidation leading to ferroptosis, first reported in chemotherapy-induced ovarian damage. In addition, N-acetylcysteine (NAC) treatment could alleviate the Cis-induced toxicity in GCs by downregulating cellular ROS levels and enhancing the anti-oxidative capacity (promoting the expression of glutathione peroxidase, GPX4; nuclear factor erythroid 2-related factor 2, Nrf2 and heme oxygenase-1, HO-1). Our study confirmed the chemotherapy-induced chaotic hormonal state and ovarian damage in preclinical and clinical examination and indicated that chemotherapeutic drugs initiated ferroptosis in ovarian cells through excessive ROS-induced lipid peroxidation and mitochondrial dysfunction, leading to ovarian cell death. Consequently, developing fertility protectants from the chemotherapy-induced oxidative stress and ferroptosis perspective will ameliorate ovarian damage and further improve the life quality of cancer patients.
Collapse
Affiliation(s)
- Shenghui Zhang
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, China
- Department of Biomedical Sciences, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Penang, Malaysia
| | - Qin Liu
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, China
| | - Mengyuan Chang
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, China
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Ying Pan
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Badrul Hisham Yahaya
- Department of Biomedical Sciences, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Penang, Malaysia.
| | - Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, China.
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
140
|
Teng S, Zhu Z, Li Y, Hu X, Fang Z, Liu Z, Zhou S. A novel glycyrrhizin acid-coated stent reduces neointimal formation in a rabbit iliac artery model. Front Pharmacol 2023; 14:1159779. [PMID: 37266147 PMCID: PMC10229815 DOI: 10.3389/fphar.2023.1159779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/20/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction: Most drug-eluting stents (DESs) inhibit intimal hyperplasia but impair re-endothelialization. This study aimed to evaluate in vivo strut coverage and neointimal growth in a new glycyrrhizin acid (GA)-eluting stent. Methods: New Zealand White rabbits (n = 20) with atherosclerotic plaques were randomly divided into three groups based on implanted iliac artery stents: bare-metal stents (BMSs), rapamycin-eluting stents, and GA-eluting stents. After the in vivo intravascular ultrasound (IVUS) assessment at 28 days, the vessels were harvested for scanning electron microscopy (SEM) and histology. After 4 weeks of follow-up, the stent and external elastic lamina (EEL) areas were compared among the groups. Results: The rapamycin- or GA-eluting stents significantly reduced the neointimal area compared with BMSs, though GA-eluting stents had the lowest reduction. There were more uncovered struts for rapamycin-eluting stents than those for GA-eluting stents and bare-metal stents. The endothelial nitric oxide synthase (eNOS) expression in GA-eluting stents was much higher than that in BMSs and rapamycin-eluting stents, even though the endothelial coverage between struts was equivalent between BMSs and GA-eluting stents. Moreover, GA-eluting stents markedly promoted re-endothelialization and improved arterial healing compared to rapamycin-eluting stents in a rabbit atherosclerotic model. Conclusion: In conclusion, the novel GA-coated stent used in this study inhibited intimal hyperplasia and promoted re-endothelialization.
Collapse
Affiliation(s)
- Shuai Teng
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaowei Zhu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Li
- Department of Vascular Surgery, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, Fujian, China
| | - Xinqun Hu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenfei Fang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenjiang Liu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
141
|
Xing P, Zhong Y, Cui X, Liu Z, Wu X. Natural products in digestive tract tumors metabolism: Functional and application prospects. Pharmacol Res 2023; 191:106766. [PMID: 37061144 DOI: 10.1016/j.phrs.2023.106766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
Digestive tract diseases are presently the hotspot of clinical diagnosis and treatment, and the incidence of digestive tract tumor is increasing annually. Surgery remains the main therapeutic schedule for digestive tract tumor. Though benefits were brought by neoadjuvant chemotherapy, a part of patients lose the chance of surgery because of late detection or inappropriate intervention. Therefore, the treatment of inoperable patients has become an urgent need. At the same time, tumor metabolism is an extremely complex and diverse process. Natural products are confirmed effective to inhibit the development of tumors in vitro and in vitro. There are many kinds of natural products and their functions remain not clear. However, some natural products such as polyphenols have been proven to have definite anti-cancer effects, and some terpenoids have definite anti-inflammatory, anti-ulcer, anti-tumor, and other effects. Therefore, the anti-tumor characteristics of natural products should arouse our high attention. Although there are many obstacles to study the activities of natural products in tumor, including the difficulty in detection or distinguishing each component due to their low levels in tumor tissue, etc., the emergence of highly sensitive and locatable spatial metabolomics make the research and application of natural products a big step forward. In this review, natural products such as phenols, terpenoids and biotinoids were summarized to further discuss the development and therapeutic properties of natural metabolites on digestive tract tumors.
Collapse
Affiliation(s)
- Peng Xing
- Department of Surgical Oncology, Breast Surgery, General Surgery, First Hospital of China Medical University, Shenyang, China
| | - Yifan Zhong
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Xiao Cui
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China.
| | - Xingda Wu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
142
|
Zlotnikov ID, Dobryakova NV, Ezhov AA, Kudryashova EV. Achievement of the Selectivity of Cytotoxic Agents against Cancer Cells by Creation of Combined Formulation with Terpenoid Adjuvants as Prospects to Overcome Multidrug Resistance. Int J Mol Sci 2023; 24:ijms24098023. [PMID: 37175727 PMCID: PMC10178335 DOI: 10.3390/ijms24098023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Oncological diseases are difficult to treat even with strong drugs due to development the multidrug resistance (MDR) of cancer cells. A strategy is proposed to increase the efficiency and selectivity of cytotoxic agents against cancer cells to engage the differences in the morphology and microenvironment of tumor and healthy cells, including the pH, membrane permeability, and ion channels. Using this approach, we managed to develop enhanced formulations of cytotoxic agents with adjuvants (which are known as efflux inhibitors and as ion channel inhibitors in tumors)-with increased permeability in A549 and a protective effect on healthy HEK293T cells. The composition of the formulation is as follows: cytotoxic agents (doxorubicin (Dox), paclitaxel (Pac), cisplatin) + adjuvants (allylbenzenes and terpenoids) in the form of inclusion complexes with β-cyclodextrin. Modified cyclodextrins make it possible to obtain soluble forms of pure substances of the allylbenzene and terpenoid series and increase the solubility of cytotoxic agents. A comprehensive approach based on three methods for studying the interaction of drugs with cells is proposed: MTT test-quantitative identification of surviving cells; FTIR spectroscopy-providing information on the molecular mechanisms inaccessible to study by any other methods (including binding to DNA, surface proteins, or lipid membrane); confocal microscopy for the visualization of observed effects of Dox accumulation in cancer or healthy cells depending on the drug formulation as a direct control of the correctness of interpretation of the results obtained by the two other methods. We found that eugenol (EG) and apiol increase the intracellular concentration of cytostatic in A549 cells by 2-4 times and maintain it for a long time. However, an important aspect is the selectivity of the enhancing effect of adjuvants on tumor cells in relation to healthy ones. Therefore, the authors focused on adjuvant's effect on the control healthy cells (HEK293T): EG and apiol demonstrate "protective" properties from cytostatic penetration by reducing intracellular concentrations by about 2-3 times. Thus, a combined formulation of cytostatic drugs has been found, showing promise in the aspects of improving the efficiency and selectivity of antitumor drugs; thereby, one of the perspective directions for overcoming MDR is suggested.
Collapse
Affiliation(s)
- Igor D Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Natalia V Dobryakova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
| | - Alexander A Ezhov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1/2, 119991 Moscow, Russia
| | - Elena V Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| |
Collapse
|
143
|
Zhao H, Wang L, Zhang L, Zhao H. Phytochemicals targeting lncRNAs: A novel direction for neuroprotection in neurological disorders. Biomed Pharmacother 2023; 162:114692. [PMID: 37058817 DOI: 10.1016/j.biopha.2023.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023] Open
Abstract
Neurological disorders with various etiologies impacting the nervous system are prevalent in clinical practice. Long non-coding RNA (lncRNA) molecules are functional RNA molecules exceeding 200 nucleotides in length that do not encode proteins, but participate in essential activities. Research indicates that lncRNAs may contribute to the pathogenesis of neurological disorders, and may be potential targets for their treatment. Phytochemicals in traditional Chinese herbal medicine (CHM) have been found to exert neuroprotective effects by targeting lncRNAs and regulating gene expression and various signaling pathways. We aim to establish the development status and neuroprotective mechanism of phytochemicals that target lncRNAs through a thorough literature review. A total of 369 articles were retrieved through manual and electronic searches of PubMed, Web of Science, Scopus and CNKI databases from inception to September 2022. The search utilized combinations of natural products, lncRNAs, neurological disorders, and neuroprotective effects as keywords. The included studies, a total of 31 preclinical trials, were critically reviewed to present the current situation and the progress in phytochemical-targeted lncRNAs in neuroprotection. Phytochemicals have demonstrated neuroprotective effects in preclinical studies of various neurological disorders by regulating lncRNAs. These disorders include arteriosclerotic ischemia-reperfusion injury, ischemic/hemorrhagic stroke, Alzheimer's disease, Parkinson's disease, glioma, peripheral nerve injury, post-stroke depression, and depression. Several phytochemicals exert neuroprotective roles through mechanisms such as anti-inflammatory, antioxidant, anti-apoptosis, autophagy regulation, and antagonism of Aβ-induced neurotoxicity. Some phytochemicals targeted lncRNAs and served a neuroprotective role by regulating microRNA and mRNA expression. The emergence of lncRNAs as pathological regulators provides a novel direction for the study of phytochemicals in CHM. Elucidating the mechanism of phytochemicals regulating lncRNAs will help to identify new therapeutic targets and promote their application in precision medicine.
Collapse
Affiliation(s)
- Hang Zhao
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Lin Wang
- Department of Emergency medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Lijuan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| | - Hongyu Zhao
- Department of Emergency medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
144
|
Yang B, Yin S, Zhou Z, Huang L, Xi M. Inflammation Control and Tumor Growth Inhibition of Ovarian Cancer by Targeting Adhesion Molecules of E-Selectin. Cancers (Basel) 2023; 15:cancers15072136. [PMID: 37046797 PMCID: PMC10093113 DOI: 10.3390/cancers15072136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
Objective: The aim is to use E-selectin-binding peptide (ESBP) to actively recognize E-selectin, so allowing a drug delivery system to actively recognize the cells and inhibit the tumor growth of ovarian cancer by targeting adhesion molecules of E-selectin. An ovarian-cancer-directed drug delivery system was designed based on the high affinity of E-selectin-binding peptide (ESBP) to E-selectin. The effects and mechanisms of ESBP-bovine serum albumin (BSA) polymerized nanoparticles were investigated. Methods: BSA polymerized nanoparticles (BSANPs) and ESBP-BSANPs-paclitaxel (PTX) were prepared and their characteristics were measured. The in vitro targetability and cytotoxicity of ESBP-BSANPs-PTX were evaluated through in vitro drug uptake and MTT experiments. The mechanisms of ESBP-BSANPs-PTX were investigated via apoptosis, wound healing and immunohistochemistry assays. The in vivo targeting properties and drug effects were observed in a mouse tumor-bearing model. Results: In vitro experiments revealed an increase in the uptake of ESBP-BSANPs-FITC. The cytotoxicity of ESBP-BSANPs-PTX in A2780/CP70, HUVEC, RAW264.7 and ID8 cells was higher than that of PTX alone. ESBP-BSANPs-PTX increased cell apoptosis in a dose-dependent manner and exhibited a greater ability to inhibit cell migration than BSANPs-PTX. In vivo experiments demonstrated the targetability and good effects of ESBP-BSANPs. Conclusions: ESBP-BSANPs-PTX improve PTX targetability, provide tumor-specific and potent therapeutic activities, and show promise for the development of agents in preclinical epithelial ovarian cancer.
Collapse
Affiliation(s)
- Bowen Yang
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Shanmei Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zishuo Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Luyao Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Mingrong Xi
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| |
Collapse
|
145
|
Nie J, Li L, Tan F, Wang H, Wang H, Zou L, Wen Z. Effect of CADM1 on TPF-induced chemotherapy in laryngeal squamous cell carcinoma. J Int Med Res 2023; 51:3000605231168017. [PMID: 37114505 DOI: 10.1177/03000605231168017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
OBJECTIVES To explore the relationship between CADM1 expression and sensitivity to TPF-induced chemotherapy in laryngeal squamous cell carcinoma (LSCC) patients, then investigate its potential mechanisms. METHODS Differential CADM1 expression was examined in chemotherapy-sensitive and chemotherapy-insensitive LSCC patient samples after TPF-induced chemotherapy using microarray analysis. Receiver operating characteristic (ROC) curve analysis and bioinformatics approaches were used to investigate the diagnostic value of CADM1. Small interfering RNAs (siRNAs) were used to knock down CADM1 expression in an LSCC cell line. Differential CADM1 expression was compared by qRT-PCR assays in 35 LSCC patients treated with chemotherapy, including 20 chemotherapy-sensitive and 15 chemotherapy-insensitive patients. RESULTS Public database and primary patient data both suggest that CADM1 mRNA is expressed at lower levels in chemotherapy-insensitive LSCC samples, suggesting its potential usefulness as a biomarker. Knockdown of CADM1 with siRNAs led to decreased sensitivity of LSCC cells to TPF chemotherapy. CONCLUSIONS Upregulation of CADM1 expression can alter the sensitivity of LSCC tumors to TPF induction chemotherapy. CADM1 is a possible molecular marker and therapeutic target for induction chemotherapy in LSCC patients.
Collapse
Affiliation(s)
- Jiani Nie
- Chengde Medical University, Heibei, China
| | - Lianhe Li
- Department of Otorhinolaryngology Head and Neck Surgery, Central Hospital of Chaoyang, Liaoning, China
| | - Fuxian Tan
- Department of Otorhinolaryngology Head and Neck Surgery, Central Hospital of Chaoyang, Liaoning, China
| | - Hongmei Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Central Hospital of Chaoyang, Liaoning, China
| | - Hongmin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Central Hospital of Chaoyang, Liaoning, China
| | - Liangyu Zou
- Department of Otorhinolaryngology Head and Neck Surgery, Central Hospital of Chaoyang, Liaoning, China
| | - Zhenlei Wen
- Department of Otorhinolaryngology Head and Neck Surgery, Central Hospital of Chaoyang, Liaoning, China
| |
Collapse
|
146
|
Guo X, Ren W, Lv Z, Li G, Li H, Sun M, Li X, Chen G, Zhang Z, Zhang W, Bu M. Synthesis and Anticancer Activity of Ergosterol Peroxide Hybrids With Paclitaxel Side Chain Inducing Apoptosis in Human Hepatoma Carcinoma Cells. Nat Prod Commun 2023. [DOI: 10.1177/1934578x231166778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
The antitumor activities of natural paclitaxel (PTX), semisynthetic docetaxel, and cabazitaxel are highly dependent on their C-13 side chains. Therefore, using natural ergosterol peroxide (EP, 1) as the lead compound, two EP-PTX hybrids (EP-A2 and EP-B2) were prepared and their antitumor activities were evaluated against 4 kinds of human MCF-7, HepG2, HCT-116, and A549 cell lines in vitro. The results showed that both EP-A2 and EP-B2 inhibited the growth of all four kinds of tested tumor cell lines. For paclitaxel-resistant MCF-7 cells, both EP-A2 and EP-B2 showed significant inhibitory activity with relatively low IC50 values (9.39 μM and 8.60 μM, respectively). In addition, EP-B2 inhibited the growth of the HepG2 cells (IC50 = 7.82 μM) more successfully than EP. Preliminary studies of the mechanism suggest that EP-B2 could arrest the G1 phase transition in HepG2 cells. In addition, EP-B2 showed an obvious apoptosis-inducing effect in HepG2 cells, as detected by the Annexin V/PI binding assay and the Western blot assay. Hybrid EP-B2 has the potential to become a novel antitumor drug through further study of the mechanism of action and its structural modifications.
Collapse
Affiliation(s)
- Xiaoshan Guo
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Wenkang Ren
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Zhen Lv
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Gang Li
- Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Hongling Li
- College of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Mingrui Sun
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Xiaoming Li
- Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Gang Chen
- Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Zhiguo Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Wenting Zhang
- Department of Pharmacy, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Ming Bu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
147
|
Woo H, Kim JH. Effect of air stone pore size and gas flow rate on the recovery efficiency of paclitaxel from biomass in gas bubble-assisted extraction. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-023-1425-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
148
|
Gielecińska A, Kciuk M, Mujwar S, Celik I, Kołat D, Kałuzińska-Kołat Ż, Kontek R. Substances of Natural Origin in Medicine: Plants vs. Cancer. Cells 2023; 12:986. [PMID: 37048059 PMCID: PMC10092955 DOI: 10.3390/cells12070986] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Continuous monitoring of the population's health is the main method of learning about disease prevalence. National and international data draw attention to the persistently high rates of cancer incidence. This necessitates the intensification of efforts aimed at developing new, more effective chemotherapeutic and chemopreventive drugs. Plants represent an invaluable source of natural substances with versatile medicinal properties. Multidirectional activities exhibited by natural substances and their ability to modulate key signaling pathways, mainly related to cancer cell death, make these substances an important research direction. This review summarizes the information regarding plant-derived chemotherapeutic drugs, including their mechanisms of action, with a special focus on selected anti-cancer drugs (paclitaxel, irinotecan) approved in clinical practice. It also presents promising plant-based drug candidates currently being tested in clinical and preclinical trials (betulinic acid, resveratrol, and roburic acid).
Collapse
Affiliation(s)
- Adrianna Gielecińska
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| | - Mateusz Kciuk
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Damian Kołat
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| |
Collapse
|
149
|
Liang M, Li F, Wang Y, Chen H, Tian J, Zhao Z, Schneider KH, Li G. Woven Vascular Stent-Grafts with Surface Modification of Silk Fibroin-Based Paclitaxel/Metformin Microspheres. Bioengineering (Basel) 2023; 10:bioengineering10040399. [PMID: 37106586 PMCID: PMC10136065 DOI: 10.3390/bioengineering10040399] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
In-stent restenosis caused by tumor ingrowth increases the risk of secondary surgery for patients with abdominal aortic aneurysms (AAA) because conventional vascular stent grafts suffer from mechanical fatigue, thrombosis, and endothelial hyperplasia. For that, we report a woven vascular stent-graft with robust mechanical properties, biocompatibility, and drug delivery functions to inhibit thrombosis and the growth of AAA. Paclitaxel (PTX)/metformin (MET)-loaded silk fibroin (SF) microspheres were self-assembly synthesized by emulsification-precipitation technology and layer-by-layer coated on the surface of a woven stent via electrostatic bonding. The woven vascular stent-graft before and after coating drug-loaded membranes were characterized and analyzed systematically. The results show that small-sized drug-loaded microspheres increased the specific surface area and promoted the dissolution/release of drugs. The stent-grafts with drug-loaded membranes exhibited a slow drug-release profile more for than 70 h and low water permeability at 158.33 ± 17.56 mL/cm2·min. The combination of PTX and MET inhibited the growth of human umbilical vein endothelial cells. Therefore, it was possible to generate dual-drug-loaded woven vascular stent-grafts to achieve the more effective treatment of AAA.
Collapse
Affiliation(s)
- Mengdi Liang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Jiangsu Advanced Textile Engineering Technology Center, Nantong 226007, China
| | - Fang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Jiangsu Advanced Textile Engineering Technology Center, Nantong 226007, China
| | - Yongfeng Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Jiangsu Advanced Textile Engineering Technology Center, Nantong 226007, China
| | - Hao Chen
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Jiangsu Advanced Textile Engineering Technology Center, Nantong 226007, China
| | - Jingjing Tian
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Jiangsu Advanced Textile Engineering Technology Center, Nantong 226007, China
| | - Zeyu Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, 11 Yukchoi Rd, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Karl H Schneider
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Jiangsu Advanced Textile Engineering Technology Center, Nantong 226007, China
| |
Collapse
|
150
|
Cyclodextrin-Based Polymeric Drug Delivery Systems for Cancer Therapy. Polymers (Basel) 2023; 15:polym15061400. [PMID: 36987181 PMCID: PMC10052104 DOI: 10.3390/polym15061400] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Cyclodextrins (CDs) are one of the most extensively studied cyclic-oligosaccharides due to their low toxicity, good biodegradability and biocompatibility, facile chemical modification, and unique inclusion capacity. However, problems such as poor pharmacokinetics, plasma membrane disruption, hemolytic effects and a lack of target specificity still exist for their applications as drug carriers. Recently, polymers have been introduced into CDs to combine the advantages of both biomaterials for the superior delivery of anticancer agents in cancer treatment. In this review, we summarize four types of CD-based polymeric carriers for the delivery of chemotherapeutics or gene agents for cancer therapy. These CD-based polymers were classified based on their structural properties. Most of the CD-based polymers were amphiphilic with the introduction of hydrophobic/hydrophilic segments and were able to form nanoassemblies. Anticancer drugs could be included in the cavity of CDs, encapsulated in the nanoparticles or conjugated on the CD-based polymers. In addition, the unique structures of CDs enable the functionalization of targeting agents and stimuli-responsive materials to realize the targeting and precise release of anticancer agents. In summary, CD-based polymers are attractive carriers for anticancer agents.
Collapse
|