101
|
Morrissey SM, Zhang F, Ding C, Montoya-Durango DE, Hu X, Yang C, Wang Z, Yuan F, Fox M, Zhang HG, Guo H, Tieri D, Kong M, Watson CT, Mitchell RA, Zhang X, McMasters KM, Huang J, Yan J. Tumor-derived exosomes drive immunosuppressive macrophages in a pre-metastatic niche through glycolytic dominant metabolic reprogramming. Cell Metab 2021; 33:2040-2058.e10. [PMID: 34559989 PMCID: PMC8506837 DOI: 10.1016/j.cmet.2021.09.002] [Citation(s) in RCA: 340] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 02/01/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022]
Abstract
One of the defining characteristics of a pre-metastatic niche, a fundamental requirement for primary tumor metastasis, is infiltration of immunosuppressive macrophages. How these macrophages acquire their phenotype remains largely unexplored. Here, we demonstrate that tumor-derived exosomes (TDEs) polarize macrophages toward an immunosuppressive phenotype characterized by increased PD-L1 expression through NF-kB-dependent, glycolytic-dominant metabolic reprogramming. TDE signaling through TLR2 and NF-κB leads to increased glucose uptake. TDEs also stimulate elevated NOS2, which inhibits mitochondrial oxidative phosphorylation resulting in increased conversion of pyruvate to lactate. Lactate feeds back on NF-κB, further increasing PD-L1. Analysis of metastasis-negative lymph nodes of non-small-cell lung cancer patients revealed that macrophage PD-L1 positively correlates with levels of GLUT-1 and vesicle release gene YKT6 from primary tumors. Collectively, our study provides a novel mechanism by which macrophages within a pre-metastatic niche acquire their immunosuppressive phenotype and identifies an important link among exosomes, metabolism, and metastasis.
Collapse
Affiliation(s)
- Samantha M Morrissey
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA; Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Fan Zhang
- Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA; Jiangxi Provincial Children's Hospital, Jiangxi, Nanchang, China
| | - Chuanlin Ding
- Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Diego Elias Montoya-Durango
- Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Xiaoling Hu
- Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Chenghui Yang
- Department of Breast Surgery, Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Cancer Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China; Department of Breast Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhen Wang
- Department of Breast Surgery, Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Cancer Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Fang Yuan
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Matthew Fox
- Department of Cardiovascular and Thoracic Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Huang-Ge Zhang
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Haixun Guo
- Department of Radiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - David Tieri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Maiying Kong
- Department of Bioinformatics and Biostatistics, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Robert A Mitchell
- Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Kelly M McMasters
- Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jian Huang
- Department of Breast Surgery, Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Cancer Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Jun Yan
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA; Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
102
|
van Daal MT, Folkerts G, Garssen J, Braber S. Pharmacological Modulation of Immune Responses by Nutritional Components. Pharmacol Rev 2021; 73:198-232. [PMID: 34663688 DOI: 10.1124/pharmrev.120.000063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The incidence of noncommunicable diseases (NCDs) has increased over the last few decades, and one of the major contributors to this is lifestyle, especially diet. High intake of saturated fatty acids and low intake of dietary fiber is linked to an increase in NCDs. Conversely, a low intake of saturated fatty acids and a high intake of dietary fiber seem to have a protective effect on general health. Several mechanisms have been identified that underlie this phenomenon. In this review, we focus on pharmacological receptors, including the aryl hydrocarbon receptor, binding partners of the retinoid X receptor, G-coupled protein receptors, and toll-like receptors, which can be activated by nutritional components and their metabolites. Depending on the nutritional component and the receptors involved, both proinflammatory and anti-inflammatory effects occur, leading to an altered immune response. These insights may provide opportunities for the prevention and treatment of NCDs and their inherent (sub)chronic inflammation. SIGNIFICANCE STATEMENT: This review summarizes the reported effects of nutritional components and their metabolites on the immune system through manipulation of specific (pharmacological) receptors, including the aryl hydrocarbon receptor, binding partners of the retinoid X receptor, G-coupled protein receptors, and toll-like receptors. Nutritional components, such as vitamins, fibers, and unsaturated fatty acids are able to resolve inflammation, whereas saturated fatty acids tend to exhibit proinflammatory effects. This may aid decision makers and scientists in developing strategies to decrease the incidence of noncommunicable diseases.
Collapse
Affiliation(s)
- Marthe T van Daal
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG, Utrecht, The Netherlands (M.T.v.D., G.F., J.G., S.B.); and Danone Nutricia Research, 3584 CT, Utrecht, The Netherlands (J.G.)
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG, Utrecht, The Netherlands (M.T.v.D., G.F., J.G., S.B.); and Danone Nutricia Research, 3584 CT, Utrecht, The Netherlands (J.G.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG, Utrecht, The Netherlands (M.T.v.D., G.F., J.G., S.B.); and Danone Nutricia Research, 3584 CT, Utrecht, The Netherlands (J.G.)
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG, Utrecht, The Netherlands (M.T.v.D., G.F., J.G., S.B.); and Danone Nutricia Research, 3584 CT, Utrecht, The Netherlands (J.G.)
| |
Collapse
|
103
|
Décarie-Spain L, Hryhorczuk C, Lau D, Jacob-Brassard É, Fisette A, Fulton S. Prolonged saturated, but not monounsaturated, high-fat feeding provokes anxiodepressive-like behaviors in female mice despite similar metabolic consequences. Brain Behav Immun Health 2021; 16:100324. [PMID: 34589811 PMCID: PMC8474568 DOI: 10.1016/j.bbih.2021.100324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/01/2021] [Accepted: 08/07/2021] [Indexed: 11/18/2022] Open
Abstract
Obesity significantly increases the risk for anxiety and depression. Our group has recently demonstrated a role for nucleus accumbens (NAc) pro-inflammatory nuclear factor kappa-B (NFkB) signaling in the development of anxiodepressive-like behaviors by diet-induced obesity in male mice. The NAc is a brain region involved in goal-oriented behavior and mood regulation whose functions are critical to hedonic feeding and motivation. While the incidence of depression and anxiety disorders is significantly higher in women than in men, the use of female animal models in psychiatric research remains limited. We set out to investigate the impact of chronic intake of saturated and monounsaturated high-fat diets (HFD) on energy metabolism and on anxiety- and despair-like behaviors in female mice and to ascertain the contribution of NAc NFkB-mediated inflammation herein. Adult C57Bl6N female mice were fed either a saturated HFD, an isocaloric monounsaturated HFD or a control low-fat diet for 24 weeks, after which metabolic profiling and behavioral testing for anxiodepressive-like behaviors were conducted. Plasma was collected at time of sacrifice for quantification of leptin, inflammatory markers as well as 17 β-estradiol levels and brains were harvested to analyze NAc expression of pro-inflammatory genes and estrogen-signaling molecules. In another group of female mice placed on the saturated HFD or the control diet for 24 weeks, we performed adenoviral-mediated invalidation of the NFkB signaling pathway in the NAc prior to behavioral testing. While both HFDs provoked obesity and metabolic impairments, only the saturated HFD triggered anxiodepressive-like behaviors and caused marked elevations in plasma estrogen. This saturated HFD-specific behavioral phenotype could not be explained by NAc inflammation alone and was unaffected by NAc invalidation of the NFkB signaling pathway. Instead, we found changes in the expression of estrogen signaling markers. Such results diverge from the inflammatory mechanisms underlying diet- and obesity-induced metabolic dysfunction and anxiodepressive-like behavior onset in male mice and call attention to the role of estrogen signaling in diet-related anxiodepressive-like phenotypes in female mice.
Collapse
Affiliation(s)
- Léa Décarie-Spain
- Centre de recherche du CHUM & Montreal Diabetes Research Centre, Canada.,Department of Neuroscience, Faculty of Medicine, University of Montreal, Canada
| | - Cécile Hryhorczuk
- Centre de recherche du CHUM & Montreal Diabetes Research Centre, Canada
| | - David Lau
- Centre de recherche du CHUM & Montreal Diabetes Research Centre, Canada.,Department of Neuroscience, Faculty of Medicine, University of Montreal, Canada
| | | | - Alexandre Fisette
- Centre de recherche du CHUM & Montreal Diabetes Research Centre, Canada.,Department of Nutrition, Faculty of Medicine, University of Montreal, Canada
| | - Stephanie Fulton
- Centre de recherche du CHUM & Montreal Diabetes Research Centre, Canada.,Department of Nutrition, Faculty of Medicine, University of Montreal, Canada
| |
Collapse
|
104
|
Hajri T, Ewing D, Talishinskiy T, Amianda E, Eid S, Schmidt H. Depletion of Omega-3 Fatty Acids in RBCs and Changes of Inflammation Markers in Patients With Morbid Obesity Undergoing Gastric Bypass. J Nutr 2021; 151:2689-2696. [PMID: 34113966 DOI: 10.1093/jn/nxab167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/09/2020] [Accepted: 05/05/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Bariatric surgery is considered the most effective treatment for severe obesity. Despite this wide success, bariatric surgery is associated with increased risks of nutritional deficiencies. OBJECTIVES To examine whether Roux-en-Y-gastric bypass (RYGB) alters essential fatty acid (FA) status and inflammation markers. METHODS Subjects with obesity (n = 28; BMI > 40 kg/m2; mean age 48 years) were studied before and 1 year after RYGB. We collected blood samples before and 12 months after RYGB, and analyzed FA in RBCs and peripheral blood mononuclear cells (PBMC), and measured inflammation parameters in plasma. The proportion of total n-3 FAs was the primary outcome, while parameters related to other FAs and inflammation factors were the secondary parameters. In addition, PBMCs from 15 of the participants were cultured alone or with 100 and 200 μM DHA, and the production of IL-6, IL-1β, PGE2, and prostaglandin F2-alpha (PGF2α) was assayed after endotoxin (LPS) stimulation. RESULTS RYGB induced a significant reduction of BMI (-30%) and improvement of insulin resistance (-49%). While the proportion of arachidonic acid was 15% higher after RYGB, the proportions of total and individual n-3 FAs were 50%-75% lower (P < 0.01). Consequently, the RBC omega-3 index and n-3:n-6 fatty acid ratio were 45% and 50% lower after surgery, respectively. In isolated PBMCs, LPS induced the production of IL-6, IL-1β, PGE2, and PGF2α in both pre- and post-RYGB cells, but the effects were 34%-65% higher (P < 0.05) after RYGB. This effect was abrogated by DHA supplementation. CONCLUSIONS This study presents evidence that RBC and PBMC n-3 FAs are severely reduced in patients with obesity after RYGB. DHA supplementation in PBMC moderates the production of inflammation markers, suggesting that n-3 FA supplementation would merit a trial in bariatric patients.
Collapse
Affiliation(s)
- Tahar Hajri
- Hackensack University Medical Center, Hackensack, NJ, USA
| | - Douglas Ewing
- Hackensack University Medical Center, Hackensack, NJ, USA
| | | | - Erica Amianda
- Hackensack University Medical Center, Hackensack, NJ, USA
| | - Sebastian Eid
- Hackensack University Medical Center, Hackensack, NJ, USA
| | - Hans Schmidt
- Hackensack University Medical Center, Hackensack, NJ, USA
| |
Collapse
|
105
|
Alves PHR, Ferron AJT, Costa MR, Hasimoto FK, Gregolin CS, Garcia JL, Campos DHSD, Cicogna AC, Mattei LD, Moreto F, Bazan SGZ, Francisqueti-Ferron FV, Corrêa CR. Relationship between Innate Immune Response Toll-Like Receptor 4 (TLR-4) and the Pathophysiological Process of Obesity Cardiomyopathy. Arq Bras Cardiol 2021; 117:91-99. [PMID: 34320076 PMCID: PMC8294729 DOI: 10.36660/abc.20190788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 06/16/2020] [Indexed: 12/23/2022] Open
Abstract
Fundamento A obesidade é uma condição inflamatória crônica de baixo grau relacionada a distúrbios cardíacos. No entanto, o mecanismo responsável pela inflamação cardíaca relacionada à obesidade não é claro. O receptor do tipo toll 4 (TLR-4) pertence a um receptor da família das transmembranas, responsável pela resposta imune, cuja ativação estimula a produção de citocinas pró-inflamatórias. Objetivo Testar se a ativação do receptor TLR-4 participa do processo de cardiomiopatia da obesidade, devido à produção de citocinas por meio da ativação do NF-ĸB. Métodos Ratos Wistar machos foram randomizados em dois grupos: o grupo controle (C, n = 8 animais) que recebeu dieta padrão/água e o grupo obeso (OB, n = 8 animais) que foi alimentado com dieta rica em açúcar e gordura e água mais 25% de sacarose por 30 semanas. Análise nutricional: peso corporal, índice de adiposidade, alimentos, água e ingestão calórica. Análise de distúrbios relacionados à obesidade: glicose plasmática, ácido úrico e triglicerídeos, HOMA-IR, pressão arterial sistólica, TNF-α no tecido adiposo. A análise cardíaca incluiu: expressão das proteínas TLR-4 e NF-ĸB, níveis de TNF-α e IL-6. Comparação pelo teste t de
Student
não pareado ou teste de Mann-Whitney com um valor de p <0,05 como estatisticamente significativo. Resultados O grupo OB apresentou obesidade, glicose elevada, triglicerídeos, ácido úrico, HOMA, pressão arterial sistólica e TNF-α no tecido adiposo. O grupo OB apresentou remodelação cardíaca e disfunção diastólica. A expressão de TLR-4 e NF-ĸB e os níveis de citocinas foram maiores em OB. Conclusão Nossos achados concluem que, em uma condição obesogênica, a inflamação derivada da ativação do TLR-4 cardíaco pode ser um mecanismo capaz de levar à remodelação e disfunção cardíaca.
Collapse
Affiliation(s)
- Pedro Henrique Rizzi Alves
- Universidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina , Botucatu , SP - Brasil
| | - Artur Junio Togneri Ferron
- Universidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina , Botucatu , SP - Brasil
| | - Mariane Róvero Costa
- Universidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina , Botucatu , SP - Brasil
| | - Fabiana Kurokawa Hasimoto
- Universidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina , Botucatu , SP - Brasil
| | - Cristina Schmitt Gregolin
- Universidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina , Botucatu , SP - Brasil.,Universidade Federal de Mato Grosso , Sinop , MT - Brasil
| | - Jéssica Leite Garcia
- Universidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina , Botucatu , SP - Brasil
| | | | - Antônio Carlos Cicogna
- Universidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina , Botucatu , SP - Brasil
| | - Letícia de Mattei
- Universidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina , Botucatu , SP - Brasil
| | - Fernando Moreto
- Universidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina , Botucatu , SP - Brasil
| | - Silméia Garcia Zanati Bazan
- Universidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina , Botucatu , SP - Brasil
| | | | - Camila Renata Corrêa
- Universidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina , Botucatu , SP - Brasil
| |
Collapse
|
106
|
Hu X, Fatima S, Chen M, Xu K, Huang C, Gong RH, Su T, Wong HLX, Bian Z, Kwan HY. Toll-like receptor 4 is a master regulator for colorectal cancer growth under high-fat diet by programming cancer metabolism. Cell Death Dis 2021; 12:791. [PMID: 34385421 PMCID: PMC8360949 DOI: 10.1038/s41419-021-04076-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022]
Abstract
Although high-fat diet (HFD) has been implicated in the development of colorectal cancer (CRC), the critical signaling molecule that mediates the cancer growth is not well-defined. Identifying the master regulator that controls CRC growth under HFD can facilitate the development of effective therapeutics for the cancer treatment. In this study, the global lipidomics and RNA sequencing data show that, in the tumor tissues of CRC-bearing mouse models, HFD not only increases tumor weight, but also the palmitic acid level and TLR4 expression, which are reduced when HFD is replaced by control diet. These concomitant changes suggest the roles of palmitic acid and TLR4 in CRC growth. Subsequent studies show that palmitic acid regulates TLR4 expression in PU.1-dependent manner. Knockdown of PU.1 or mutations of PU.1-binding site on TLR4 promoter abolish the palmitic acid-increased TLR4 expression. The role of palmitic acid/PU.1/TLR4 axis in CRC growth is further examined in cell model and animal models that are fed either HFD or palmitic acid-rich diet. More importantly, iTRAQ proteomics data show that knockdown of TLR4 changes the metabolic enzyme profiles in the tumor tissues, which completely abolish the HFD-enhanced ATP production and cancer growth. Our data clearly demonstrate that TLR4 is a master regulator for CRC growth under HFD by programming cancer metabolism.
Collapse
Affiliation(s)
- Xianjing Hu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Sarwat Fatima
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Minting Chen
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Keyang Xu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Chunhua Huang
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Rui-Hong Gong
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Tao Su
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Hoi Leong Xavier Wong
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zhaoxiang Bian
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Hiu Yee Kwan
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
107
|
Toll-like receptor 4 and myeloid differentiation factor 88 are required for gastric bypass-induced metabolic effects. Surg Obes Relat Dis 2021; 17:1996-2006. [PMID: 34462225 PMCID: PMC9083208 DOI: 10.1016/j.soard.2021.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/04/2023]
Abstract
Background: Toll-like receptor 4 (TLR4) has been suggested as one of the forefront cross-communicators between the intestinal bacteria and the host to regulate inflammatory signals and energy homeostasis. High-fat diet–induced inflammation is mediated by changes in gut microbiota and requires a functional TLR-4, the deficiency of which renders mice resistant to diet-induced obesity and its associated metabolic dysfunction. Furthermore, gut microbiota was suggested to play a key role in the beneficial effects of Roux-en-Y gastric bypass (RYGB), a commonly performed bariatric procedure. Objectives: To explore whether TLR4, myeloid differentiation factor 8 (MyD88; 1 of its key downstream signaling regulators) and gut microbiota play an integrative role in RYGB-induced metabolic outcomes. Setting: Animal-based study. Method: We performed RYGB in TLR4 and MyD88 knock-out (KO) mice and used fecal microbiota transplant (FMT) from RYGB-operated animals to these genetic mouse models to address our questions. Results: We demonstrate that RYGB reduces TLR4 expression explicitly in the small and large intestine of C57Blc/6J mice. We also show that TLR4 KO mice have an attenuated glucoregulatory response to RYGB. In addition, we reveal that MyD88 KO mice fail to respond to all RYGB-induced metabolic effects. Finally, fecal microbiota transplant from RYGB-operated mice into TLR4 KO and MyD88 KO naïve recipients fails to induce a metabolic phenotype similar to that of the donors, as it does in wild-type recipients. Conclusion: TLR4 and MyD88 are required for RYGB-induced metabolic response that is likely mediated by gut microbiome.
Collapse
|
108
|
Fagundes CP, Wu EL. Biological mechanisms underlying widowhood's health consequences: Does diet play a role? COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2021; 7:100058. [PMID: 35757059 PMCID: PMC9216459 DOI: 10.1016/j.cpnec.2021.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 11/29/2022] Open
Abstract
The loss of a spouse is a highly stressful event that puts older adults at increased risk for morbidity and mortality. The risk is highest in the first year to 18 months post-loss; nevertheless, widow(er)s, in general, are at heightened risk of cardiovascular disease (CVD) related morbidity and mortality, and to a lesser extent, non-CVD related morbidity and mortality. The primary goal of this article is to argue for a perspective that considers diet and emotion-induced autonomic, neuroendocrine, and immune dysregulation, in unison, to understand the mechanisms underlying morbidity and mortality in early widowhood. Toward this end, we first summarize our previously published work, as well as work from other investigatory teams, showing that compared with those who were not bereaved, widow(er)s have higher levels of pro-inflammatory cytokine production and more dysregulated autonomic and neuroendocrine activity than non-widow(er)s, independent of health behaviors such as diet. We highlight that a major gap in our current understanding of the biobehavioral mechanisms that underlie the widowhood effect is the role of diet and hypothesize that the adverse health impact of grief and associated negative emotions and diet may be more than additive. Therefore, we propose that diet may be a pathway by which widow(er)s are at higher CVD risk requiring further investigation.
Collapse
Affiliation(s)
- Christopher P. Fagundes
- Rice University, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
109
|
Del Cornò M, Varì R, Scazzocchio B, Varano B, Masella R, Conti L. Dietary Fatty Acids at the Crossroad between Obesity and Colorectal Cancer: Fine Regulators of Adipose Tissue Homeostasis and Immune Response. Cells 2021; 10:cells10071738. [PMID: 34359908 PMCID: PMC8304920 DOI: 10.3390/cells10071738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is among the major threatening diseases worldwide, being the third most common cancer, and a leading cause of death, with a global incidence expected to increase in the coming years. Enhanced adiposity, particularly visceral fat, is a major risk factor for the development of several tumours, including CRC, and represents an important indicator of incidence, survival, prognosis, recurrence rates, and response to therapy. The obesity-associated low-grade chronic inflammation is thought to be a key determinant in CRC development, with the adipocytes and the adipose tissue (AT) playing a significant role in the integration of diet-related endocrine, metabolic, and inflammatory signals. Furthermore, AT infiltrating immune cells contribute to local and systemic inflammation by affecting immune and cancer cell functions through the release of soluble mediators. Among the factors introduced with diet and enriched in AT, fatty acids (FA) represent major players in inflammation and are able to deeply regulate AT homeostasis and immune cell function through gene expression regulation and by modulating the activity of several transcription factors (TF). This review summarizes human studies on the effects of dietary FA on AT homeostasis and immune cell functions, highlighting the molecular pathways and TF involved. The relevance of FA balance in linking diet, AT inflammation, and CRC is also discussed. Original and review articles were searched in PubMed without temporal limitation up to March 2021, by using fatty acid as a keyword in combination with diet, obesity, colorectal cancer, inflammation, adipose tissue, immune cells, and transcription factors.
Collapse
|
110
|
Hidalgo MA, Carretta MD, Burgos RA. Long Chain Fatty Acids as Modulators of Immune Cells Function: Contribution of FFA1 and FFA4 Receptors. Front Physiol 2021; 12:668330. [PMID: 34276398 PMCID: PMC8280355 DOI: 10.3389/fphys.2021.668330] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022] Open
Abstract
Long-chain fatty acids are molecules that act as metabolic intermediates and constituents of membranes; however, their novel role as signaling molecules in immune function has also been demonstrated. The presence of free fatty acid (FFA) receptors on immune cells has contributed to the understanding of this new role of long-chain fatty acids (LCFAs) in immune function, showing their role as anti-inflammatory or pro-inflammatory molecules and elucidating their intracellular mechanisms. The FFA1 and FFA4 receptors, also known as GPR40 and GPR120, respectively, have been described in macrophages and neutrophils, two key cells mediating innate immune response. Ligands of the FFA1 and FFA4 receptors induce the release of a myriad of cytokines through well-defined intracellular signaling pathways. In this review, we discuss the cellular responses and intracellular mechanisms activated by LCFAs, such as oleic acid, linoleic acid, palmitic acid, docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA), in T-cells, macrophages, and neutrophils, as well as the role of the FFA1 and FFA4 receptors in immune cells.
Collapse
Affiliation(s)
- Maria A Hidalgo
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Maria D Carretta
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael A Burgos
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
111
|
Vileigas DF, de Souza SLB, Corrêa CR, Silva CCVDA, de Campos DHS, Padovani CR, Cicogna AC. The effects of two types of Western diet on the induction of metabolic syndrome and cardiac remodeling in obese rats. J Nutr Biochem 2021; 92:108625. [PMID: 33705955 DOI: 10.1016/j.jnutbio.2021.108625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022]
Abstract
Metabolic syndrome (MetS) include obesity as a critical feature and is strongly associated with risk of cardiovascular disease (CVD). Insights into mechanisms involved in the pathophysiology of these clinical manifestations are essential for the development of therapeutic strategies. Thus, Western diets (WD) have been widely employed in diet-induced obesity (DIO) model. However, there are variations in fat and sugar proportions of such diets, making comparisons challenging. We aimed to assess the impact of two types of the WD on metabolic status and cardiac remodeling, to achieve a DIO model that better mimics the human pathogenesis of MetS-induced CVD. Male Wistar rats were distributed into three groups: control diet, Western diet fat (WDF), and Western diet sugar (WDS) for 41 weeks. Metabolic and inflammatory parameters and cardiac changes were characterized. WDF and WDS feeding promoted higher serum triglycerides, glucose intolerance, and insulin resistance, while just WDF presented inflammation in adipose tissue. WDF-fed rats showed increased catalase activity and malondialdehyde (MDA) and carbonyl protein levels, suggesting cardiac oxidative stress, while WDS-fed rats only raised MDA. Both WD equally elevated protein expressions involved in lipid metabolism, but only WDF downregulated the glycolysis pathway. Furthermore, the mechanical myocardial function was impaired in obese rats, being more relevant in WDF. In conclusion, both WD effectively triggered MetS features, although inflammation was detected just on the WDF-fed animals. Moreover, the WDF promoted a more pronounced functional, metabolic, and oxidative cardiac disorder, suggesting to be an adequate model for studying CVD in the scenario of MetS.
Collapse
Affiliation(s)
- Danielle Fernandes Vileigas
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| | - Sérgio Luiz Borges de Souza
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Camila Renata Corrêa
- Department of Patology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | | | - Carlos Roberto Padovani
- Department of Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Antonio Carlos Cicogna
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| |
Collapse
|
112
|
Tourkochristou E, Triantos C, Mouzaki A. The Influence of Nutritional Factors on Immunological Outcomes. Front Immunol 2021; 12:665968. [PMID: 34135894 PMCID: PMC8201077 DOI: 10.3389/fimmu.2021.665968] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022] Open
Abstract
Through food intake, humans obtain a variety of nutrients that are essential for growth, cellular function, tissue development, energy, and immune defense. A special interaction between nutrients and gut-associated lymphoid tissue occurs in the intestinal tract. Enterocytes of the intestinal barrier act as sensors for antigens from nutrients and the intestinal microbiota, which they deliver to the underlying immune system of the lamina propria, triggering an immune response. Studies investigating the mechanism of influence of nutrition on immunological outcomes have highlighted an important role of macronutrients (proteins, carbohydrates, fatty acids) and micronutrients (vitamins, minerals, phytochemicals, antioxidants, probiotics) in modulating immune homeostasis. Nutrients exert their role in innate immunity and inflammation by regulating the expression of TLRs, pro- and anti-inflammatory cytokines, thus interfering with immune cell crosstalk and signaling. Chemical substrates derived from nutrient metabolism may act as cofactors or blockers of enzymatic activity, influencing molecular pathways and chemical reactions associated with microbial killing, inflammation, and oxidative stress. Immune cell function appears to be influenced by certain nutrients that form parts of the cell membrane structure and are involved in energy production and prevention of cytotoxicity. Nutrients also contribute to the initiation and regulation of adaptive immune responses by modulating B and T lymphocyte differentiation, proliferation and activation, and antibody production. The purpose of this review is to present the available data from the field of nutritional immunology to elucidate the complex and dynamic relationship between nutrients and the immune system, the delineation of which will lead to optimized nutritional regimens for disease prevention and patient care.
Collapse
Affiliation(s)
- Evanthia Tourkochristou
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
113
|
de Souza DMS, Silva MC, Farias SEB, Menezes APDJ, Milanezi CM, Lúcio KDP, Paiva NCN, de Abreu PM, Costa DC, Pinto KMDC, Costa GDP, Silva JS, Talvani A. Diet Rich in Lard Promotes a Metabolic Environment Favorable to Trypanosoma cruzi Growth. Front Cardiovasc Med 2021; 8:667580. [PMID: 34113663 PMCID: PMC8185140 DOI: 10.3389/fcvm.2021.667580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/15/2021] [Indexed: 01/24/2023] Open
Abstract
Background: Trypanosoma cruzi is a protozoan parasite that causes Chagas disease and affects 6-7 million people mainly in Latin America and worldwide. Here, we investigated the effects of hyperlipidic diets, mainly composed of olive oil or lard on experimental T. cruzi infection. C57BL/6 mice were fed two different dietary types in which the main sources of fatty acids were either monounsaturated (olive oil diet) or saturated (lard diet). Methods: After 60 days on the diet, mice were infected with 50 trypomastigote forms of T. cruzi Colombian strain. We evaluated the systemic and tissue parasitism, tissue inflammation, and the redox status of mice after 30 days of infection. Results: Lipid levels in the liver of mice fed with the lard diet increased compared with that of the mice fed with olive oil or normolipidic diets. The lard diet group presented with an increased parasitic load in the heart and adipose tissues following infection as well as an increased expression of Tlr2 and Tlr9 in the heart. However, no changes were seen in the survival rates across the dietary groups. Infected mice receiving all diets presented comparable levels of recruited inflammatory cells at 30 days post-infection but, at this time, we observed lard diet inducing an overproduction of CCL2 in the cardiac tissue and its inhibition in the adipose tissue. T. cruzi infection altered liver antioxidant levels in mice, with the lard diet group demonstrating decreased catalase (CAT) activity compared with that of other dietary groups. Conclusions: Our data demonstrated that T. cruzi growth is more favorable on tissue of mice subjected to the lard diet. Our findings supported our hypothesis of a relationship between the source of dietary lipids and parasite-induced immunopathology.
Collapse
Affiliation(s)
- Débora Maria Soares de Souza
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil.,Biological Science Post-graduate Program, Federal University of Ouro Preto, Ouro Preto, Brazil.,Health and Nutrition Post-graduate Program, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Maria Cláudia Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Silvia Elvira Barros Farias
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Ana Paula de J Menezes
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Cristiane Maria Milanezi
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Karine de P Lúcio
- Laboratory of Metabolic Biochemistry, Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Nívia Carolina N Paiva
- Center of Research in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Paula Melo de Abreu
- Biological Science Post-graduate Program, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Daniela Caldeira Costa
- Health and Nutrition Post-graduate Program, Federal University of Ouro Preto, Ouro Preto, Brazil.,Laboratory of Metabolic Biochemistry, Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Kelerson Mauro de Castro Pinto
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil.,School of Physical Education, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Guilherme de Paula Costa
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil.,Health and Nutrition Post-graduate Program, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - João Santana Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.,Fiocruz-Bi-Institutional Translational Medicine Plataform, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil.,Health and Nutrition Post-graduate Program, Federal University of Ouro Preto, Ouro Preto, Brazil.,Health Science, Infectology and Tropical Medicine Post-graduate Program, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
114
|
Cytochrome P450-epoxygenated fatty acids inhibit Müller glial inflammation. Sci Rep 2021; 11:9677. [PMID: 33958662 PMCID: PMC8102485 DOI: 10.1038/s41598-021-89000-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/12/2021] [Indexed: 02/03/2023] Open
Abstract
Free fatty acid dysregulation in diabetics may elicit the release of inflammatory cytokines from Müller cells (MC), promoting the onset and progression of diabetic retinopathy (DR). Palmitic acid (PA) is elevated in the sera of diabetics and stimulates the production of the DR-relevant cytokines by MC, including IL-1β, which induces the production of itself and other inflammatory cytokines in the retina as well. In this study we propose that experimental elevation of cytochrome P450 epoxygenase (CYP)-derived epoxygenated fatty acids, epoxyeicosatrienoic acid (EET) and epoxydocosapentaenoic acid (EDP), will reduce PA- and IL-1β-induced MC inflammation. Broad-spectrum CYP inhibition by SKF-525a increased MC expression of inflammatory cytokines. Exogenous 11,12-EET and 19,20-EDP significantly decreased PA- and IL-1β-induced MC expression of IL-1β and IL-6. Both epoxygenated fatty acids significantly decreased IL-8 expression in IL-1β-induced MC and TNFα in PA-induced MC. Interestingly, 11,12-EET and 19,20-EDP significantly increased TNFα in IL-1β-treated MC. GSK2256294, a soluble epoxide hydrolase (sEH) inhibitor, significantly reduced PA- and IL-1β-stimulated MC cytokine expression. 11,12-EET and 19,20-EDP were also found to decrease PA- and IL-1β-induced NFκB-dependent transcriptional activity. These data suggest that experimental elevation of 11,12-EET and 19,20-EDP decreases MC inflammation in part by blocking NFκB-dependent transcription and may represent a viable therapeutic strategy for inhibition of early retinal inflammation in DR.
Collapse
|
115
|
Zhu Z, Han Y, Ding Y, Zhu B, Song S, Xiao H. Health effects of dietary sulfated polysaccharides from seafoods and their interaction with gut microbiota. Compr Rev Food Sci Food Saf 2021; 20:2882-2913. [PMID: 33884748 DOI: 10.1111/1541-4337.12754] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Various dietary sulfated polysaccharides (SPs) have been isolated from seafoods, including edible seaweeds and marine animals, and their health effects such as antiobesity and anti-inflammatory activities have attracted remarkable interest. Sulfate groups have been shown to play important roles in the bioactivities of these polysaccharides. Recent in vitro and in vivo studies have suggested that the biological effects of dietary SPs are associated with the modulation of the gut microbiota. Dietary SPs could regulate the gut microbiota structure and, accordingly, affect the production of bioactive microbial metabolites. Because of their differential chemical structures, dietary SPs may specifically affect the growth of certain gut microbiota and associated metabolite production, which may contribute to variable health effects. This review summarizes the latest findings on the types and structural characteristics of SPs, the effects of different processing techniques on the structural characteristics and health effects of SPs, and the current understanding of the role of gut microbiota in the health effects of SPs. These findings might help in better understanding the mechanism of the health effects of SPs and provide a scientific basis for their application as functional food.
Collapse
Affiliation(s)
- Zhenjun Zhu
- Department of Food Science and Technology, College of Science and Engineering, Jinan University, Guangzhou, China.,School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China.,Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Yu Ding
- Department of Food Science and Technology, College of Science and Engineering, Jinan University, Guangzhou, China
| | - Beiwei Zhu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Shuang Song
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
116
|
Buicu AL, Cernea S, Benedek I, Buicu CF, Benedek T. Systemic Inflammation and COVID-19 Mortality in Patients with Major Noncommunicable Diseases: Chronic Coronary Syndromes, Diabetes and Obesity. J Clin Med 2021; 10:jcm10081545. [PMID: 33916917 PMCID: PMC8067631 DOI: 10.3390/jcm10081545] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023] Open
Abstract
COVID-19 is currently considered an inflammatory disease affecting the entire organism. In severe forms, an augmented inflammatory response leads to the fulminant “cytokine storm”, which may result in severe multisystemic end-organ damage. Apart from the acute inflammatory response, it seems that chronic inflammation also plays a major role in the clinical evolution of COVID-19 patients. Pre-existing inflammatory conditions, such as those associated with chronic coronary diseases, type 2 diabetes mellitus or obesity, may be associated with worse clinical outcomes in the context of COVID-19 disease. These comorbidities are reported as powerful predictors of poor outcomes and death following COVID-19 disease. Moreover, in the context of chronic coronary syndrome, the cytokine storm triggered by SARS-CoV-2 infection may favor vulnerabilization and rupture of a silent atheromatous plaque, with consequent acute coronary syndrome, leading to a sudden deterioration of the clinical condition of the patient. This review aims to present the current status of knowledge regarding the link between COVID-19 mortality, systemic inflammation and several major diseases associated with poor outcomes, such as cardiovascular diseases, diabetes and obesity.
Collapse
Affiliation(s)
- Andreea-Luciana Buicu
- Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania;
| | - Simona Cernea
- Department M3/Internal Medicine I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 38 Gheorghe Marinescu street, 540139 Târgu Mureș, Romania
- Diabetes, Nutrition and Metabolic Diseases Outpatient Unit, Emergency County Clinical Hospital, 540136 Târgu Mureș, Romania
- Correspondence: or
| | - Imre Benedek
- Clinical Department of Internal Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania; (I.B.); (T.B.)
- Clinic of Cardiology, Emergency County Clinical Hospital, 540136 Târgu Mureș, Romania
| | - Corneliu-Florin Buicu
- Public Health and Management Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania;
| | - Theodora Benedek
- Clinical Department of Internal Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania; (I.B.); (T.B.)
- Clinic of Cardiology, Emergency County Clinical Hospital, 540136 Târgu Mureș, Romania
| |
Collapse
|
117
|
Koçancı FG. Role of Fatty Acid Chemical Structures on Underlying Mechanisms of Neurodegenerative Diseases and Gut Microbiota. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fatma Gonca Koçancı
- Vocational High School of Health Services Department of Medical Laboratory Techniques Alanya Alaaddin Keykubat University Alanya/Antalya 07425 Turkey
| |
Collapse
|
118
|
Veras ACC, Santos TD, Martins IDCA, de Souza CM, Amaral CL, Franco BDS, Holanda ASDS, Esteves AM, Milanski M, Torsoni AS, Ignacio-Souza LM, Torsoni MA. Low-Dose Coconut Oil Supplementation Induces Hypothalamic Inflammation, Behavioral Dysfunction, and Metabolic Damage in Healthy Mice. Mol Nutr Food Res 2021; 65:e2000943. [PMID: 33650755 DOI: 10.1002/mnfr.202000943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 02/18/2021] [Indexed: 12/13/2022]
Abstract
SCOPE Coconut oil (CO) diets remain controversial due to the possible association with metabolic disorder and obesity. This study investigates the metabolic effects of a low amount of CO supplementation. METHODS AND RESULTS Swiss male mice are assigned to be supplemented orally during 8 weeks with 300 µL of water for the control group (CV), 100 or 300 µL of CO (CO100 and CO300) and 100 or 300 µL of soybean oil (SO; SO100 and SO300). CO led to anxious behavior, increase in body weight gain, and adiposity. In the hypothalamus, CO and SO increase cytokines expression and pJNK, pNFKB, and TLR4 levels. Nevertheless, the adipose tissue presented increases macrophage infiltration, TNF-α and IL-6 after CO and SO consumption. IL-1B and CCL2 expression, pJNK and pNFKB levels increase only in CO300. In the hepatic tissue, CO increases TNF-α and chemokines expression. Neuronal cell line (mHypoA-2/29) exposed to serum from CO and SO mice shows increased NFKB migration to the nucleus, TNF-α, and NFKBia expression, but are prevented by inhibitor of TLR4 (TAK-242). CONCLUSIONS These results show that a low-dose CO changes the behavioral pattern, induces inflammatory pathway activation, TLR4 expression in healthy mice, and stimulates the pro-inflammatory response through a TLR4-mediated mechanism.
Collapse
Affiliation(s)
| | - Tamires Dos Santos
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | | | - Camilla Mendes de Souza
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Camila Libardi Amaral
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Beatriz da Silva Franco
- Laboratory of Sleep and Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | | | - Andrea Maculano Esteves
- Laboratory of Sleep and Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Marciane Milanski
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil.,Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Adriana Souza Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil.,Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Leticia Martins Ignacio-Souza
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil.,Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Marcio Alberto Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil.,Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| |
Collapse
|
119
|
Dionysopoulou S, Charmandari E, Bargiota A, Vlahos NF, Mastorakos G, Valsamakis G. The Role of Hypothalamic Inflammation in Diet-Induced Obesity and Its Association with Cognitive and Mood Disorders. Nutrients 2021; 13:498. [PMID: 33546219 PMCID: PMC7913301 DOI: 10.3390/nu13020498] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is often associated with cognitive and mood disorders. Recent evidence suggests that obesity may cause hypothalamic inflammation. Our aim was to investigate the hypothesis that there is a causal link between obesity-induced hypothalamic inflammation and cognitive and mood disorders. Inflammation may influence hypothalamic inter-connections with regions important for cognition and mood, while it may cause dysregulation of the Hypothalamic-Pituitary-Adrenal (HPA) axis and influence monoaminergic systems. Exercise, healthy diet, and glucagon-like peptide receptor agonists, which can reduce hypothalamic inflammation in obese models, could improve the deleterious effects on cognition and mood.
Collapse
Affiliation(s)
- Sofia Dionysopoulou
- Division of Endocrinology, Metabolism and Diabetes, Hippocratio General Hospital, 11527 Athens, Greece;
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece;
- Division of Endocrinology and Metabolism, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Alexandra Bargiota
- Department of Endocrinology and Metabolic Diseases, University Hospital of Larisa, Medical School of Larisa, University of Thessaly, 41334 Larisa, Greece;
| | - Nikolaos F Vlahos
- 2nd Department of Obstetrics and Gynecology, Areteion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - George Mastorakos
- Endocrine Unit, Areteion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Georgios Valsamakis
- Department of Endocrinology and Metabolic Diseases, University Hospital of Larisa, Medical School of Larisa, University of Thessaly, 41334 Larisa, Greece;
- Endocrine Unit, Areteion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| |
Collapse
|
120
|
Cruz-Carrillo G, Camacho-Morales A. Metabolic Flexibility Assists Reprograming of Central and Peripheral Innate Immunity During Neurodevelopment. Mol Neurobiol 2021; 58:703-718. [PMID: 33006752 DOI: 10.1007/s12035-020-02154-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/28/2020] [Indexed: 01/03/2023]
Abstract
Central innate immunity assists time-dependent neurodevelopment by recruiting and interacting with peripheral immune cells. Microglia are the major player of central innate immunity integrating peripheral signals arising from the circumventricular regions lacking the blood-brain barrier (BBB), via neural afferent pathways such as the vagal nerve and also by choroid plexus into the brain ventricles. Defective and/or unrestrained activation of central and peripheral immunity during embryonic development might set an aberrant connectome establishment and brain function, leading to major psychiatric disorders in postnatal stages. Molecular candidates leading to central and peripheral innate immune overactivation identified metabolic substrates and lipid species as major contributors of immunological priming, supporting the role of a metabolic flexibility node during trained immunity. Mechanistically, trained immunity is established by an epigenetic program including DNA methylation and histone acetylation, as the major molecular epigenetic signatures to set immune phenotypes. By definition, immunological training sets reprogramming of innate immune cells, enhancing or repressing immune responses towards a second challenge which potentially might contribute to neurodevelopment disorders. Notably, the innate immune training might be set during pregnancy by maternal immune activation stimuli. In this review, we integrate the most valuable scientific evidence supporting the role of metabolic cues assisting metabolic flexibility, leading to innate immune training during development and its effects on aberrant neurological phenotypes in the offspring. We also add reports supporting the role of methylation and histone acetylation signatures as a major epigenetic mechanism regulating immune training.
Collapse
Affiliation(s)
- Gabriela Cruz-Carrillo
- Departamento de Bioquímica. Facultad de Medicina,, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Alberto Camacho-Morales
- Departamento de Bioquímica. Facultad de Medicina,, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico.
| |
Collapse
|
121
|
Eastman AJ, Moore RE, Townsend SD, Gaddy JA, Aronoff DM. The Influence of Obesity and Associated Fatty Acids on Placental Inflammation. Clin Ther 2021; 43:265-278. [PMID: 33487441 DOI: 10.1016/j.clinthera.2020.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/24/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Maternal obesity, affecting nearly 1 in 4 pregnancies, is associated with increased circulating saturated fatty acids, such as palmitate. These fatty acids are implicated in placental inflammation, which may in turn exacerbate both maternal-fetal tolerance and responses to pathogens, such as group B Streptococcus. In this review, we address the question, "How do obesity and associated fatty acids influence placental inflammation?" METHODS In this narrative review, we searched PubMed and Google Scholar using combinations of the key words placental inflammation or pregnancy and lipids, fatty acids, obesity, palmitate, or other closely related search terms. We also used references found within these articles that may have been absent from our original search queries. We analyzed methods and key results of these articles to compare and contrast their findings, which were occasionally at odds with each other. FINDINGS Although obesity can be studied as a whole, complex phenomena with in vivo mouse models and human samples from patients with obesity, in vitro modeling often relies on the treatment of cells or tissues with ≥1 fatty acids and occasionally other compounds (eg, glucose and insulin). We found that palmitate, most commonly used in vitro to recreate hallmarks of obesity, induces apoptosis, oxidative stress, mitochondrial dysfunction, autophagy defects, and inflammasome activation in many placental cell types. We compare this to in vivo models of obesity wherever possible. We found that obesity as a whole may have more complex regulation of these phenomena (apoptosis, oxidative stress, mitochondrial dysfunction, autophagy defects, and inflammasome activation) compared with in vitro models of fatty acid treatment (primarily palmitate) because of the presence of unsaturated fatty acids (ie, oleate), which may have anti-inflammatory effects. IMPLICATIONS The interaction of unsaturated fatty acids with saturated fatty acids may ameliorate many inflammatory effects of saturated fatty acids alone, which complicates interpretation of in vitro studies that focus on a particular fatty acid in isolation. This complication may explain why certain studies of obesity in vivo have differing outcomes from studies of specific fatty acids in vitro.
Collapse
Affiliation(s)
- Alison J Eastman
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rebecca E Moore
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | | | - Jennifer A Gaddy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Tennessee Valley Healthcare Systems, Department of Veterans Affairs, Nashville, TN, USA
| | - David M Aronoff
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
122
|
Wang HW, Kok SH, Yang CN, Hong CY, Chi CW, Chen MH, Cheng SJ, Shun CT, Yang H, Lin SK. Blockade of fatty acid signalling inhibits lipopolysaccharide-induced macrophage recruitment and progression of apical periodontitis. Int Endod J 2021; 54:902-915. [PMID: 33369764 DOI: 10.1111/iej.13468] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/11/2023]
Abstract
AIM To examine the role of palmitic acid in lipopolysaccharide (LPS)-stimulated chemotaxis of macrophages and the potential contribution of saturated fatty acid in signalling during the pathogenesis of apical periodontitis. METHODOLOGY J774, a mouse macrophage cell line, was used in the experiments. After treatment with LPS, proteolytic maturation of sterol regulatory element-binding protein-1c (SREBP-1c) and expression of fatty acid synthase (FASN) were examined by Western analysis. Levels of palmitic acid were measured by reverse phase-high performance liquid chromatography-mass spectrometry. Knockdown of SREBP-1c and FASN was accomplished by small interfering RNA technology. Secretion of CC-chemokine ligand 2 (CCL2) and cellular chemotaxis were assessed by enzyme-linked immunosorbent assay and transwell migration assay, respectively. Sulfo-N-succinimidyl oleate (SSO) treatment was used to inhibit fatty acid signalling in vitro and also in a rat model of apical periodontitis. All data were first subjected to Levene's test. In vitro data were then analysed using ANOVA followed by Tukey's multiple comparison test. Data from animal experiments were analysed by independent t-tests. The significant level was set at 0.05. RESULTS LPS stimulated proteolytic maturation of SREBP-1c and FASN expression in macrophages and significantly enhanced palmitic acid synthesis (P < 0.05). Knockdown of SREBP-1c attenuated LPS-enhanced FASN expression. Knockdown of FASN significantly suppressed LPS-enhanced palmitic acid synthesis (P < 0.05). LPS and exogenous palmitic acid significantly enhanced CCL2 secretion and macrophage chemotaxis (all P < 0.05). Inhibition of FASN expression significantly alleviated LPS-augmented CCL2 secretion (P < 0.05). SSO significantly suppressed CCL2 secretion and macrophage chemotaxis augmented by LPS and palmitic acid (all P < 0.05). In a rat model of induced apical periodontitis, SSO treatment significantly attenuated progression of apical periodontitis and macrophage recruitment (all P < 0.05). CONCLUSIONS LPS/SREBP-1c/FASN/palmitic acid signalling contributed to tissue destruction caused by bacterial infection. Modulation of lipid metabolism and signalling may be helpful for the management of apical periodontitis.
Collapse
Affiliation(s)
- H-W Wang
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Clinical Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - S-H Kok
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.,Department of Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - C-N Yang
- Department of Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - C-Y Hong
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.,Department of Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - C-W Chi
- Department of Dentistry, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - M-H Chen
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - S-J Cheng
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.,Department of Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - C-T Shun
- Department of Forensic Medicine and Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - H Yang
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - S-K Lin
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.,Department of Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
123
|
Evolution of the Human Diet and Its Impact on Gut Microbiota, Immune Responses, and Brain Health. Nutrients 2021; 13:nu13010196. [PMID: 33435203 PMCID: PMC7826636 DOI: 10.3390/nu13010196] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
The relatively rapid shift from consuming preagricultural wild foods for thousands of years, to consuming postindustrial semi-processed and ultra-processed foods endemic of the Western world less than 200 years ago did not allow for evolutionary adaptation of the commensal microbial species that inhabit the human gastrointestinal (GI) tract, and this has significantly impacted gut health. The human gut microbiota, the diverse and dynamic population of microbes, has been demonstrated to have extensive and important interactions with the digestive, immune, and nervous systems. Western diet-induced dysbiosis of the gut microbiota has been shown to negatively impact human digestive physiology, to have pathogenic effects on the immune system, and, in turn, cause exaggerated neuroinflammation. Given the tremendous amount of evidence linking neuroinflammation with neural dysfunction, it is no surprise that the Western diet has been implicated in the development of many diseases and disorders of the brain, including memory impairments, neurodegenerative disorders, and depression. In this review, we discuss each of these concepts to understand how what we eat can lead to cognitive and psychiatric diseases.
Collapse
|
124
|
Berg J, Seyedsadjadi N, Grant R. Saturated Fatty Acid Intake Is Associated With Increased Inflammation, Conversion of Kynurenine to Tryptophan, and Delta-9 Desaturase Activity in Healthy Humans. Int J Tryptophan Res 2021; 13:1178646920981946. [PMID: 33414641 PMCID: PMC7750901 DOI: 10.1177/1178646920981946] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/25/2020] [Indexed: 01/12/2023] Open
Abstract
Saturated fat ingestion has previously been linked to increases in inflammation. However the relationship between saturated fatty acid (SFA) intake and the kynureine:tryptophan ratio ([Kyn]:[Trp]), a marker of inflammation, has not been previously investigated. This study evaluated in healthy, middle aged, individuals (men = 48, women = 52), potential relationships between SFA intake, red blood cell (RBC) membrane SFAs and monounsaturated fatty acids (MUFA), the [Kyn]:[Trp] ratio, C-reactive protein (CRP), TNF-α and Δ9 desaturase activity. [Kyn]:[Trp] was positively associated with increases in Total fat (P = .034) intake, including Total SFA (P = .029) and Total MUFA (P = .042) intakes. Unexpectedly the [Kyn]:[Trp] ratio was inversely associated with the percentage of Total SFA (P = .004) and positively associated with percentage of Total MUFA (P = .012) present in the RBC membrane. We found a positive association between Δ9 desaturase activity, responsible for the desaturation of a various SFAs to MUFAs, and [Kyn]:[Trp] (P = .008). [Kyn]:[Trp] was also positively associated with CRP (P = .044), however no significant relationship between [Kyn]:[Trp] and TNF-α was found. This study shows for the first time that SFA consumption increases inflammatory pathways linked to increased tryptophan to kynurenine conversion, even in healthy humans. Our data also suggests that SFA linked increases in inflammation occur concomitantly with an upregulation of Δ9 desaturase activity resulting in increased desaturation of SFA substrates to their MUFA derivatives.
Collapse
Affiliation(s)
- Jade Berg
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, Australia
| | - Neda Seyedsadjadi
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Ross Grant
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Sydney Adventist Hospital Clinical School, University of Sydney, Sydney, Australia
| |
Collapse
|
125
|
Izar MCDO, Lottenberg AM, Giraldez VZR, Santos Filho RDD, Machado RM, Bertolami A, Assad MHV, Saraiva JFK, Faludi AA, Moreira ASB, Geloneze B, Magnoni CD, Scherr C, Amaral CK, Araújo DBD, Cintra DEC, Nakandakare ER, Fonseca FAH, Mota ICP, Santos JED, Kato JT, Beda LMM, Vieira LP, Bertolami MC, Rogero MM, Lavrador MSF, Nakasato M, Damasceno NRT, Alves RJ, Lara RS, Costa RP, Machado VA. Position Statement on Fat Consumption and Cardiovascular Health - 2021. Arq Bras Cardiol 2021; 116:160-212. [PMID: 33566983 PMCID: PMC8159504 DOI: 10.36660/abc.20201340] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
| | - Ana Maria Lottenberg
- Hospital Israelita Albert Einstein (HIAE) - Faculdade Israelita de Ciências da Saúde Albert Einstein (FICSAE), São Paulo, SP - Brasil
- Faculdade de Medicina da Universidade de São Paulo, Laboratório de Lípides (LIM10),São Paulo, São Paulo, SP - Brasil
| | - Viviane Zorzanelli Rocha Giraldez
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP),São Paulo, São Paulo, SP - Brasil
| | - Raul Dias Dos Santos Filho
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP),São Paulo, São Paulo, SP - Brasil
| | - Roberta Marcondes Machado
- Faculdade de Medicina da Universidade de São Paulo, Laboratório de Lípides (LIM10),São Paulo, São Paulo, SP - Brasil
| | - Adriana Bertolami
- Instituto Dante Pazzanese de Cardiologia, São Paulo, São Paulo, SP - Brasil
| | | | | | - André Arpad Faludi
- Instituto Dante Pazzanese de Cardiologia, São Paulo, São Paulo, SP - Brasil
| | | | - Bruno Geloneze
- Universidade Estadual de Campinas (UNICAMP), Campinas, SP - Brasil
| | | | | | | | | | | | | | | | | | | | | | - Lis Mie Misuzawa Beda
- Faculdade de Medicina da Universidade de São Paulo, Laboratório de Lípides (LIM10),São Paulo, São Paulo, SP - Brasil
| | | | | | | | | | - Miyoko Nakasato
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP),São Paulo, São Paulo, SP - Brasil
| | | | - Renato Jorge Alves
- Santa Casa de Misericórdia de São Paulo, São Paulo, São Paulo, SP - Brasil
| | - Roberta Soares Lara
- Núcleo de Alimentação e Nutrição da Sociedade Brasileira de Cardiologia, Rio de Janeiro, RJ - Brasil
| | | | | |
Collapse
|
126
|
Wang Z, Liao W, Liu F, Yang T, Xie W, Liao M, Gu D, Zhang Y. Downregulation of lncRNA EPB41L4A-AS1 Mediates Activation of MYD88-Dependent NF-κB Pathway in Diabetes-Related Inflammation. Diabetes Metab Syndr Obes 2021; 14:265-277. [PMID: 33505165 PMCID: PMC7829128 DOI: 10.2147/dmso.s280765] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Long non-coding RNAs (lncRNAs) have been shown to be involved in many human diseases. In this study, we aimed to reveal the role and molecular mechanism of lncRNA EPB41L4A-AS1 in type 2 diabetic mellitus (T2DM)-related inflammation. METHODS To explore the relationships between the expression of EPB41L4A-AS1 and inflammatory factors in the blood of T2DM patients, we analyzed peripheral blood mononuclear cell (PBMC) expression microarrays of T2DM patients and expression microarrays of PBMC treated with lipopolysaccharide (LPS) from the GEO database. The relationship between EPB41L4A-AS1 and phospho-p65 was explored by Western blotting (WB) and immunofluorescence. The interactions between EPB41L4A-AS1 and myeloid differentiation factor 88 (MYD88) were also verified through quantitative real-time PCR, WB, and chromatin immunoprecipitation. Glycolysis and mitochondrial stress were detected by Seahorse. RESULTS EPB41L4A-AS1 showed very low expression, which was significantly negatively correlated with levels of inflammatory factors in PBMCs of T2DM patients and PBMCs treated with LPS. These results were verified by cell experiments on PBMC and THP-1 cells. Knockdown of EPB41L4A-AS1 led to the phosphorylation and nuclear translocation of p65 and thus activated the NF-κB signaling pathway; it also reduced the enrichment of H3K9me3 in the MYD88 promoter and increased expression of MYD88. Overall, EPB41L4A-AS1 knockdown promoted the level of glycolysis and ultimately enhanced the inflammatory response. CONCLUSION EPB41L4A-AS1 knockdown activated the NF-κB signaling pathway through a MYD88-dependent regulatory mechanism, promoted glycolysis, and ultimately enhanced the inflammatory response. These results demonstrate that EPB41L4A-AS1 is closely associated with inflammation in T2DM, and that low expression of EPB41L4A-AS1 may be used as an indicator of chronic inflammation and possible diabetic vascular complications in T2DM patients.
Collapse
Affiliation(s)
- Ziqing Wang
- School of Chemistry, Tsinghua University, Beijing100084, People’s Republic of China
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen518055, People’s Republic of China
| | - Weijie Liao
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen518055, People’s Republic of China
- Key Laboratory in Healthy Science and Technology, Division of Life Science, Tsinghua Shenzhen International Graduate School, Shenzhen518055, People’s Republic of China
| | - Fuhai Liu
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen518055, People’s Republic of China
- Department of Pathology, Xuzhou Medical University, Xuzhou221104, People’s Republic of China
| | - Tingpeng Yang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen518055, People’s Republic of China
| | - Weidong Xie
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen518055, People’s Republic of China
- Key Laboratory in Healthy Science and Technology, Division of Life Science, Tsinghua Shenzhen International Graduate School, Shenzhen518055, People’s Republic of China
| | - Meijian Liao
- Key Laboratory in Healthy Science and Technology, Division of Life Science, Tsinghua Shenzhen International Graduate School, Shenzhen518055, People’s Republic of China
- Department of Pathology, Xuzhou Medical University, Xuzhou221104, People’s Republic of China
| | - Dayong Gu
- Department of Laboratory Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen518035, People’s Republic of China
- Dayong Gu Department of Laboratory Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen518035, People’s Republic of ChinaTel +86-13602601597 Email
| | - Yaou Zhang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen518055, People’s Republic of China
- Key Laboratory in Healthy Science and Technology, Division of Life Science, Tsinghua Shenzhen International Graduate School, Shenzhen518055, People’s Republic of China
- Correspondence: Yaou Zhang State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen518055, People’s Republic of ChinaTel +86-755-2603-6884 Email
| |
Collapse
|
127
|
Monounsaturated Fatty Acids in Obesity-Related Inflammation. Int J Mol Sci 2020; 22:ijms22010330. [PMID: 33396940 PMCID: PMC7795523 DOI: 10.3390/ijms22010330] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity is an important aspect of the metabolic syndrome and is often associated with chronic inflammation. In this context, inflammation of organs participating in energy homeostasis (such as liver, adipose tissue, muscle and pancreas) leads to the recruitment and activation of macrophages, which secrete pro-inflammatory cytokines. Interleukin-1β secretion, sustained C-reactive protein plasma levels and activation of the NLRP3 inflammasome characterize this inflammation. The Stearoyl-CoA desaturase-1 (SCD1) enzyme is a central regulator of lipid metabolism and fat storage. This enzyme catalyzes the generation of monounsaturated fatty acids (MUFAs)-major components of triglycerides stored in lipid droplets-from saturated fatty acid (SFA) substrates. In this review, we describe the molecular effects of specific classes of fatty acids (saturated and unsaturated) to better understand the impact of different diets (Western versus Mediterranean) on inflammation in a metabolic context. Given the beneficial effects of a MUFA-rich Mediterranean diet, we also present the most recent data on the role of SCD1 activity in the modulation of SFA-induced chronic inflammation.
Collapse
|
128
|
Bilal M, Qindeel M, Nunes LV, Duarte MTS, Ferreira LFR, Soriano RN, Iqbal HMN. Marine-Derived Biologically Active Compounds for the Potential Treatment of Rheumatoid Arthritis. Mar Drugs 2020; 19:10. [PMID: 33383638 PMCID: PMC7823916 DOI: 10.3390/md19010010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 02/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease with a prevalence rate of up to 1% and is significantly considered a common worldwide public health concern. Commercially, several traditional formulations are available to treat RA to some extent. However, these synthetic compounds exert toxicity and considerable side effects even at lower therapeutic concentrations. Considering the above-mentioned critiques, research is underway around the world in finding and exploiting potential alternatives. For instance, marine-derived biologically active compounds have gained much interest and are thus being extensively utilized to confront the confines of in practice counterparts, which have become ineffective for 21st-century medical settings. The utilization of naturally available bioactive compounds and their derivatives can minimize these synthetic compounds' problems to treat RA. Several marine-derived compounds exhibit anti-inflammatory and antioxidant properties and can be effectively used for therapeutic purposes against RA. The results of several studies ensured that the extraction of biologically active compounds from marine sources could provide a new and safe source for drug development against RA. Finally, current challenges, gaps, and future perspectives have been included in this review.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Maimoona Qindeel
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Leonardo Vieira Nunes
- Department of Medicine, Federal University of Juiz de Fora, Juiz de Fora-MG 36036-900, Brazil;
| | | | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, Aracaju-Sergipe 49032-490, Brazil;
- Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, Aracaju-Sergipe 49032-490, Brazil
| | - Renato Nery Soriano
- Division of Physiology and Biophysics, Department of Basic Life Sciences, Federal University of Juiz de Fora, Governador Valadares-MG 35010-180, Brazil;
| | - Hafiz M. N. Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
| |
Collapse
|
129
|
David L, Kang J, Dufresne D, Zhu D, Chen S. Multi-Omics Revealed Molecular Mechanisms Underlying Guard Cell Systemic Acquired Resistance. Int J Mol Sci 2020; 22:ijms22010191. [PMID: 33375472 PMCID: PMC7795379 DOI: 10.3390/ijms22010191] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 01/09/2023] Open
Abstract
Systemic Acquired Resistance (SAR) improves immunity of plant systemic tissue after local exposure to a pathogen. Guard cells that form stomatal pores on leaf surfaces recognize bacterial pathogens via pattern recognition receptors, such as Flagellin Sensitive 2 (FLS2). However, how SAR affects stomatal immunity is not known. In this study, we aim to reveal molecular mechanisms underlying the guard cell response to SAR using multi-omics of proteins, metabolites and lipids. Arabidopsis plants previously exposed to pathogenic bacteria Pseudomonas syringae pv. tomato DC3000 (Pst) exhibit an altered stomatal response compared to control plants when they are later exposed to the bacteria. Reduced stomatal apertures of SAR primed plants lead to decreased number of bacteria in leaves. Multi-omics has revealed molecular components of SAR response specific to guard cells functions, including potential roles of reactive oxygen species (ROS) and fatty acid signaling. Our results show an increase in palmitic acid and its derivative in the primed guard cells. Palmitic acid may play a role as an activator of FLS2, which initiates stomatal immune response. Improved understanding of how SAR signals affect stomatal immunity can aid biotechnology and marker-based breeding of crops for enhanced disease resistance.
Collapse
Affiliation(s)
- Lisa David
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (L.D.); (J.K.); (D.Z.)
- Genetics Institute (UFGI), University of Florida, Gainesville, FL 32610, USA
| | - Jianing Kang
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (L.D.); (J.K.); (D.Z.)
- Genetics Institute (UFGI), University of Florida, Gainesville, FL 32610, USA
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Daniel Dufresne
- Department of Chemistry, Florida Atlantic University, Boca Raton, FL 33431, USA;
| | - Dan Zhu
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (L.D.); (J.K.); (D.Z.)
- Genetics Institute (UFGI), University of Florida, Gainesville, FL 32610, USA
- Key Lab of Plant Biotechnology in Universities of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (L.D.); (J.K.); (D.Z.)
- Genetics Institute (UFGI), University of Florida, Gainesville, FL 32610, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL 32610, USA
- Correspondence: ; Tel.: +1-352-273-8330
| |
Collapse
|
130
|
Methnani J, Amor D, Yousfi N, Bouslama A, Omezzine A, Bouhlel E. Sedentary behavior, exercise and COVID-19: immune and metabolic implications in obesity and its comorbidities. J Sports Med Phys Fitness 2020; 61:1538-1547. [PMID: 33305550 DOI: 10.23736/s0022-4707.20.11898-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Many reports showed a dramatic decrease in the levels of physical activity during the current pandemic of SARS-CoV-2. This has substantial immune and metabolic implications, especially in those at risk or with metabolic diseases including individuals with obesity and Type 2 diabetes. In this study we discussed the route from physical inactivity to immune and metabolic aberrancies; focusing on how insulin resistance could represent an adaptive mechanism to the low physical activity levels and on how such an adaptive mechanism could shift to a pathognomonic feature of metabolic diseases, creating a vicious circle of immune and metabolic aberrancies. We provide a theoretical framework to the severe immunopathology of COVID-19 in patients with metabolic diseases. We finally discuss the idea of exercise as a potential adjuvant against COVID-19 and emphasize how even interrupting prolonged periods of sitting with short time breaks of very light activity could be a feasible strategy to limit the deleterious effects of the outbreak.
Collapse
Affiliation(s)
- Jabeur Methnani
- University of Manouba, High Institute of Sport and Physical Education, Ksar Said, Tunis, Tunisia - .,Department of Biochemistry, LR12SP11, Sahloul University Hospital, Sousse, Tunisia - .,Laboratory of Exercise Physiology and Physiopathology: from Integrated to Molecular Biology, Medicine and Health, LR19ES09, Faculty of Medicine of Sousse, Sousse, Tunisia -
| | - Dorra Amor
- Department of Biochemistry, LR12SP11, Sahloul University Hospital, Sousse, Tunisia.,University of Monastir, Faculty of Pharmacy of Monastir, Monastir, Tunisia
| | - Nariman Yousfi
- University of Manouba, High Institute of Sport and Physical Education, Ksar Said, Tunis, Tunisia.,Research Laboratory of "Sport Performance Optimization, " National Center of Medicine and Sport Sciences, Tunis, Tunisia
| | - Ali Bouslama
- Department of Biochemistry, LR12SP11, Sahloul University Hospital, Sousse, Tunisia.,University of Monastir, Faculty of Pharmacy of Monastir, Monastir, Tunisia
| | - Asma Omezzine
- Department of Biochemistry, LR12SP11, Sahloul University Hospital, Sousse, Tunisia.,University of Monastir, Faculty of Pharmacy of Monastir, Monastir, Tunisia
| | - Ezdine Bouhlel
- University of Manouba, High Institute of Sport and Physical Education, Ksar Said, Tunis, Tunisia.,Laboratory of Exercise Physiology and Physiopathology: from Integrated to Molecular Biology, Medicine and Health, LR19ES09, Faculty of Medicine of Sousse, Sousse, Tunisia
| |
Collapse
|
131
|
Selber-Hnatiw S, Sultana T, Tse W, Abdollahi N, Abdullah S, Al Rahbani J, Alazar D, Alrumhein NJ, Aprikian S, Arshad R, Azuelos JD, Bernadotte D, Beswick N, Chazbey H, Church K, Ciubotaru E, D'Amato L, Del Corpo T, Deng J, Di Giulio BL, Diveeva D, Elahie E, Frank JGM, Furze E, Garner R, Gibbs V, Goldberg-Hall R, Goldman CJ, Goltsios FF, Gorjipour K, Grant T, Greco B, Guliyev N, Habrich A, Hyland H, Ibrahim N, Iozzo T, Jawaheer-Fenaoui A, Jaworski JJ, Jhajj MK, Jones J, Joyette R, Kaudeer S, Kelley S, Kiani S, Koayes M, Kpata AJAAL, Maingot S, Martin S, Mathers K, McCullogh S, McNamara K, Mendonca J, Mohammad K, Momtaz SA, Navaratnarajah T, Nguyen-Duong K, Omran M, Ortiz A, Patel A, Paul-Cole K, Plaisir PA, Porras Marroquin JA, Prevost A, Quach A, Rafal AJ, Ramsarun R, Rhnima S, Rili L, Safir N, Samson E, Sandiford RR, Secondi S, Shahid S, Shahroozi M, Sidibé F, Smith M, Sreng Flores AM, Suarez Ybarra A, Sénéchal R, Taifour T, Tang L, Trapid A, Tremblay Potvin M, Wainberg J, Wang DN, Weissenberg M, White A, Wilkinson G, Williams B, Wilson JR, Zoppi J, Zouboulakis K, Gamberi C. Metabolic networks of the human gut microbiota. MICROBIOLOGY-SGM 2020; 166:96-119. [PMID: 31799915 DOI: 10.1099/mic.0.000853] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The human gut microbiota controls factors that relate to human metabolism with a reach far greater than originally expected. Microbial communities and human (or animal) hosts entertain reciprocal exchanges between various inputs that are largely controlled by the host via its genetic make-up, nutrition and lifestyle. The composition of these microbial communities is fundamental to supply metabolic capabilities beyond those encoded in the host genome, and contributes to hormone and cellular signalling that support the dynamic adaptation to changes in food availability, environment and organismal development. Poor functional exchange between the microbial communities and their human host is associated with dysbiosis, metabolic dysfunction and disease. This review examines the biology of the dynamic relationship between the reciprocal metabolic state of the microbiota-host entity in balance with its environment (i.e. in healthy states), the enzymatic and metabolic changes associated with its imbalance in three well-studied diseases states such as obesity, diabetes and atherosclerosis, and the effects of bariatric surgery and exercise.
Collapse
Affiliation(s)
- Susannah Selber-Hnatiw
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Tarin Sultana
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - W Tse
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Niki Abdollahi
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Sheyar Abdullah
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Jalal Al Rahbani
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Diala Alazar
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Nekoula Jean Alrumhein
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Saro Aprikian
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Rimsha Arshad
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Jean-Daniel Azuelos
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Daphney Bernadotte
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Natalie Beswick
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Hana Chazbey
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Kelsey Church
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Emaly Ciubotaru
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Lora D'Amato
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Tavia Del Corpo
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Jasmine Deng
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Briana Laura Di Giulio
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Diana Diveeva
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Elias Elahie
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - James Gordon Marcel Frank
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Emma Furze
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Rebecca Garner
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Vanessa Gibbs
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Rachel Goldberg-Hall
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Chaim Jacob Goldman
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Fani-Fay Goltsios
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Kevin Gorjipour
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Taylor Grant
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Brittany Greco
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Nadir Guliyev
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Andrew Habrich
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Hillary Hyland
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Nabila Ibrahim
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Tania Iozzo
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Anastasia Jawaheer-Fenaoui
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Julia Jane Jaworski
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Maneet Kaur Jhajj
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Jermaine Jones
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Rodney Joyette
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Samad Kaudeer
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Shawn Kelley
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Shayesteh Kiani
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Marylin Koayes
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | | | - Shannon Maingot
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Sara Martin
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Kelly Mathers
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Sean McCullogh
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Kelly McNamara
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - James Mendonca
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Karamat Mohammad
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Sharara Arezo Momtaz
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Thiban Navaratnarajah
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Kathy Nguyen-Duong
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Mustafa Omran
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Angela Ortiz
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Anjali Patel
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Kahlila Paul-Cole
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Paul-Arthur Plaisir
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | | | - Ashlee Prevost
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Angela Quach
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Aries John Rafal
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Rewaparsad Ramsarun
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Sami Rhnima
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Lydia Rili
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Naomi Safir
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Eugenie Samson
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Rebecca Rose Sandiford
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Stefano Secondi
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Stephanie Shahid
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Mojdeh Shahroozi
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Fily Sidibé
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Megan Smith
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Alina Maria Sreng Flores
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Anabel Suarez Ybarra
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Rebecca Sénéchal
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Tarek Taifour
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Lawrence Tang
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Adam Trapid
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Maxim Tremblay Potvin
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Justin Wainberg
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Dani Ni Wang
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Mischa Weissenberg
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Allison White
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Gabrielle Wilkinson
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Brittany Williams
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Joshua Roth Wilson
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Johanna Zoppi
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Katerina Zouboulakis
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Chiara Gamberi
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| |
Collapse
|
132
|
Mizuno Y, Taguchi T. Self-assembled dodecyl group-modified gelatin microparticle-based hydrogels with angiogenic properties. NPG ASIA MATERIALS 2020; 12:48. [DOI: 10.1038/s41427-020-0229-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/18/2020] [Accepted: 04/25/2020] [Indexed: 01/05/2025]
Abstract
AbstractSupplying oxygen and nutrients to implanted cells or tissues is an important factor that improves their survivability and function in regenerative medicine. Various efforts have been made to develop angiogenic materials by incorporating and releasing growth factors such as vascular endothelial growth factor (VEGF). However, these exogenous growth factors have a short half-life under physiological conditions. We therefore designed a novel angiogenic microparticle (C12-MP) comprising Alaska pollock-derived gelatin (ApGltn) modified with a dodecyl group (C12-ApGltn) to stimulate endogenous VEGF secretion. The C12-MP suspension formed an injectable hydrogel, the rheological properties and enzymatic degradation of which were evaluated. RAW264 cells, mouse macrophage-like cells, cultured with C12-MPs, secreted significantly more VEGF than the original ApGltn MPs. Based on laser Doppler perfusion imaging, the C12-MP hydrogel clearly induced increased blood perfusion in a subcutaneous mouse model compared with the original ApGltn microparticle (Org-MP) or phosphate-buffered saline controls. Histological studies revealed that the areas of nuclear factor (NF)-κB, CD31, and myeloperoxidase staining showed a greater increase at the site injected with C12-MPs than at the site injected with the original ApGltn microparticles or phosphate-buffered saline. The C12-MP hydrogel is a promising angiogenic material for constructing vascular beds for cell transplantation by promoting endogenous VEGF secretion without additional growth factors.
Collapse
|
133
|
McKernan K, Varghese M, Patel R, Singer K. Role of TLR4 in the induction of inflammatory changes in adipocytes and macrophages. Adipocyte 2020; 9:212-222. [PMID: 32403975 PMCID: PMC7238871 DOI: 10.1080/21623945.2020.1760674] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In obesity, high levels of saturated fatty acids (SFAs) contribute to adipose tissue inflammation and dysfunction. Obesity-induced macrophage infiltration leads to insulin resistance, but the adipocyte itself may play a role in generating the inflammatory milieu. Given our recent findings of the role of TLR4 in myeloid biasing in obesity, we next investigated the role of TLR4 in adipocyte generated inflammatory responses to SFAs and lipopolysaccharides. We used WT and Tlr4-/- ear mesenchymal stem cell derived adipocytes (EMSC Ad) and bone marrow dendritic cells (BMDCs) to evaluate cell specific responses. Our work demonstrates a role for TLR4 in adipocyte- immune cell crosstalk and that SFA derived metabolites from adipocytes may induce proinflammatory stimulation of immune cells in a TLR4 independent manner.
Collapse
Affiliation(s)
- K. McKernan
- Department of Pediatrics and Communicable Disease, University of Michigan Medical School, Ann Arbor, MI, USA
| | - M. Varghese
- Department of Pediatrics and Communicable Disease, University of Michigan Medical School, Ann Arbor, MI, USA
| | - R. Patel
- Department of Pediatrics and Communicable Disease, University of Michigan Medical School, Ann Arbor, MI, USA
| | - K. Singer
- Department of Pediatrics and Communicable Disease, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
134
|
Faustmann G, Tiran B, Trajanoski S, Obermayer-Pietsch B, Gruber HJ, Ribalta J, Roob JM, Winklhofer-Roob BM. Activation of nuclear factor-kappa B subunits c-Rel, p65 and p50 by plasma lipids and fatty acids across the menstrual cycle. Free Radic Biol Med 2020; 160:488-500. [PMID: 32846215 DOI: 10.1016/j.freeradbiomed.2020.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
This study focused on a comprehensive analysis of the canonical activation pathway of the redox-sensitive transcription factor nuclear factor-kappa B (NF-κB) in peripheral blood mononuclear cells, addressing c-Rel, p65 and p50 activation in 28 women at early (T1) and late follicular (T2) and mid (T3) and late luteal (T4) phase of the menstrual cycle, and possible relations with fasting plasma lipids and fatty acids. For the first time, strong inverse relations of c-Rel with apolipoprotein B were observed across the cycle, while those with LDL cholesterol, triglycerides as well as saturated (SFA), particularly C14-C22 SFA, monounsaturated (MUFA), and polyunsaturated fatty acids (PUFA) clustered at T2. In contrast, p65 was positively related to LDL cholesterol and total n-6 PUFA, while p50 did not show any relations. C-Rel was not directly associated with estradiol and progesterone, but data suggested an indirect C22:5n-3-mediated effect of progesterone. Strong positive relations between estradiol and individual SFA, MUFA and n-3 PUFA at T1 were confined to C18 fatty acids; C18:3n-3 was differentially associated with estradiol (positively) and progesterone (inversely). Given specific roles of c-Rel activation in immune tolerance, inhibition of c-Rel activation by higher plasma apolipoprotein B and individual fatty acid concentrations could have clinical implications for female fertility.
Collapse
Affiliation(s)
- Gernot Faustmann
- Human Nutrition & Metabolism Research and Training Center, Institute of Molecular Biosciences, University of Graz, Graz, Austria; Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Beate Tiran
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Slave Trajanoski
- Core Facility Computational Bioanalytics, Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Barbara Obermayer-Pietsch
- Division of Endocrinology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Hans-Jürgen Gruber
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Josep Ribalta
- Unitat de Recerca en Lípids i Arteriosclerosi, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili and Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Spain
| | - Johannes M Roob
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Brigitte M Winklhofer-Roob
- Human Nutrition & Metabolism Research and Training Center, Institute of Molecular Biosciences, University of Graz, Graz, Austria.
| |
Collapse
|
135
|
Deng Y, Zhao H, Shen S, Yang S, Yang D, Deng S, Hou C. Identification of Immune Response to Sacbrood Virus Infection in Apis cerana Under Natural Condition. Front Genet 2020; 11:587509. [PMID: 33193724 PMCID: PMC7649357 DOI: 10.3389/fgene.2020.587509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/05/2020] [Indexed: 12/03/2022] Open
Abstract
Chinese sacbrood virus (CSBV) is a serious threat to eastern honeybees (Apis cerana), especially larvae. However, the pathological mechanism of this deadly disease remains unclear. Here, we employed mRNA and small RNA (sRNA) transcriptome approach to investigate the microRNAs (miRNAs) and small interfering RNAs (siRNAs) expression changes of A. cerana larvae infected with CSBV under natural condition. We found that serine proteases involved in immune response were down-regulated, while the expression of siRNAs targeted to serine proteases were up-regulated. In addition, CSBV infection also affected the expression of larvae cuticle proteins such as larval cuticle proteins A1A and A3A, resulting in increased susceptibility to CSBV infection. Together, our results provide insights into sRNAs that they are likely to be involved in regulating honeybee immune response.
Collapse
Affiliation(s)
- Yanchun Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agricultural and Rural Affairs, Beijing, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangdong Academy of Science, Guangzhou, China
| | - Shuo Shen
- Qinghai Academy of Agriculture and Forestry Sciences (Academy of Agriculture and Forestry Sciences), Qinghai University, Xining, China
| | - Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Dahe Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Shuai Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agricultural and Rural Affairs, Beijing, China
| |
Collapse
|
136
|
Liu X, Hoft DF, Peng G. Senescent T cells within suppressive tumor microenvironments: emerging target for tumor immunotherapy. J Clin Invest 2020; 130:1073-1083. [PMID: 32118585 DOI: 10.1172/jci133679] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The functional state of the preexisting T cells in the tumor microenvironment is a key determinant for effective antitumor immunity and immunotherapy. Increasing evidence suggests that immunosenescence is an important state of T cell dysfunction that is distinct from exhaustion, a key strategy used by malignant tumors to evade immune surveillance and sustain the suppressive tumor microenvironment. Here, we discuss the phenotypic and functional characteristics of senescent T cells and their role in human cancers. We also explore the possible mechanisms and signaling pathways responsible for induction of T cell senescence by malignant tumors, and then discuss potential strategies to prevent and/or reverse senescence in tumor-specific T cells. A better understanding of these critical issues should provide novel strategies to enhance cancer immunotherapy.
Collapse
|
137
|
Yoshida Y, Nagamori T, Ishibazawa E, Kobayashi H, Kure T, Sakai H, Takahashi D, Fujihara M, Azuma H. Contribution of long-chain fatty acid to induction of myeloid-derived suppressor cell (MDSC)-like cells - induction of MDSC by lipid vesicles (liposome). Immunopharmacol Immunotoxicol 2020; 42:614-624. [PMID: 33070657 DOI: 10.1080/08923973.2020.1837866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
CONTEXT Effects of liposomal particles on immune function have not been adequately investigated. Earlier reports indicate that intravenous injection of rats with pegylated liposomes comprising chemically defined specific lipids produces myeloid derived suppressor-cell (MDSC)-like cells in the spleen. OBJECTIVES After liposome injection, we sought a cell surface marker expressed specifically on splenic macrophages. Then we assessed the immunosuppressive activity of macrophages positive for the marker. Furthermore, we investigated whether immunosuppression induction is an immunopharmacological action specific to this pegylated liposome, or not. MATERIALS AND METHODS After using a microarray system to screen genes enhanced by this liposome, we evaluated cell surface expression of gene products using flow cytometry. Liposomes of several kinds, each comprising one type of phospholipid, were prepared and evaluated for their ability to induce T-cell suppression. RESULTS Microarray analysis indicated enhanced B7-H3 expression. Flow cytometry revealed that the B7-H3 molecule was expressed on splenic macrophages after liposome injection. B7-H3+ macrophages were positive for iNOS. Removing B7-H3+ cells restored T-cell proliferation. Similarly to this liposome, various liposomes with different long chain fatty acids induced T-cell suppression when accumulated in the spleen. CONCLUSIONS Immunosuppressive cells induced by this pegylated liposome closely resemble MDSCs, especially B7-H3+ MDSCs. Immunosuppression induction is not a phenomenon specific to this liposome. Accumulation of long chain fatty acid in macrophages by internalization of liposomal nanoparticles might be related to macrophage acquisition of immunosuppressive activity in vivo.
Collapse
Affiliation(s)
- Yoichiro Yoshida
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan
| | - Tsunehisa Nagamori
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan
| | - Emi Ishibazawa
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroya Kobayashi
- Department of Immunopathology, Asahikawa Medical University, Asahikawa, Japan
| | - Tomoko Kure
- Department of Chemistry, Nara Medical University, Kashihara, Japan
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, Kashihara, Japan
| | - Daisuke Takahashi
- Research and Development Department, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | | | - Hiroshi Azuma
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
138
|
Ren G, Bhatnagar S, Hahn DJ, Kim JA. Long-chain acyl-CoA synthetase-1 mediates the palmitic acid-induced inflammatory response in human aortic endothelial cells. Am J Physiol Endocrinol Metab 2020; 319:E893-E903. [PMID: 32954825 PMCID: PMC7790120 DOI: 10.1152/ajpendo.00117.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Saturated fatty acid (SFA) induces proinflammatory response through a Toll-like receptor (TLR)-mediated mechanism, which is associated with cardiometabolic diseases such as obesity, insulin resistance, and endothelial dysfunction. Consistent with this notion, TLR2 or TLR4 knockout mice are protected from obesity-induced proinflammatory response and endothelial dysfunction. Although SFA causes endothelial dysfunction through TLR-mediated signaling pathways, the mechanisms underlying SFA-stimulated inflammatory response are not completely understood. To understand the proinflammatory response in vascular endothelial cells in high-lipid conditions, we compared the proinflammatory responses stimulated by palmitic acid (PA) and other canonical TLR agonists [lipopolysaccharide (LPS), Pam3-Cys-Ser-Lys4 (Pam3CSK4), or macrophage-activating lipopeptide-2)] in human aortic endothelial cells. The expression profiles of E-selectin and the signal transduction pathways stimulated by PA were distinct from those stimulated by canonical TLR agonists. Inhibition of long-chain acyl-CoA synthetases (ACSL) by a pharmacological inhibitor or knockdown of ACSL1 blunted the PA-stimulated, but not the LPS- or Pam3CSK4-stimulated proinflammatory responses. Furthermore, triacsin C restored the insulin-stimulated vasodilation, which was impaired by PA. From the results, we concluded that PA stimulates the proinflammatory response in the vascular endothelium through an ACSL1-mediated mechanism, which is distinct from LPS- or Pam3CSK4-stimulated responses. The results suggest that endothelial dysfunction caused by PA may require to undergo intracellular metabolism. This expands the understanding of the mechanisms by which TLRs mediate inflammatory responses in endothelial dysfunction and cardiovascular disease.
Collapse
Affiliation(s)
- Guang Ren
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Alabama
| | - Sushant Bhatnagar
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Alabama
- Department of Cell, Developmental and Integrative Biology, University of Alabama, Birmingham, Alabama
- UAB Comprehensive Diabetes Center, University of Alabama, Birmingham, Alabama
| | | | - Jeong-A Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Alabama
- Department of Cell, Developmental and Integrative Biology, University of Alabama, Birmingham, Alabama
- UAB Comprehensive Diabetes Center, University of Alabama, Birmingham, Alabama
| |
Collapse
|
139
|
Novelli M, Masiello P, Beffy P, Menegazzi M. Protective Role of St. John's Wort and Its Components Hyperforin and Hypericin against Diabetes through Inhibition of Inflammatory Signaling: Evidence from In Vitro and In Vivo Studies. Int J Mol Sci 2020; 21:E8108. [PMID: 33143088 PMCID: PMC7662691 DOI: 10.3390/ijms21218108] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a very common chronic disease with progressively increasing prevalence. Besides the well-known autoimmune and inflammatory pathogenesis of type 1 diabetes, in many people, metabolic changes and inappropriate lifestyle favor a subtle chronic inflammatory state that contributes to development of insulin resistance and progressive loss of β-cell function and mass, eventually resulting in metabolic syndrome or overt type 2 diabetes. In this paper, we review the anti-inflammatory effects of the extract of Hypericum perforatum L. (St. John's wort, SJW) and its main active ingredients firstly in representative pathological situations on inflammatory basis and then in pancreatic β cells and in obese or diabetic animal models. The simultaneous and long-lasting inhibition of signal transducer and activator of transcription (STAT)-1, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinases (MAPKs)/c-jun N-terminal kinase (JNK) signaling pathways involved in pro-inflammatory cytokine-induced β-cell dysfunction/death and insulin resistance make SJW particularly suitable for both preventive and therapeutic use in metabolic diseases. Hindrance of inflammatory cytokine signaling is likely dependent on the hyperforin content of SJW extract, but recent data reveal that hypericin can also exert relevant protective effects, mediated by activation of the cyclic adenosine monophosphate (cAMP)/protein kinase cAMP-dependent (PKA)/adenosine monophosphate activated protein kinase (AMPK) pathway, against high-fat-diet-induced metabolic abnormalities. Actually, the mechanisms of action of the two main components of SJW appear complementary, strengthening the efficacy of the plant extract. Careful quantitative analysis of SJW components and suitable dosage, with monitoring of possible drug-drug interaction in a context of remarkable tolerability, are easily achievable pre-requisites for forthcoming clinical applications.
Collapse
Affiliation(s)
- Michela Novelli
- Department of Translational Research and New Technologies in Medicine and Surgery, School of Medicine, University of Pisa, 56126 Pisa, Italy
| | - Pellegrino Masiello
- Department of Translational Research and New Technologies in Medicine and Surgery, School of Medicine, University of Pisa, 56126 Pisa, Italy
| | - Pascale Beffy
- Institute of Clinical Physiology, CNR, 56124 Pisa, Italy;
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, 37134 Verona, Italy;
| |
Collapse
|
140
|
Yi L, Zheng C. The emerging roles of ZDHHCs-mediated protein palmitoylation in the antiviral innate immune responses. Crit Rev Microbiol 2020; 47:34-43. [PMID: 33100085 DOI: 10.1080/1040841x.2020.1835821] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Post-translational modifications (PTMs) play a pivotal role in expanding functional protein diversity. During viral infection, pathogen-associated molecular patterns derived from viruses are recognized by pattern recognition receptors present in the membrane surface and the cytoplasm of infected cells, which subsequently induces the antiviral innate immunity to protect the host from the invading viruses. Fatty acylation modification is identified as a post-translation lipid modification process. Mounting evidence is presented that lipid modification functions as a novel regulatory mechanism of antiviral innate immunity. In mammalian cells, DHHC (Asp-His-His-Cys) domain is indispensable for most of the palmitoylation modification, which belongs to fatty acylation. ZDHHC family proteins are composed of 23 members in human cells. In this review, we will summarize the recent findings of the regulatory mechanism of the palmitoylation in the process of host antiviral innate immunity against viruses.
Collapse
Affiliation(s)
- Li Yi
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
141
|
Lauric Acid versus Palmitic Acid: Effects on Adipose Tissue Inflammation, Insulin Resistance, and Non-Alcoholic Fatty Liver Disease in Obesity. BIOLOGY 2020; 9:biology9110346. [PMID: 33105887 PMCID: PMC7690582 DOI: 10.3390/biology9110346] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/21/2022]
Abstract
Simple Summary The aim of this study was to compare the effect of palmitic acid (PA), a long-chain fatty acid, and lauric acid (LA), a medium-chain fatty acid, on obesity-related metabolic disorders. We used a mouse model of diet-induced obesity and fed them a modified high fat diet supplemented with 3% PA or LA for 12 wk. An LA diet led to an increase in visceral fat mass with a reduction in inflammation compared to the PA diet. We also noted that PA significantly increased systemic insulin resistance whereas LA showed only a trend towards an increase compared to lean control mice. The expression of a protein involved in muscle glucose uptake was higher in LA-treated mice compared to the PA-treated group, indicating improved muscle glucose uptake in LA-fed mice. Analysis of liver samples showed that hepatic steatosis was higher in both PA and LA-fed mice compared to lean controls. Markers of liver inflammation were not altered significantly in mice receiving PA or LA. Our data suggest that compared to PA, LA exerts less adverse effects on metabolic disorders and this could be due to the differential effects of these fatty acids in fat and muscle. Abstract Coconut oil, rich in medium-chain saturated fatty acids (MCSFA), in particular, lauric acid (LA), is known to exert beneficial metabolic effects. Although LA is the most abundant saturated fatty acid in coconut oil, the specific role of LA in altering obesity-related metabolic disorders remains unknown. Here, we examined the effects of supplementing a high fat (HF) diet with purified LA on obesity-associated metabolic derangements in comparison with palmitic acid (PA), a long-chain saturated fatty acid. Male C57BL/6 mice were fed a control chow diet (CD) or an HF diet supplemented with 3% LA (HF + LA) or PA (HF + PA) for 12 wk. Markers of adipose tissue (AT) inflammation, systemic insulin resistance (IR), and hepatic steatosis, were assessed. The body weight and total fat mass were significantly higher in both HF + LA and HF + PA diet-fed groups compared to CD controls. However, the visceral adipose tissue (VAT) mass was significantly higher (p < 0.001) in HF + LA-fed mice compared to both CD as well as HF + PA-fed mice. Interestingly, markers of AT inflammation were promoted to a lesser extent in HF + LA-fed mice compared to HF + PA-fed mice. Thus, immunohistochemical analysis of VAT showed an increase in MCP-1 and IL-6 staining in HF + PA-fed mice but not in HF + LA-fed mice compared to CD controls. Further, the mRNA levels of macrophage and inflammatory markers were significantly higher in HF + PA-fed mice (p < 0.001) whereas these markers were increased to a lesser extent in HF + LA-fed group. Of note, the insulin tolerance test revealed that IR was significantly increased only in HF + PA-fed mice but not in HF + LA-fed group compared to CD controls. While liver triglycerides were increased significantly in both HF + PA and HF + LA-fed mice, liver weight and plasma markers of liver injury such as alanine aminotransferase and aspartate aminotransferase were increased significantly only in HF + PA-fed mice but not in HF + LA-fed mice. Taken together, our data suggest that although both LA and PA increased AT inflammation, systemic IR, and liver injury, the extent of metabolic derangements caused by LA was less compared to PA in the setting of high fat feeding.
Collapse
|
142
|
Wade H, Pan K, Su Q. CREBH: A Complex Array of Regulatory Mechanisms in Nutritional Signaling, Metabolic Inflammation, and Metabolic Disease. Mol Nutr Food Res 2020; 65:e2000771. [DOI: 10.1002/mnfr.202000771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Henry Wade
- Institute for Global Food Security School of Biological Sciences Queen's University Belfast Belfast BT9 5DL UK
| | - Kaichao Pan
- Institute for Global Food Security School of Biological Sciences Queen's University Belfast Belfast BT9 5DL UK
| | - Qiaozhu Su
- Institute for Global Food Security School of Biological Sciences Queen's University Belfast Belfast BT9 5DL UK
| |
Collapse
|
143
|
Sumneang N, Apaijai N, Chattipakorn SC, Chattipakorn N. Myeloid differentiation factor 2 in the heart: Bench to bedside evidence for potential clinical benefits? Pharmacol Res 2020; 163:105239. [PMID: 33053443 DOI: 10.1016/j.phrs.2020.105239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/19/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022]
Abstract
Cardiac inflammation has been involved in many pathological processes in the heart including cardiac hypertrophy, fibrosis, adverse remodeling, and dysfunction. Myeloid differentiation factor 2 (MD2) is a key mediating protein that has been shown to contribute to the inflammatory process. MD2 is required for the activation of TLR4 in the form of dimerization complex. Upon activation of TLR4, the signal can be sent through either myeloid differentiation primary response protein 88 (Myd88) or toll/interleukin-1 receptor (TIR) domain-containing adaptor inducing IFN-β (TRIF) proteins to activate the inflammatory response in cardiac tissue, after which the inflammatory cytokines and genes are produced. In patients with dilated cardiomyopathy, a positive correlation was demonstrated between the serum MD2 levels and mortality rate. Therefore, MD2 inhibition should provide beneficial effects in inflammation related to cardiac diseases such as obesity and heart failure. Multiple inhibitors of TLR4/MD2 interaction reportedly attenuated cardiac dysfunction and remodeling in animals with obesity and heart failure. In this review, we comprehensively summarized the reports from in vitro, in vivo, and clinical studies regarding the role of MD2 and the effects of MD2 inhibitors on cardiac inflammation, dysfunction, fibrosis, and remodeling. The information regarding the beneficial effects of MD2 inhibitors will be used to encourage future clinical use as a novel anti-inflammatory agent.
Collapse
Affiliation(s)
- Natticha Sumneang
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellent in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattayaporn Apaijai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellent in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellent in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellent in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
144
|
Kochumon S, Arefanian H, Azim R, Shenouda S, Jacob T, Abu Khalaf N, Al-Rashed F, Hasan A, Sindhu S, Al-Mulla F, Ahmad R. Stearic Acid and TNF-α Co-Operatively Potentiate MIP-1α Production in Monocytic Cells via MyD88 Independent TLR4/TBK/IRF3 Signaling Pathway. Biomedicines 2020; 8:biomedicines8100403. [PMID: 33050324 PMCID: PMC7600458 DOI: 10.3390/biomedicines8100403] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/22/2020] [Accepted: 10/07/2020] [Indexed: 01/02/2023] Open
Abstract
Increased circulatory and adipose tissue expression of macrophage inflammatory protein (MIP)-1α (CC motif chemokine ligand-3/CCL3) and its association with inflammation in the state of obesity is well documented. Since obesity is associated with increases in both stearic acid and tumor necrosis factor α (TNF-α) in circulation, we investigated whether stearic acid and TNF-α together could regulate MIP-1α/CCL3 expression in human monocytic cells, and if so, which signaling pathways were involved in MIP-1α/CCL3 modulation. Monocytic cells were treated with stearic acid and TNF-α resulted in enhanced production of MIP-1α/CCL3 compared to stearic acid or TNF-α alone. To explore the underlying mechanisms, cooperative effect of stearic acid for MIP-α/CCL3 expression was reduced by TLR4 blocking, and unexpectedly we found that the synergistic production of MIP-α/CCL3 in MyD88 knockout (KO) cells was not suppressed. In contrast, this MIP-α/CCL3 expression was attenuated by inhibiting TBK1/IRF3 activity. Cells deficient in IRF3 did not show cooperative effect of stearate/TNF-α on MIP-1α/CCL3 production. Furthermore, activation of IRF3 by polyinosinic-polycytidylic acid (poly I:C) produced a cooperative effect with TNF-α for MIP-1α/CCL3 production that was comparable to stearic acid. Individuals with obesity show high IRF3 expression in monocytes as compared to lean individuals. Furthermore, elevated levels of MIP-1α/CCL3 positively correlate with TNF-α and CD163 in fat tissues from individuals with obesity. Taken together, this study provides a novel model for the pathologic role of stearic acid to produce MIP-1α/CCL3 in the presence of TNF-α associated with obesity settings.
Collapse
Affiliation(s)
- Shihab Kochumon
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (S.K.); (H.A.); (R.A.); (S.S.); (T.J.); (F.A.-R.); (A.H.)
| | - Hossein Arefanian
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (S.K.); (H.A.); (R.A.); (S.S.); (T.J.); (F.A.-R.); (A.H.)
| | - Rafaat Azim
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (S.K.); (H.A.); (R.A.); (S.S.); (T.J.); (F.A.-R.); (A.H.)
- School of Medicine, Royal College of Surgeons in Ireland, Medical University of Bahrain, Adliya 15503, Bahrain
| | - Steve Shenouda
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (S.K.); (H.A.); (R.A.); (S.S.); (T.J.); (F.A.-R.); (A.H.)
| | - Texy Jacob
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (S.K.); (H.A.); (R.A.); (S.S.); (T.J.); (F.A.-R.); (A.H.)
| | - Nermeen Abu Khalaf
- Animal & Imaging Core Facility, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (N.A.K.); (S.S.)
| | - Fatema Al-Rashed
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (S.K.); (H.A.); (R.A.); (S.S.); (T.J.); (F.A.-R.); (A.H.)
| | - Amal Hasan
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (S.K.); (H.A.); (R.A.); (S.S.); (T.J.); (F.A.-R.); (A.H.)
| | - Sardar Sindhu
- Animal & Imaging Core Facility, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (N.A.K.); (S.S.)
| | - Fahd Al-Mulla
- Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City 15462, Kuwait;
| | - Rasheed Ahmad
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (S.K.); (H.A.); (R.A.); (S.S.); (T.J.); (F.A.-R.); (A.H.)
- Correspondence:
| |
Collapse
|
145
|
Man AW, Zhou Y, Xia N, Li H. Involvement of Gut Microbiota, Microbial Metabolites and Interaction with Polyphenol in Host Immunometabolism. Nutrients 2020; 12:E3054. [PMID: 33036205 PMCID: PMC7601750 DOI: 10.3390/nu12103054] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022] Open
Abstract
Immunological and metabolic processes are inextricably linked and important for maintaining tissue and organismal health. Manipulation of cellular metabolism could be beneficial to immunity and prevent metabolic and degenerative diseases including obesity, diabetes, and cancer. Maintenance of a normal metabolism depends on symbiotic consortium of gut microbes. Gut microbiota contributes to certain xenobiotic metabolisms and bioactive metabolites production. Gut microbiota-derived metabolites have been shown to be involved in inflammatory activation of macrophages and contribute to metabolic diseases. Recent studies have focused on how nutrients affect immunometabolism. Polyphenols, the secondary metabolites of plants, are presented in many foods and beverages. Several studies have demonstrated the antioxidant and anti-inflammatory properties of polyphenols. Many clinical trials and epidemiological studies have also shown that long-term consumption of polyphenol-rich diet protects against chronic metabolic diseases. It is known that polyphenols can modulate the composition of core gut microbiota and interact with the immunometabolism. In the present article, we review the mechanisms of gut microbiota and its metabolites on immunometabolism, summarize recent findings on how the interaction between microbiota and polyphenol modulates host immunometabolism, and discuss future research directions.
Collapse
Affiliation(s)
| | | | | | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany; (A.W.C.M.); (Y.Z.); (N.X.)
| |
Collapse
|
146
|
Charles-Messance H, Mitchelson KA, De Marco Castro E, Sheedy FJ, Roche HM. Regulating metabolic inflammation by nutritional modulation. J Allergy Clin Immunol 2020; 146:706-720. [DOI: 10.1016/j.jaci.2020.08.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
|
147
|
Sergi D, Williams LM. Potential relationship between dietary long-chain saturated fatty acids and hypothalamic dysfunction in obesity. Nutr Rev 2020; 78:261-277. [PMID: 31532491 DOI: 10.1093/nutrit/nuz056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Diet-induced hypothalamic inflammation, which leads to hypothalamic dysfunction and a loss of regulation of energy balance, is emerging as a potential driver of obesity. Excessive intake of long-chain saturated fatty acids is held to be the causative dietary component in hypothalamic inflammation. This review summarizes current evidence on the role of long-chain saturated fatty acids in promoting hypothalamic inflammation and the related induction of central insulin and leptin insensitivity. Particularly, the present review focuses on the molecular mechanisms linking long-chain saturated fatty acids and hypothalamic inflammation, emphasizing the metabolic fate of fatty acids and the resulting lipotoxicity, which is a key driver of hypothalamic dysfunction. In conclusion, long-chain saturated fatty acids are key nutrients that promote hypothalamic inflammation and dysfunction by fostering the build-up of lipotoxic lipid species, such as ceramide. Furthermore, when long-chain saturated fatty acids are consumed in combination with high levels of refined carbohydrates, the proinflammatory effects are exacerbated via a mechanism that relies on the formation of advanced glycation end products.
Collapse
Affiliation(s)
- Domenico Sergi
- Nutrition and Health Substantiation Group, Nutrition and Health Program, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, South Australia, Australia
| | - Lynda M Williams
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| |
Collapse
|
148
|
Sivinski SE, Mamedova LK, Rusk RA, Elrod CC, Swartz TH, McGill JM, Bradford BJ. Development of an in vitro macrophage screening system on the immunomodulating effects of feed components. J Anim Sci Biotechnol 2020; 11:89. [PMID: 32884746 PMCID: PMC7460759 DOI: 10.1186/s40104-020-00497-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
Background While feed components capable of modulating the immune system are highly sought after and marketed, often little evidence is available to support functional immune response claims. Thus, a high-throughput in vitro cell screening system was developed to test these compounds for innate immune signaling effects, using Saccharomyces cerevisiae and its cell wall components in addition to lauric acid and its esters as models in two separate experiments. This screening system utilized RAW 264.7 murine macrophages to assess live S. cerevisiae cells and S. cerevisiae-derived cell wall components β-glucan, mannan, and zymosan (a crude cell wall preparation containing both β-glucan and mannan). D-mannose was also evaluated as the monomer of mannan. We also examined the effect of a saturated fatty acid (C12:0, lauric acid) and its esters (methyl laurate and glycerol monolaurate) on innate immune cell activation and cellular metabolism. RAW cells were transfected with a vector that drives expression of alkaline phosphatase upon promoter activation of nuclear factor κ-light-chain-enhancer of activated B cells (NFκB), a major inflammatory/immune transcription factor. RAW cells were incubated with 0.01, 0.1 or 1 mg/mL of yeast compounds alone or RAW cells were challenged with LPS and then incubated with yeast compounds. In a separate experiment, RAW cells were incubated with 0, 0.5, 2.5, 12.5, 62.5, and 312.5 μmol/L of lauric acid, methyl laurate, or glycerol monolaurate alone, or RAW cells were challenged with LPS and then incubated with fatty acid treatments. Results Treatment with zymosan or β-glucan alone induced NFκB activation in a dose-dependent manner, whereas treatment with D-mannose, mannan, or live S. cerevisiae cells did not. Post-treatment with mannan after an LPS challenge decreased NFκB activation, suggesting that this treatment may ameliorate LPS-induced inflammation. Slight increases in NFκB activation were found when fatty acid treatments were applied in the absence of LPS, yet substantial reductions in NFκB activation were seen when treatments were applied following an LPS challenge. Conclusions Overall, this cell screening system using RAW macrophages was effective, high-throughput, and sensitive to feed components combined with LPS challenges, indicating modulation of innate immune signaling in vitro. Graphical abstract ![]()
Collapse
Affiliation(s)
- S E Sivinski
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, 66506 USA
| | - L K Mamedova
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, 66506 USA
| | - R A Rusk
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, 66506 USA
| | - C C Elrod
- Natural Biologics, Newfield, NY 14867 USA
| | - T H Swartz
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, 66506 USA
| | - J M McGill
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, 66506 USA
| | - B J Bradford
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, 66506 USA.,2265K Anthony Hall, 474 S. Shaw Lane, East Lansing, MI 48824 USA
| |
Collapse
|
149
|
Allen JN, Dey A, Cai J, Zhang J, Tian Y, Kennett M, Ma Y, Liang TJ, Patterson AD, Hankey-Giblin PA. Metabolic Profiling Reveals Aggravated Non-Alcoholic Steatohepatitis in High-Fat High-Cholesterol Diet-Fed Apolipoprotein E-Deficient Mice Lacking Ron Receptor Signaling. Metabolites 2020; 10:metabo10080326. [PMID: 32796650 PMCID: PMC7464030 DOI: 10.3390/metabo10080326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) represents the progressive sub-disease of non-alcoholic fatty liver disease that causes chronic liver injury initiated and sustained by steatosis and necroinflammation. The Ron receptor is a tyrosine kinase of the Met proto-oncogene family that potentially has a beneficial role in adipose and liver-specific inflammatory responses, as well as glucose and lipid metabolism. Since its discovery two decades ago, the Ron receptor has been extensively investigated for its differential roles on inflammation and cancer. Previously, we showed that Ron expression on tissue-resident macrophages limits inflammatory macrophage activation and promotes a repair phenotype, which can retard the progression of NASH in a diet-induced mouse model. However, the metabolic consequences of Ron activation have not previously been investigated. Here, we explored the effects of Ron receptor activation on major metabolic pathways that underlie the development and progression of NASH. Mice lacking apolipoprotein E (ApoE KO) and double knockout (DKO) mice that lack ApoE and Ron were maintained on a high-fat high-cholesterol diet for 18 weeks. We observed that, in DKO mice, the loss of ligand-dependent Ron signaling aggravated key pathological features in steatohepatitis, including steatosis, inflammation, oxidation stress, and hepatocyte damage. Transcriptional programs positively regulating fatty acid (FA) synthesis and uptake were upregulated in the absence of Ron receptor signaling, whereas lipid disposal pathways were downregulated. Consistent with the deregulation of lipid metabolism pathways, the DKO animals exhibited increased accumulation of FAs in the liver and decreased level of bile acids. Altogether, ligand-dependent Ron receptor activation provides protection from the deregulation of major metabolic pathways that initiate and aggravate non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Joselyn N. Allen
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Adwitia Dey
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Jingtao Zhang
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Yuan Tian
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Mary Kennett
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Yanling Ma
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD 20814, USA; (Y.M.); (T.J.L.)
| | - T. Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD 20814, USA; (Y.M.); (T.J.L.)
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
- Correspondence: (A.D.P.); (P.A.H.-G.); Tel.: +1-814-867-4565; (A.D.P.); +1-814-863-0128 (P.A.H.-G.)
| | - Pamela A. Hankey-Giblin
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
- Correspondence: (A.D.P.); (P.A.H.-G.); Tel.: +1-814-867-4565; (A.D.P.); +1-814-863-0128 (P.A.H.-G.)
| |
Collapse
|
150
|
Kim HS, Ren G, Kim T, Bhatnagar S, Yang Q, Bahk YY, Kim JA. Metformin reduces saturated fatty acid-induced lipid accumulation and inflammatory response by restoration of autophagic flux in endothelial cells. Sci Rep 2020; 10:13523. [PMID: 32782332 PMCID: PMC7419289 DOI: 10.1038/s41598-020-70347-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy, an integral part of the waste recycling process, plays an important role in cellular physiology and pathophysiology. Impaired autophagic flux causes ectopic lipid deposition, which is defined as the accumulation of lipids in non-adipose tissue. Ectopic lipid accumulation is observed in patients with cardiometabolic syndrome, including obesity, diabetes, insulin resistance, and cardiovascular complications. Metformin is the first line of treatment for type 2 diabetes, and one of the underlying mechanisms for the anti-diabetic effect of metformin is mediated by the stimulation of AMP-activated protein kinase (AMPK). Because the activation of AMPK is crucial for the initiation of autophagy, we hypothesize that metformin reduces the accumulation of lipid droplets by increasing autophagic flux in vascular endothelial cells. Incubation of vascular endothelial cells with saturated fatty acid (SFA) increased the accumulation of lipid droplets and impaired autophagic flux. We observed that the accumulation of lipid droplets was reduced, and the autophagic flux was enhanced by treatment with metformin. The knock-down of AMPKα by using siRNA blunted the effect of metformin. Furthermore, treatment with SFA or inhibition of autophagy increased leukocyte adhesion, whereas treatment with metformin decreased the SFA-induced leukocyte adhesion. The results suggest a novel mechanism by which metformin protects vascular endothelium from SFA-induced ectopic lipid accumulation and pro-inflammatory responses. In conclusion, improving autophagic flux may be a therapeutic strategy to protect endothelial function from dyslipidemia and diabetic complications.
Collapse
Affiliation(s)
- Hae-Suk Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Guang Ren
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Teayoun Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Sushant Bhatnagar
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Qinglin Yang
- Department of Nutrition, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Young Yil Bahk
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, 27478, Republic of Korea
| | - Jeong-A Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA.
| |
Collapse
|