101
|
Paranjpe MD, Belonwu S, Wang JK, Oskotsky T, Gupta A, Taubes A, Zalocusky KA, Paranjpe I, Glicksberg BS, Huang Y, Sirota M. Sex-Specific Cross Tissue Meta-Analysis Identifies Immune Dysregulation in Women With Alzheimer's Disease. Front Aging Neurosci 2021; 13:735611. [PMID: 34658838 PMCID: PMC8515049 DOI: 10.3389/fnagi.2021.735611] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/01/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia in the United States. In spite of evidence of females having a greater lifetime risk of developing Alzheimer's Disease (AD) and greater apolipoprotein E4-related (APOE ε4) AD risk compared to males, molecular signatures underlying these differences remain elusive. Methods: We took a meta-analysis approach to study gene expression in the brains of 1,084 AD patients and age-matched controls and whole blood from 645 AD patients and age-matched controls in seven independent datasets. Sex-specific gene expression patterns were investigated through use of gene-based, pathway-based and network-based approaches. The ability of a sex-specific AD gene expression signature to distinguish Alzheimer's disease from healthy controls was assessed using a linear support vector machine model. Cell type deconvolution from whole blood gene expression data was performed to identify differentially regulated cells in males and females with AD. Results: Strikingly gene-expression, network-based analysis and cell type deconvolution approaches revealed a consistent immune signature in the brain and blood of female AD patients that was absent in males. In females, network-based analysis revealed a coordinated program of gene expression involving several zinc finger nuclease genes related to Herpes simplex viral infection whose expression was modulated by the presence of the APOE ε4 allele. Interestingly, this gene expression program was missing in the brains of male AD patients. Cell type deconvolution identified an increase in neutrophils and naïve B cells and a decrease in M2 macrophages, memory B cells, and CD8+ T cells in AD samples compared to controls in females. Interestingly, among males with AD, no significant differences in immune cell proportions compared to controls were observed. Machine learning-based classification of AD using gene expression from whole blood in addition to clinical features produced an improvement in classification accuracy upon stratifying by sex, achieving an AUROC of 0.91 for females and 0.80 for males. Conclusion: These results help identify sex and APOE ε4 genotype-specific transcriptomic signatures of AD and underscore the importance of considering sex in the development of biomarkers and therapeutic strategies for AD.
Collapse
Affiliation(s)
- Manish D Paranjpe
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States.,Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Boston, MA, United States
| | - Stella Belonwu
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States.,Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA, United States
| | - Jason K Wang
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Boston, MA, United States
| | - Tomiko Oskotsky
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Aarzu Gupta
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Alice Taubes
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States.,The Gladstone Institute of Neurological Disease, San Francisco, CA, United States
| | - Kelly A Zalocusky
- The Gladstone Institute of Neurological Disease, San Francisco, CA, United States.,Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Ishan Paranjpe
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States.,Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Benjamin S Glicksberg
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yadong Huang
- The Gladstone Institute of Neurological Disease, San Francisco, CA, United States.,Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
102
|
Zeng Q, Fang Q, Zhou X, Yang H, Dou Y, Zhang W, Gong P, Rong X. Cofilin 2 Acts as an Inflammatory Linker Between Chronic Periodontitis and Alzheimer's Disease in Amyloid Precursor Protein/Presenilin 1 Mice. Front Mol Neurosci 2021; 14:728184. [PMID: 34658785 PMCID: PMC8514664 DOI: 10.3389/fnmol.2021.728184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022] Open
Abstract
Increasing evidence has shown a correlation between chronic periodontitis (CP) and Alzheimer’s disease (AD). Nevertheless, there is still a lack of direct evidence, and especially key molecules to connect the two diseases. This study aims to investigate potential protein links between CP and AD within the inflammatory aspect. The hippocampus of CP model mice and controls were collected, and changes in protein expression were evaluated using two-dimensional differential in-gel electrophoresis (2D-DIGE) analysis combined with liquid chromatography tandem mass spectrometry. A total of 15 differentially expressed proteins were identified in CP model mice, as compared with the controls. Among them, S100-A9, transthyretin, Cofilin 2, peroxiredoxin 2, and lipocalin-2 were validated by Western blot according to their dual function both in inflammation and AD. Based on 2D-DIGE analysis, CP animal model had higher levels of S100-A9, Cofilin 2, peroxiredoxin 2, and lipocalin-2 compared to controls. The level of Cofilin 2, one of the well-established proteins in the pathology of AD, was strongly correlated with the time course of CP pathology, indicating a specific molecular correlation between CP and AD. Moreover, the in vivo results showed the level of Cofilin 2 increased significantly along with a prominent increase of the phosphorylation of protein phosphatase 2 (PP2A) and tau protein in the cell lysates of Porphyromonas gingivalis (P.g-LPS)-treated SK-N-SH APPwt cells. Cofilin 2 inhibition resulted in a sharp decrease in PP2A dependent of tau phosphorylation. Furthermore, tumor growth factor (TGF)-β1 was one of the most important inflammatory cytokines for the Pg-LPS-induced Cofilin 2 upregulation in SK-N-SH APPwt cells. These results showed inflammation served as the bond between CP and AD, whereas inflammatory related proteins could be the key linkers between the two diseases. Determining the association between CP and AD at the molecular mechanism will not only hold the direct evidence of the association between the two diseases but also provide a new way of preventing and treating AD: the effective prevention and treatment of CP could serve as a useful method to alleviate the development of AD.
Collapse
Affiliation(s)
- Qing Zeng
- Department of Stomatology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Qin Fang
- Department of Stomatology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Xincai Zhou
- Department of Stomatology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Hongfa Yang
- Department of Cardiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Yang Dou
- Department of Stomatology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Wenhao Zhang
- Department of Stomatology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Pu Gong
- Department of Stomatology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Xianfang Rong
- Department of Stomatology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| |
Collapse
|
103
|
Dickson SP, Hendrix SB, Brown BL, Ridge PG, Nicodemus-Johnson J, Hardy ML, McKeany AM, Booth SB, Fortna RR, Kauwe JSK. GenoRisk: A polygenic risk score for Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12211. [PMID: 34621978 PMCID: PMC8485054 DOI: 10.1002/trc2.12211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Recent clinical trials are considering inclusion of more than just apolipoprotein E (APOE) ε4 genotype as a way of reducing variability in analysis of outcomes. METHODS Case-control data were used to compare the capacity of age, sex, and 58 Alzheimer's disease (AD)-associated single nucleotide polymorphisms (SNPs) to predict AD status using several statistical models. Model performance was assessed with Brier scores and tenfold cross-validation. Genotype and sex × age estimates from the best performing model were combined with age and intercept estimates from the general population to develop a personalized genetic risk score, termed age, and sex-adjusted GenoRisk. RESULTS The elastic net model that included age, age x sex interaction, allelic APOE terms, and 29 additional SNPs performed the best. This model explained an additional 19% of the heritable risk compared to APOE genotype alone and achieved an area under the curve of 0.747. DISCUSSION GenoRisk could improve the risk assessment of individuals identified for prevention studies.
Collapse
Affiliation(s)
| | | | - Bruce L Brown
- Department of Psychology Brigham Young University Provo Utah USA
| | - Perry G Ridge
- Department of Biology Brigham Young University-Hawaii Laie Hawaii USA
| | | | | | | | | | | | - John S K Kauwe
- Department of Psychology Brigham Young University Provo Utah USA
- Department of Biology Brigham Young University-Hawaii Laie Hawaii USA
| |
Collapse
|
104
|
Rejc L, Gómez-Vallejo V, Rios X, Cossío U, Baz Z, Mujica E, Gião T, Cotrina EY, Jiménez-Barbero J, Quintana J, Arsequell G, Cardoso I, Llop J. Oral Treatment with Iododiflunisal Delays Hippocampal Amyloid-β Formation in a Transgenic Mouse Model of Alzheimer's Disease: A Longitudinal in vivo Molecular Imaging Study1. J Alzheimers Dis 2021; 77:99-112. [PMID: 32804152 DOI: 10.3233/jad-200570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Transthyretin (TTR) is a tetrameric, amyloid-β (Aβ)-binding protein, which reduces Aβ toxicity. The TTR/Aβ interaction can be enhanced by a series of small molecules that stabilize its tetrameric form. Hence, TTR stabilizers might act as disease-modifying drugs in Alzheimer's disease. OBJECTIVE We monitored the therapeutic efficacy of two TTR stabilizers, iododiflunisal (IDIF), which acts as small-molecule chaperone of the TTR/Aβ interaction, and tolcapone, which does not behave as a small-molecule chaperone, in an animal model of Alzheimer's disease using positron emission tomography (PET). METHODS Female mice (AβPPswe/PS1A246E/TTR+/-) were divided into 3 groups (n = 7 per group): IDIF-treated, tolcapone-treated, and non-treated. The oral treatment (100 mg/Kg/day) was started at 5 months of age. Treatment efficacy assessment was based on changes in longitudinal deposition of Aβ in the hippocampus (HIP) and the cortex (CTX) and determined using PET-[18F]florbetaben. Immunohistochemical analysis was performed at age = 14 months. RESULTS Standard uptake values relative to the cerebellum (SUVr) of [18F]florbetaben in CTX and HIP of non-treated animals progressively increased from age = 5 to 11 months and stabilized afterwards. In contrast, [18F]florbetaben uptake in HIP of IDIF-treated animals remained constant between ages = 5 and 11 months and significantly increased at 14 months. In the tolcapone-treated group, SUVr progressively increased with time, but at lower rate than in the non-treated group. No significant treatment effect was observed in CTX. Results from immunohistochemistry matched the in vivo data at age = 14 months. CONCLUSION Our work provides encouraging preliminary results on the ability of small-molecule chaperones to ameliorate Aβ deposition in certain brain regions.
Collapse
Affiliation(s)
- Luka Rejc
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Ljubljana, Slovenia
| | - Vanessa Gómez-Vallejo
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, Guipúzcoa, Spain
| | - Xabier Rios
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, Guipúzcoa, Spain
| | - Unai Cossío
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, Guipúzcoa, Spain
| | - Zuriñe Baz
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, Guipúzcoa, Spain
| | - Edurne Mujica
- Biochemistry and Molecular Biology, EHU-UPV, Leioa, Spain
| | - Tiago Gião
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ellen Y Cotrina
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), Barcelona, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.,Department Organic Chemistry II, Faculty Science & Technology, EHU-UPV, Leioa, Spain
| | - Jordi Quintana
- Plataforma Drug Discovery, Parc Científic de Barcelona (PCB), Barcelona, Spain
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), Barcelona, Spain
| | - Isabel Cardoso
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, Guipúzcoa, Spain.,Centro de Investigación Biomédica en Red - Enfermedades Respiratorias (CIBERES)
| |
Collapse
|
105
|
Cummings J, Schwartz GG, Nicholls SJ, Khan A, Halliday C, Toth PP, Sweeney M, Johansson JO, Wong NCW, Kulikowski E, Kalantar-Zadeh K, Lebioda K, Ginsberg HN, Winblad B, Zetterberg H, Ray KK. Cognitive Effects of the BET Protein Inhibitor Apabetalone: A Prespecified Montreal Cognitive Assessment Analysis Nested in the BETonMACE Randomized Controlled Trial. J Alzheimers Dis 2021; 83:1703-1715. [PMID: 34459400 PMCID: PMC8609701 DOI: 10.3233/jad-210570] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Epigenetic changes may contribute importantly to cognitive decline in late life including Alzheimer’s disease (AD) and vascular dementia (VaD). Bromodomain and extra-terminal (BET) proteins are epigenetic “readers” that may distort normal gene expression and contribute to chronic disorders. Objective: To assess the effects of apabetalone, a small molecule BET protein inhibitor, on cognitive performance of patients 70 years or older participating in a randomized trial of patients at high risk for major cardiovascular events (MACE). Methods: The Montreal Cognitive Assessment (MoCA) was performed on all patients 70 years or older at the time of randomization. 464 participants were randomized to apabetalone or placebo in the cognition sub-study. In a prespecified analysis, participants were assigned to one of three groups: MoCA score≥26 (normal performance), MoCA score 25–22 (mild cognitive impairment), and MoCA score≤21 (dementia). Exposure to apabetalone was equivalent in the treatment groups in each MoCA-defined group. Results: Apabetalone was associated with an increased total MoCA score in participants with baseline MoCA score of≤21 (p = 0.02). There was no significant difference in change from baseline in the treatment groups with higher MoCA scores. In the cognition study, more patients randomized to apabetalone discontinued study drug for adverse effects (11.3% versus 7.9%). Conclusion: In this randomized controlled study, apabetalone was associated with improved cognition as measured by MoCA scores in those with baseline scores of 21 or less. BET protein inhibitors warrant further investigation for late life cognitive disorders.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| | - Gregory G Schwartz
- Division of Cardiology, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Aziz Khan
- Resverlogix Corporation, Calgary, AB, Canada
| | | | - Peter P Toth
- Cicarrone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | - Kamyar Kalantar-Zadeh
- Division of Nephrology and Hypertension, University of California Irvine, Irvine, CA, USA
| | | | - Henry N Ginsberg
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Bengt Winblad
- Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Solna, Sweden.,Karolinska University Hospital, Theme Inflammation and Aging, Huddinge, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention, Imperial College, London, UK
| |
Collapse
|
106
|
Mitra S, Gera R, Linderoth B, Lind G, Wahlberg L, Almqvist P, Behbahani H, Eriksdotter M. A Review of Techniques for Biodelivery of Nerve Growth Factor (NGF) to the Brain in Relation to Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1331:167-191. [PMID: 34453298 DOI: 10.1007/978-3-030-74046-7_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Age-dependent progressive neurodegeneration and associated cognitive dysfunction represent a serious concern worldwide. Currently, dementia accounts for the fifth highest cause of death, among which Alzheimer's disease (AD) represents more than 60% of the cases. AD is associated with progressive cognitive dysfunction which affects daily life of the affected individual and associated family. The cognitive dysfunctions are at least partially due to the degeneration of a specific set of neurons (cholinergic neurons) whose cell bodies are situated in the basal forebrain region (basal forebrain cholinergic neurons, BFCNs) but innervate wide areas of the brain. It has been explicitly shown that the delivery of the neurotrophic protein nerve growth factor (NGF) can rescue BFCNs and restore cognitive dysfunction, making NGF interesting as a potential therapeutic substance for AD. Unfortunately, NGF cannot pass through the blood-brain barrier (BBB) and thus peripheral administration of NGF protein is not viable therapeutically. NGF must be delivered in a way which will allow its brain penetration and availability to the BFCNs to modulate BFCN activity and viability. Over the past few decades, various methodologies have been developed to deliver NGF to the brain tissue. In this chapter, NGF delivery methods are discussed in the context of AD.
Collapse
Affiliation(s)
- Sumonto Mitra
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden.
| | - Ruchi Gera
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Linderoth
- Section of Neurosurgery, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Göran Lind
- Section of Neurosurgery, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Per Almqvist
- Section of Neurosurgery, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Homira Behbahani
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden.,Karolinska Universitets laboratoriet (LNP5), Karolinska University Hospital, Stockholm, Sweden
| | - Maria Eriksdotter
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden.,Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
107
|
Ettcheto M, Cano A, Sanchez-López E, Verdaguer E, Folch J, Auladell C, Camins A. Masitinib for the treatment of Alzheimer's disease. Neurodegener Dis Manag 2021; 11:263-276. [PMID: 34412534 DOI: 10.2217/nmt-2021-0019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The actual standard treatment for mild-to-moderately severe Alzheimer's disease only attacks its symptoms. Masitinib is a potent and selective phenylaminothiazole-type tyrosine kinase inhibitor which is currently in Phase III studies for the treatment of Alzheimer's disease (AD) with the aim of modifying its evolution and with multiple pharmacological targets such as inhibition of mast cells activity, inhibition of microglia activation, modulation of Aβ and Tau protein signaling pathway and prevention of synaptic damage. Here, we review the preclinical and clinical studies that investigated the administration of masitinib treatment in monotherapy in AD. All research studies revealed positive effects concerning the cognitive functions in AD and generally with good safety and tolerability.
Collapse
Affiliation(s)
- Miren Ettcheto
- Department of Pharmacology, Toxicology & Therapeutic Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Spain.,Institut de Neurociències (UBNeuro), University of Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Amanda Cano
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Spain.,Research Center & Memory Clinic, Fundació ACE. Institut Català de Neurociències Aplicades - International University of Catalunya (UIC), Barcelona, Spain
| | - Elena Sanchez-López
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Spain
| | - Ester Verdaguer
- Department of Cellular Biology, Physiology & Immunology, Faculty of Biology, University of Barcelona, Spain
| | - Jaume Folch
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Unit of Biochemistry & Pharmacology, Faculty of Medicine & Health Sciences, University of Rovira i Virgili, Reus (Tarragona), Spain
| | - Carme Auladell
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Cellular Biology, Physiology & Immunology, Faculty of Biology, University of Barcelona, Spain
| | - Antoni Camins
- Department of Pharmacology, Toxicology & Therapeutic Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Spain.,Institut de Neurociències (UBNeuro), University of Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
108
|
Lalli G, Schott JM, Hardy J, De Strooper B. Aducanumab: a new phase in therapeutic development for Alzheimer's disease? EMBO Mol Med 2021; 13:e14781. [PMID: 34338436 PMCID: PMC8350893 DOI: 10.15252/emmm.202114781] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/08/2021] [Indexed: 01/07/2023] Open
Abstract
On 7 June, the FDA approved aducanumab, the first new drug for Alzheimer's disease in almost 20 years-and notably, the first drug with a putative disease-modifying mechanism for the treatment of this devastating disorder, namely the removal of β-amyloid (or Aβ) plaques from the brain.
Collapse
Affiliation(s)
| | - Jonathan M Schott
- Dementia Research CentreUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
| | - John Hardy
- UK Dementia Research Institute at UCLLondonUK
- Reta Lila Weston InstituteUCL Queen Square Institute of NeurologyLondonUK
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- Institute for Advanced StudyThe Hong Kong University of Science and TechnologyHong KongChina
| | - Bart De Strooper
- UK Dementia Research Institute at UCLLondonUK
- Department of NeurosciencesLeuven Brain InstituteVIB Centre for Brain & Disease Research and KU LeuvenLeuvenBelgium
| |
Collapse
|
109
|
Jabir NR, Rehman MT, Tabrez S, Alserihi RF, AlAjmi MF, Khan MS, Husain FM, Ahmed BA. Identification of Butyrylcholinesterase and Monoamine Oxidase B Targeted Ligands and their Putative Application in Alzheimer's Treatment: A Computational Strategy. Curr Pharm Des 2021; 27:2425-2434. [PMID: 33634754 DOI: 10.2174/1381612827666210226123240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 02/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND With the burgeoning worldwide aging population, the incidence of Alzheimer's disease (AD) and its associated disorders is continuously rising. To appraise other relevant drug targets that could lead to potent enzyme targeting, 13 previously predicted ligands (shown favorable binding with AChE (acetylcholinesterase) and GSK-3 (glycogen synthase kinase) were screened for targeting 3 different enzymes, namely butyrylcholinesterase (BChE), monoamine oxidase A (MAO-A), and monoamine oxidase B (MAO-B) to possibly meet the unmet medical need of better AD treatment. MATERIALS AND METHODS The study utilized in silico screening of 13 ligands against BChE, MAO-A and MAOB using PyRx-Python prescription 0.8. The visualization of the active interaction of studied compounds with targeted proteins was performed by Discovery Studio 2020 (BIOVIA). RESULTS The computational screening of studied ligands revealed the docking energies in the range of -2.4 to -11.3 kcal/mol for all the studied enzymes. Among the 13 ligands, 8 ligands (55E, 6Z2, 6Z5, BRW, F1B, GVP, IQ6, and X37) showed the binding energies of ≤ -8.0 kcal/mol towards BChE, MAO-A and MAO-B. The ligand 6Z5 was found to be the most potent inhibitor of BChE and MAO-B, with a binding energy of -9.7 and -10.4 kcal mol, respectively. Molecular dynamics simulation of BChE-6Z5 and MAO-B-6Z5 complex confirmed the formation of a stable complex. CONCLUSION Our computational screening, molecular docking, and molecular dynamics simulation studies revealed that the above-mentioned enzymes targeted ligands might expedite the future design of potent anti-AD drugs generated on this chemical scaffold.
Collapse
Affiliation(s)
- Nasimudeen R Jabir
- Department of Biochemistry, Centre for Research and Development, PRIST University, Vallam, Thanjavur, Tamil Nadu, India
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raed F Alserihi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, Faculty of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Bakrudeen Ali Ahmed
- Department of Biochemistry, Centre for Research and Development, PRIST University, Vallam, Thanjavur, Tamil Nadu, India
| |
Collapse
|
110
|
Oblak AL, Lin PB, Kotredes KP, Pandey RS, Garceau D, Williams HM, Uyar A, O'Rourke R, O'Rourke S, Ingraham C, Bednarczyk D, Belanger M, Cope ZA, Little GJ, Williams SPG, Ash C, Bleckert A, Ragan T, Logsdon BA, Mangravite LM, Sukoff Rizzo SJ, Territo PR, Carter GW, Howell GR, Sasner M, Lamb BT. Comprehensive Evaluation of the 5XFAD Mouse Model for Preclinical Testing Applications: A MODEL-AD Study. Front Aging Neurosci 2021; 13:713726. [PMID: 34366832 DOI: 10.3389/fnagi.2021.71372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/23/2021] [Indexed: 05/23/2023] Open
Abstract
The ability to investigate therapeutic interventions in animal models of neurodegenerative diseases depends on extensive characterization of the model(s) being used. There are numerous models that have been generated to study Alzheimer's disease (AD) and the underlying pathogenesis of the disease. While transgenic models have been instrumental in understanding AD mechanisms and risk factors, they are limited in the degree of characteristics displayed in comparison with AD in humans, and the full spectrum of AD effects has yet to be recapitulated in a single mouse model. The Model Organism Development and Evaluation for Late-Onset Alzheimer's Disease (MODEL-AD) consortium was assembled by the National Institute on Aging (NIA) to develop more robust animal models of AD with increased relevance to human disease, standardize the characterization of AD mouse models, improve preclinical testing in animals, and establish clinically relevant AD biomarkers, among other aims toward enhancing the translational value of AD models in clinical drug design and treatment development. Here we have conducted a detailed characterization of the 5XFAD mouse, including transcriptomics, electroencephalogram, in vivo imaging, biochemical characterization, and behavioral assessments. The data from this study is publicly available through the AD Knowledge Portal.
Collapse
Affiliation(s)
- Adrian L Oblak
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Peter B Lin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | - Ravi S Pandey
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Dylan Garceau
- The Jackson Laboratory, Bar Harbor, ME, United States
| | | | - Asli Uyar
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Rita O'Rourke
- The Jackson Laboratory, Bar Harbor, ME, United States
| | | | - Cynthia Ingraham
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | - Melisa Belanger
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Zackary A Cope
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gabriela J Little
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Carl Ash
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Adam Bleckert
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Tim Ragan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | | | | | | | - Paul R Territo
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | | | | | - Bruce T Lamb
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
111
|
Oblak AL, Lin PB, Kotredes KP, Pandey RS, Garceau D, Williams HM, Uyar A, O'Rourke R, O'Rourke S, Ingraham C, Bednarczyk D, Belanger M, Cope ZA, Little GJ, Williams SPG, Ash C, Bleckert A, Ragan T, Logsdon BA, Mangravite LM, Sukoff Rizzo SJ, Territo PR, Carter GW, Howell GR, Sasner M, Lamb BT. Comprehensive Evaluation of the 5XFAD Mouse Model for Preclinical Testing Applications: A MODEL-AD Study. Front Aging Neurosci 2021; 13:713726. [PMID: 34366832 PMCID: PMC8346252 DOI: 10.3389/fnagi.2021.713726] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
The ability to investigate therapeutic interventions in animal models of neurodegenerative diseases depends on extensive characterization of the model(s) being used. There are numerous models that have been generated to study Alzheimer's disease (AD) and the underlying pathogenesis of the disease. While transgenic models have been instrumental in understanding AD mechanisms and risk factors, they are limited in the degree of characteristics displayed in comparison with AD in humans, and the full spectrum of AD effects has yet to be recapitulated in a single mouse model. The Model Organism Development and Evaluation for Late-Onset Alzheimer's Disease (MODEL-AD) consortium was assembled by the National Institute on Aging (NIA) to develop more robust animal models of AD with increased relevance to human disease, standardize the characterization of AD mouse models, improve preclinical testing in animals, and establish clinically relevant AD biomarkers, among other aims toward enhancing the translational value of AD models in clinical drug design and treatment development. Here we have conducted a detailed characterization of the 5XFAD mouse, including transcriptomics, electroencephalogram, in vivo imaging, biochemical characterization, and behavioral assessments. The data from this study is publicly available through the AD Knowledge Portal.
Collapse
Affiliation(s)
- Adrian L Oblak
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Peter B Lin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | - Ravi S Pandey
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Dylan Garceau
- The Jackson Laboratory, Bar Harbor, ME, United States
| | | | - Asli Uyar
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Rita O'Rourke
- The Jackson Laboratory, Bar Harbor, ME, United States
| | | | - Cynthia Ingraham
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | - Melisa Belanger
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Zackary A Cope
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gabriela J Little
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Carl Ash
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Adam Bleckert
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Tim Ragan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | | | | | | | - Paul R Territo
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | | | | | - Bruce T Lamb
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
112
|
Vecchio I, Sorrentino L, Paoletti A, Marra R, Arbitrio M. The State of The Art on Acetylcholinesterase Inhibitors in the Treatment of Alzheimer's Disease. J Cent Nerv Syst Dis 2021; 13:11795735211029113. [PMID: 34285627 PMCID: PMC8267037 DOI: 10.1177/11795735211029113] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/10/2021] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic disabling disease that affects the central nervous system. The main consequences of AD include the decline of cognitive functions and language disorders. One of the causes leading to AD is the decrease of neurotransmitter acetylcholine (ACh) levels in the brain, in part due to a higher activity of acetylcholinesterase (AChE), the enzyme responsible for its degradation. Many acetylcholinesterase inhibitors (AChEIs), both natural and synthetic, have been developed and used through the years to counteract the progression of the disease. The first of such drugs approved for a therapeutic use was tacrine, that binds through a reversible bond to the enzyme. However, tacrine has since been withdrawn because of its adverse effects. Currently, donepezil and galantamine are very promising AChEIs with clinical benefits. Moreover, rivastigmine is considered a pseudo-irreversible compound with anti-AChE action, providing similar effects at the clinical level. The purpose of this review is to provide an overview of what has been published over the last decade on the effectiveness of AChEIs in AD, analysing the most relevant issues under the clinical and methodological profiles and the consequent possible welfare effects for the whole world. Furthermore, novel drugs and possible therapeutic approaches are also discussed.
Collapse
Affiliation(s)
- Immacolata Vecchio
- Institute for Biomedical Research and Innovation of the National Research Council, Catanzaro, Italy
| | | | - Annamaria Paoletti
- Institute for Biomedical Research and Innovation of the National Research Council, Catanzaro, Italy
| | - Rosario Marra
- Institute for Biomedical Research and Innovation of the National Research Council, Catanzaro, Italy
| | - Mariamena Arbitrio
- Institute for Biomedical Research and Innovation of the National Research Council, Catanzaro, Italy
| |
Collapse
|
113
|
Jutten RJ, Sikkes SAM, Van der Flier WM, Scheltens P, Visser PJ, Tijms BM. Finding Treatment Effects in Alzheimer Trials in the Face of Disease Progression Heterogeneity. Neurology 2021; 96:e2673-e2684. [PMID: 34550903 PMCID: PMC8205463 DOI: 10.1212/wnl.0000000000012022] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 03/03/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the influence of heterogeneity in disease progression for detecting treatment effects in Alzheimer disease (AD) trials, using a simulation study. METHODS Individuals with an abnormal amyloid PET scan, diagnosis of mild cognitive impairment or dementia, baseline Mini-Mental State Examination (MMSE) score ≥24, global Clinical Dementia Rating (CDR) score of 0.5, and ≥1 follow-up cognitive assessment were selected from the Alzheimer's Disease Neuroimaging Initiative database (n = 302, age 73 ± 6.7; 44% female; 16.1 ± 2.7 years of education; 69% APOE ε4 carrier). We simulated a clinical trial by randomly assigning individuals to a "placebo" and "treatment" group and subsequently computed group differences on the CDR-sum of boxes (CDR-SB), Alzheimer's Disease Assessment Scale-cognitive subscale-13 and MMSE after 18 months follow-up. We repeated this simulation 10,000 times to determine the 95% range of effect sizes. We further studied the influence of known AD risk factors (age, sex, education, APOE ε4 status, CSF total tau levels) on the variability in effect sizes. RESULTS Individual trajectories on all cognitive outcomes were highly variable, and the 95% ranges of possible effect sizes at 18 months were broad (e.g., ranging from 0.35 improvement to 0.35 decline on the CDR-SB). Results of recent anti-amyloid trials mostly fell within these 95% ranges of effect sizes. APOE ε4 carriers and individuals with abnormal baseline tau levels showed faster decline at group level, but also greater within-group variability, as illustrated by broader 95% effect size ranges (e.g., ±0.70 points for the CDR-SB). CONCLUSIONS Individuals with early AD show heterogeneity in disease progression, which increases when stratifying on risk factors associated with progression. We provide guidance for a priori effect sizes on cognitive outcomes for detecting true change, which is crucial for future AD trials.
Collapse
Affiliation(s)
- Roos J Jutten
- From the Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC (R.J.J., S.A.M.S., W.M.V.d.F., P.S., P.J.V., B.M.T.), and Clinical Developmental Psychology & Clinical Neuropsychology (S.A.M.S.), VU University; Alzheimer Center Limburg, School for Mental Health and Neuroscience (P.J.V.), Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics (P.J.V.), Karolinska Institutet, Stockholm, Sweden.
| | - Sietske A M Sikkes
- From the Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC (R.J.J., S.A.M.S., W.M.V.d.F., P.S., P.J.V., B.M.T.), and Clinical Developmental Psychology & Clinical Neuropsychology (S.A.M.S.), VU University; Alzheimer Center Limburg, School for Mental Health and Neuroscience (P.J.V.), Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics (P.J.V.), Karolinska Institutet, Stockholm, Sweden
| | - Wiesje M Van der Flier
- From the Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC (R.J.J., S.A.M.S., W.M.V.d.F., P.S., P.J.V., B.M.T.), and Clinical Developmental Psychology & Clinical Neuropsychology (S.A.M.S.), VU University; Alzheimer Center Limburg, School for Mental Health and Neuroscience (P.J.V.), Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics (P.J.V.), Karolinska Institutet, Stockholm, Sweden
| | - Philip Scheltens
- From the Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC (R.J.J., S.A.M.S., W.M.V.d.F., P.S., P.J.V., B.M.T.), and Clinical Developmental Psychology & Clinical Neuropsychology (S.A.M.S.), VU University; Alzheimer Center Limburg, School for Mental Health and Neuroscience (P.J.V.), Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics (P.J.V.), Karolinska Institutet, Stockholm, Sweden
| | - Pieter Jelle Visser
- From the Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC (R.J.J., S.A.M.S., W.M.V.d.F., P.S., P.J.V., B.M.T.), and Clinical Developmental Psychology & Clinical Neuropsychology (S.A.M.S.), VU University; Alzheimer Center Limburg, School for Mental Health and Neuroscience (P.J.V.), Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics (P.J.V.), Karolinska Institutet, Stockholm, Sweden
| | - Betty M Tijms
- From the Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC (R.J.J., S.A.M.S., W.M.V.d.F., P.S., P.J.V., B.M.T.), and Clinical Developmental Psychology & Clinical Neuropsychology (S.A.M.S.), VU University; Alzheimer Center Limburg, School for Mental Health and Neuroscience (P.J.V.), Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics (P.J.V.), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
114
|
Hampel H, Shaw LM, Aisen P, Chen C, Lleó A, Iwatsubo T, Iwata A, Yamada M, Ikeuchi T, Jia J, Wang H, Teunissen CE, Peskind E, Blennow K, Cummings J, Vergallo A. State-of-the-art of lumbar puncture and its place in the journey of patients with Alzheimer's disease. Alzheimers Dement 2021; 18:159-177. [PMID: 34043269 PMCID: PMC8626532 DOI: 10.1002/alz.12372] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/24/2021] [Accepted: 04/12/2021] [Indexed: 01/01/2023]
Abstract
Recent advances in developing disease‐modifying therapies (DMT) for Alzheimer's disease (AD), and the recognition that AD pathophysiology emerges decades before clinical symptoms, necessitate a paradigm shift of health‐care systems toward biomarker‐guided early detection, diagnosis, and therapeutic decision‐making. Appropriate incorporation of cerebrospinal fluid biomarker analysis in clinical practice is an essential step toward system readiness for accommodating the demand of AD diagnosis and proper use of DMTs—once they become available. However, the use of lumbar puncture (LP) in individuals with suspected neurodegenerative diseases such as AD is inconsistent, and the perception of its utility and safety differs considerably among medical specialties as well as among regions and countries. This review describes the state‐of‐the‐art evidence concerning the safety profile of LP in older adults, discusses the risk factors for LP‐associated adverse events, and provides recommendations and an outlook for optimized use and global implementation of LP in individuals with suspected AD.
Collapse
Affiliation(s)
- Harald Hampel
- Eisai Inc., Neurology Business Group, Woodcliff Lake, New Jersey, USA
| | - Leslie M Shaw
- Perelman School of Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul Aisen
- USC Alzheimer's Therapeutic Research Institute, San Diego, California, USA
| | - Christopher Chen
- Memory Aging and Cognition Centre, Departments of Pharmacology and Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alberto Lleó
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau-Biomedical Research Institute Sant Pau-Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Atsushi Iwata
- Tokyo Metropolitan Geriatric Hospital, 35-2 Sakaecho, Itabashi-ku, Tokyo, Japan
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Asahimachi, Niigata, Japan
| | - Jianping Jia
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Huali Wang
- Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing Dementia Key Lab, National Clinical Research Center for Mental Disorders, Beijing, China
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Elaine Peskind
- VA Northwest Mental Illness Research, Education and Clinical Center, VA Puget Sound Health Care System, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA
| | - Andrea Vergallo
- Eisai Inc., Neurology Business Group, Woodcliff Lake, New Jersey, USA
| |
Collapse
|
115
|
Kitaigorodsky M, Crocco E, Curiel‐Cid RE, Leal G, Zheng D, Eustache MK, Greig‐Custo MT, Barker W, Duara R, Loewenstein DA. The relationship of semantic intrusions to different etiological subtypes of MCI and cognitively healthy older adults. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12192. [PMID: 34084887 PMCID: PMC8144934 DOI: 10.1002/dad2.12192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 01/23/2023]
Abstract
INTRODUCTION There is increasing evidence that susceptibility to proactive semantic interference (PSI) and the failure to recover from PSI (frPSI) as evidenced by intrusion errors may be early cognitive markers of both preclinical and prodromal Alzheimer's disease (AD). METHODS One hundred forty-five participants were administered extensive clinical and neuropsychological evaluations including the Loewenstein-Acevedo Scales for Semantic Interference and Learning (LASSI-L), a sensitive cognitive stress test measuring PSI and frPSI. Participants also underwent structural magnetic resonance imaging (MRI) and amyloid positron emission tomography/computed tomography (PET/CT) imaging. RESULTS PSI and frPSI errors were much more prevalent in the mild cognitive impairment (MCI)-AD (amyloid positive) group than the other diagnostic groups. The number of intrusion errors observed across the other MCI groups without amyloid pathology and those with normal cognition were comparable. DISCUSSION Semantic intrusion errors on the LASSI-L occur much less frequently in persons who have different types of non-AD-related MCI and may be used as an early cognitive marker of prodromal AD.
Collapse
Affiliation(s)
- Marcela Kitaigorodsky
- Center for Cognitive Neuroscience and Aging, Department of Psychiatry and Behavioral SciencesUniversity of Miami Miller School of MedicineMiamiUSA
| | - Elizabeth Crocco
- Center for Cognitive Neuroscience and Aging, Department of Psychiatry and Behavioral SciencesUniversity of Miami Miller School of MedicineMiamiUSA
| | - Rosie E. Curiel‐Cid
- Center for Cognitive Neuroscience and Aging, Department of Psychiatry and Behavioral SciencesUniversity of Miami Miller School of MedicineMiamiUSA
- 1Florida Alzheimer's Disease Research CenterGainesvilleFloridaUSA
| | - Giselle Leal
- Center for Cognitive Neuroscience and Aging, Department of Psychiatry and Behavioral SciencesUniversity of Miami Miller School of MedicineMiamiUSA
| | - Diane Zheng
- Center for Cognitive Neuroscience and Aging, Department of Psychiatry and Behavioral SciencesUniversity of Miami Miller School of MedicineMiamiUSA
| | - Melissa K. Eustache
- Center for Cognitive Neuroscience and Aging, Department of Psychiatry and Behavioral SciencesUniversity of Miami Miller School of MedicineMiamiUSA
| | - Maria T. Greig‐Custo
- 1Florida Alzheimer's Disease Research CenterGainesvilleFloridaUSA
- Wien Center for Alzheimer's Disease and Memory DisordersMount Sinai, Medical CenterNew YorkUSA
| | - William Barker
- 1Florida Alzheimer's Disease Research CenterGainesvilleFloridaUSA
- Wien Center for Alzheimer's Disease and Memory DisordersMount Sinai, Medical CenterNew YorkUSA
| | - Ranjan Duara
- 1Florida Alzheimer's Disease Research CenterGainesvilleFloridaUSA
- Wien Center for Alzheimer's Disease and Memory DisordersMount Sinai, Medical CenterNew YorkUSA
| | - David A. Loewenstein
- Center for Cognitive Neuroscience and Aging, Department of Psychiatry and Behavioral SciencesUniversity of Miami Miller School of MedicineMiamiUSA
- 1Florida Alzheimer's Disease Research CenterGainesvilleFloridaUSA
| |
Collapse
|
116
|
Campbell MR, Ashrafzadeh‐Kian S, Petersen RC, Mielke MM, Syrjanen JA, van Harten AC, Lowe VJ, Jack CR, Bornhorst JA, Algeciras‐Schimnich A. P-tau/Aβ42 and Aβ42/40 ratios in CSF are equally predictive of amyloid PET status. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12190. [PMID: 34027020 PMCID: PMC8129859 DOI: 10.1002/dad2.12190] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Measurement of amyloid beta (Aβ40 and Aβ42) and tau (phosphorylated tau [p-tau] and total tau [t-tau]) in cerebrospinal fluid (CSF) can be utilized to differentiate clinical and preclinical Alzheimer's disease dementia (AD) from other neurodegenerative processes. METHODS CSF biomarkers were measured in 150 participants from the Mayo Clinic Study of Aging and the Alzheimer's Disease Research Center. P-tau/Aβ42 (Roche Elecsys, Fujirebio LUMIPULSE) and Aβ42/40 (Fujirebio LUMIPULSE) ratios were compared to one another and to amyloid positron emission tomography (PET) classification. RESULTS Strong correlation was observed between LUMIPULSE p-tau/Aβ42 and Aβ42/40, as well as Elecsys and LUMIPULSE p-tau/Aβ42 and Aβ42/40 (Spearman's ρ = -0.827, -0.858, and 0.960, respectively). Concordance between LUMIPULSE p-tau/Aβ42 and Aβ42/40 was 96% and between Elecsys p-tau/Aβ42 and both LUMIPULSE ratios was 97%. All ratios had > 94% overall, positive, and negative percent agreement with amyloid PET classification. DISCUSSION These data suggest that p-tau/Aβ42 and Aβ42/40 ratios provide similar clinical information in the assessment of amyloid pathology.
Collapse
Affiliation(s)
| | | | | | - Michelle M. Mielke
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
| | - Jeremy A. Syrjanen
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| | - Argonde C. van Harten
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
- Alzheimer Center and Neurochemical laboratoryAmsterdam UMCAmsterdamthe Netherlands
| | - Val J. Lowe
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | | | - Joshua A. Bornhorst
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | | |
Collapse
|
117
|
Cummings J, Aisen P, Lemere C, Atri A, Sabbagh M, Salloway S. Aducanumab produced a clinically meaningful benefit in association with amyloid lowering. Alzheimers Res Ther 2021; 13:98. [PMID: 33971962 PMCID: PMC8111757 DOI: 10.1186/s13195-021-00838-z] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA.
| | - Paul Aisen
- University of Southern California, San Diego, CA, USA
| | - Cynthia Lemere
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alireza Atri
- Banner Sun Health Research Institute, Banner Health, Sun City, AZ, USA
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marwan Sabbagh
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | | |
Collapse
|
118
|
Sarkar S. Shaggy functions downstream of dMyc and their concurrent downregulation confers additive rescue against tau toxicity in Drosophila. Biofactors 2021; 47:461-477. [PMID: 33651466 DOI: 10.1002/biof.1721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/15/2021] [Indexed: 12/16/2022]
Abstract
Neurodegenerative tauopathies such as Alzheimer's and Parkinson's diseases are characterized by hyperphosphorylation of tau protein and their subsequent aggregation in the forms of paired helical filaments and/or neurofibrillary tangles in specific areas of the brain. Despite several attempts, it remains a challenge to develop reliable biomarkers or effective drugs against tauopathies. It is increasingly evident now that due to the involvement of multiple cellular cascades affected by the pathogenic tau molecules, a single genetic modifier or a molecule is unlikely to be efficient enough to provide an inclusive rescue. Hence, multitargets based combinatorial approach(s) have been suggested to provide an efficient rescue against tauopathies. We have reported earlier that targeted downregulation of dmyc (a Drosophila homolog of human cmyc proto-oncogene) restricts tau etiology by limiting tau hyperphosphorylation and heterochromatin loss. Although, dmyc generates a significant rescue; however, it is not proficient enough to provide a complete alleviation against tauopathies. Here, we report that tissue-specific concurrent downregulation of dmyc and gsk3β conveys a near-complete rescue against tau toxicity in Drosophila. We noted that combinatorial downregulation of dmyc and gsk3β reduces tau hyperphosphorylation, restricts the formation of neurofibrillary tangles, and restores heterochromatin loss to the physiological level. Our subsequent investigations revealed that dmyc regulates gsk3β via protein phosphatase 2A (dPP2A) in a dose-dependent manner to regulate tau pathogenesis. We propose that dmyc and gsk3β candidates can be utilized in a synergistic manner for the development of an efficient combinatorial therapeutic approach against the devastating human tauopathies.
Collapse
Affiliation(s)
- Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
119
|
The Protective A673T Mutation of Amyloid Precursor Protein (APP) in Alzheimer's Disease. Mol Neurobiol 2021; 58:4038-4050. [PMID: 33914267 DOI: 10.1007/s12035-021-02385-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder characterized by extracellular amyloid beta peptides and neurofibrillary tangles consisted of intracellular hyperphosphorylated Tau in the hippocampus and cerebral cortex. Most of the mutations in key genes that code for amyloid precursor protein can lead to significant accumulation of these peptides in the brain and cause Alzheimer's disease. Moreover, some point mutations in amyloid precursor protein can cause familial Alzheimer's disease, such as Swedish mutation (KM670/671NL) and A673V mutation. However, recent studies have found that the A673T mutation in amyloid precursor protein gene can protect against Alzheimer's disease, even if it is located next to the Swedish mutation (KM670/671NL) and at the same site as A673V mutation, which are pathogenic. It makes us curious about the protective A673T mutation. Here, we summarize the most recent insights of A673T mutation, focus on their roles in protective mechanisms against Alzheimer's disease, and discuss their involvement in future treatment.
Collapse
|
120
|
Stanley J, Howlett SE, Dunn T, Rockwood K. The Clinician's Interview-Based Impression of Change (Plus caregiver input) and goal attainment in two dementia drug trials: Clinical meaningfulness and the initial treatment response. Alzheimers Dement 2021; 17:856-865. [PMID: 33928754 DOI: 10.1002/alz.12242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 11/11/2022]
Abstract
INTRODUCTION The Clinician's Interview-Based Impression of Change Plus caregiver input (CIBIC-Plus) has been widely used in dementia drug trials to evaluate cognition, behavior, and function. New trials of symptomatic drugs forecast renewed interest in this measure. METHODS To test its clinical meaningfulness, we examined how CIBIC-Plus performed in two cholinesterase inhibitor trials compared to goal attainment scaling Scale (GAS) scores, a patient-reported outcome measure. RESULTS Net goal attainment was seen for all but one GAS domains in subjects who improved on the CIBIC-Plus. Subjects who improved initially on CIBIC-Plus scores were likely to remain improved across all other outcomes for each trial's duration, except for Disability Assessment for Dementia scores. DISCUSSION The initial response to treatment, as assessed by CIBIC-Plus, remained stable for most outcome measures. Even small CIBIC-Plus improvement changes are associated with clinically meaningful change as assessed by GAS. Other tests detect decline better than improvement.
Collapse
Affiliation(s)
| | - Susan E Howlett
- DGI Clinical Inc., Halifax, Nova Scotia, Canada.,Division of Geriatric Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Taylor Dunn
- DGI Clinical Inc., Halifax, Nova Scotia, Canada
| | - Kenneth Rockwood
- DGI Clinical Inc., Halifax, Nova Scotia, Canada.,Division of Geriatric Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
121
|
Hadjidemetriou M, Rivers-Auty J, Papafilippou L, Eales J, Kellett KAB, Hooper NM, Lawrence CB, Kostarelos K. Nanoparticle-Enabled Enrichment of Longitudinal Blood Proteomic Fingerprints in Alzheimer's Disease. ACS NANO 2021; 15:7357-7369. [PMID: 33730479 PMCID: PMC8155389 DOI: 10.1021/acsnano.1c00658] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Blood-circulating biomarkers have the potential to detect Alzheimer's disease (AD) pathology before clinical symptoms emerge and to improve the outcomes of clinical trials for disease-modifying therapies. Despite recent advances in understanding concomitant systemic abnormalities, there are currently no validated or clinically used blood-based biomarkers for AD. The extremely low concentration of neurodegeneration-associated proteins in blood necessitates the development of analytical platforms to address the "signal-to-noise" issue and to allow an in-depth analysis of the plasma proteome. Here, we aimed to discover and longitudinally track alterations of the blood proteome in a transgenic mouse model of AD, using a nanoparticle-based proteomics enrichment approach. We employed blood-circulating, lipid-based nanoparticles to extract, analyze and monitor AD-specific protein signatures and to systemically uncover molecular pathways associated with AD progression. Our data revealed the existence of multiple proteomic signals in blood, indicative of the asymptomatic stages of AD. Comprehensive analysis of the nanoparticle-recovered blood proteome by label-free liquid chromatography-tandem mass spectrometry resulted in the discovery of AD-monitoring signatures that could discriminate the asymptomatic phase from amyloidopathy and cognitive deterioration. While the majority of differentially abundant plasma proteins were found to be upregulated at the initial asymptomatic stages, the abundance of these molecules was significantly reduced as a result of amyloidosis, suggesting a disease-stage-dependent fluctuation of the AD-specific blood proteome. The potential use of the proposed nano-omics approach to uncover information in the blood that is directly associated with brain neurodegeneration was further exemplified by the recovery of focal adhesion cascade proteins. We herein propose the integration of nanotechnology with already existing proteomic analytical tools in order to enrich the identification of blood-circulating signals of neurodegeneration, reinvigorating the potential clinical utility of the blood proteome at predicting the onset and kinetics of the AD progression trajectory.
Collapse
Affiliation(s)
- Marilena Hadjidemetriou
- Nanomedicine
Lab, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
- (M.H.)
| | - Jack Rivers-Auty
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science
Centre, Manchester M13 9PT, United Kingdom
| | - Lana Papafilippou
- Nanomedicine
Lab, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - James Eales
- Division
of Cardiovascular Sciences, School of Medical Sciences, Faculty of
Biology, Medicine and Health, The University
of Manchester M13 9PT, Manchester, United Kingdom
| | - Katherine A. B. Kellett
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science
Centre, Manchester M13 9PT, United Kingdom
| | - Nigel M. Hooper
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science
Centre, Manchester M13 9PT, United Kingdom
| | - Catherine B. Lawrence
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science
Centre, Manchester M13 9PT, United Kingdom
| | - Kostas Kostarelos
- Nanomedicine
Lab, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
- (K.K.)
| |
Collapse
|
122
|
Ganley IG, Whitworth AJ, McWilliams TG. Comment on "mt-Keima detects PINK1-PRKN mitophagy in vivo with greater sensitivity than mito-QC". Autophagy 2021; 17:4477-4479. [PMID: 33818280 PMCID: PMC8726702 DOI: 10.1080/15548627.2021.1907269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Ian G Ganley
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | | | - Thomas G McWilliams
- Translational Stem Cell Biology and Metabolism, Research Programs Unit, Faculty of Medicine,University of Helsinki, Helsinki, Finland.,Department of Anatomy, Faculty of Medicine,University of Helsinki, Helsinki, Finland
| |
Collapse
|
123
|
Koh SH, Kwon HS, Choi SH, Jeong JH, Na HR, Lee CN, Yang Y, Lee AY, Lee JH, Park KW, Han HJ, Kim BC, Park JS, Lee JY, Kim S, Lee KY. Efficacy and safety of GV1001 in patients with moderate-to-severe Alzheimer's disease already receiving donepezil: a phase 2 randomized, double-blind, placebo-controlled, multicenter clinical trial. ALZHEIMERS RESEARCH & THERAPY 2021; 13:66. [PMID: 33771205 PMCID: PMC7995588 DOI: 10.1186/s13195-021-00803-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/08/2021] [Indexed: 01/01/2023]
Abstract
Background Our previous studies showed that GV1001 has various protective effects against β-amyloid and other stressors. Based on these findings, we hypothesized that GV1001 might have beneficial effects in patients with Alzheimer’s disease (AD). Methods A phase 2, double-blind, parallel-group, placebo-controlled, 6-month randomized clinical trial was performed to evaluate the safety and efficacy of subcutaneously administered GV1001. Between September 2017 and September 2019, 13 centers in South Korea recruited participants. A total of 106 patients were screened, and 96 patients with moderate-to-severe AD were randomized 1:1:1 to the placebo (group 1, n = 31), GV1001 0.56 mg (group 2, n = 33), and 1.12 mg (group 3, n = 32) groups. GV1001 was administered every week for 4 weeks (4 times), followed by every 2 weeks until week 24 (10 times). The primary endpoint was the change in the Severe Impairment Battery (SIB) score from baseline to week 24. The key secondary efficacy endpoints were the change in the Clinical Dementia Rating Sum of Box (CDR-SOB), Alzheimer’s Disease Cooperative Study-Activities of Daily Living (ADCS-ADL), Neuropsychiatric Inventory (NPI), Mini-Mental State Examination, and Global Deterioration Scale scores. The safety endpoints were also assessed based on adverse events, laboratory test results, vital signs, and other observations related to safety. Results Group 3 showed less decrease in the SIB score at 12 and 24 weeks compared with group 1 (P < 0.05). These were not significantly observed in group 2. Among the secondary endpoints, only the NPI score showed significantly better improvement in group 2 than in group 3 at week 12; however, there were no other significant differences between the groups. Although the ADCS-ADL and CDR-SOB scores showed a pattern similar to SIB scores, a statistically significant result was not found. Adverse events were similar across all three groups. Conclusions The results indicate that GV1001 1.12 mg met the primary endpoint of a statistically significant difference. GV1001 was well tolerated without safety concerns. This study warrants a larger clinical trial. Trial registration ClinicalTrials.gov NCT03184467. Registered on June 12, 2017. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00803-w.
Collapse
Affiliation(s)
- Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, Hanyang University College of Medicine, 153, Gyeongchun-ro, Guri, 11923, South Korea. .,Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, 04763, South Korea.
| | - Hyuk Sung Kwon
- Department of Neurology, Hanyang University Guri Hospital, Hanyang University College of Medicine, 153, Gyeongchun-ro, Guri, 11923, South Korea
| | - Seong Hye Choi
- Department of Neurology, Inha University School of Medicine, Incheon, 22332, South Korea
| | - Jee Hyang Jeong
- Department of Neurology, Ewha Womans University School of Medicine, Seoul, 07985, South Korea
| | - Hae Ri Na
- Department of Neurology, Bobath Memorial Hospital, Seongnam, 13552, South Korea
| | - Chan Nyoung Lee
- Department of Neurology, Korea University Anam Hospital, Seoul, 02856, South Korea
| | - YoungSoon Yang
- Department of Neurology, Veterans Health Service Medical Center, Seoul, 05368, South Korea
| | - Ae Young Lee
- Department of Neurology, Chungnam National University Hospital, Daejeon, 35015, South Korea
| | - Jae-Hong Lee
- Department of Neurology, Asan Medical Center, Seoul, 05505, South Korea
| | - Kyung Won Park
- Department of Neurology, Dong-A University Hospital, Busan, 49201, South Korea
| | - Hyun Jeong Han
- Department of Neurology, Myongji Hospital, Hanyang University College of Medicine, Goyang, 10475, South Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Hospital, Gwangju, 61469, South Korea
| | - Jin Se Park
- Department of Neurology, Inje University Haeundae Paik Hospital, Buasn, 48108, South Korea
| | - Jee-Young Lee
- Department of Neurology, Seoul National University Boramae Medical Center, Seoul, 07061, South Korea
| | - Sangjae Kim
- Teloid Inc., 920 Westholme Ave, Los Angeles, CA, 90024, USA
| | - Kyu-Yong Lee
- Department of Neurology, Hanyang University Guri Hospital, Hanyang University College of Medicine, 153, Gyeongchun-ro, Guri, 11923, South Korea
| |
Collapse
|
124
|
Yang J, Jia L, Li Y, Qiu Q, Quan M, Jia J. Fluid Biomarkers in Clinical Trials for Alzheimer's Disease: Current and Future Application. J Alzheimers Dis 2021; 81:19-32. [PMID: 33749646 DOI: 10.3233/jad-201068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Alzheimer's disease (AD) research is entering a unique moment in which enormous information about the molecular basis of this disease is being translated into therapeutics. However, almost all drug candidates have failed in clinical trials over the past 30 years. These many trial failures have highlighted a need for the incorporation of biomarkers in clinical trials to help improve the trial design. Fluid biomarkers measured in cerebrospinal fluid and circulating blood, which can reflect the pathophysiological process in the brain, are becoming increasingly important in AD clinical trials. In this review, we first succinctly outline a panel of fluid biomarkers for neuropathological changes in AD. Then, we provide a comprehensive overview of current and future application of fluid biomarkers in clinical trials for AD. We also summarize the many challenges that have been encountered in efforts to integrate fluid biomarkers in clinical trials, and the barriers that have begun to be overcome. Ongoing research efforts in the field of fluid biomarkers will be critical to make significant progress in ultimately unveiling disease-modifying therapies in AD.
Collapse
Affiliation(s)
- Jianwei Yang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, People's Republic of China
| | - Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, People's Republic of China.,National Clinical Research Center for Geriatric Diseases, Beijing, People's Republic of China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, People's Republic of China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, People's Republic of China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, People's Republic of China
| | - Qiongqiong Qiu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, People's Republic of China
| | - Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, People's Republic of China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, People's Republic of China.,National Clinical Research Center for Geriatric Diseases, Beijing, People's Republic of China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, People's Republic of China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, People's Republic of China
| |
Collapse
|
125
|
Albertini C, Naldi M, Petralla S, Strocchi S, Grifoni D, Monti B, Bartolini M, Bolognesi ML. From Combinations to Single-Molecule Polypharmacology-Cromolyn-Ibuprofen Conjugates for Alzheimer's Disease. Molecules 2021; 26:1112. [PMID: 33669839 PMCID: PMC7923232 DOI: 10.3390/molecules26041112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/04/2023] Open
Abstract
Despite Alzheimer's disease (AD) incidence being projected to increase worldwide, the drugs currently on the market can only mitigate symptoms. Considering the failures of the classical paradigm "one target-one drug-one disease" in delivering effective medications for AD, polypharmacology appears to be a most viable therapeutic strategy. Polypharmacology can involve combinations of multiple drugs and/or single chemical entities modulating multiple targets. Taking inspiration from an ongoing clinical trial, this work aims to convert a promising cromolyn-ibuprofen drug combination into single-molecule "codrugs." Such codrugs should be able to similarly modulate neuroinflammatory and amyloid pathways, while showing peculiar pros and cons. By exploiting a linking strategy, we designed and synthesized a small set of cromolyn-ibuprofen conjugates (4-6). Preliminary plasma stability and neurotoxicity assays allowed us to select diamide 5 and ethanolamide 6 as promising compounds for further studies. We investigated their immunomodulatory profile in immortalized microglia cells, in vitro anti-aggregating activity towards Aβ42-amyloid self-aggregation, and their cellular neuroprotective effect against Aβ42-induced neurotoxicity. The fact that 6 effectively reduced Aβ-induced neuronal death, prompted its investigation into an in vivo model. Notably, 6 was demonstrated to significantly increase the longevity of Aβ42-expressing Drosophila and to improve fly locomotor performance.
Collapse
Affiliation(s)
- Claudia Albertini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6/Via Selmi 3, 40126 Bologna, Italy; (C.A.); (M.N.); (S.P.); (S.S.); (B.M.); (M.B.)
| | - Marina Naldi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6/Via Selmi 3, 40126 Bologna, Italy; (C.A.); (M.N.); (S.P.); (S.S.); (B.M.); (M.B.)
- Centre for Applied Biomedical Research—CRBA, University of Bologna, St. Orsola Hospital, Via Massarenti 9, 40138 Bologna, Italy
| | - Sabrina Petralla
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6/Via Selmi 3, 40126 Bologna, Italy; (C.A.); (M.N.); (S.P.); (S.S.); (B.M.); (M.B.)
| | - Silvia Strocchi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6/Via Selmi 3, 40126 Bologna, Italy; (C.A.); (M.N.); (S.P.); (S.S.); (B.M.); (M.B.)
| | - Daniela Grifoni
- Department of Life, Health and Environmental Sciences (MeSVA), University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy;
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6/Via Selmi 3, 40126 Bologna, Italy; (C.A.); (M.N.); (S.P.); (S.S.); (B.M.); (M.B.)
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6/Via Selmi 3, 40126 Bologna, Italy; (C.A.); (M.N.); (S.P.); (S.S.); (B.M.); (M.B.)
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6/Via Selmi 3, 40126 Bologna, Italy; (C.A.); (M.N.); (S.P.); (S.S.); (B.M.); (M.B.)
| |
Collapse
|
126
|
Peng Y, Yuan M, Xin J, Liu X, Wang J. Screening novel drug candidates for Alzheimer's disease by an integrated network and transcriptome analysis. Bioinformatics 2021; 36:4626-4632. [PMID: 32516365 DOI: 10.1093/bioinformatics/btaa563] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/10/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
MOTIVATION Alzheimer's disease (AD) is a serious degenerative brain disease and the most common cause of dementia. The current available drugs for AD provide symptomatic benefit, but there is no effective drug to cure the disease. The emergence of large-scale genomic, pharmacological data provides new opportunities for drug discovery and drug repositioning as a promising strategy in searching novel drug for AD. RESULTS In this study, we took advantage of our increasing understanding based on systems biology approaches on the pathway and network levels and perturbation datasets from the Library of Integrated Network-Based Cellular Signatures to introduce a systematic computational process to discover new drugs implicated in AD. First, we collected 561 genes that have reported to be risk genes of AD, and applied functional enrichment analysis on these genes. Then, by quantifying proximity between 5595 molecule drugs and AD based on human interactome, we filtered out 1092 drugs that were proximal to the disease. We further performed an Inverted Gene Set Enrichment analysis on these drug candidates, which allowed us to estimate effect of perturbations on gene expression and identify 24 potential drug candidates for AD treatment. Results from this study also provided insights for understanding the molecular mechanisms underlying AD. As a useful systematic method, our approach can also be used to identify efficacious therapies for other complex diseases. AVAILABILITY AND IMPLEMENTATION The source code is available at https://github.com/zer0o0/drug-repo.git. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yonglin Peng
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070 China
| | - Meng Yuan
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070 China
| | - Juncai Xin
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070 China
| | - Xinhua Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070 China
| | - Ju Wang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070 China
| |
Collapse
|
127
|
Prasanna P, Upadhyay A. Flavonoid-Based Nanomedicines in Alzheimer's Disease Therapeutics: Promises Made, a Long Way To Go. ACS Pharmacol Transl Sci 2021; 4:74-95. [PMID: 33615162 PMCID: PMC7887745 DOI: 10.1021/acsptsci.0c00224] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is characterized by the continuous decline of the cognitive abilities manifested due to the accumulation of large aggregates of amyloid-beta 42 (Aβ42), the formation of neurofibrillary tangles of hyper-phosphorylated forms of microtubule-associated tau protein, which may lead to many alterations at the cellular and systemic level. The current therapeutic strategies primarily focus on alleviating pathological symptoms rather than providing a possible cure. AD is one of the highly studied but least understood neurological problems and remains an unresolved condition of human brain degeneration. Over the years, multiple naturally derived small molecules, including plant products, microbial isolates, and some metabolic byproducts, have been projected as supplements reducing the risk or possible treatment of the disease. However, unfortunately, none has met the expected success. One major challenge for most medications is their ability to cross the blood-brain barrier (BBB). In past decades, nanotechnology-based interventions have offered an alternative platform to address the problem of the successful delivery of the drugs to the specific targets. Interestingly, the exciting interface of natural products and nanomedicine is delivering promising results in AD treatment. The potential applications of flavonoids, the plant-derived compounds best known for their antioxidant activities, and their amalgamation with nanomedicinal approaches may lead to highly effective therapeutic strategies for treating well-known neurodegenerative diseases. In the present review, we explore the possibilities and recent developments on an exciting combination of flavonoids and nanoparticles in AD.
Collapse
Affiliation(s)
- Pragya Prasanna
- Department
of Biotechnology, National Institute of
Pharmaceutical Education and Research, Hajipur, Bihar, India 844102
| | - Arun Upadhyay
- Department
of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandar Sindari, Kishangarh Ajmer, Rajasthan, India 305817
| |
Collapse
|
128
|
Maiti P, Bowers Z, Bourcier-Schultz A, Morse J, Dunbar GL. Preservation of dendritic spine morphology and postsynaptic signaling markers after treatment with solid lipid curcumin particles in the 5xFAD mouse model of Alzheimer's amyloidosis. Alzheimers Res Ther 2021; 13:37. [PMID: 33557949 PMCID: PMC7871397 DOI: 10.1186/s13195-021-00769-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 01/04/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Synaptic failure is one of the principal events associated with cognitive dysfunction in Alzheimer's disease (AD). Preservation of existing synapses and prevention of synaptic loss are promising strategies to preserve cognitive function in AD patients. As a potent natural anti-oxidant, anti-amyloid, and anti-inflammatory polyphenol, curcumin (Cur) shows great promise as a therapy for AD. However, hydrophobicity of natural Cur limits its solubility, stability, bioavailability, and clinical utility for AD therapy. We have demonstrated that solid lipid curcumin particles (SLCP) have greater therapeutic potential than natural Cur in vitro and in vivo models of AD. In the present study, we have investigated whether SLCP has any preservative role on affected dendritic spines and synaptic markers in 5xFAD mice. METHODS Six- and 12-month-old 5xFAD and age-matched wild-type mice received oral administration of SLCP (100 mg/kg body weight) or equivalent amounts of vehicle for 2 months. Neuronal morphology, neurodegeneration, and amyloid plaque load were investigated from prefrontal cortex (PFC), entorhinal cortex (EC), CA1, CA3, and the subicular complex (SC). In addition, the dendritic spine density from apical and basal branches was studied by Golgi-Cox stain. Further, synaptic markers, such as synaptophysin, PSD95, Shank, Homer, Drebrin, Kalirin-7, CREB, and phosphorylated CREB (pCREB) were studied using Western blots. Finally, cognitive and motor functions were assessed using open-field, novel object recognition (NOR) and Morris water maze (MWM) tasks after treatment with SLCP. RESULTS We observed an increased number of pyknotic and degenerated cells in all these brain areas in 5xFAD mice and SLCP treatment partially protected against those losses. Decrease in dendritic arborization and dendritic spine density from primary, secondary, and tertiary apical and basal branches were observed in PFC, EC, CA1, and CA3 in both 6- and 12-month-old 5xFAD mice, and SLCP treatments partially preserved the normal morphology of these dendritic spines. In addition, pre- and postsynaptic protein markers were also restored by SLCP treatment. Furthermore, SLCP treatment improved NOR and cognitive function in 5xFAD mice. CONCLUSIONS Overall, these findings indicate that use of SLCP exerts neuroprotective properties by decreasing amyloid plaque burden, preventing neuronal death, and preserving dendritic spine density and synaptic markers in the 5xFAD mice.
Collapse
Affiliation(s)
- Panchanan Maiti
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 48859 USA
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI 48859 USA
- Department of Psychology, Central Michigan University, Mt. Pleasant, MI 48859 USA
- Field Neurosciences Institute, Ascension St. Mary’s Hospital, Saginaw, MI 48604 USA
- College of Health and Human Services, Saginaw Valley State University, Saginaw, MI 48710 USA
| | - Zackary Bowers
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 48859 USA
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI 48859 USA
| | - Ali Bourcier-Schultz
- College of Health and Human Services, Saginaw Valley State University, Saginaw, MI 48710 USA
| | - Jarod Morse
- College of Health and Human Services, Saginaw Valley State University, Saginaw, MI 48710 USA
| | - Gary L. Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 48859 USA
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI 48859 USA
- Department of Psychology, Central Michigan University, Mt. Pleasant, MI 48859 USA
- Field Neurosciences Institute, Ascension St. Mary’s Hospital, Saginaw, MI 48604 USA
| |
Collapse
|
129
|
Cummings JL. Translational Scoring of Candidate Treatments for Alzheimer's Disease: A Systematic Approach. Dement Geriatr Cogn Disord 2021; 49:22-37. [PMID: 32512572 DOI: 10.1159/000507569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND There are many failures in treatment development for Alzheimer's disease (AD). Some of these failures are the result of development programs that lacked critical information about candidate drugs as these were advanced from one phase of development to the next. Translational scoring (TS) has been proposed as a means of increasing the rigor with which treatment development programs are executed. Previously, these approaches were not specific to AD or to the phase of drug development. Detailed information on the characteristics needed to advance a candidate agent from one phase to the next is the basis for success in subsequent phases. SUMMARY The TS approach is presented with a score range of 0-25 for agents entering phases 1, 2, and 3 of development and those that have completed phase 3 and are being considered for regulatory review. Each phase has 5 essential categories scored from 0-5 indicating the completeness of the data available when the agent is being considered for promotion to the next phase. Lower scores suggest that the development program should be reexamined for missing information while higher scores increase the confidence that the agent has the potential to succeed in the next phase. Scoring guidelines are provided and examples of scores for drugs in recent development programs are provided to illustrate the principles of TS. Key Messages: Successful development of drugs for AD treatment requires disciplined informed decision-making at each phase of development. TS is a methodology for more rigorous drug development to help ensure that inadequately characterized drugs are not advanced and that the development platform at each phase is optimal to support success at the next phase.
Collapse
Affiliation(s)
- Jeffrey L Cummings
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas, Nevada, USA, .,Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, USA,
| |
Collapse
|
130
|
Wessels AM, Edgar CJ, Nathan PJ, Siemers ER, Maruff P, Harrison J. Cognitive Go/No-Go decision-making criteria in Alzheimer's disease drug development. Drug Discov Today 2021; 26:1330-1336. [PMID: 33486115 DOI: 10.1016/j.drudis.2021.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/23/2020] [Accepted: 01/15/2021] [Indexed: 10/22/2022]
Abstract
Go/No-Go decision making in early phase clinical trials is challenging for drug developers working in Alzheimer's disease. Recent negative trial results have been attributed to a lack of efficacy and important safety concerns. Furthermore, demonstrated target engagement has rarely translated into demonstrable clinical efficacy. Cognitive data might provide valuable insights at various points during drug development, and a thoughtful and robust set of decision-making criteria, specified a priori, can and should be applied under many circumstances. This review provides insights into how to utilize cognitive data for Go/No-Go decisions, with an emphasis on how these cognitive criteria differ depending on the context (e.g., stage of development, mechanism of action and trial design).
Collapse
Affiliation(s)
| | | | - Pradeep J Nathan
- Lundbeck, Copenhagen, Denmark; Department of Psychiatry, University of Cambridge, UK; School of Psychological Sciences, Monash University, Australia
| | | | | | - John Harrison
- Metis Cognition Ltd, Kilmington Common, UK; Alzheimer Center AUmc, Amsterdam, The Netherlands; Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| |
Collapse
|
131
|
Mahlich J, Bartol A, Dheban S. Can adaptive clinical trials help to solve the productivity crisis of the pharmaceutical industry? - a scenario analysis. HEALTH ECONOMICS REVIEW 2021; 11:4. [PMID: 33454837 PMCID: PMC7811738 DOI: 10.1186/s13561-021-00302-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
AIM The productivity of pharmaceutical research and development (R&D) investments is declining due to high failure rates in clinical research. Recently, the US Food and Drug Administration (FDA) acknowledged that adaptive designs can make drug development more efficient and less costly. Our objective is to simulate cost-saving effects and estimate the impact on global R&D expenditures as well as possible outcomes measured in life-years gained. METHODS Based on published drug-development cost data we calculate potential cost savings derived from variations in clinical success rates that result from employing adaptive trial designs. In a subsequent step we estimate how those cost changes affect global R&D expenditures and outcomes. RESULTS Our calculations indicate that an adaptive trial design with the potential to increase success rates of clinical trials by 4 percentage points could lower development costs for a new drug from 2.6 to 2.2bn USD. On a global scale, this cost reduction would free up an additional 4.2bn USD for investment into pharmaceutical R&D to bring about drug innovations that in turn would be capable of generating up to 3.5 million life-years. CONCLUSION New clinical trial designs are crucial to improving productivity within the pharmaceutical industry and to fostering a sustainable health-care system.
Collapse
Affiliation(s)
- Jörg Mahlich
- Health Economics and Outcomes Research, Janssen, Pharmaceutical Companies of Johnson & Johnson, Neuss, Germany.
- Düsseldorf Institute of Competition Economics (DICE), University of Düsseldorf, Düsseldorf, Germany.
| | - Arne Bartol
- Government Affairs, Janssen, Pharmaceutical Companies of Johnson & Johnson, Neuss, Germany
| | - Srirangan Dheban
- Health Economics and Outcomes Research, Janssen, Pharmaceutical Companies of Johnson & Johnson, Neuss, Germany
| |
Collapse
|
132
|
Zhou Y, Fang J, Bekris LM, Kim YH, Pieper AA, Leverenz JB, Cummings J, Cheng F. AlzGPS: a genome-wide positioning systems platform to catalyze multi-omics for Alzheimer's drug discovery. Alzheimers Res Ther 2021; 13:24. [PMID: 33441136 PMCID: PMC7804907 DOI: 10.1186/s13195-020-00760-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Recent DNA/RNA sequencing and other multi-omics technologies have advanced the understanding of the biology and pathophysiology of AD, yet there is still a lack of disease-modifying treatments for AD. A new approach to integration of the genome, transcriptome, proteome, and human interactome in the drug discovery and development process is essential for this endeavor. METHODS In this study, we developed AlzGPS (Genome-wide Positioning Systems platform for Alzheimer's Drug Discovery, https://alzgps.lerner.ccf.org ), a comprehensive systems biology tool to enable searching, visualizing, and analyzing multi-omics, various types of heterogeneous biological networks, and clinical databases for target identification and development of effective prevention and treatment for AD. RESULTS Via AlzGPS: (1) we curated more than 100 AD multi-omics data sets capturing DNA, RNA, protein, and small molecule profiles underlying AD pathogenesis (e.g., early vs. late stage and tau or amyloid endophenotype); (2) we constructed endophenotype disease modules by incorporating multi-omics findings and human protein-protein interactome networks; (3) we provided possible treatment information from ~ 3000 FDA approved/investigational drugs for AD using state-of-the-art network proximity analyses; (4) we curated nearly 300 literature references for high-confidence drug candidates; (5) we included information from over 1000 AD clinical trials noting drug's mechanisms-of-action and primary drug targets, and linking them to our integrated multi-omics view for targets and network analysis results for the drugs; (6) we implemented a highly interactive web interface for database browsing and network visualization. CONCLUSIONS Network visualization enabled by AlzGPS includes brain-specific neighborhood networks for genes-of-interest, endophenotype disease module networks for omics-of-interest, and mechanism-of-action networks for drugs targeting disease modules. By virtue of combining systems pharmacology and network-based integrative analysis of multi-omics data, AlzGPS offers actionable systems biology tools for accelerating therapeutic development in AD.
Collapse
Affiliation(s)
- Yadi Zhou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jiansong Fang
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Lynn M Bekris
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Young Heon Kim
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Weill Cornell Autism Research Program, Weill Cornell Medicine of Cornell University, New York, NY, 10065, USA
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - James B Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jeffrey Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, 89106, USA
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, UNLV, Las Vegas, NV, 89154, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA.
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
133
|
Cummings J. New approaches to symptomatic treatments for Alzheimer's disease. Mol Neurodegener 2021; 16:2. [PMID: 33441154 PMCID: PMC7805095 DOI: 10.1186/s13024-021-00424-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/02/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Successful development of agents that improve cognition and behavior in Alzheimer's disease (AD) is critical to improving the lives of patients manifesting the symptoms of this progressive disorder. DISCUSSION There have been no recent approvals of cognitive enhancing agents for AD. There are currently 6 cognitive enhancers in Phase 2 trials and 4 in phase 3. They represent a variety of novel mechanisms. There has been progress in developing new treatments for neuropsychiatric symptoms in AD with advances in treatment of insomnia, psychosis, apathy, and agitation in AD. There are currently 4 AD-related psychotropic agents in Phase 2 trials and 7 in Phase 3 trials. Many novel mechanisms are being explored for the treatment of cognitive and behavioral targets. Progress in trial designs, outcomes measures, and population definitions are improving trial conduct for symptomatic treatment of AD. CONCLUSIONS Advances in developing new agents for cognitive and behavioral symptoms of AD combined with enhanced trial methods promise to address the unmet needs of patients with AD for improved cognition and amelioration of neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
134
|
Mehta RI, Carpenter JS, Mehta RI, Haut MW, Ranjan M, Najib U, Lockman P, Wang P, D'haese PF, Rezai AR. Blood-Brain Barrier Opening with MRI-guided Focused Ultrasound Elicits Meningeal Venous Permeability in Humans with Early Alzheimer Disease. Radiology 2021; 298:654-662. [PMID: 33399511 DOI: 10.1148/radiol.2021200643] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Opening of the blood-brain barrier (BBB) induced with MRI-guided focused ultrasound has been shown in experimental animal models to reduce amyloid-β plaque burden, improve memory performance, and facilitate delivery of therapeutic agents to the brain. However, physiologic effects of this procedure in humans with Alzheimer disease (AD) require further investigation. Purpose To assess imaging effects of focused ultrasound-induced BBB opening in the hippocampus of human participants with early AD and to evaluate fluid flow patterns after BBB opening by using serial contrast-enhanced MRI. Materials and Methods Study participants with early AD recruited to a Health Insurance Portability and Accountability Act-compliant, prospective, ongoing phase II clinical trial (ClinicalTrials.gov identifier, NCT03671889) underwent three separate focused ultrasound-induced BBB opening procedures that used a 220-kHz transducer with a concomitant intravenous microbubble contrast agent administered at 2-week intervals targeting the hippocampus and entorhinal cortex between October 2018 and May 2019. Posttreatment effects and gadolinium-based contrast agent enhancement patterns were evaluated by using 3.0-T MRI. Results Three women (aged 61, 72, and 73 years) consecutively enrolled in the trial successfully completed repeated focused ultrasound-induced BBB opening of the hippocampus and entorhinal cortex. Postprocedure contrast enhancement was clearly identified within the targeted brain volumes, indicating immediate spatially precise BBB opening. Parenchymal enhancement resolved within 24 hours after all treatments, confirming BBB closure. Transient perivenous enhancement was consistently observed during the acute phase after BBB opening. Notably, contrast enhancement reappeared in the perivenular regions after BBB closure. This imaging marker is consistent with blood-meningeal barrier permeability and persisted for 24-48 hours before spontaneous resolution. No evidence of intracranial hemorrhage or other adverse effect was identified. Conclusion MRI-guided focused ultrasound-induced blood-brain barrier opening was safely performed in the hippocampi of three participants with Alzheimer disease without any adverse effects. Posttreatment MRI reveals a unique spatiotemporal contrast enhancement pattern that suggests a perivenular immunologic healing response downstream from targeted sites. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Klibanov in this issue.
Collapse
Affiliation(s)
- Rashi I Mehta
- From the Departments of Neuroradiology (Rashi I. Mehta, J.S.C., P.W., P.F.D.), Radiology (Rashi I. Mehta, J.S.C.), and Neuroscience (Rashi I. Mehta, J.S.C., M.W.H., P.L., A.R.R.); Rockefeller Neuroscience Institute (Rashi I. Mehta, J.S.C., M.W.H., M.R., U.N., P.L., P.W., P.F.D., A.R.R.); and Departments of Behavioral Medicine and Psychiatry (M.W.H.), Neurosurgery (M.W.H., M.R., A.R.R.), Neurology (M.W.H., U.N.), and Pharmaceutical Sciences (P.L.), West Virginia University, 1 Medical Center Dr, Morgantown, WV 26505; Center for Translational Neuromedicine, University of Rochester, Rochester, NY (Rupal I. Mehta); and Alzheimer's Disease Center and Department of Pathology, Rush University Medical Center, Chicago, Ill (Rupal I. Mehta)
| | - Jeffrey S Carpenter
- From the Departments of Neuroradiology (Rashi I. Mehta, J.S.C., P.W., P.F.D.), Radiology (Rashi I. Mehta, J.S.C.), and Neuroscience (Rashi I. Mehta, J.S.C., M.W.H., P.L., A.R.R.); Rockefeller Neuroscience Institute (Rashi I. Mehta, J.S.C., M.W.H., M.R., U.N., P.L., P.W., P.F.D., A.R.R.); and Departments of Behavioral Medicine and Psychiatry (M.W.H.), Neurosurgery (M.W.H., M.R., A.R.R.), Neurology (M.W.H., U.N.), and Pharmaceutical Sciences (P.L.), West Virginia University, 1 Medical Center Dr, Morgantown, WV 26505; Center for Translational Neuromedicine, University of Rochester, Rochester, NY (Rupal I. Mehta); and Alzheimer's Disease Center and Department of Pathology, Rush University Medical Center, Chicago, Ill (Rupal I. Mehta)
| | - Rupal I Mehta
- From the Departments of Neuroradiology (Rashi I. Mehta, J.S.C., P.W., P.F.D.), Radiology (Rashi I. Mehta, J.S.C.), and Neuroscience (Rashi I. Mehta, J.S.C., M.W.H., P.L., A.R.R.); Rockefeller Neuroscience Institute (Rashi I. Mehta, J.S.C., M.W.H., M.R., U.N., P.L., P.W., P.F.D., A.R.R.); and Departments of Behavioral Medicine and Psychiatry (M.W.H.), Neurosurgery (M.W.H., M.R., A.R.R.), Neurology (M.W.H., U.N.), and Pharmaceutical Sciences (P.L.), West Virginia University, 1 Medical Center Dr, Morgantown, WV 26505; Center for Translational Neuromedicine, University of Rochester, Rochester, NY (Rupal I. Mehta); and Alzheimer's Disease Center and Department of Pathology, Rush University Medical Center, Chicago, Ill (Rupal I. Mehta)
| | - Marc W Haut
- From the Departments of Neuroradiology (Rashi I. Mehta, J.S.C., P.W., P.F.D.), Radiology (Rashi I. Mehta, J.S.C.), and Neuroscience (Rashi I. Mehta, J.S.C., M.W.H., P.L., A.R.R.); Rockefeller Neuroscience Institute (Rashi I. Mehta, J.S.C., M.W.H., M.R., U.N., P.L., P.W., P.F.D., A.R.R.); and Departments of Behavioral Medicine and Psychiatry (M.W.H.), Neurosurgery (M.W.H., M.R., A.R.R.), Neurology (M.W.H., U.N.), and Pharmaceutical Sciences (P.L.), West Virginia University, 1 Medical Center Dr, Morgantown, WV 26505; Center for Translational Neuromedicine, University of Rochester, Rochester, NY (Rupal I. Mehta); and Alzheimer's Disease Center and Department of Pathology, Rush University Medical Center, Chicago, Ill (Rupal I. Mehta)
| | - Manish Ranjan
- From the Departments of Neuroradiology (Rashi I. Mehta, J.S.C., P.W., P.F.D.), Radiology (Rashi I. Mehta, J.S.C.), and Neuroscience (Rashi I. Mehta, J.S.C., M.W.H., P.L., A.R.R.); Rockefeller Neuroscience Institute (Rashi I. Mehta, J.S.C., M.W.H., M.R., U.N., P.L., P.W., P.F.D., A.R.R.); and Departments of Behavioral Medicine and Psychiatry (M.W.H.), Neurosurgery (M.W.H., M.R., A.R.R.), Neurology (M.W.H., U.N.), and Pharmaceutical Sciences (P.L.), West Virginia University, 1 Medical Center Dr, Morgantown, WV 26505; Center for Translational Neuromedicine, University of Rochester, Rochester, NY (Rupal I. Mehta); and Alzheimer's Disease Center and Department of Pathology, Rush University Medical Center, Chicago, Ill (Rupal I. Mehta)
| | - Umer Najib
- From the Departments of Neuroradiology (Rashi I. Mehta, J.S.C., P.W., P.F.D.), Radiology (Rashi I. Mehta, J.S.C.), and Neuroscience (Rashi I. Mehta, J.S.C., M.W.H., P.L., A.R.R.); Rockefeller Neuroscience Institute (Rashi I. Mehta, J.S.C., M.W.H., M.R., U.N., P.L., P.W., P.F.D., A.R.R.); and Departments of Behavioral Medicine and Psychiatry (M.W.H.), Neurosurgery (M.W.H., M.R., A.R.R.), Neurology (M.W.H., U.N.), and Pharmaceutical Sciences (P.L.), West Virginia University, 1 Medical Center Dr, Morgantown, WV 26505; Center for Translational Neuromedicine, University of Rochester, Rochester, NY (Rupal I. Mehta); and Alzheimer's Disease Center and Department of Pathology, Rush University Medical Center, Chicago, Ill (Rupal I. Mehta)
| | - Paul Lockman
- From the Departments of Neuroradiology (Rashi I. Mehta, J.S.C., P.W., P.F.D.), Radiology (Rashi I. Mehta, J.S.C.), and Neuroscience (Rashi I. Mehta, J.S.C., M.W.H., P.L., A.R.R.); Rockefeller Neuroscience Institute (Rashi I. Mehta, J.S.C., M.W.H., M.R., U.N., P.L., P.W., P.F.D., A.R.R.); and Departments of Behavioral Medicine and Psychiatry (M.W.H.), Neurosurgery (M.W.H., M.R., A.R.R.), Neurology (M.W.H., U.N.), and Pharmaceutical Sciences (P.L.), West Virginia University, 1 Medical Center Dr, Morgantown, WV 26505; Center for Translational Neuromedicine, University of Rochester, Rochester, NY (Rupal I. Mehta); and Alzheimer's Disease Center and Department of Pathology, Rush University Medical Center, Chicago, Ill (Rupal I. Mehta)
| | - Peng Wang
- From the Departments of Neuroradiology (Rashi I. Mehta, J.S.C., P.W., P.F.D.), Radiology (Rashi I. Mehta, J.S.C.), and Neuroscience (Rashi I. Mehta, J.S.C., M.W.H., P.L., A.R.R.); Rockefeller Neuroscience Institute (Rashi I. Mehta, J.S.C., M.W.H., M.R., U.N., P.L., P.W., P.F.D., A.R.R.); and Departments of Behavioral Medicine and Psychiatry (M.W.H.), Neurosurgery (M.W.H., M.R., A.R.R.), Neurology (M.W.H., U.N.), and Pharmaceutical Sciences (P.L.), West Virginia University, 1 Medical Center Dr, Morgantown, WV 26505; Center for Translational Neuromedicine, University of Rochester, Rochester, NY (Rupal I. Mehta); and Alzheimer's Disease Center and Department of Pathology, Rush University Medical Center, Chicago, Ill (Rupal I. Mehta)
| | - Pierre-François D'haese
- From the Departments of Neuroradiology (Rashi I. Mehta, J.S.C., P.W., P.F.D.), Radiology (Rashi I. Mehta, J.S.C.), and Neuroscience (Rashi I. Mehta, J.S.C., M.W.H., P.L., A.R.R.); Rockefeller Neuroscience Institute (Rashi I. Mehta, J.S.C., M.W.H., M.R., U.N., P.L., P.W., P.F.D., A.R.R.); and Departments of Behavioral Medicine and Psychiatry (M.W.H.), Neurosurgery (M.W.H., M.R., A.R.R.), Neurology (M.W.H., U.N.), and Pharmaceutical Sciences (P.L.), West Virginia University, 1 Medical Center Dr, Morgantown, WV 26505; Center for Translational Neuromedicine, University of Rochester, Rochester, NY (Rupal I. Mehta); and Alzheimer's Disease Center and Department of Pathology, Rush University Medical Center, Chicago, Ill (Rupal I. Mehta)
| | - Ali R Rezai
- From the Departments of Neuroradiology (Rashi I. Mehta, J.S.C., P.W., P.F.D.), Radiology (Rashi I. Mehta, J.S.C.), and Neuroscience (Rashi I. Mehta, J.S.C., M.W.H., P.L., A.R.R.); Rockefeller Neuroscience Institute (Rashi I. Mehta, J.S.C., M.W.H., M.R., U.N., P.L., P.W., P.F.D., A.R.R.); and Departments of Behavioral Medicine and Psychiatry (M.W.H.), Neurosurgery (M.W.H., M.R., A.R.R.), Neurology (M.W.H., U.N.), and Pharmaceutical Sciences (P.L.), West Virginia University, 1 Medical Center Dr, Morgantown, WV 26505; Center for Translational Neuromedicine, University of Rochester, Rochester, NY (Rupal I. Mehta); and Alzheimer's Disease Center and Department of Pathology, Rush University Medical Center, Chicago, Ill (Rupal I. Mehta)
| |
Collapse
|
135
|
Cummings J. Innovative Therapeutic Development Programme for the Treatment of Early Alzheimer's Disease: Lecanemab (BAN2401). Neurology 2021. [DOI: 10.17925/usn.2021.17.2.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
136
|
Severini C, Barbato C, Di Certo MG, Gabanella F, Petrella C, Di Stadio A, de Vincentiis M, Polimeni A, Ralli M, Greco A. Alzheimer's Disease: New Concepts on the Role of Autoimmunity and NLRP3 Inflammasome in the Pathogenesis of the Disease. Curr Neuropharmacol 2021; 19:498-512. [PMID: 32564756 PMCID: PMC8206463 DOI: 10.2174/1570159x18666200621204546] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/27/2020] [Accepted: 06/17/2020] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD), recognized as the most common neurodegenerative disorder, is clinically characterized by the presence of extracellular beta-amyloid (Aβ) plaques and by intracellular neurofibrillary tau tangles, accompanied by glial activation and neuroinflammation. Increasing evidence suggests that self-misfolded proteins stimulate an immune response mediated by glial cells, inducing the release of inflammatory mediators and the recruitment of peripheral macrophages into the brain, which in turn aggravate AD pathology. The present review aims to update the current knowledge on the role of autoimmunity and neuroinflammation in the pathogenesis of the disease, indicating a new target for therapeutic intervention. We mainly focused on the NLRP3 microglial inflammasome as a critical factor in stimulating innate immune responses, thus sustaining chronic inflammation. Additionally, we discussed the involvement of the NLRP3 inflammasome in the gut-brain axis. Direct targeting of the NLRP3 inflammasome and the associated receptors could be a potential pharmacological strategy since its inhibition would selectively reduce AD neuroinflammation.
Collapse
Affiliation(s)
- Cinzia Severini
- Address correspondence to this author at the Institute of Biochemistry and Cell Biology, National Research Council of Italy, Viale del Policlinico, 155, 00161 Rome, Italy; E-mail:
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Handy A, Lord J, Green R, Xu J, Aarsland D, Velayudhan L, Hye A, Dobson R, Proitsi P. Assessing Genetic Overlap and Causality Between Blood Plasma Proteins and Alzheimer's Disease. J Alzheimers Dis 2021; 83:1825-1839. [PMID: 34459398 PMCID: PMC8609677 DOI: 10.3233/jad-210462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Blood plasma proteins have been associated with Alzheimer's disease (AD), but understanding which proteins are on the causal pathway remains challenging. OBJECTIVE Investigate the genetic overlap between candidate proteins and AD using polygenic risk scores (PRS) and interrogate their causal relationship using bi-directional Mendelian randomization (MR). METHODS Following a literature review, 31 proteins were selected for PRS analysis. PRS were constructed for prioritized proteins with and without the apolipoprotein E region (APOE+/-PRS) and tested for association with AD status across three cohorts (n = 6,244). An AD PRS was also tested for association with protein levels in one cohort (n = 410). Proteins showing association with AD were taken forward for MR. RESULTS For APOE ɛ3, apolipoprotein B-100, and C-reactive protein (CRP), protein APOE+ PRS were associated with AD below Bonferroni significance (pBonf, p < 0.00017). No protein APOE- PRS or AD PRS (APOE+/-) passed pBonf. However, vitamin D-binding protein (protein PRS APOE-, p = 0.009) and insulin-like growth factor-binding protein 2 (AD APOE- PRS p = 0.025, protein APOE- PRS p = 0.045) displayed suggestive signals and were selected for MR. In bi-directional MR, none of the five proteins demonstrated a causal association (p < 0.05) in either direction. CONCLUSION Apolipoproteins and CRP PRS are associated with AD and provide a genetic signal linked to a specific, accessible risk factor. While evidence of causality was limited, this study was conducted in a moderate sample size and provides a framework for larger samples with greater statistical power.
Collapse
Affiliation(s)
- Alex Handy
- University College London, Institute of Health Informatics, London, UK
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Jodie Lord
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Rebecca Green
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK
| | - Jin Xu
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- Institute of Pharmaceutical Science, King’s College London, UK
| | - Dag Aarsland
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- Center for Age-Related Medicine, Stavanger University Hospital, Norway
| | - Latha Velayudhan
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Abdul Hye
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Richard Dobson
- University College London, Institute of Health Informatics, London, UK
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK
- Health Data Research UK London, University College London, London, UK
- NIHR Biomedical Research Centre at University College London Hospitals NHS Foundation Trust, London, UK
| | - Petroula Proitsi
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | | | | |
Collapse
|
138
|
Frölich L. Alzheimer's disease - the 'microbial hypothesis' from a clinical and neuroimaging perspective. Psychiatry Res Neuroimaging 2020; 306:111181. [PMID: 32919870 DOI: 10.1016/j.pscychresns.2020.111181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/25/2020] [Accepted: 09/03/2020] [Indexed: 12/18/2022]
Abstract
The etiology of Alzheimer's disease (AD) is under debate since its first description in 1906. Extracellular senile plaques composed of beta-amyloid peptide (Aβ) and intracellular neurofibrillary tangles composed of tau protein characterize the histopathology of the disease. The 'amyloid cascade hypothesis' summarizes the molecular mechanisms leading to deposition of these proteins. However, treatments derived from this hypothesis have been unsuccessful. An infectious etiology for AD has been repeatedly proposed. Neurotropic viruses, gut and lung bacteriae, and Bovine Meat and Milk Factors have been implicated in neurodegenerative disorders including AD. These pathogens may act directly or as a trigger or co-factor for inducing neurodegeneration in AD. The antimicrobial properties of beta-amyloid have shifted the discussion of the etiological origin of AD towards an interaction hypothesis. Neuroimaging studies have added to the understanding of mechanisms involved in neurodegeneration. Antiviral agents and a bacterial protease inhibitor targeting Porphyromonas gingivalis toxins are currently tested in clinical trials. Further clinical studies are needed to test if strategies directly derived from the 'microbial hypothesis' or combination strategies including antimicrobial agents may be beneficial for patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Lutz Frölich
- Dept of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany.
| |
Collapse
|
139
|
Silva MC, Haggarty SJ. Tauopathies: Deciphering Disease Mechanisms to Develop Effective Therapies. Int J Mol Sci 2020; 21:ijms21238948. [PMID: 33255694 PMCID: PMC7728099 DOI: 10.3390/ijms21238948] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/13/2022] Open
Abstract
Tauopathies are neurodegenerative diseases characterized by the pathological accumulation of microtubule-associated protein tau (MAPT) in the form of neurofibrillary tangles and paired helical filaments in neurons and glia, leading to brain cell death. These diseases include frontotemporal dementia (FTD) and Alzheimer's disease (AD) and can be sporadic or inherited when caused by mutations in the MAPT gene. Despite an incredibly high socio-economic burden worldwide, there are still no effective disease-modifying therapies, and few tau-focused experimental drugs have reached clinical trials. One major hindrance for therapeutic development is the knowledge gap in molecular mechanisms of tau-mediated neuronal toxicity and death. For the promise of precision medicine for brain disorders to be fulfilled, it is necessary to integrate known genetic causes of disease, i.e., MAPT mutations, with an understanding of the dysregulated molecular pathways that constitute potential therapeutic targets. Here, the growing understanding of known and proposed mechanisms of disease etiology will be reviewed, together with promising experimental tau-directed therapeutics, such as recently developed tau degraders. Current challenges faced by the fields of tau research and drug discovery will also be addressed.
Collapse
|
140
|
Fang J, Pieper AA, Nussinov R, Lee G, Bekris L, Leverenz JB, Cummings J, Cheng F. Harnessing endophenotypes and network medicine for Alzheimer's drug repurposing. Med Res Rev 2020; 40:2386-2426. [PMID: 32656864 PMCID: PMC7561446 DOI: 10.1002/med.21709] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022]
Abstract
Following two decades of more than 400 clinical trials centered on the "one drug, one target, one disease" paradigm, there is still no effective disease-modifying therapy for Alzheimer's disease (AD). The inherent complexity of AD may challenge this reductionist strategy. Recent observations and advances in network medicine further indicate that AD likely shares common underlying mechanisms and intermediate pathophenotypes, or endophenotypes, with other diseases. In this review, we consider AD pathobiology, disease comorbidity, pleiotropy, and therapeutic development, and construct relevant endophenotype networks to guide future therapeutic development. Specifically, we discuss six main endophenotype hypotheses in AD: amyloidosis, tauopathy, neuroinflammation, mitochondrial dysfunction, vascular dysfunction, and lysosomal dysfunction. We further consider how this endophenotype network framework can provide advances in computational and experimental strategies for drug-repurposing and identification of new candidate therapeutic strategies for patients suffering from or at risk for AD. We highlight new opportunities for endophenotype-informed, drug discovery in AD, by exploiting multi-omics data. Integration of genomics, transcriptomics, radiomics, pharmacogenomics, and interactomics (protein-protein interactions) are essential for successful drug discovery. We describe experimental technologies for AD drug discovery including human induced pluripotent stem cells, transgenic mouse/rat models, and population-based retrospective case-control studies that may be integrated with multi-omics in a network medicine methodology. In summary, endophenotype-based network medicine methodologies will promote AD therapeutic development that will optimize the usefulness of available data and support deep phenotyping of the patient heterogeneity for personalized medicine in AD.
Collapse
Affiliation(s)
- Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospital Case Medical Center; Department of Psychiatry, Case Western Reserve University, Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, OH 44106, USA
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Garam Lee
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA
| | - Lynn Bekris
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - James B. Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jeffrey Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA
- Department of Brain Health, School of Integrated Health Sciences, UNLV, Las Vegas, NV 89154, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|
141
|
Cummings J. Drug Development for Psychotropic, Cognitive-Enhancing, and Disease-Modifying Treatments for Alzheimer's Disease. J Neuropsychiatry Clin Neurosci 2020; 33:3-13. [PMID: 33108950 PMCID: PMC7989572 DOI: 10.1176/appi.neuropsych.20060152] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with limited available therapies. There is progress in developing treatments for neuropsychiatric indications in AD, including agitation, psychosis, apathy, and sleep disorders. Candidate therapies progress from nonclinical and animal assessment to trials in normal volunteers (phase 1), small phase-2 trials, and larger confirmatory phase-3 trials. Biomarkers play an increasingly important role in selecting participants, stratifying populations, demonstrating target engagement, supporting disease modification, and monitoring safety. There are currently 121 agents in clinical trials, including treatments for neuropsychiatric symptoms, cognition enhancement, and disease progression. There are 27 agents in phase-1 trials, 65 in phase-2 trials, and 29 in phase-3 trials. Most of the agents in trials (80%) target disease modification. Treatments are being assessed in secondary prevention trials with cognitively normal individuals at high risk for the development of AD. There is progress in target diversification, trial designs, outcome measures, biomarkers, and trial population definitions that promise to accelerate developing new therapies for those with or at risk for AD.
Collapse
Affiliation(s)
- Jeffrey Cummings
- The Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, and the Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas
| |
Collapse
|
142
|
Banks SJ, Qiu Y, Fan CC, Dale AM, Zou J, Askew B, Feldman HH. Enriching the design of Alzheimer's disease clinical trials: Application of the polygenic hazard score and composite outcome measures. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12071. [PMID: 32999917 PMCID: PMC7507583 DOI: 10.1002/trc2.12071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Selecting individuals at high risk of Alzheimer's disease (AD) dementia and using the most sensitive outcome measures are important aspects of trial design. METHODS We divided participants from Alzheimer's Disease Neuroimaging Initiative at the 50th percentile of the predicted absolute risk of the polygenic hazard score (PHS). Outcome measures were the Alzheimer's Disease Assessment Schedule-Cognitive Subscale (ADAS-Cog), ADNI-Mem, Clinical Dementia Rating-Sum of Boxes (CDR SB), and Cognitive Function Composite 2 (CFC2). In addition to modeling, we use a power analysis compare numbers needed with each technique. RESULTS Data from 188 cognitively normal and 319 mild cognitively impaired (MCI) participants were analyzed. Using the ADAS-Cog to estimate sample sizes, without stratification over 24 months, would require 930 participants with MCI, while using the CFC2 and restricting participants to those in the upper 50th percentile would require only 284 participants. DISCUSSION Combining stratification by PHS and selection of a sensitive combined outcome measure in a cohort of patients with MCI can allow trial design that is more efficient, potentially less burdensome on participants, and more cost effective.
Collapse
Affiliation(s)
- Sarah J. Banks
- University of California San DiegoSan DiegoCaliforniaUSA
| | - Yuqi Qiu
- University of California San DiegoSan DiegoCaliforniaUSA
| | - Chun Chieh Fan
- University of California San DiegoSan DiegoCaliforniaUSA
| | - Anders M. Dale
- University of California San DiegoSan DiegoCaliforniaUSA
| | - Jingjing Zou
- University of California San DiegoSan DiegoCaliforniaUSA
| | - Brianna Askew
- University of California San DiegoSan DiegoCaliforniaUSA
| | | | | |
Collapse
|
143
|
Liu S, Gao J, Zhu M, Liu K, Zhang HL. Gut Microbiota and Dysbiosis in Alzheimer's Disease: Implications for Pathogenesis and Treatment. Mol Neurobiol 2020; 57:5026-5043. [PMID: 32829453 PMCID: PMC7541367 DOI: 10.1007/s12035-020-02073-3] [Citation(s) in RCA: 252] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Understanding how gut flora influences gut-brain communications has been the subject of significant research over the past decade. The broadening of the term “microbiota-gut-brain axis” from “gut-brain axis” underscores a bidirectional communication system between the gut and the brain. The microbiota-gut-brain axis involves metabolic, endocrine, neural, and immune pathways which are crucial for the maintenance of brain homeostasis. Alterations in the composition of gut microbiota are associated with multiple neuropsychiatric disorders. Although a causal relationship between gut dysbiosis and neural dysfunction remains elusive, emerging evidence indicates that gut dysbiosis may promote amyloid-beta aggregation, neuroinflammation, oxidative stress, and insulin resistance in the pathogenesis of Alzheimer’s disease (AD). Illustration of the mechanisms underlying the regulation by gut microbiota may pave the way for developing novel therapeutic strategies for AD. In this narrative review, we provide an overview of gut microbiota and their dysregulation in the pathogenesis of AD. Novel insights into the modification of gut microbiota composition as a preventive or therapeutic approach for AD are highlighted.
Collapse
Affiliation(s)
- Shan Liu
- Department of Neurology, First Hospital of Jilin University, Jilin University, Xinmin Street 71, Changchun, 130021, China
| | - Jiguo Gao
- Department of Neurology, First Hospital of Jilin University, Jilin University, Xinmin Street 71, Changchun, 130021, China
| | - Mingqin Zhu
- Department of Neurology, First Hospital of Jilin University, Jilin University, Xinmin Street 71, Changchun, 130021, China.,Departments of Laboratory Medicine and Pathology, Neurology and Immunology, Mayo Clinic, Rochester, MN, USA
| | - Kangding Liu
- Department of Neurology, First Hospital of Jilin University, Jilin University, Xinmin Street 71, Changchun, 130021, China.
| | - Hong-Liang Zhang
- Department of Life Sciences, National Natural Science Foundation of China, Shuangqing Road 83, Beijing, 100085, China.
| |
Collapse
|
144
|
Olson NL, Albensi BC. Race- and Sex-Based Disparities in Alzheimer's Disease Clinical Trial Enrollment in the United States and Canada: An Indigenous Perspective. J Alzheimers Dis Rep 2020; 4:325-344. [PMID: 33024940 PMCID: PMC7504979 DOI: 10.3233/adr-200214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Randomized clinical trials (RCT) involve labor-intensive, highly regulated, and controlled processes intended to transform scientific concepts into clinical outcomes. To be effective and targeted, it is imperative they include those populations who would most benefit from those outcomes. Alzheimer's disease (AD) is most detrimental to the aging population, and its clinical manifestation is influenced by socio-economic factors such as poverty, poor education, stress, and chronic co-morbidities. Indigenous populations in the United States and Canada are among the minority populations most influenced by poor socio-economic conditions and are prone to the ravages of AD, with Indigenous women carrying the added burden of exposure to violence, caregiving stresses, and increased risk by virtue of their sex. Race- and sex-based disparities in RCT enrollment has occurred for decades, with Indigenous men and women very poorly represented. In this review, we examined literature from the last twenty years that reinforce these disparities and provide some concrete suggestions and guidelines to increase the enrollment numbers in AD RCT among this vulnerable and poorly represented population.
Collapse
Affiliation(s)
- Nancy L Olson
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
- Department of Pharmacology & Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
145
|
Åhman HB, Cedervall Y, Kilander L, Giedraitis V, Berglund L, McKee KJ, Rosendahl E, Ingelsson M, Åberg AC. Dual-task tests discriminate between dementia, mild cognitive impairment, subjective cognitive impairment, and healthy controls - a cross-sectional cohort study. BMC Geriatr 2020; 20:258. [PMID: 32727472 PMCID: PMC7392684 DOI: 10.1186/s12877-020-01645-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Background Discrimination between early-stage dementia and other cognitive impairment diagnoses is central to enable appropriate interventions. Previous studies indicate that dual-task testing may be useful in such differentiation. The objective of this study was to investigate whether dual-task test outcomes discriminate between groups of individuals with dementia disorder, mild cognitive impairment, subjective cognitive impairment, and healthy controls. Methods A total of 464 individuals (mean age 71 years, 47% women) were included in the study, of which 298 were patients undergoing memory assessment and 166 were cognitively healthy controls. Patients were grouped according to the diagnosis received: dementia disorder, mild cognitive impairment, or subjective cognitive impairment. Data collection included participants’ demographic characteristics. The patients’ cognitive test results and diagnoses were collected from their medical records. Healthy controls underwent the same cognitive tests as the patients. The mobility test Timed Up-and-Go (TUG single-task) and two dual-task tests including TUG (TUGdt) were carried out: TUGdt naming animals and TUGdt months backwards. The outcomes registered were: time scores for TUG single-task and both TUGdt tests, TUGdt costs (relative time difference between TUG single-task and TUGdt), number of different animals named, number of months recited in correct order, number of animals per 10 s, and number of months per 10 s. Logistic regression models examined associations between TUG outcomes pairwise between groups. Results The TUGdt outcomes “animals/10 s” and “months/10 s” discriminated significantly (p < 0.001) between individuals with an early-stage dementia diagnosis, mild cognitive impairment, subjective cognitive impairment, and healthy controls. The TUGdt outcome “animals/10 s” showed an odds ratio of 3.3 (95% confidence interval 2.0–5.4) for the groups dementia disorders vs. mild cognitive impairment. TUGdt cost outcomes, however, did not discriminate between any of the groups. Conclusions The novel TUGdt outcomes “words per time unit”, i.e. “animals/10 s” and “months/10 s”, demonstrate high levels of discrimination between all investigated groups. Thus, the TUGdt tests in the current study could be useful as complementary tools in diagnostic assessments. Future studies will be focused on the predictive value of TUGdt outcomes concerning dementia risk for individuals with mild cognitive impairment or subjective cognitive impairment.
Collapse
Affiliation(s)
- Hanna B Åhman
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Box 564, SE-751 22, Uppsala, Sweden.
| | - Ylva Cedervall
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Box 564, SE-751 22, Uppsala, Sweden
| | - Lena Kilander
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Box 564, SE-751 22, Uppsala, Sweden
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Box 564, SE-751 22, Uppsala, Sweden
| | - Lars Berglund
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Box 564, SE-751 22, Uppsala, Sweden
| | - Kevin J McKee
- School of Education, Health and Social Studies, Dalarna University, Falun, Sweden
| | - Erik Rosendahl
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, Umeå, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Box 564, SE-751 22, Uppsala, Sweden
| | - Anna Cristina Åberg
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Box 564, SE-751 22, Uppsala, Sweden.,School of Education, Health and Social Studies, Dalarna University, Falun, Sweden
| |
Collapse
|
146
|
Canevelli M, Remoli G, Bacigalupo I, Valletta M, Toccaceli Blasi M, Sciancalepore F, Bruno G, Cesari M, Vanacore N. Use of Biomarkers in Ongoing Research Protocols on Alzheimer's Disease. J Pers Med 2020; 10:jpm10030068. [PMID: 32722106 PMCID: PMC7564515 DOI: 10.3390/jpm10030068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
The present study aimed to describe and discuss the state of the art of biomarker use in ongoing Alzheimer’s disease (AD) research. A review of 222 ongoing phase 1, 2, 3, and 4 protocols registered in the clinicaltrials.gov database was performed. All the trials (i) enrolling subjects with clinical disturbances and/or preclinical diagnoses falling within the AD continuum; and (ii) testing the efficacy and/or safety/tolerability of a therapeutic intervention, were analyzed. The use of biomarkers of amyloid deposition, tau pathology, and neurodegeneration among the eligibility criteria and/or study outcomes was assessed. Overall, 58.2% of ongoing interventional studies on AD adopt candidate biomarkers. They are mostly adopted by studies at the preliminary stages of the drug development process to explore the safety profile of novel therapies, and to provide evidence of target engagement and disease-modifying properties. The biologically supported selection of participants is mostly based on biomarkers of amyloid deposition, whereas the use of biomarkers as study outcomes mostly relies on markers of neurodegeneration. Biomarkers play an important role in the design and conduction of research protocols targeting AD. Nevertheless, their clinical validity, utility, and cost-effectiveness in the “real world” remain to be clarified.
Collapse
Affiliation(s)
- Marco Canevelli
- Department of Human Neuroscience, Sapienza University, 00185 Rome, Italy; (G.R.); (M.V.); (M.T.B.); (F.S.); (G.B.)
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, 00161 Rome, Italy; (I.B.); (N.V.)
- Correspondence: ; Tel./Fax: +39-(06)-4991-4604
| | - Giulia Remoli
- Department of Human Neuroscience, Sapienza University, 00185 Rome, Italy; (G.R.); (M.V.); (M.T.B.); (F.S.); (G.B.)
| | - Ilaria Bacigalupo
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, 00161 Rome, Italy; (I.B.); (N.V.)
| | - Martina Valletta
- Department of Human Neuroscience, Sapienza University, 00185 Rome, Italy; (G.R.); (M.V.); (M.T.B.); (F.S.); (G.B.)
| | - Marco Toccaceli Blasi
- Department of Human Neuroscience, Sapienza University, 00185 Rome, Italy; (G.R.); (M.V.); (M.T.B.); (F.S.); (G.B.)
| | - Francesco Sciancalepore
- Department of Human Neuroscience, Sapienza University, 00185 Rome, Italy; (G.R.); (M.V.); (M.T.B.); (F.S.); (G.B.)
| | - Giuseppe Bruno
- Department of Human Neuroscience, Sapienza University, 00185 Rome, Italy; (G.R.); (M.V.); (M.T.B.); (F.S.); (G.B.)
| | - Matteo Cesari
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Nicola Vanacore
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, 00161 Rome, Italy; (I.B.); (N.V.)
| |
Collapse
|
147
|
Khoury R, Grossberg GT. Deciphering Alzheimer's disease: predicting new therapeutic strategies via improved understanding of biology and pathogenesis. Expert Opin Ther Targets 2020; 24:859-868. [PMID: 32603232 DOI: 10.1080/14728222.2020.1790530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION There is no cure for Alzheimer's disease (AD). One explanation may pertain to the need to intervene as early as possible upstream from the accumulation of β-amyloid plaques and tau tangles. AREAS COVERED A PUBMED literature search was completed to review the biological or pathological changes at the basis of disease initiation; this includes neuroinflammation, oxidative stress, microbiome changes and glymphatic system dysfunction. Innovative therapeutic strategies based on these mechanisms are also discussed. EXPERT OPINION Improved understanding of the pathophysiological mechanisms that underly AD would assist in the identification of drug targets for clinical trials. Furthermore, pharmacokinetic and pharmacodynamic studies are key for the characterization of the properties of disease-modifying drugs and the improvement of their penetration of the blood-brain barrier. Drug targets can be examined at different stages of the disease, hence the importance of selecting and recruiting the appropriate participants, preferably at the earliest stage of AD. New trial designs should be established which primarily involve combination therapies that can work synergistically on common pathways. Going forward, innovative treatment strategies involving nanotechnology, young blood products transfusion and photobiomodulation also offer promise for the future.
Collapse
Affiliation(s)
- Rita Khoury
- Saint George Hospital University Medical Center-SGHUMC, University of Balamand School of Medicine , Beirut, Lebanon
| | - George T Grossberg
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine , Saint Louis, Missouri, USA
| |
Collapse
|
148
|
Mullane K, Williams M. Alzheimer’s disease beyond amyloid: Can the repetitive failures of amyloid-targeted therapeutics inform future approaches to dementia drug discovery? Biochem Pharmacol 2020; 177:113945. [DOI: 10.1016/j.bcp.2020.113945] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
|
149
|
Jabir NR, Shakil S, Tabrez S, Khan MS, Rehman MT, Ahmed BA. In silico screening of glycogen synthase kinase-3β targeted ligands against acetylcholinesterase and its probable relevance to Alzheimer's disease. J Biomol Struct Dyn 2020; 39:5083-5092. [PMID: 32588759 DOI: 10.1080/07391102.2020.1784796] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a growing global health concern that affects 10% of the population aged above 65 years. A growing body of evidence indicates that multi-targeted drugs might be useful therapeutic options owing to the heterogeneity of AD pathology. The current study exploited advanced computational biology tools to identify ligands that might display effective binding to two protein targets in the context of AD. The present study used in silico virtual screening of small molecules library to identify effectiveness against two AD targets viz. acetyl cholinesterase (AChE) and glycogen synthase kinase-3β (GSK-3β). PyRX-Python prescription with AutodockVina was used to generate binding energy profiles. Further screening was accomplished using SwissADME and molecular interaction studies. The present study obtained 48 ligands (absolute binding energy >8 kcal/mol), by virtual screening of 100 ligands. Among those, 13 ligands (BRW, 6VK, 6Z5, SMH, X37, 55E, 65 A, IQ6, 6VL, 6VM, F1B, 6Z2 and GVP) were selected based on blood brain barrier (BBB) permeability, acceptable ADME properties as well as their molecular interaction profiles with the aforementioned AD-targets. The present study has predicted certain molecules that appear worthy to be tested for effectiveness against two AD targets, namely AChE and GSK-3β. However, the results warrant further wet laboratory validation, as computational studies are merely predictive in nature. This approach might be useful for future treatment of AD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nasimudeen R Jabir
- Department of Biochemistry, Centre for Research and Development, PRIST University, Vallam, Thanjavur, Tamil Nadu, India
| | - Shazi Shakil
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bakrudeen Ali Ahmed
- Department of Biochemistry, Centre for Research and Development, PRIST University, Vallam, Thanjavur, Tamil Nadu, India
| |
Collapse
|
150
|
Albertini C, Salerno A, Sena Murteira Pinheiro P, Bolognesi ML. From combinations to multitarget‐directed ligands: A continuum in Alzheimer's disease polypharmacology. Med Res Rev 2020; 41:2606-2633. [DOI: 10.1002/med.21699] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Claudia Albertini
- Department of Pharmacy and Biotechnology Alma Mater Studiorum–University of Bologna Bologna Italy
| | - Alessandra Salerno
- Department of Pharmacy and Biotechnology Alma Mater Studiorum–University of Bologna Bologna Italy
| | - Pedro Sena Murteira Pinheiro
- Department of Pharmacy and Biotechnology Alma Mater Studiorum–University of Bologna Bologna Italy
- Programa de Pós‐Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Rio de Janeiro Brazil
| | - Maria L. Bolognesi
- Department of Pharmacy and Biotechnology Alma Mater Studiorum–University of Bologna Bologna Italy
| |
Collapse
|