101
|
Papaevangelou E, Esteves AM, Dasgupta P, Galustian C. Cyto-IL-15 synergizes with the STING agonist ADU-S100 to eliminate prostate tumors and confer durable immunity in mouse models. Front Immunol 2023; 14:1196829. [PMID: 37465665 PMCID: PMC10350564 DOI: 10.3389/fimmu.2023.1196829] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
Introduction Prostate cancer is one of the most commonly diagnosed malignancies in men with high mortality rates. Despite the recent therapeutic advances, such as immunotherapies, survival of patients with advance disease remains significantly low. Blockade of immune checkpoints has led to low response rates in these patients probably due to the immunosuppressive microenvironment and low mutation burden of prostate tumors. Combination of multiple immunotherapeutic regimes has also been unsatisfactory due to augmented adverse effects. To activate multiple immune-stimulatory pathways in the hostile prostate cancer microenvironment, we used a combination of cytotopically modified interleukin-15 (cyto-IL-15) with the stimulator of interferon genes (STING) agonist, ADU-S100. Methods To determine whether this combination regime could lead to both local and systemic anti-tumor effects, intratumoral administration of these agents was used in murine models of prostate cancer. Tumor growth and mouse survival were monitored, and ex vivo analyses, and RNA sequencing were performed on the tumors. Results Intratumorally injected ADU-S100 and cyto-IL-15 synergized to eliminate tumors in 58-67% of mice with unilateral tumors and promoted abscopal immunity in 50% of mice with bilateral tumors treated only at one side. Moreover, this combination regime offered immunoprotection against tumor rechallenge in 83% of cured mice. The efficacy of the combination treatment was associated with a strong innate and adaptive immune activation and induction of apoptotic and necrotic cell death. Cytokines, including type I and II interferons, and cytokine signalling pathways were activated, NK and T cell mediated cytotoxicity was increased, and B cells were activated both locally and systemically. While ADU-S100 led to an ulcerative pathology at the injection site, no other adverse effects were observed. Discussion Localised administration of a STING agonist together with cyto-IL-15 can confer significant systemic benefits and long-lasting immunity against prostate tumors while reducing immune related toxicities.
Collapse
Affiliation(s)
- Efthymia Papaevangelou
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, Guy’s Hospital, London, United Kingdom
- Institute of Medical and Biomedical Education, St. George’s University of London, London, United Kingdom
| | - Ana M. Esteves
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Prokar Dasgupta
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, Guy’s Hospital, London, United Kingdom
- Urology Centre, Guy’s Hospital, London, United Kingdom
| | - Christine Galustian
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, Guy’s Hospital, London, United Kingdom
| |
Collapse
|
102
|
Xue D, Lu S, Zhang H, Zhang L, Dai Z, Kaufman DS, Zhang J. Induced pluripotent stem cell-derived engineered T cells, natural killer cells, macrophages, and dendritic cells in immunotherapy. Trends Biotechnol 2023; 41:907-922. [PMID: 36858941 DOI: 10.1016/j.tibtech.2023.02.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 03/03/2023]
Abstract
T cells, natural killer (NK) cells, macrophages (Macs), and dendritic cells (DCs) are among the most common sources for immune-cell-based therapies for cancer. Antitumor activity can be enhanced in induced pluripotent stem cell (iPSC)-derived immune cells by using iPSCs as a platform for stable genetic modifications that impact immuno-activating or -suppressive signaling pathways, such as transducing a chimeric antigen receptor (CAR) or deletion of immunosuppressive checkpoint molecules. This review outlines the utility of four iPSC-derived immune-cell-based therapies, highlight the latest progress and future trends in the genome-editing strategies designed to improve efficacy, safety, and universality, and provides perspectives that compare different contexts in which each of these iPSC-derived immune cell types can be most effectively used.
Collapse
Affiliation(s)
- Dixuan Xue
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wen Yi Road, Hangzhou 311121, China
| | - Shan Lu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wen Yi Road, Hangzhou 311121, China
| | - Hailing Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wen Yi Road, Hangzhou 311121, China
| | - Li Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wen Yi Road, Hangzhou 311121, China
| | - Zhijun Dai
- Department of Breast Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Dan S Kaufman
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wen Yi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Center of Gene/Cell Engineering and Genome Medicine, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
103
|
Xiong Q, Zhu J, Zhang Y, Deng H. CAR-NK cell therapy for glioblastoma: what to do next? Front Oncol 2023; 13:1192128. [PMID: 37404752 PMCID: PMC10315652 DOI: 10.3389/fonc.2023.1192128] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/29/2023] [Indexed: 07/06/2023] Open
Abstract
Glioblastoma is a malignant tumor with the highest morbidity and mortality in the central nervous system. Conventional surgical resection combined with radiotherapy or chemotherapy has a high recurrence rate and poor prognosis. The 5-year survival rate of patients is less than 10%. In tumor immunotherapy, CAR-T cell therapy represented by chimeric antigen receptor-modified T cells has achieved great success in hematological tumors. However, the application of CAR-T cells in solid tumors such as glioblastoma still faces many challenges. CAR-NK cells are another potential adoptive cell therapy strategy after CAR-T cells. Compared with CAR-T cell therapy, CAR-NK cells have similar anti-tumor effects. CAR-NK cells can also avoid some deficiencies in CAR-T cell therapy, a research hotspot in tumor immunity. This article summarizes the preclinical research status of CAR-NK cells in glioblastoma and the problems and challenges faced by CAR-NK in glioblastoma.
Collapse
|
104
|
Lui G, Minnar CM, Soon-Shiong P, Schlom J, Gameiro SR. Exploiting an Interleukin-15 Heterodimeric Agonist (N803) for Effective Immunotherapy of Solid Malignancies. Cells 2023; 12:1611. [PMID: 37371081 DOI: 10.3390/cells12121611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 06/29/2023] Open
Abstract
Identifying effective immunotherapies for solid tumors remains challenging despite the significant clinical responses observed in subsets of patients treated with immune checkpoint inhibitors. Interleukin-15 (IL-15) is a promising cytokine for the treatment of cancer as it stimulates NK and CD8+ lymphocytes. However, unfavorable pharmacokinetics and safety concerns render recombinant IL-15 (rIL-15) a less attractive modality. These shortcomings were addressed by the clinical development of heterodimeric IL-15 agonists, including N803. In preclinical tumor models, N803 elicited significant Th1 immune activation and tumor suppressive effects, primarily mediated by NK and CD8+ T lymphocytes. In addition, multiple clinical studies have demonstrated N803 to be safe for the treatment of cancer patients. The combination of N803 with the immune checkpoint inhibitor nivolumab demonstrated encouraging clinical responses in nivolumab-naïve and nivolumab-refractory patients with non-small cell lung cancer. In a recent Phase II/III clinical study, most Bacillus Calmette-Guerin (BCG)-refractory bladder cancer patients treated with N803 plus BCG experienced durable complete responses. Currently, N803 is being evaluated preclinically and clinically in combination with various agents, including chemotherapeutics, immune checkpoint inhibitors, vaccines, and other immuno-oncology agents. This report will review the mechanism(s) of action of N803 and how it relates to the preclinical and clinical studies of N803.
Collapse
Affiliation(s)
- Grace Lui
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christine M Minnar
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sofia R Gameiro
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
105
|
Martomo SA, Patel J. Evaluation of the clinical molecule anti-human-PD-L1/IL-15 KD033 in the human-PD-1/PD-L1-expressing murine model demonstrates PD-L1 targeting of IL-15 in vivo. Cancer Immunol Immunother 2023; 72:1941-1950. [PMID: 36454338 PMCID: PMC10198867 DOI: 10.1007/s00262-022-03331-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022]
Abstract
KD033 is a clinical-stage immunocytokine composed of a high-affinity anti-human-PD-L1 antibody and the human IL-15/ IL-15 receptor sushi-domain complex. We have previously shown that KD033-surrogate, the anti-mouse-PD-L1/IL-15 immunocytokine, was efficacious in several syngeneic murine tumor models including those that were refractory to anti-PD-1/PD-L1 checkpoint blockers. KD033-surrogate showed better efficacy than the combination treatment of its component, anti-PD-L1 antibody with the non-targeting IL-15. KD033-surrogate was also efficacious in both low and high PD-L1-expressing tumors. In this study, we have utilized double knock-in mice expressing functional human PD-1/PD-L1 to show that the clinical molecule, KD033, reproduced the anti-tumor efficacy observed with KD033-surrogate in the syngeneic models. KD033 was equally efficacious in reducing the growth of human-PD-L1 positive (hPDL1+) and negative (hPDL1-) MC38 murine tumors. We observed similar peripheral pharmacodynamics changes in KD033-treated mice bearing either hPDL1+ or hPDL1- MC38 tumors. However, different transcriptomic profiles were observed between KD033-treated hPDL1+ and hPDL1- MC38 tumors with marked changes involving mostly downregulated genes in hPDL1- tumors in addition to the immune-related genes changes observed in both hPDL1+ and hPDL1- MC38 tumors. Cytotoxic and myeloid cell signatures were upregulated in both tumors with relatively greater increases observed in hPDL1- MC38 tumors. These effects of KD033 treatment in PD-L1 positive and negative tumors demonstrate the role of PD-L1 in targeting of IL-15 cytokine in vivo.
Collapse
Affiliation(s)
- Stella A Martomo
- Kadmon Corporation, a Sanofi Company, 450 East 29th Street, New York, NY, 10016, USA.
| | - Jeegar Patel
- Kadmon Corporation, a Sanofi Company, 450 East 29th Street, New York, NY, 10016, USA
| |
Collapse
|
106
|
Stellas D, Karaliota S, Stravokefalou V, Angel M, Nagy BA, Goldfarbmuren KC, Bergamaschi C, Felber BK, Pavlakis GN. Tumor eradication by hetIL-15 locoregional therapy correlates with an induced intratumoral CD103 intCD11b + dendritic cell population. Cell Rep 2023; 42:112501. [PMID: 37178117 PMCID: PMC10758290 DOI: 10.1016/j.celrep.2023.112501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 03/05/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Locoregional monotherapy with heterodimeric interleukin (IL)-15 (hetIL-15) in a triple-negative breast cancer (TNBC) orthotopic mouse model resulted in tumor eradication in 40% of treated mice, reduction of metastasis, and induction of immunological memory against breast cancer cells. hetIL-15 re-shaped the tumor microenvironment by promoting the intratumoral accumulation of cytotoxic lymphocytes, conventional type 1 dendritic cells (cDC1s), and a dendritic cell (DC) population expressing both CD103 and CD11b markers. These CD103intCD11b+DCs share phenotypic and gene expression characteristics with both cDC1s and cDC2s, have transcriptomic profiles more similar to monocyte-derived DCs (moDCs), and correlate with tumor regression. Therefore, hetIL-15, a cytokine directly affecting lymphocytes and inducing cytotoxic cells, also has an indirect rapid and significant effect on the recruitment of myeloid cells, initiating a cascade for tumor elimination through innate and adoptive immune mechanisms. The intratumoral CD103intCD11b+DC population induced by hetIL-15 may be targeted for the development of additional cancer immunotherapy approaches.
Collapse
Affiliation(s)
- Dimitris Stellas
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece.
| | - Sevasti Karaliota
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Basic Science Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Vasiliki Stravokefalou
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Pharmacology, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
| | - Matthew Angel
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Bethany A Nagy
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Katherine C Goldfarbmuren
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
107
|
Cai M, Huang X, Huang X, Ju D, Zhu YZ, Ye L. Research progress of interleukin-15 in cancer immunotherapy. Front Pharmacol 2023; 14:1184703. [PMID: 37251333 PMCID: PMC10213988 DOI: 10.3389/fphar.2023.1184703] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Interleukin-15 (IL-15) is a cytokine that belongs to the interleukin-2 (IL-2) family and is essential for the development, proliferation, and activation of immune cells, including natural killer (NK) cells, T cells and B cells. Recent studies have revealed that interleukin-15 also plays a critical role in cancer immunotherapy. Interleukin-15 agonist molecules have shown that interleukin-15 agonists are effective in inhibiting tumor growth and preventing metastasis, and some are undergoing clinical trials. In this review, we will summarize the recent progress in interleukin-15 research over the past 5 years, highlighting its potential applications in cancer immunotherapy and the progress of interleukin-15 agonist development.
Collapse
Affiliation(s)
- Menghan Cai
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Xuan Huang
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiting Huang
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Dianwen Ju
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Yi Zhun Zhu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Li Ye
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
108
|
Felices M, Wesley E, Bendzick LE, Kodal B, Hopps R, Grzywacz B, Hinderlie P, Miller JS, Geller MA. Reverse Translation Identifies the Synergistic Role of Immune Checkpoint Blockade and IL15 to Enhance Immunotherapy of Ovarian Cancer. Cancer Immunol Res 2023; 11:674-686. [PMID: 36807510 PMCID: PMC10155036 DOI: 10.1158/2326-6066.cir-22-0600] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/02/2022] [Accepted: 02/14/2023] [Indexed: 02/22/2023]
Abstract
Immune checkpoint blockade (ICB) has changed the standard of care for many patients with cancer, yet no ICB is approved for ovarian cancer. We hypothesized that maintenance therapy with an IL15 "superagonist" (N-803) and ICB in combination could induce potent immune activation in ovarian cancer. Using flow cytometry, cytometry by time of flight analysis, and cytotoxicity assays, we analyzed patient samples from women with advanced epithelial ovarian cancer treated with N-803 for indications of PD-1/PD-L1 upregulation with this treatment. In addition, ICB and N-803 were evaluated in preclinical studies to determine the functional impact of combination therapy on natural killer (NK) cells in vitro and in vivo. We observed that N-803 stimulated initial NK-cell expansion in patient samples; however, proliferation was not sustained beyond 2 weeks despite continued treatment. This result was reverse translated back to the laboratory to determine the functional relevance of this finding. The addition of ICB with an antibody-dependent cellular cytotoxicity IgG1 antibody against PD-L1 (avelumab) or an IgG4 antibody against PD-1 (pembrolizumab) enhanced N-803 induced NK-cell function in vitro. Using models of human ovarian cancer and NK-cell adoptive transfer in mice, we showed enhanced antitumor control with N-803 and ICB, as well as a combination effect that enhanced NK-cell persistence and expansion in vivo. This work suggests that PD-1/PD-L1 blockade combined with IL15 signaling may overcome resistance to cytokine therapy in ovarian cancer.
Collapse
Affiliation(s)
- Martin Felices
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Erin Wesley
- Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Laura E. Bendzick
- Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Behiye Kodal
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Rachel Hopps
- Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Bartosz Grzywacz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Peter Hinderlie
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Jeffrey S. Miller
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Melissa A. Geller
- Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
109
|
Donne R, Lujambio A. The liver cancer immune microenvironment: Therapeutic implications for hepatocellular carcinoma. Hepatology 2023; 77:1773-1796. [PMID: 35989535 PMCID: PMC9941399 DOI: 10.1002/hep.32740] [Citation(s) in RCA: 268] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/26/2022] [Accepted: 08/18/2022] [Indexed: 12/19/2022]
Abstract
The liver is the sixth most common site of primary cancer in humans and the fourth leading cause of cancer-related death in the world. Hepatocellular carcinoma (HCC) accounts for 90% of liver cancers. HCC is a prevalent disease with a progression that is modulated by the immune system. Half of the patients with HCC receive systemic therapies, traditionally sorafenib or lenvatinib, as a first-line therapy. In the last few years, immune-checkpoint inhibitors (ICIs) have revolutionized cancer therapy and have gained an increased interest in the treatment of HCC. In 2020, the combination of atezolizumab (anti-programmed death-ligand 1) and bevacizumab (anti-vascular endothelial growth factor) improved overall survival over sorafenib, resulting in Food and Drug Administration (FDA) approval as a first-line treatment for patients with advanced HCC. Despite these major advances, a better molecular and cellular characterization of the tumor microenvironment is still needed because it has a crucial role in the development and progression of HCC. Inflamed (hot) and noninflamed (cold) HCC tumors and genomic signatures have been associated with response to ICIs. However, there are no additional biomarkers to guide clinical decision-making. Other immune-targeting strategies, such as adoptive T-cell transfer, vaccination, and virotherapy, are currently under development. This review provides an overview on the HCC immune microenvironment, different cellular players, current available immunotherapies, and potential immunotherapy modalities.
Collapse
Affiliation(s)
- Romain Donne
- Department of Oncological Sciences , Icahn School of Medicine at Mount Sinai , New York , New York , USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai , Tisch Cancer Institute , New York , New York , USA
- Icahn School of Medicine at Mount Sinai , The Precision Immunology Institute , New York , New York , USA
| | - Amaia Lujambio
- Department of Oncological Sciences , Icahn School of Medicine at Mount Sinai , New York , New York , USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai , Tisch Cancer Institute , New York , New York , USA
- Icahn School of Medicine at Mount Sinai , The Precision Immunology Institute , New York , New York , USA
- Graduate School of Biomedical Sciences , Icahn School of Medicine at Mount Sinai , New York , New York , USA
| |
Collapse
|
110
|
Inoue Y, Inui N, Karayama M, Asada K, Fujii M, Matsuura S, Uto T, Hashimoto D, Matsui T, Ikeda M, Yasui H, Hozumi H, Suzuki Y, Furuhashi K, Enomoto N, Fujisawa T, Suda T. Cytokine profiling identifies circulating IL-6 and IL-15 as prognostic stratifiers in patients with non-small cell lung cancer receiving anti-PD-1/PD-L1 blockade therapy. Cancer Immunol Immunother 2023:10.1007/s00262-023-03453-z. [PMID: 37099186 DOI: 10.1007/s00262-023-03453-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 04/16/2023] [Indexed: 04/27/2023]
Abstract
Whether circulating levels of specific cytokines at baseline link with treatment efficacy of immune checkpoint blockade (ICB) therapy in patients with non-small cell lung cancer remains unknown. In this study, serum samples were collected in two independent, prospective, multicenter cohorts before the initiation of ICB. Twenty cytokines were quantified, and cutoff values were determined by receiver operating characteristic analyses to predict non-durable benefit. The associations of each dichotomized cytokine status with survival outcomes were assessed. In the discovery cohort (atezolizumab cohort; N = 81), there were significant differences in progression-free survival (PFS) in accordance with the levels of IL-6 (log-rank test, P = 0.0014), IL-15 (P = 0.00011), MCP-1 (P = 0.013), MIP-1β (P = 0.0035), and PDGF-AB/BB (P = 0.016). Of these, levels of IL-6 and IL-15 were also significantly prognostic in the validation cohort (nivolumab cohort, N = 139) for PFS (log-rank test, P = 0.011 for IL-6 and P = 0.00065 for IL-15) and overall survival (OS; P = 3.3E-6 for IL-6 and P = 0.0022 for IL-15). In the merged cohort, IL-6high and IL-15high were identified as independent unfavorable prognostic factors for PFS and OS. The combined IL-6 and IL-15 status stratified patient survival outcomes into three distinct groups for both PFS and OS. In conclusion, combined assessment of circulating IL-6 and IL-15 levels at baseline provides valuable information to stratify the clinical outcome of patients with non-small cell lung cancer treated with ICB. Further studies are required to decipher the mechanistic basis of this finding.
Collapse
Affiliation(s)
- Yusuke Inoue
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, 431-3192, Japan.
| | - Naoki Inui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, 431-3192, Japan
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, 431-3192, Japan
| | - Masato Karayama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, 431-3192, Japan
- Department of Chemotherapy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, 431-3192, Japan
| | - Kazuhiro Asada
- Department of Respiratory Medicine, Shizuoka General Hospital, 4-27-1 Kita-Ando, Shizuoka, 420-8527, Japan
| | - Masato Fujii
- Department of Respiratory Medicine, Shizuoka City Shizuoka Hospital, 10-93 Otemachi, Shizuoka, 420-8630, Japan
| | - Shun Matsuura
- Department of Respiratory Medicine, Fujieda Municipal General Hospital, 4-1-11 Surugadai, Fujieda, 426-8677, Japan
| | - Tomohiro Uto
- Department of Respiratory Medicine, Iwata City Hospital, 512-3 Ohkubo, Iwata, 438-8550, Japan
| | - Dai Hashimoto
- Department of Pulmonary Medicine, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Naka-Ku, Hamamatsu, 430-8558, Japan
| | - Takashi Matsui
- Department of Respiratory Medicine, Seirei Mikatahara General Hospital, 3453 Mikatahara, Kita-Ku, Hamamatsu, 433-8558, Japan
| | - Masaki Ikeda
- Department of Respiratory Medicine, Shizuoka Saiseikai General Hospital, 1-1-1 Oshika, Shizuoka, 422-8527, Japan
| | - Hideki Yasui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, 431-3192, Japan
| | - Hironao Hozumi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, 431-3192, Japan
| | - Yuzo Suzuki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, 431-3192, Japan
| | - Kazuki Furuhashi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, 431-3192, Japan
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, 431-3192, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, 431-3192, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, 431-3192, Japan
| |
Collapse
|
111
|
Cimpean M, Keppel MP, Gainullina A, Fan C, Schedler NC, Swain A, Kolicheski A, Shapiro H, Young HA, Wang T, Artyomov MN, Cooper MA. IL-15 priming alters IFN-γ regulation in murine NK cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.23.537947. [PMID: 37163083 PMCID: PMC10168240 DOI: 10.1101/2023.04.23.537947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Natural killer (NK) effector functions can be triggered by inflammatory cytokines and engagement of activating receptors. NK cell production of IFN-γ, an important immunoregulatory cytokine, exhibits activation-specific IFN-γ regulation. Resting murine NK cells exhibit activation-specific metabolic requirements for IFN-γ production, which are reversed for activating receptor-mediated stimulation following IL-15 priming. While both cytokine and activating receptor stimulation leads to similar IFN-γ protein production, only cytokine stimulation upregulates Ifng transcript, suggesting that protein production is translationally regulated after receptor stimulation. Based on these differences in IFN-γ regulation, we hypothesized that ex vivo IL-15 priming of murine NK cells allows a switch to IFN-γ transcription upon activating receptor engagement. Transcriptional analysis of primed NK cells compared to naïve cells or cells cultured with low-dose IL-15 demonstrated that primed cells strongly upregulated Ifng transcript following activating receptor stimulation. This was not due to chromatin accessibility changes in the Ifng locus or changes in ITAM signaling, but was associated with a distinct transcriptional signature induced by ITAM stimulation of primed compared to naïve NK cells. Transcriptional analyses identified a common signature of c-Myc (Myc) targets associated with Ifng transcription. While Myc marked NK cells capable of Ifng transcription, Myc itself was not required for Ifng transcription using a genetic model of Myc deletion. This work highlights altered regulatory networks in IL-15 primed cells, resulting in distinct gene expression patterns and IFN-γ regulation in response to activating receptor stimulation.
Collapse
|
112
|
Lu D, Yadav R, Holder P, Chiang E, Sanjabi S, Poon V, Bernett M, Varma R, Liu K, Leung I, Bogaert L, Desjarlais J, Shivva V, Hosseini I, Ramanujan S. Complex PK-PD of an engineered IL-15/IL-15Rα-Fc fusion protein in cynomolgus monkeys: QSP modeling of lymphocyte dynamics. Eur J Pharm Sci 2023; 186:106450. [PMID: 37084985 DOI: 10.1016/j.ejps.2023.106450] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/29/2023] [Accepted: 04/18/2023] [Indexed: 04/23/2023]
Abstract
XmAb24306 is a lymphoproliferative interleukin (IL)-15/IL-15 receptor α (IL-15Rα) Fc-fusion protein currently under clinical investigation as an immunotherapeutic agent for cancer treatment. XmAb24306 contains mutations in IL-15 that attenuate its affinity to the heterodimeric IL-15 receptor βγ (IL-15R). We observe substantially prolonged pharmacokinetics (PK) (half-life ∼ 2.5 to 4.5 days) in single- and repeat-dose cynomolgus monkey (cyno) studies compared to wild-type IL-15 (half-life ∼ 1 hour), leading to increased exposure and enhanced and durable expansion of NK cells, CD8+ T cells and CD4-CD8- (double negative [DN]) T cells. Drug clearance varied with dose level and time post-dose, and PK exposure decreased upon repeated dosing, which we attribute to increased target-mediated drug disposition (TMDD) resulting from drug-induced lymphocyte expansion (i.e., pharmacodynamic (PD)-enhanced TMDD). We developed a quantitative systems pharmacology (QSP) model to quantify the complex PKPD behaviors due to the interactions of XmAb24306 with multiple cell types (CD8+, CD4+, DN T cells, and NK cells) in the peripheral blood (PB) and lymphoid tissues. The model, which includes nonspecific drug clearance, binding to and TMDD by IL15R differentially expressed on lymphocyte subsets, and resultant lymphocyte margination/migration out of PB, expansion in lymphoid tissues, and redistribution to the blood, successfully describes the systemic PK and lymphocyte kinetics observed in the cyno studies. Results suggest that after 3 doses of every-two-week (Q2W) doses up to 70 days, the relative contributions of each elimination pathway to XmAb24306 clearance are: DN T cells > NK cells > CD8+ T cells > nonspecific clearance > CD4+ T cells. Modeling suggests that observed cellular expansion in blood results from the influx of cells expanded by the drug in lymphoid tissues. The model is used to predict lymphoid tissue expansion and to simulate PK-PD for different dose regimens. Thus, the model provides insight into the mechanisms underlying the observed PK-PD behavior of an engineered cytokine and can serve as a framework for the rapid integration and analysis of data that emerges from ongoing clinical studies in cancer patients as single-agent or given in combination.
Collapse
Affiliation(s)
- Dan Lu
- Genentech, Inc., South San Francisco, CA, USA.
| | | | | | | | | | - Victor Poon
- Genentech, Inc., South San Francisco, CA, USA
| | | | | | - Ke Liu
- Xencor, Inc. Monrovia, CA, USA
| | | | | | | | | | | | | |
Collapse
|
113
|
Clubb JD, Gao TA, Chen YY. Synthetic Biology in the Engineering of CAR-T and CAR-NK Cell Therapies: Facts and Hopes. Clin Cancer Res 2023; 29:1390-1402. [PMID: 36454122 PMCID: PMC10106357 DOI: 10.1158/1078-0432.ccr-22-1491] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022]
Abstract
The advent of modern synthetic-biology tools has enabled the development of cellular treatments with engineered specificity, leading to a new paradigm in anticancer immunotherapy. T cells have been at the forefront of such development, with six chimeric antigen receptor-modified T-cell products approved by the FDA for the treatment of hematologic malignancies in the last 5 years. Natural killer (NK) cells are innate lymphocytes with potent cytotoxic activities, and they have become an increasingly attractive alternative to T-cell therapies due to their potential for allogeneic, "off-the-shelf" applications. However, both T cells and NK cells face numerous challenges, including antigen escape, the immunosuppressive tumor microenvironment, and potential for severe toxicity. Many synthetic-biology strategies have been developed to address these obstacles, most commonly in the T-cell context. In this review, we discuss the array of strategies developed to date, their application in the NK-cell context, as well as opportunities and challenges for clinical translation.
Collapse
Affiliation(s)
- Justin D. Clubb
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Torahito A. Gao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yvonne Y. Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA, USA
| |
Collapse
|
114
|
Wang Y, Chen H, Zhao M, Feng L, Liu Z, Zeng Q, Shi W, Zhu W, Song L, Zhu J, Lu H. Oxidation and reduction analysis of therapeutic recombinant human interleukin-15 by HPLC and LC-MS. Appl Microbiol Biotechnol 2023; 107:3217-3227. [PMID: 37058229 DOI: 10.1007/s00253-023-12508-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/15/2023]
Abstract
Being an important immune stimulant of T lymphocytes and NK cells, the recombinant human interleukin-15 (rhIL-15) has been extensively researched in tumor immunotherapy or as a vaccine adjuvant. However, the rhIL-15 manufacturing level lags far behind its growing clinical demand due to the lack of efficient and exact analysis methodologies to characterize the trace by-products, typically redox and deamidation. In order to improve the production and quality control of rhIL-15, here we developed an expanded resolution reverse-phase high-performance liquid chromatography (ExRP-HPLC) approach to quickly and accurately analyze the oxidation and reduction by-products of rhIL-15, which may appear during the purification processes. Firstly, we developed RP-HPLC methods which can separate rhIL-15 fractions with different levels of oxidization or reduction, respectively, and the redox status of each peak was then determined by measuring the intact mass with a high-resolution mass spectrometer (UPLC-MS). To further clarify the complex pattern of oxidization of specific residues, the peaks with various oxidation levels were digested into pieces for peptide mapping to pinpoint the exact changes of oxygen and hydrogen atoms in the rhIL-15 by-products. In addition, we performed the ExRP-HPLC and UPLC-MS analysis of partially deamidated rhIL-15 to characterize their oxidation and reduction. Our work is the first in-depth characterization of the redox by-products of rhIL-15, even for deamidated impurities. The ExRP-HPLC method we reported can facilitate the rapid and accurate quality analysis of rhIL-15, which is substantially helpful for streamlining the industrial manufacturing of rhIL-15 to better meet the demands of clinical applications. KEYPOINTS: • The oxidization and reduction rhIL-15 by-products were characterized for the first time. • The changes of oxygen and hydrogen atoms in rhIL-15 redox by-products were accurately determined by UPLC-MS. • Oxidation and reduction by-products of deamidated rhIL-15 were further analyzed.
Collapse
Affiliation(s)
- Yang Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Huanhuan Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Meiqi Zhao
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lei Feng
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Zexin Liu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qiongya Zeng
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wenqiang Shi
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wen Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Luyao Song
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Huili Lu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
115
|
Ma N, Hua R, Yang Y, Liu ZC, Pan J, Yu BY, Sun YF, Xie D, Wang Y, Li ZG. PES1 reduces CD8 + T cell infiltration and immunotherapy sensitivity via interrupting ILF3-IL15 complex in esophageal squamous cell carcinoma. J Biomed Sci 2023; 30:20. [PMID: 36959575 PMCID: PMC10037800 DOI: 10.1186/s12929-023-00912-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/11/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Although immune checkpoint blockade (ICB) therapy has brought survival benefits to patients with specific cancer types, most of cancer patients remain refractory to the ICB therapy, which is largely attributed to the immunosuppressive tumor microenvironment. Thereby, it is urgent to profile key molecules and signal pathways responsible for modification of tumor microenvironment. METHODS Multiple databases of esophageal squamous cell carcinoma (ESCC) were integratively analyzed to screen candidate genes responsible for infiltration of CD8+ T cells. Expression of pescadillo ribosomal biogenesis factor 1 (PES1) in clinical ESCC samples was examined by qRT-PCR, western blotting, and immunohistochemistry. The mechanisms of PES1 were investigated via RNA sequencing and mass spectrometry followed by immunoprecipitation and proximity ligation assay. The clinical and therapeutic significance of PES1 in ESCC was comprehensively investigated using ESCC cells and mouse model. RESULTS PES1 was significantly upregulated and correlated with poor prognosis in ESCC patients. PES1 knockdown decreased ESCC cell growth in vitro and in vivo and enhanced the efficacy of ICB therapy in mouse model, which was established through subcutaneous inoculation with ESCC cells. Analyses on RNA sequencing and mass spectrometry suggested that PES1 expression was negatively correlated with IL15 and ILF3 was one of the PES1-associated proteins. It has been known that ILF3 interacts with and stabilizes IL15 mRNA to increase IL15 protein level. Our data further indicated that PES1 interfered with the interaction between ILF3 and IL15 mRNA and impaired ILF3-mediated stabilization of IL15 mRNA, which eventually reduced the protein level of IL15. Interestingly, the inhibitory effect of ICB therapy boosted by PES1 knockdown dramatically antagonized by knockdown of IL15, which suppressed the tumor-infiltrated CD8+ T cells in ESCC. Finally, we confirmed the relationships among PES1, IL15, and CD8+ T cell infiltration in 10 locally advanced ESCC patients receiving ICB neoadjuvant therapy and demonstrated that ICB therapy would be more effective in those with low expression of PES1. CONCLUSIONS Altogether, our findings herein provided novel insights on biological function and clinical significance of PES1 and suggested that high expression of PES1 could suppress ILF3-IL15 axis-mediated immunosurveillance and promote resistance to ICB through restraining tumor-infiltrated CD8+ T cells.
Collapse
Affiliation(s)
- Ning Ma
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Hua
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Chao Liu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Pan
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo-Yao Yu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Feng Sun
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong Xie
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yan Wang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Zhi-Gang Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
116
|
Birnbaum L, Sullivan EC, Do P, Uricoli B, Raikar SS, Porter CC, Henry CJ, Dreaden EC. Multicolor Light-Induced Immune Activation via Polymer Photocaged Cytokines. Biomacromolecules 2023; 24:1164-1172. [PMID: 36745712 PMCID: PMC10015458 DOI: 10.1021/acs.biomac.2c01207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/12/2023] [Indexed: 02/08/2023]
Abstract
Cytokines act as potent, extracellular signals of the human immune system and can elicit striking treatment responses in patients with autoimmune disease, tissue damage, and cancer. Yet, despite their therapeutic potential, recombinant cytokine-mediated immune responses remain difficult to control as their administration is often systemic, whereas their intended sites of action are localized. To address the challenge of spatially and temporally constraining cytokine signals, we recently devised a strategy whereby recombinant cytokines are reversibly inactivated via chemical modification with photo-labile polymers that respond to visible LED light. Extending this approach to enable both in vivo and multicolor immune activation, here we describe a strategy whereby cytokines appended with heptamethine cyanine-polyethylene glycol are selectively re-activated ex vivo using tissue-penetrating near-infrared (NIR) light. We show that NIR LED light illumination of caged, pro-inflammatory cytokines restores cognate receptor signaling and potentiates the activity of T cell-engager cancer immunotherapies ex vivo. Using combinations of visible- and NIR-responsive cytokines, we further demonstrate multiwavelength optical control of T cell cytolysis ex vivo, as well as the ability to perform Boolean logic using multicolored light and orthogonally photocaged cytokine pairs as inputs and T cell activity as outputs. Together, this work demonstrates a novel approach to control extracellular immune cell signals using light, a strategy that in the future may improve our understanding of and ability to treat cancer and other diseases.
Collapse
Affiliation(s)
- Lacey
A. Birnbaum
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Emily C. Sullivan
- Molecular
and Systems Pharmacology Graduate Program, Emory University School of Medicine, Atlanta, Georgia 30307, United States
| | - Priscilla Do
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Biaggio Uricoli
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Sunil S. Raikar
- Winship
Cancer Institute of Emory University, Atlanta, Georgia 30322, United States
- Department
of Pediatrics, Emory School of Medicine, Atlanta, Georgia 30322, United States
- Aflac
Cancer and Blood Disorders Center of Children’s Healthcare
of Atlanta, Atlanta, Georgia 30322, United States
| | - Christopher C. Porter
- Winship
Cancer Institute of Emory University, Atlanta, Georgia 30322, United States
- Department
of Pediatrics, Emory School of Medicine, Atlanta, Georgia 30322, United States
- Aflac
Cancer and Blood Disorders Center of Children’s Healthcare
of Atlanta, Atlanta, Georgia 30322, United States
| | - Curtis J. Henry
- Winship
Cancer Institute of Emory University, Atlanta, Georgia 30322, United States
- Department
of Pediatrics, Emory School of Medicine, Atlanta, Georgia 30322, United States
- Aflac
Cancer and Blood Disorders Center of Children’s Healthcare
of Atlanta, Atlanta, Georgia 30322, United States
| | - Erik C. Dreaden
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- Winship
Cancer Institute of Emory University, Atlanta, Georgia 30322, United States
- Department
of Pediatrics, Emory School of Medicine, Atlanta, Georgia 30322, United States
- Aflac
Cancer and Blood Disorders Center of Children’s Healthcare
of Atlanta, Atlanta, Georgia 30322, United States
- Petit Institute
for Bioengineering and Bioscience, Georgia
Institute of Technology, Atlanta, Georgia 30322, United States
| |
Collapse
|
117
|
Lyu J, Yang N, Xiao L, Nie X, Xiong J, Liu Y, Zhang M, Zhang H, Tang C, Pan S, Liang L, Bai H, Li C, Kuang H, Li T. Prognostic value of sarcopenia in patients with lung cancer treated with epidermal growth factor receptor tyrosine kinase inhibitors or immune checkpoint inhibitors. Front Nutr 2023; 10:1113875. [PMID: 36969820 PMCID: PMC10031770 DOI: 10.3389/fnut.2023.1113875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
ObjectivesIt remains controversial whether sarcopenia has any significant impact on the efficacy of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) or immune checkpoint inhibitors (ICIs) in patients with advanced non-small cell lung cancer (NSCLC). Therefore, in this study, we aimed to assess the association between sarcopenia and clinical outcomes in patients with advanced NSCLC receiving EGFR-TKIs or ICIs as a first-line therapy.MethodsWe retrospectively enrolled 131 patients with advanced NSCLC treated with first-line EGFR-TKIs or ICIs between 1 March 2019 and 31 March 2021. To estimate sarcopenia, we calculated skeletal muscle index (SMI) as the ratio of skeletal muscle area (cm2) to height squared (m2). Associations between sarcopenia and overall survival (OS) and progression-free survival (PFS) were evaluated using the Kaplan–Meier method and log-rank tests, respectively. A Cox proportional hazards regression model was used to assess the factors associated with OS and PFS. The Student’s t-test or Mann–Whitney U test was used to compare the SMI between patients with or without objective response and disease control. The chi-squared test was used to compare adverse events (AEs) between patients with and without sarcopenia.ResultsAmong the 131 patients, 35 (26.7%) were diagnosed with sarcopenia. Sarcopenia was an independent predictor of poor OS and PFS (p < 0.05) overall and in the EGFR-TKI- and ICI-treated cohorts. Among all patients, those with sarcopenia showed significantly shorter OS and PFS than those without sarcopenia (median OS and PFS: 13.0 vs. 26.0 months and 6.4 vs. 15.1 months; both p < 0.001). These associations were consistent across the subtypes of most clinical characteristics. Statistically significant differences between the objective response (OR) and non-OR groups were also observed in the mean SMI (OR group, 43.89 ± 7.55 vs. non-OR group, 38.84 ± 7.11 cm2/m2; p < 0.001). In addition, we observed similar results with disease control (DC) and non-DC groups (DC group, 42.46 ± 7.64 vs. non-DCR group, 33.74 ± 4.31 cm2/m2; p < 0.001). The AEs did not differ significantly between the sarcopenia and non-sarcopenia groups.ConclusionSarcopenia before treatment might be a significant predictor of poor clinical outcomes (shorter OS and PFS, fewer ORs, less DC) in patients with advanced NSCLC treated with EGFR-TKIs or ICIs as the first-line therapy.
Collapse
Affiliation(s)
- Jiahua Lyu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ningjing Yang
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Xiao
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinyu Nie
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Xiong
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yudi Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Min Zhang
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hangyue Zhang
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Cunhan Tang
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shiyi Pan
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Long Liang
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hansong Bai
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Churong Li
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Kuang
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Tao Li,
| |
Collapse
|
118
|
Farley MJ, Bartlett DB, Skinner TL, Schaumberg MA, Jenkins DG. Immunomodulatory Function of Interleukin-15 and Its Role in Exercise, Immunotherapy, and Cancer Outcomes. Med Sci Sports Exerc 2023; 55:558-568. [PMID: 36730979 DOI: 10.1249/mss.0000000000003067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Exercise has been shown to improve physical and psychosocial outcomes for people across the cancer care continuum. A proposed mechanism underpinning the relationship between exercise and cancer outcomes is exercise-induced immunomodulation via secretion of anti-inflammatory myokines from skeletal muscle tissue. Myokines have the potential to impair cancer growth through modulation of natural killer (NK) cells and CD8+ T cells while improving the effectiveness of cancer therapies. Interleukin-15 (IL-15), one of the most abundant myokines found in skeletal muscle, has a key immunoregulatory role in supporting the proliferation and maturation of T cells and NK cells, which have a key role in the host's immune response to cancer. Furthermore, IL-15 is being explored clinically as an immunotherapy agent with doses similar to the IL-15 concentrations released by skeletal muscle during exercise. Here we review the role of IL-15 within the immune system, examine how IL-15 is produced as a myokine during exercise, and how it may improve outcomes for people with cancer, specifically as an adjuvant or neoadjuvant to immunotherapy. We summarize the available evidence showing changes in IL-15 in response to both acute exercise and training, and the results are inconsistent; higher quality research is needed to advance the understanding of how exercise-mediated increases in IL-15 potentially benefit those who are being treated for, or who have had, cancer.
Collapse
Affiliation(s)
- Morgan J Farley
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, AUSTRALIA
| | - David B Bartlett
- School of Biosciences and Medicine, University of Surrey, Surrey, UNITED KINGDOM
| | - Tina L Skinner
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, AUSTRALIA
| | | | | |
Collapse
|
119
|
Kennedy PR, Vallera DA, Ettestad B, Hallstrom C, Kodal B, Todhunter DA, Bendzick L, Hinderlie P, Walker JT, Pulkrabek B, Pastan I, Kratzke RA, Fujioka N, Miller JS, Felices M. A tri-specific killer engager against mesothelin targets NK cells towards lung cancer. Front Immunol 2023; 14:1060905. [PMID: 36911670 PMCID: PMC9992642 DOI: 10.3389/fimmu.2023.1060905] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
New treatments are required to enhance current therapies for lung cancer. Mesothelin is a surface protein overexpressed in non-small cell lung cancer (NSCLC) that shows promise as an immunotherapeutic target in phase I clinical trials. However, the immunosuppressive environment in NSCLC may limit efficacy of these therapies. We applied time-of-flight mass cytometry to examine the state of circulating mononuclear cells in fourteen patients undergoing treatment for unresectable lung cancer. Six patients had earlier stage NSCLC (I-IVA) and eight had highly advanced NSCLC (IVB). The advanced NSCLC patients relapsed with greater frequency than the earlier stage patients. Before treatment, patients with very advanced NSCLC had a greater proportion of CD14- myeloid cells than patients with earlier NSCLC. These patients also had fewer circulating natural killer (NK) cells bearing an Fc receptor, CD16, which is crucial to antibody-dependent cellular cytotoxicity. We designed a high affinity tri-specific killer engager (TriKE®) to enhance NK cytotoxicity against mesothelin+ targets in this environment. The TriKE consisted of CD16 and mesothelin binding elements linked together by IL-15. TriKE enhanced proliferation of lung cancer patient NK cells in vitro. Lung cancer lines are refractory to NK cell killing, but the TriKE enhanced cytotoxicity and cytokine production by patient NK cells when challenged with tumor. Importantly, TriKE triggered NK cell responses from patients at all stages of disease and treatment, suggesting TriKE can enhance current therapies. These pre-clinical studies suggest mesothelin-targeted TriKE has the potential to overcome the immunosuppressive environment of NSCLC to treat disease.
Collapse
Affiliation(s)
- Philippa R. Kennedy
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Daniel A. Vallera
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, United States
| | - Brianna Ettestad
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Caroline Hallstrom
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Behiye Kodal
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Deborah A. Todhunter
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, United States
| | - Laura Bendzick
- Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN, United States
| | - Peter Hinderlie
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Joshua T. Walker
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Brittany Pulkrabek
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Ira Pastan
- National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Robert A. Kratzke
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Naomi Fujioka
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jeffrey S. Miller
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Martin Felices
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
120
|
Trinkner P, Günther S, Monsef I, Kerschbaum E, von Bergwelt-Baildon M, Cordas Dos Santos DM, Theurich S. Survival and immunotoxicities in association with sex-specific body composition patterns of cancer patients undergoing immune-checkpoint inhibitor therapy - A systematic review and meta-analysis. Eur J Cancer 2023; 184:151-171. [PMID: 36931074 DOI: 10.1016/j.ejca.2023.01.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND Imbalanced body composition is mechanistically connected to dysregulated immune activities. Whether overweight/obesity or sarcopenia has an impact on treatment results in cancer patients undergoing immune checkpoint inhibitor (ICI) therapy is currently under debate. We aimed to answer if survival rates and occurrence of immune-related adverse events (irAEs) were different in obese or sarcopenic patients. METHODS A systematic search was conducted in PubMed, Embase and CENTRAL for all records published until July 2022 using specific search terms for body composition in combination with terms for ICI regimens. Two authors screened independently. All studies that reported on body mass index or sarcopenia measures were selected for further analysis. RESULTS 48 studies reporting on overweight/obesity comprising of 19,767 patients, and 32 studies reporting on sarcopenia comprising of 3193 patients fulfilled the inclusion criteria. In the entire cohort, overweight/obesity was significantly associated with better progression-free survival (PFS; p = 0.009) and overall survival (OS; p <0.00001). Subgroup analyses stratified by sex revealed that overweight/obese males had the strongest survival benefit (PFS: p = 0.05; OS: p = 0.0005), and overweight/obese female patients did not show any. However, overweight/obese patients of both sexes had a higher risk to develop irAEs grade ≥3 (p = 0.0009). Sarcopenic patients showed significantly shorter PFS (p <0.0001) and OS (p <0.0001). The frequency of irAEs did not differ between sarcopenic and non-sarcopenic patients. CONCLUSION This meta-analysis suggests that body composition is associated in a sex-specific manner with survival and irAEs in cancer patients undergoing ICI treatment.
Collapse
Affiliation(s)
- Paul Trinkner
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany; Cancer- and Immunometabolism Research Group, Gene Center, LMU Munich, Munich, Germany
| | - Sophie Günther
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany; Cancer- and Immunometabolism Research Group, Gene Center, LMU Munich, Munich, Germany
| | - Ina Monsef
- Evidence-based Medicine, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Eva Kerschbaum
- Comprehensive Cancer Center Munich (CCCM), Munich, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany; Comprehensive Cancer Center Munich (CCCM), Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David M Cordas Dos Santos
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany; Cancer- and Immunometabolism Research Group, Gene Center, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Theurich
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany; Cancer- and Immunometabolism Research Group, Gene Center, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
121
|
Lu C, Liu Y, Ali NM, Zhang B, Cui X. The role of innate immune cells in the tumor microenvironment and research progress in anti-tumor therapy. Front Immunol 2023; 13:1039260. [PMID: 36741415 PMCID: PMC9893925 DOI: 10.3389/fimmu.2022.1039260] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023] Open
Abstract
Innate immune cells in the tumor microenvironment (TME) mainly include macrophages, neutrophils, natural killer cells, dendritic cells and bone marrow derived suppressor cells. They play an anti-tumor or pro-tumor role by secreting various cytokines, chemokines and other factors, and determine the occurrence and development of tumors. Comprehending the role of innate immune cells in tumorigenesis and progression can help improve therapeutic approaches targeting innate immune cells in the TME, increasing the likelihood of favorable prognosis. In this review, we discussed the cell biology of innate immune cells, their role in tumorigenesis and development, and the current status of innate immune cell-based immunotherapy, in order to provide an overview for future research lines and clinical trials.
Collapse
Affiliation(s)
- Chenglin Lu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China,Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Nasra Mohamoud Ali
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bin Zhang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China,*Correspondence: Xiaonan Cui, ; Bin Zhang,
| | - Xiaonan Cui
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China,*Correspondence: Xiaonan Cui, ; Bin Zhang,
| |
Collapse
|
122
|
Improving NK cell function in multiple myeloma with NKTR-255, a novel polymer-conjugated human IL-15. Blood Adv 2023; 7:9-19. [PMID: 35882498 DOI: 10.1182/bloodadvances.2022007985] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/27/2022] [Accepted: 07/12/2022] [Indexed: 01/18/2023] Open
Abstract
Multiple myeloma (MM) is characterized by an immunosuppressive microenvironment that enables tumor development. One of the mechanisms of immune evasion used by MM cells is the inhibition of natural killer (NK) cell effector functions; thus, the restoration of NK cell antitumor activity represents a key goal to increase tumor cell recognition, avoid tumor escape and potentially enhancing the effect of other drugs. In this study, we evaluated the ability of the investigational medicine NKTR-255, an IL-15 receptor agonist, to engage the IL-15 pathway and stimulate NK cells against MM cells. We observed that incubation with NKTR-255 was able to tilt the balance toward an activated phenotype in NK cells isolated from peripheral blood mononuclear cells of patients with MM, with increased expression of activating receptors on the surface of treated NK cells. This resulted in an enhanced degranulation, cytokine release, and anti-tumor cytotoxicity when the NK cells were exposed to both MM cell lines and primary MM cells. We further evaluated the in vivo effect of NKTR-255 in fully humanized immunocompetent mice subcutaneously engrafted with H929 MM cells. Compared with placebo, weekly injection of the mice with NKTR-255 increased the number of circulating NK cells in peripheral blood and delayed tumor growth. Finally, we observed that combination of NKTR-255 with the anti-CD38 antibody, daratumumab, was effective against MM cells in vitro and in vivo. Taken together, our data suggest a significant impact of NKTR-255 in inducing NK cell function against MM cells with important translational implications.
Collapse
|
123
|
Zhang Y, Liu L, Li W, Zhang C, Song T, Wang P, Sun D, Huang X, Qin X, Ran L, Tian G, Qian J, Zhang G. PDGFB-targeted functional MRI nanoswitch for activatable T 1-T 2 dual-modal ultra-sensitive diagnosis of cancer. J Nanobiotechnology 2023; 21:9. [PMID: 36609374 PMCID: PMC9824934 DOI: 10.1186/s12951-023-01769-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
As one of the most significant imaging modalities currently available, magnetic resonance imaging (MRI) has been extensively utilized for clinically accurate cancer diagnosis. However, low signal-to-noise ratio (SNR) and low specificity for tumors continue to pose significant challenges. Inspired by the distance-dependent magnetic resonance tuning (MRET) phenomenon, the tumor microenvironment (TME)-activated off-on T1-T2 dual-mode MRI nanoswitch is presented in the current study to realize the sensitive early diagnosis of tumors. The tumor-specific nanoswitch is designed and manufactured on the basis of PDGFB-conjugating ferroferric oxide coated by Mn-doped silica (PDGFB-FMS), which can be degraded under the high-concentration GSH and low pH in TME to activate the T1-T2 dual-mode MRI signals. The tumor-specific off-on dual-mode MRI nanoswitch can significantly improve the SNR and is used successfully for the accurate diagnosis of early-stage tumors, particularly for orthotopic prostate cancer. In addition, the systemic delivery of the nanoswitch did not cause blood or tissue damage, and it can be excreted out of the body in a timely manner, demonstrating excellent biosafety. Overall, the strategy is a significant step in the direction of designing off-on dual-mode MRI nanoprobes to improve imaging accuracy, which opens up new avenues for the development of new MRI probes.
Collapse
Affiliation(s)
- Ya’nan Zhang
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.9227.e0000000119573309Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 People’s Republic of China
| | - Lu Liu
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.440653.00000 0000 9588 091XSchool of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Wenling Li
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.440653.00000 0000 9588 091XSchool of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Caiyun Zhang
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.440653.00000 0000 9588 091XSchool of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Tianwei Song
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.440653.00000 0000 9588 091XSchool of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Peng Wang
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.440653.00000 0000 9588 091XSchool of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Daxi Sun
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.440653.00000 0000 9588 091XSchool of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Xiaodan Huang
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.440653.00000 0000 9588 091XSchool of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Xia Qin
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.440653.00000 0000 9588 091XSchool of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Lang Ran
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.440653.00000 0000 9588 091XSchool of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Geng Tian
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Junchao Qian
- grid.9227.e0000000119573309Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 People’s Republic of China ,grid.410587.fDepartment of Radiation Oncology, School of Medicine, Shandong University, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong China
| | - Guilong Zhang
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.440653.00000 0000 9588 091XSchool of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| |
Collapse
|
124
|
Shi W, Lv L, Liu N, Wang H, Wang Y, Zhu W, Liu Z, Zhu J, Lu H. A novel anti-PD-L1/IL-15 immunocytokine overcomes resistance to PD-L1 blockade and elicits potent antitumor immunity. Mol Ther 2023; 31:66-77. [PMID: 36045584 PMCID: PMC9840182 DOI: 10.1016/j.ymthe.2022.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 08/08/2022] [Accepted: 08/25/2022] [Indexed: 01/28/2023] Open
Abstract
Despite the demonstrated immense potential of immune checkpoint inhibitors in various types of cancers, only a minority of patients respond to these therapies. Immunocytokines designed to deliver an immune-activating cytokine directly to the immunosuppressive tumor microenvironment (TME) and block the immune checkpoint simultaneously may provide a strategic advantage over the combination of two single agents. To increase the response rate to checkpoint blockade, in this study, we developed a novel immunocytokine (LH01) composed of the antibody against programmed death-ligand 1 (PD-L1) fused to interleukin (IL)-15 receptor alpha-sushi domain/IL-15 complex. We demonstrate that LH01 efficiently binds mouse or human PD-L1 and maintains IL-15 stimulatory activity. In syngeneic mouse models, LH01 showed improved antitumor efficacy and safety versus anti-PD-L1 plus LH02 (Fc-sushi-IL15) combination and overcame resistance to anti-PD-L1 treatment. Mechanistically, the dual anti-immunosuppressive function of LH01 activated both the innate and adaptive immune responses and induced a favorable and immunostimulatory TME. Furthermore, combination therapy with LH01 and bevacizumab exerts synergistic antitumor effects in an HT29 colorectal xenograft model. Collectively, our results provide supporting evidence that fusion of anti-PD-L1 and IL-15 might be a potent strategy to treat patients with cold tumors or resistance to checkpoint blockade.
Collapse
Affiliation(s)
- Wenqiang Shi
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Liangyin Lv
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Nan Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Hui Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yang Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wen Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zexin Liu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Huili Lu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
125
|
Abstract
Adoptive T cell transfer (ACT) therapies suffer from a number of limitations (e.g., poor control of solid tumors), and while combining ACT with cytokine therapy can enhance effectiveness, this also results in significant side effects. Here, we describe a nanotechnology approach to improve the efficacy of ACT therapies by metabolically labeling T cells with unnatural sugar nanoparticles, allowing direct conjugation of antitumor cytokines onto the T cell surface during the manufacturing process. This allows local, concentrated activity of otherwise toxic cytokines. This approach increases T cell infiltration into solid tumors, activates the host immune system toward a Type 1 response, encourages antigen spreading, and improves control of aggressive solid tumors and achieves complete blood cancer regression with otherwise noncurative doses of CAR-T cells. Overall, this method provides an effective and easily integrated approach to the current ACT manufacturing process to increase efficacy in various settings.
Collapse
|
126
|
Deckers J, Anbergen T, Hokke AM, de Dreu A, Schrijver DP, de Bruin K, Toner YC, Beldman TJ, Spangler JB, de Greef TFA, Grisoni F, van der Meel R, Joosten LAB, Merkx M, Netea MG, Mulder WJM. Engineering cytokine therapeutics. NATURE REVIEWS BIOENGINEERING 2023; 1:286-303. [PMID: 37064653 PMCID: PMC9933837 DOI: 10.1038/s44222-023-00030-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Cytokines have pivotal roles in immunity, making them attractive as therapeutics for a variety of immune-related disorders. However, the widespread clinical use of cytokines has been limited by their short blood half-lives and severe side effects caused by low specificity and unfavourable biodistribution. Innovations in bioengineering have aided in advancing our knowledge of cytokine biology and yielded new technologies for cytokine engineering. In this Review, we discuss how the development of bioanalytical methods, such as sequencing and high-resolution imaging combined with genetic techniques, have facilitated a better understanding of cytokine biology. We then present an overview of therapeutics arising from cytokine re-engineering, targeting and delivery, mRNA therapeutics and cell therapy. We also highlight the application of these strategies to adjust the immunological imbalance in different immune-mediated disorders, including cancer, infection and autoimmune diseases. Finally, we look ahead to the hurdles that must be overcome before cytokine therapeutics can live up to their full potential.
Collapse
Affiliation(s)
- Jeroen Deckers
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Centre, Nijmegen, Netherlands
| | - Tom Anbergen
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Centre, Nijmegen, Netherlands
| | - Ayla M. Hokke
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Anne de Dreu
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - David P. Schrijver
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Koen de Bruin
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Yohana C. Toner
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Centre, Nijmegen, Netherlands
| | - Thijs J. Beldman
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Centre, Nijmegen, Netherlands
| | - Jamie B. Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Tom F. A. de Greef
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
- Centre for Living Technologies, Alliance Eindhoven University of Technology, Wageningen University & Research, Utrecht University and University Medical Center Utrecht (EWUU), Utrecht, Netherlands
| | - Francesca Grisoni
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
- Centre for Living Technologies, Alliance Eindhoven University of Technology, Wageningen University & Research, Utrecht University and University Medical Center Utrecht (EWUU), Utrecht, Netherlands
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Present Address: Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Leo A. B. Joosten
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Centre, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Centre, Nijmegen, Netherlands
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Maarten Merkx
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Present Address: Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Centre, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Centre, Nijmegen, Netherlands
- Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Willem J. M. Mulder
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Centre, Nijmegen, Netherlands
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Present Address: Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
127
|
Kim S, Park CI, Lee S, Choi HR, Kim CH. Reprogramming of IL-12 secretion in the PDCD1 locus improves the anti-tumor activity of NY-ESO-1 TCR-T cells. Front Immunol 2023; 14:1062365. [PMID: 36793716 PMCID: PMC9923015 DOI: 10.3389/fimmu.2023.1062365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/17/2023] [Indexed: 02/03/2023] Open
Abstract
Introduction Although the engineering of T cells to co-express immunostimulatory cytokines has been shown to enhance the therapeutic efficacy of adoptive T cell therapy, the uncontrolled systemic release of potent cytokines can lead to severe adverse effects. To address this, we site-specifically inserted the interleukin-12 (IL-12) gene into the PDCD1 locus in T cells using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-based genome editing to achieve T-cell activation-dependent expression of IL-12 while ablating the expression of inhibitory PD-1. Methods New York esophageal squamous cell carcinoma 1(NY-ESO-1)-specific TCR-T cells was investigated as a model system. We generated ΔPD-1-IL-12 -edited NY-ESO-1 TCR-T cells by sequential lentiviral transduction and CRISPR knock-in into activated human primary T cells. Results We showed that the endogenous PDCD1 regulatory elements can tightly control the secretion of recombinant IL-12 in a target cell-dependent manner, at an expression level that is more moderate than that obtained using a synthetic NFAT-responsive promoter. The inducible expression of IL-12 from the PDCD1 locus was sufficient to enhance the effector function of NY-ESO-1 TCR-T cells, as determined by upregulation of effector molecules, increased cytotoxic activity, and enhanced expansion upon repeated antigen stimulation in vitro. Mouse xenograft studies also revealed that PD-1-edited IL-12-secreting NY-ESO-1 TCR-T cells could eliminate established tumors and showed significantly greater in vivo expansion capacity than control TCR-T cells. Discussion Our approach may provide a way to safely harness the therapeutic potential of potent immunostimulatory cytokines for the development of effective adoptive T cell therapies against solid tumors.
Collapse
Affiliation(s)
- Segi Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Cho I Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sunhwa Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hyeong Ryeol Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Chan Hyuk Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
128
|
Wang X, Wang P, Huang X, Han Y, Zhang P. Biomarkers for immunotherapy in esophageal cancer. Front Immunol 2023; 14:1117523. [PMID: 37197663 PMCID: PMC10183563 DOI: 10.3389/fimmu.2023.1117523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/19/2023] [Indexed: 05/19/2023] Open
Abstract
The development of immunotherapy, especially immune-checkpoint inhibitors targeting PD-1/PD-L1, has improved the outcomes of patients with esophageal cancer. However, not all population derives benefit from the agents. Recently, kinds of biomarkers were introduced to predict the response to immunotherapy. However, the effects of these reported biomarkers are controversial and many challenges remain. In this review, we aim to summarize the current clinical evidence and provide a comprehensive understanding of the reported biomarkers. We also discuss the limits of the present biomarkers and propose our own opinions on which viewers' discretion are advised.
Collapse
Affiliation(s)
- Xuelian Wang
- Department of Oncology and Hematology, Zhongxian People’s Hospital, Chongqing, China
| | - Ping Wang
- Department of Urology, Zhongxian People’s Hospital, Chongqing, China
| | - Xiang Huang
- Department of Radiation Oncology, The First Center of the Chinese PLA General Hospital, Beijing, China
| | - Yanan Han
- Department of Radiation Oncology, The First Center of the Chinese PLA General Hospital, Beijing, China
- *Correspondence: Yanan Han, ; Pei Zhang,
| | - Pei Zhang
- Department of Radiation Oncology, The Fifth Center of the Chinese PLA General Hospital, Beijing, China
- *Correspondence: Yanan Han, ; Pei Zhang,
| |
Collapse
|
129
|
Surov A, Kardas H, Besutti G, Pellegrini M, Ottone M, Onur MR, Atak F, Erdemir AG, Hocaoglu E, Yıldız Ö, Inci E, Cingöz E, Cingöz M, Dursun M, Korkmaz İ, Orhan Ç, Strobel A, Wienke A, Pech M. Prognostic Role of the Pectoralis Musculature in Patients with COVID-19. A Multicenter Study. Acad Radiol 2023; 30:77-82. [PMID: 35667979 PMCID: PMC9108033 DOI: 10.1016/j.acra.2022.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 01/28/2023]
Abstract
RATIONALE AND OBJECTIVES To evaluate the impact of low skeletal muscle mass in patients with COVID-19 on relevant outcomes like 30-day mortality, need for intubation and need for intensive care unit admission. MATERIALS AND METHODS For this study, data from six centers were acquired. The acquired sample comprises 1138 patients. There were 547 women (48.1%) and 591 men (51.9%) with a mean age of 54.5 ± 18.8 years; median age, 55 years; range, 18-84 years). In every case, thoracic CT without intravenous application of contrast medium was performed. The following parameters of the pectoralis muscles were estimated: muscle area as a sum of the bilateral areas of the pectoralis major and minor muscles, muscle density, muscle index (PMI) (pectoralis muscle area divided by the patient's body height square) as a ratio pectoralis major and minor muscles divided by the patient's body height2, and muscle gauge as PMI x muscle density. RESULTS Overall, 220 patients (19.33%) were admitted to the intensive care unit. In 171 patients (15.03%), mechanical lung ventilation was performed. Finally, 154 patients (13.53%) died within the observation time of 30-day. All investigated parameters of pectoralis muscle were lower in the patients with unfavorable courses of Covid-19. All pectoralis muscle parameters were associated with 30-day mortality in multivariate analyses adjusted for age and sex: pectoralis muscle area, HR = 0.93 CI 95% (0.91-0.95) p < 0.001; pectoralis muscle density, HR = 0.94 CI 95% (0.93-0.96) p < 0.001; pectoralis muscle index, HR = 0.79 CI 95% (0.75-0.85) p < 0.001, pectoralis muscle gauge, HR = 0.995 CI 95% (0.99-0.996) p < 0.001. CONCLUSION in COVID-19, survivors have larger areas and higher index, gauge and density of the pectoralis muscles in comparison to nonsurvivors. However, the analyzed muscle parameters cannot be used for prediction of disease courses.
Collapse
Affiliation(s)
- Alexey Surov
- Department of Radiology and Nuclear Medicine, Otto-von-Guericke University Magdeburg (A.S., H.K., M.P.).
| | - Hakan Kardas
- Department of Radiology and Nuclear Medicine, Otto-von-Guericke University Magdeburg (A.S., H.K., M.P.)
| | - Giulia Besutti
- Radiology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy (G.B., M.P., M.O.)
| | - Massimo Pellegrini
- Radiology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy (G.B., M.P., M.O.)
| | - Marta Ottone
- Radiology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy (G.B., M.P., M.O.)
| | - Mehmet Ruhi Onur
- Department of Radiology, University of Hacettepe School of Medicine, Ankara, Turkey (M.R.O., F.A., A.G.E.)
| | - Firat Atak
- Department of Radiology, University of Hacettepe School of Medicine, Ankara, Turkey (M.R.O., F.A., A.G.E.)
| | - Ahmet Gurkan Erdemir
- Department of Radiology, University of Hacettepe School of Medicine, Ankara, Turkey (M.R.O., F.A., A.G.E.)
| | - Elif Hocaoglu
- Department of Radiology, University of Health Sciences, Bakirkoy Dr. Sadi Konuk Research and Training Hospital, Radiology (E.H., O.Y., E.I.)
| | - Ömer Yıldız
- Department of Radiology, University of Health Sciences, Bakirkoy Dr. Sadi Konuk Research and Training Hospital, Radiology (E.H., O.Y., E.I.)
| | - Ercan Inci
- Department of Radiology, University of Health Sciences, Bakirkoy Dr. Sadi Konuk Research and Training Hospital, Radiology (E.H., O.Y., E.I.)
| | - Eda Cingöz
- İstanbul Medical Faculty Radiology Department, Istanbul Turkey (E.C., M.C., M.D.)
| | - Mehmet Cingöz
- İstanbul Medical Faculty Radiology Department, Istanbul Turkey (E.C., M.C., M.D.); Basaksehir Cam and Sakura City Hospital Radiology Department (M.C.)
| | - Memduh Dursun
- İstanbul Medical Faculty Radiology Department, Istanbul Turkey (E.C., M.C., M.D.)
| | - İnan Korkmaz
- Hatay Mustafa Kemal University, Faculty of Medicine, Department of Radiology, Antakya, Hatay, Turkey (I.K., C.O.)
| | - Çağrı Orhan
- Hatay Mustafa Kemal University, Faculty of Medicine, Department of Radiology, Antakya, Hatay, Turkey (I.K., C.O.)
| | - Alexandra Strobel
- Institute of Medical Epidemiology, Biostatistics, and Informatics, Profile Area Clinical Studies & Biostatistics, Martin-Luther-University Halle-Wittenberg, Halle, Germany (A.S., A.W.)
| | - Andreas Wienke
- Institute of Medical Epidemiology, Biostatistics, and Informatics, Profile Area Clinical Studies & Biostatistics, Martin-Luther-University Halle-Wittenberg, Halle, Germany (A.S., A.W.)
| | - Maciej Pech
- Department of Radiology and Nuclear Medicine, Otto-von-Guericke University Magdeburg (A.S., H.K., M.P.)
| |
Collapse
|
130
|
George A, Varghese J, Padinharayil H. Potential of Biotechnology in Cancer Management. NOVEL TECHNOLOGIES IN BIOSYSTEMS, BIOMEDICAL & DRUG DELIVERY 2023:9-44. [DOI: 10.1007/978-981-99-5281-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
131
|
Sindaco P, Pandey H, Isabelle C, Chakravarti N, Brammer JE, Porcu P, Mishra A. The role of interleukin-15 in the development and treatment of hematological malignancies. Front Immunol 2023; 14:1141208. [PMID: 37153603 PMCID: PMC10157481 DOI: 10.3389/fimmu.2023.1141208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/22/2023] [Indexed: 05/09/2023] Open
Abstract
Cytokines are a vital component of the immune system that controls the activation and growth of blood cells. However, chronic overexpression of cytokines can trigger cellular events leading to malignant transformation. The cytokine interleukin-15 (IL-15) is of particular interest, which has been shown to contribute to the development and progression of various hematological malignancies. This review will provide an overview of the impact of the immunopathogenic function of IL-15 by studying its role in cell survival, proliferation, inflammation, and treatment resistance. We will also review therapeutic approaches for inhibiting IL-15 in blood cancers.
Collapse
Affiliation(s)
- Paola Sindaco
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Hritisha Pandey
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Colleen Isabelle
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nitin Chakravarti
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | | | - Pierluigi Porcu
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Anjali Mishra
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Anjali Mishra,
| |
Collapse
|
132
|
Mortier E, Maillasson M, Quéméner A. Counteracting Interleukin-15 to Elucidate Its Modes of Action in Physiology and Pathology. J Interferon Cytokine Res 2023; 43:2-22. [PMID: 36651845 DOI: 10.1089/jir.2022.0198] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Interleukin (IL)-15 belongs to the common gamma-dependent cytokine family, along with IL-2, IL-4, IL-7, IL-9, and IL-21. IL-15 is crucial for the homeostasis of Natural Killer (NK) and memory CD8 T cells, and to fight against cancer progression. However, dysregulations of IL-15 expression could occur and participate in the emergence of autoimmune inflammatory diseases as well as hematological malignancies. It is therefore important to understand the different modes of action of IL-15 to decrease its harmful action in pathology without affecting its beneficial effects in the immune system. In this review, we present the different approaches used by researchers to inhibit the action of IL-15, from most broad to the most selective. Indeed, it appears that it is important to selectively target the mode of action of the cytokine rather than the cytokine itself as they are involved in numerous biological processes.
Collapse
Affiliation(s)
- Erwan Mortier
- Nantes Université, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| | - Mike Maillasson
- Nantes Université, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| | - Agnès Quéméner
- Nantes Université, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| |
Collapse
|
133
|
Song X, Chen X, Bai J, Zhang J. Association between pre-stroke sarcopenia risk and stroke-associated infection in older people with acute ischemic stroke. Front Med (Lausanne) 2023; 10:1090829. [PMID: 36910490 PMCID: PMC9995446 DOI: 10.3389/fmed.2023.1090829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/27/2023] [Indexed: 02/25/2023] Open
Abstract
Background Stroke-associated infection (SAI) is a common complication after a stroke. The incidence of infection was higher in people with sarcopenia than in the general population. However, the relationship between pre-stroke sarcopenia risk and SAI in older patients has not been confirmed. This study aimed to investigate the association between pre-stroke sarcopenia risk and SAI in older patients with acute ischemic stroke (AIS). Methods This retrospective study was conducted by the Peking University People's Hospital. We evaluated the pre-stroke sarcopenia risk by applying the SARC-F questionnaire. Multivariate logistic regression was applied to explore the association between pre-stroke sarcopenia risk and SAI. Results A total of 1,002 elder patients with AIS (592 men; 72.9 ± 8.6 years) were enrolled in our study. Pre-stroke sarcopenia risk was found in 29.1% of the cohort. The proportion of patients with pre-stroke sarcopenia risk was larger in the SAI group than in the non-SAI group (43.2 vs. 25.3%, p < 0.001). In multivariate logistic analysis, pre-stroke sarcopenia risk was shown to be independently associated with SAI (OR = 1.454, 95% CI: 1.008-2.097, p = 0.045) after adjusting for potential factors. This association remained consistent across the subgroups based on age, sex, body mass index, smoking status, drinking status, diabetes, hypertension, and dyslipidemia. Conclusion Pre-stroke sarcopenia risk was independently associated with SAI in older patients with AIS. Our findings highlight the significance of pre-stroke sarcopenia identification in the prevention and management of SAI in this population.
Collapse
Affiliation(s)
- Xiaodong Song
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Xufeng Chen
- Department of Neurology, Beijing Jishuitan Hospital, Beijing, China
| | - Jie Bai
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Zhang
- Department of Neurology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
134
|
Welty NE, Gill SI. Cancer Immunotherapy Beyond Checkpoint Blockade: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2022; 4:563-578. [PMID: 36636439 PMCID: PMC9830230 DOI: 10.1016/j.jaccao.2022.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 12/24/2022] Open
Abstract
Avoidance of immune destruction is recognized as one of the hallmarks of cancer development. Although first predicted as a potential antitumor treatment modality more than 50 years ago, the widespread clinical use of cancer immunotherapies has only recently become a reality. Cancer immunotherapy works by reactivation of a stalled pre-existing immune response or by eliciting a de novo immune response, and its toolkit comprises antibodies, vaccines, cytokines, and cell-based therapies. The treatment paradigm in some malignancies has completely changed over the past 10 to 15 years. Massive efforts in preclinical development have led to a surge of clinical trials testing innovative therapeutic approaches as monotherapy and, increasingly, in combination. Here we provide an overview of approved and emerging antitumor immune therapies, focusing on the rich landscape of therapeutic approaches beyond those that block the canonical PD-1/PD-L1 and CTLA-4 axes and placing them in the context of the latest understanding of tumor immunology.
Collapse
Key Words
- BiTE, bispecific T cell engager
- CAR, chimeric antigen receptor
- CRS, cytokine-release syndrome
- FDA, U.S. Food and Drug Administration
- HLA, human leukocyte antigen
- ICI, immune checkpoint inhibitor
- IL, interleukin
- NK, natural killer
- NSCLC, non–small cell lung cancer
- TIL, tumor-infiltrating lymphocyte
- alloHCT, allogeneic hematopoietic stem cell transplantation
- cancer
- immune therapy
- immunotherapy
- innovation
- mAb, monoclonal antibody
- treatment
Collapse
Affiliation(s)
- Nathan E. Welty
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Saar I. Gill
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Address for correspondence: Dr Saar I. Gill, Smilow Center for Translational Research, Room 8-101, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
135
|
Deng X, Terunuma H. Harnessing NK Cells to Control Metastasis. Vaccines (Basel) 2022; 10:vaccines10122018. [PMID: 36560427 PMCID: PMC9781233 DOI: 10.3390/vaccines10122018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
In recent years, tumor immunotherapy has produced remarkable results in tumor treatment. Nevertheless, its effects are severely limited in patients with low or absent pre-existing T cell immunity. Accordingly, metastasis remains the major cause of tumor-associated death. On the other hand, natural killer (NK) cells have the unique ability to recognize and rapidly act against tumor cells and surveil tumor cell dissemination. The role of NK cells in metastasis prevention is undisputable as an increase in the number of these cells mostly leads to a favorable prognosis. Hence, it is reasonable to consider that successful metastasis involves evasion of NK-cell-mediated immunosurveillance. Therefore, harnessing NK cells to control metastasis is promising. Circulating tumor cells (CTCs) are the seeds for distant metastasis, and the number of CTCs detected in the blood of patients with tumor is associated with a worse prognosis, whereas NK cells can eliminate highly motile CTCs especially in the blood. Here, we review the role of NK cells during metastasis, particularly the specific interactions of NK cells with CTCs, which may provide essential clues on how to harness the power of NK cells against tumor metastasis. As a result, a new way to prevent or treat metastatic tumor may be developed.
Collapse
Affiliation(s)
- Xuewen Deng
- Biotherapy Institute of Japan Inc., 2-4-8 Edagawa, Koto-ku, Tokyo 135-0051, Japan
- Correspondence: ; Tel.: +81-3-5632-6080; Fax: +81-3-5632-6083
| | - Hiroshi Terunuma
- Biotherapy Institute of Japan Inc., 2-4-8 Edagawa, Koto-ku, Tokyo 135-0051, Japan
- N2 Clinic Yotsuya, 5F 2-6 Samon-cho, Shinjuku-ku, Tokyo 160-0017, Japan
| |
Collapse
|
136
|
Luo Z, He Z, Qin H, Chen Y, Qi B, Lin J, Sun Y, Sun J, Su X, Long Z, Chen S. Exercise-induced IL-15 acted as a positive prognostic implication and tumor-suppressed role in pan-cancer. Front Pharmacol 2022; 13:1053137. [PMID: 36467072 PMCID: PMC9712805 DOI: 10.3389/fphar.2022.1053137] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/07/2022] [Indexed: 09/12/2023] Open
Abstract
Objective: Exercise can produce a large number of cytokines that may benefit cancer patients, including Interleukin 15 (IL-15). IL-15 is a cytokine that has multiple functions in regulating the adaptive and innate immune systems and tumorigenesis of lung and breast cancers. However, the roles of IL-15 in other types of cancer remain unknown. In this article, we try to systematically analyze if IL-15 is a potential molecular biomarker for predicting patient prognosis in pan-cancer and its connection with anti-cancer effects of exercise. Methods: The expression of IL-15 was detected by The Cancer Genome Atlas (TCGA) database, Human protein Atlas (HPA), and Genotype Tissue-Expression (GTEX) database. Analysis of IL-15 genomic alterations and protein expression in human organic tissues was analyzed by the cBioPortal database and HPA. The correlations between IL-15 expression and survival outcomes, clinical features, immune-associated cell infiltration, and ferroptosis/cuproptosis were analyzed using the TCGA, ESTIMATE algorithm, and TIMER databases. Gene Set Enrichment Analysis (GSEA) was performed to evaluate the biological functions of IL-15 in pan-cancer. Results: The differential analysis suggested that the level of IL-15 mRNA expression was significantly downregulated in 12 tumor types compared with normal tissues, which is similar to the protein expression in most cancer types. The high expression of IL-15 could predict the positive survival outcome of patients with LUAD (lung adenocarcinoma), COAD (colon adenocarcinoma), COADREAD (colon and rectum adenocarcinoma), ESCA (esophageal carcinoma), SKCM (skin cutaneous melanoma), UCS (uterine carcinosarcoma), and READ (rectum adenocarcinoma). Moreover, amplification was found to be the most frequent mutation type of IL-15 genomic. Furthermore, the expression of IL-15 was correlated to the infiltration levels of various immune-associated cells in pan-cancer assessed by the ESTIMATE algorithm and TIMER database. In addition, IL-15 is positively correlated with ferroptosis/cuproptosis-related genes (ACSL4 and LIPT1) in pan-cancer. Levels of IL-15 were reported to be elevated in humans for 10-120 min following an acute exercise. Therefore, we hypothesized that the better prognosis of pan-cancer patients with regular exercise may be achieved by regulating level of IL-15. Conclusion: Our results demonstrated that IL-15 is a potential molecular biomarker for predicting patient prognosis, immunoreaction, and ferroptosis/cuproptosis in pan-cancer and partly explained the anti-cancer effects of exercise.
Collapse
Affiliation(s)
- Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhong He
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Haocheng Qin
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Yisheng Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Beijie Qi
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Jinrong Lin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Xiaoping Su
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Ziwen Long
- Department of Gastric Cancer Sugery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
137
|
Hong T, Shen X, Syeda MZ, Zhang Y, Sheng H, Zhou Y, Xu J, Zhu C, Li H, Gu Z, Tang L. Recent advances of bioresponsive polymeric nanomedicine for cancer therapy. NANO RESEARCH 2022; 16:2660-2671. [PMID: 36405982 PMCID: PMC9664041 DOI: 10.1007/s12274-022-5002-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 05/29/2023]
Abstract
A bioresponsive polymeric nanocarrier for drug delivery is able to alter its physical and physicochemical properties in response to a variety of biological signals and pathological changes, and can exert its therapeutic efficacy within a confined space. These nanosystems can optimize the biodistribution and subcellular location of therapeutics by exploiting the differences in biochemical properties between tumors and normal tissues. Moreover, bioresponsive polymer-based nanosystems could be rationally designed as precision therapeutic platforms by optimizing the combination of responsive elements and therapeutic components according to the patient-specific disease type and stage. In this review, recent advances in smart bioresponsive polymeric nanosystems for cancer chemotherapy and immunotherapy will be summarized. We mainly discuss three categories, including acidity-sensitive, redox-responsive, and enzyme-triggered polymeric nanosystems. The important issues regarding clinical translation such as reproducibility, manufacture, and probable toxicity, are also commented.
Collapse
Affiliation(s)
- Tu Hong
- International institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000 China
| | - Xinyuan Shen
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Madiha Zahra Syeda
- International institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000 China
| | - Yang Zhang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Haonan Sheng
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Yipeng Zhou
- Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| | - JinMing Xu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006 China
| | - Chaojie Zhu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Department of Hepatobiliary and Pancreatic Surgery the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
| | - Hongjun Li
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121 China
- Department of Hepatobiliary and Pancreatic Surgery the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121 China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Longguang Tang
- International institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000 China
| |
Collapse
|
138
|
Murugan D, Murugesan V, Panchapakesan B, Rangasamy L. Nanoparticle Enhancement of Natural Killer (NK) Cell-Based Immunotherapy. Cancers (Basel) 2022; 14:cancers14215438. [PMID: 36358857 PMCID: PMC9653801 DOI: 10.3390/cancers14215438] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Simple Summary Natural killer cells are a part of the native immune response to cancer. NK cell-based immunotherapies are an emerging strategy to kill tumor cells. This paper reviews the role of NK cells, their mechanism of action for killing tumor cells, and the receptors which could serve as potential targets for signaling. In this review, the role of nanoparticles in NK cell activation and increased cytotoxicity of NK cells against cancer are highlighted. Abstract Natural killer (NK) cells are one of the first lines of defense against infections and malignancies. NK cell-based immunotherapies are emerging as an alternative to T cell-based immunotherapies. Preclinical and clinical studies of NK cell-based immunotherapies have given promising results in the past few decades for hematologic malignancies. Despite these achievements, NK cell-based immunotherapies have limitations, such as limited performance/low therapeutic efficiency in solid tumors, the short lifespan of NK cells, limited specificity of adoptive transfer and genetic modification, NK cell rejection by the patient’s immune system, insignificant infiltration of NK cells into the tumor microenvironment (TME), and the expensive nature of the treatment. Nanotechnology could potentially assist with the activation, proliferation, near-real time imaging, and enhancement of NK cell cytotoxic activity by guiding their function, analyzing their performance in near-real time, and improving immunotherapeutic efficiency. This paper reviews the role of NK cells, their mechanism of action in killing tumor cells, and the receptors which could serve as potential targets for signaling. Specifically, we have reviewed five different areas of nanotechnology that could enhance immunotherapy efficiency: nanoparticle-assisted immunomodulation to enhance NK cell activity, nanoparticles enhancing homing of NK cells, nanoparticle delivery of RNAi to enhance NK cell activity, genetic modulation of NK cells based on nanoparticles, and nanoparticle activation of NKG2D, which is the master regulator of all NK cell responses.
Collapse
Affiliation(s)
- Dhanashree Murugan
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Vasanth Murugesan
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
- School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Balaji Panchapakesan
- Small Systems Laboratory, Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
- Correspondence: (B.P.); (L.R.)
| | - Loganathan Rangasamy
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
- Correspondence: (B.P.); (L.R.)
| |
Collapse
|
139
|
Wu D, Gao X, Shi Y, Wang H, Wang W, Li Y, Zheng Z. Association between Handgrip Strength and the Systemic Immune-Inflammation Index: A Nationwide Study, NHANES 2011-2014. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192013616. [PMID: 36294194 PMCID: PMC9603468 DOI: 10.3390/ijerph192013616] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 05/31/2023]
Abstract
(1) Background: The Systemic immune-inflammatory index (SII) has been proven to be an effective biomarker of human immune and inflammatory levels and has prognostic significance for most diseases. Handgrip strength (HGS) is a simple and low-cost strength measurement method, which is not only highly correlated with overall muscle strength but also accurately and reliably predicts the risk of multiple chronic diseases and mortality; (2) Purpose: Association between HGS and the SII is unclear. The purpose of this study was to investigate the association between HGS and the SII in American adults; (3) Methods: We used the data from the 2011-2012 and 2013-2014 cycles of the National Health and Nutrition Examination Survey (NHANES), involving a total of 8232 American adults (aged 18-80 years). The SII was calculated as the Platelet count × Neutrophil count/Lymphocyte count; HGS was recorded as the ratio of the sum of the highest grip-strength values of each hand to body mass index taken as the relative grip strength. A weighted generalized linear regression model and analysis of restricted cubic spline regression, adjusted for confounding factors, were used in this study to assess associations between HGS and the SII in American adults; (4) Results: There was a negative correlation between the HGS and the SII of different sexes (p < 0.05), and there was a significant negative nonlinear relationship between the HGS and the SII in males (p for nonlinear = 0.0035), and the SII showed a downward trend with the increase in the HGS in males (Q2: β = -61.03, p = 0.01; Q3: β = -61.28, p = 0.04, Q4: β = -64.36, p = 0.03, p for trend = 0.04), when the HGS exceeds 3.16, with the HGS increasing, the downward trend of increasing the SII slowed down. The nonlinear relationship between the HGS and the SII in females was not significant (p for nonlinear = 0.1011), and the SII showed a linear downward trend with the increase in the HGS (Q2: β = -24.91, p = 0.25; Q3: β = -62.01, p = 0.03, Q4: β = -74.94, p = 0.03, p for trend = 0.01); (5) Conclusions: HGS is inversely and independently associated with SII levels, and although the limited cubic spline regression analysis showed gender differences, the overall trend of the HGS and the SII in different genders was consistent, with both showing that the SII decreased with increasing the HGS. In addition, HGS has high general applicability based on its ease of measurement; it is possible to understand one's own grip-strength level through routine grip-strength tests, and to make preliminary predictions on the current level of immunity and inflammation in the body.
Collapse
Affiliation(s)
- Dongzhe Wu
- Sports Rehabilitation Center, China Institute of Sport Science, Beijing 100061, China
| | - Xiaolin Gao
- Sports Rehabilitation Center, China Institute of Sport Science, Beijing 100061, China
| | - Yongjin Shi
- Department of Physical Education and Art, China Agricultural University, Beijing 100083, China
| | - Hao Wang
- Sports Rehabilitation Center, China Institute of Sport Science, Beijing 100061, China
| | - Wendi Wang
- Sports Rehabilitation Center, China Institute of Sport Science, Beijing 100061, China
| | - Yanbin Li
- Human Health Science Research Department, Tokyo Metropolitan University, Tokyo 116-8551, Japan
| | - Zicheng Zheng
- Human and Social Sciences, Chemnitz University of Technology, 09126 Chemnitz, Germany
| |
Collapse
|
140
|
Ma S, Caligiuri MA, Yu J. Harnessing IL-15 signaling to potentiate NK cell-mediated cancer immunotherapy. Trends Immunol 2022; 43:833-847. [PMID: 36058806 PMCID: PMC9612852 DOI: 10.1016/j.it.2022.08.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 10/14/2022]
Abstract
Natural killer (NK) cells, a crucial component of the innate immune system, have long been of clinical interest for their antitumor properties. Almost every aspect of NK cell immunity is regulated by interleukin-15 (IL-15), a cytokine in the common γ-chain family. Several current clinical trials are using IL-15 or its analogs to treat various cancers. Moreover, NK cells are being genetically modified to produce membrane-bound or secretory IL-15. Here, we discuss the key role of IL-15 signaling in NK cell immunity and provide an up-to-date overview of IL-15 in NK cell therapy.
Collapse
Affiliation(s)
- Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA.
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA; Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Los Angeles, CA 91010, USA.
| |
Collapse
|
141
|
Moscarelli J, Zahavi D, Maynard R, Weiner LM. The Next Generation of Cellular Immunotherapy: Chimeric Antigen Receptor-Natural Killer Cells. Transplant Cell Ther 2022; 28:650-656. [PMID: 35788086 PMCID: PMC9547868 DOI: 10.1016/j.jtct.2022.06.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/06/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022]
Abstract
The advent of chimeric antigen receptor (CAR) engineering has led to the development of powerful cellular therapies for cancer. CAR T cell-based treatments have had notable clinical success, but logistical issues and associated toxicities are recognized limitations. There is emerging interest in using other immune effector cell types for CAR therapy. Natural killer (NK) cells are part of the innate immune system, and these lymphocytes play major roles in immunosurveillance and antitumor immune responses. Incorporating CARs into NK cells provides the opportunity to harness and enhance their innate cytotoxic potential toward malignancies. In this review, we discuss the production of CAR-engineered NK cells, highlight data on their preclinical and clinical efficacy, and examine the obstacles and strategies to overcome them.
Collapse
Affiliation(s)
- Jake Moscarelli
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, Washington, DC
| | - David Zahavi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, Washington, DC
| | - Rachael Maynard
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, Washington, DC
| | - Louis M Weiner
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, Washington, DC.
| |
Collapse
|
142
|
Zhang Y, Zhuang Q, Wang F, Zhang C, Xu C, Gu A, Zhong WH, Hu Y, Zhong X. Co-expression IL-15 receptor alpha with IL-15 reduces toxicity via limiting IL-15 systemic exposure during CAR-T immunotherapy. J Transl Med 2022; 20:432. [PMID: 36167591 PMCID: PMC9516829 DOI: 10.1186/s12967-022-03626-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Background Chimeric antigen receptor (CAR)-T cell therapy is a powerful adoptive immunotherapy against both B-cell malignancies and some types of solid tumors. Interleukin (IL) -15 is an important immune stimulator that may provide ideal long-term persistent CAR-T cells. However, higher base line or peak serum IL-15 levels are also related to severe toxicity, such as cytokine release syndrome (CRS), graft-versus-host disease (GVHD), and neurotoxicity. Methods We successfully constructed CD19 specific armored CAR-T cells overexpressing IL-I5 and IL-15 receptor alpha (IL-15Ra). In vitro cell differentiation and viability were monitored by flow cytometry, and an in vivo xenograft mouse models was used to evaluate the anti-tumor efficiency and liver damage of CAR-T cells. Results CAR-T cells overexpressing IL-15 alone demonstrated enhanced viability, retarded exhaustion in vitro and superior tumor-inhibitory effects in vivo. However, these tumor-free mice had lower survival rates, with serious liver injuries, as a possible result of toxicity. As expected, CAR-T cells overexpressing IL-15 combined with IL-15Ra had reduced CD132 expression and released fewer cytokines (IFNγ, IL-2 and IL-15) in vitro, as well as had the tendency to improve mouse survival via repressing the growth of tumor cells and keeping livers healthier compared to CAR-IL-15 T cells. Conclusions These results indicated the importance of IL-15 in enhancing T cells persistence and IL-15Ra in reducing the adverse effects of IL-15, with superior tumor retardation during CAR-T therapy. This study paves the way for the rapid exploitation of IL-15 in adoptive cell therapy in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03626-x.
Collapse
Affiliation(s)
- Ying Zhang
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Haidian District, No. 10, Iron Medicine Road, Yang Fang Dian, Beijing, 100038, China
| | - Qinghui Zhuang
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Haidian District, No. 10, Iron Medicine Road, Yang Fang Dian, Beijing, 100038, China
| | - Fang Wang
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Haidian District, No. 10, Iron Medicine Road, Yang Fang Dian, Beijing, 100038, China
| | - Can Zhang
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Haidian District, No. 10, Iron Medicine Road, Yang Fang Dian, Beijing, 100038, China
| | - Chang Xu
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Haidian District, No. 10, Iron Medicine Road, Yang Fang Dian, Beijing, 100038, China
| | - Aiqin Gu
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Haidian District, No. 10, Iron Medicine Road, Yang Fang Dian, Beijing, 100038, China
| | | | - Yi Hu
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Haidian District, No. 10, Iron Medicine Road, Yang Fang Dian, Beijing, 100038, China
| | - Xiaosong Zhong
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Haidian District, No. 10, Iron Medicine Road, Yang Fang Dian, Beijing, 100038, China. .,Carriage Therapeutics for Affiliation, Beijing, China.
| |
Collapse
|
143
|
Feng J, Xu H, Cinquina A, Wu Z, Zhang W, Sun L, Chen Q, Tian L, Song L, Pinz KG, Wada M, Jiang X, Hanes WM, Ma Y, Zhang H. Treatment of aggressive T-cell lymphoma/leukemia with anti-CD4 CAR T cells. Front Immunol 2022; 13:997482. [PMID: 36172388 PMCID: PMC9511023 DOI: 10.3389/fimmu.2022.997482] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
T-cell lymphomas are aggressive lymphomas that often resist current therapy options or present with relapsed disease, making the development of more effective treatment regimens clinically important. Previously, we have shown that CD4 CAR can effectively target T-cell malignancies in preclinical studies. As IL-15 has been shown to strengthen the anti-tumor response, we have modified CD4 CAR to secrete an IL-15/IL-15sushi complex. These CD4-IL15/IL15sushi CAR T cells and NK92 cells efficiently eliminated CD4+ leukemic cell lines in co-culture assays. Additionally, CD4-IL15/IL15sushi CAR out-performed CD4 CAR in in vivo models, demonstrating a benefit to IL-15/IL-15sushi inclusion. In a Phase I clinical trial, CD4-IL15/IL15sushi CAR T cells were tested for safety in three patients with different T-cell lymphomas. Infusion of CD4-IL15/IL15sushi CAR T cells was well-tolerated by the patients without significant adverse effects and led to the remission of their lymphomas. Additionally, infusion led to the depletion of CD4+ Treg cells and expansion of CD3+CD8+ T cells and NK cells. These results suggest that CD4-IL15/IL15sushi CAR T cells may be a safe and effective treatment for patients with relapsed or refractory T-cell lymphomas, where new treatment options are needed.
Collapse
Affiliation(s)
- Jia Feng
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Haichan Xu
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Andrew Cinquina
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
| | - Zehua Wu
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wenli Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lihua Sun
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qi Chen
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lei Tian
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Le Song
- Department of Nuclear Medicine, Peking University Third Hospital, Beijing, China
| | - Kevin G. Pinz
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
| | - Masayuki Wada
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
| | - Xun Jiang
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
| | - William M. Hanes
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
| | - Yupo Ma
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
- *Correspondence: Hongyu Zhang, ; Yupo Ma,
| | - Hongyu Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Hongyu Zhang, ; Yupo Ma,
| |
Collapse
|
144
|
Adoptive cell therapies in thoracic malignancies. Cancer Immunol Immunother 2022; 71:2077-2098. [PMID: 35129636 DOI: 10.1007/s00262-022-03142-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/27/2021] [Indexed: 12/22/2022]
Abstract
Immunotherapy has gained great interest in thoracic malignancies in the last decade, first in non-small cell lung cancer (NSCLC), but also more recently in small-cell lung cancer (SCLC) and malignant pleural mesothelioma (MPM). However, while 15-20% of patients will greatly benefit from immune checkpoint blockers (ICBs), a vast majority will rapidly exhibit resistance. Reasons for this are multiple: non-immunogenic tumors, immunosuppressive tumor microenvironment or defects in immune cells trafficking to the tumor sites being some of the most frequent. Current progress in adoptive cell therapies could offer a way to overcome these hurdles and bring effective immune cells to the tumor site. In this review, we discuss advantages, limits and future perspectives of adoptive cell therapy (ACT) in thoracic malignancies from lymphokine-activated killer cells (LAK), cytokine-induced killer cells (CIK), natural killer cells (NK), dendritic cells (DC) vaccines and tumor-infiltrating lymphocytes (TILs) to TCR engineering and CARs. Trials are still in their early phases, and while there may still be many limitations to overcome, a combination of these different approaches with ICBs, chemotherapy and/or radiotherapy could vastly improve the way we treat thoracic cancers.
Collapse
|
145
|
Takenaka Y, Takemoto N, Otsuka T, Nishio M, Tanida M, Fujii T, Hayashi K, Suzuki M, Mori M, Yamamoto Y, Uno A, Inohara H. Predictive significance of body composition indices in patients with head and neck squamous cell carcinoma treated with nivolumab: A multicenter retrospective study. Oral Oncol 2022; 132:106018. [PMID: 35835055 DOI: 10.1016/j.oraloncology.2022.106018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 06/19/2022] [Accepted: 07/06/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND The identification of predictive factors is imperative for identifying patients with optimal responses to nivolumab. We aimed to determine whether body composition parameters can predict treatment outcomes in patients with head and neck squamous cell carcinoma (HNSCC) treated with nivolumab. METHOD We performed a multicenter retrospective chart review of patients with recurrent and/or metastatic HNSCC treated with nivolumab between 2017 and 2020. Computed tomography images and anthropometric measures were used to determine the skeletal muscle index (SMI), subcutaneous adipose index, visceral adipose index (VAI), and body mass index. Objective response, overall survival (OS), progression-free survival (PFS), and severe immune-related adverse events (irAEs) were the main outcomes. Odds ratios (ORs) and hazard ratios (HRs) for low-index groups compared with high-index groups were calculated for these outcomes. RESULTS Our study comprised 114 patients with a median follow-up period of 23.1 months. Low SMI and low VAI were significantly associated with poor disease control [OR: 0.39, 95% confidence interval (CI): 0.15-0.97] and poor response (OR: 0.38, 95% CI: 0.15-0.94), respectively. Low SMI independently predicted poor OS (HR: 2.06, 95% CI: 1.16-3.67), poor PFS (HR: 1.74, 95% CI: 1.04-2.92), and increased incidence of irAEs (OR: 6.00, 95% CI: 1.04-34.61). Low VAI independently predicted poor PFS (HR 2.07, 95% CI: 1.15-3.73). CONCLUSION The SMI and VAI are predictive factors of nivolumab therapy in patients with HNSCC. Body composition indices should be assessed before nivolumab treatment for achieving optimal responses to nivolumab.
Collapse
Affiliation(s)
- Yukinori Takenaka
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Japan; Department of Otorhinolaryngology, Osaka Police Hospital, Japan.
| | - Norihiko Takemoto
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Japan
| | - Tomoyuki Otsuka
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Japan
| | - Minako Nishio
- Department of Medical Oncology, Osaka International Cancer Institute, Japan
| | - Masashi Tanida
- Department of Head and Neck Surgery, Osaka International Cancer Institute, Japan
| | - Takashi Fujii
- Department of Head and Neck Surgery, Osaka International Cancer Institute, Japan
| | - Kazuki Hayashi
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Japan
| | - Motoyuki Suzuki
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Japan
| | - Masashi Mori
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka General Medical Center, Japan
| | - Yoshifumi Yamamoto
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka General Medical Center, Japan
| | - Atsuhiko Uno
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka General Medical Center, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Japan
| |
Collapse
|
146
|
Nguyen R, Zhang X, Sun M, Abbas S, Seibert C, Kelly MC, Shern JF, Thiele CJ. Anti-GD2 Antibodies Conjugated to IL15 and IL21 Mediate Potent Antitumor Cytotoxicity against Neuroblastoma. Clin Cancer Res 2022; 28:3785-3796. [PMID: 35802683 PMCID: PMC9444978 DOI: 10.1158/1078-0432.ccr-22-0717] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/18/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Half of the patients with high-risk neuroblastoma who receive GD2-targeted mAb do not achieve long-term remissions. Recently, the antibody hu14.18 has been linked to IL2 (hu14.18-IL2) to enhance its efficacy and shown promising preclinical and clinical activity. We developed two new immunocytokines (IC) by linking two other γc cytokines, IL15 and IL21, to hu14.18. The purpose of this study was to compare hu14.18-IL15 and -IL21 with hu14.18-IL2 in their ability to induce antibody-dependent cell-mediated cytotoxicity (ADCC) against neuroblastoma. EXPERIMENTAL DESIGN We assessed ADCC of hu14.18-IL15 and -IL2 (human cytokines, cross-reactive to mouse) against GD2low and GD2high neuroblastoma cell lines in vitro. T-cell-deficient mice with orthotopic patient-derived xenografts (PDX) and immunocompetent mice with transplantable orthotopic neuroblastoma were used to test all three ICs, including hu14.18-IL21 (murine IL21, not cross-reactive to human). Mechanistic studies were performed using single-cell RNA-sequencing (scRNA-seq). RESULTS hu14.18-IL15 and hu14.18-IL2 mediated equivalent in vitro ADCC by human NK cells. When combined with chemotherapy, all three ICs similarly controlled the growth of PDXs in nude mice with murine NK effector cells. However, hu14.18-IL15 and -IL21 outperformed hu14.18-IL2 in immunocompetent mice with syngeneic neuroblastoma, inducing complete tumor regressions and extending survival. scRNA-seq data revealed an increase in CD8+ T cells and M1 tumor-associated macrophages and decreased regulatory T cells and myeloid-derived suppressor cells in the tumor microenvironment. CONCLUSIONS Hu14.18-IL15 and Hu14.18-IL21 exhibit robust preclinical activity, warranting further consideration for clinical testing in patients with GD2-expressing neuroblastoma.
Collapse
Affiliation(s)
- Rosa Nguyen
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Corresponding author: Rosa Nguyen, Pediatric Oncology Branch, 10 Center Drive, Building 10, Room 1W-5816, Bethesda, MD, USA; phone: 443-902-3243; fax: 301-451-7052;
| | - Xiyuan Zhang
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ming Sun
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shahroze Abbas
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charlie Seibert
- Center for Cancer Research Single Cell Analysis Facility CCR, Cancer Research Technology Program, Frederick National Laboratory, Bethesda, MD, USA
| | - Michael C. Kelly
- Center for Cancer Research Single Cell Analysis Facility CCR, Cancer Research Technology Program, Frederick National Laboratory, Bethesda, MD, USA
| | - Jack F. Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carol J. Thiele
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
147
|
Kaminski MF, Bendzick L, Hopps R, Kauffman M, Kodal B, Soignier Y, Hinderlie P, Walker JT, Lenvik TR, Geller MA, Miller JS, Felices M. TEM8 Tri-specific Killer Engager binds both tumor and tumor stroma to specifically engage natural killer cell anti-tumor activity. J Immunother Cancer 2022; 10:e004725. [PMID: 36162918 PMCID: PMC9516302 DOI: 10.1136/jitc-2022-004725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The tumor microenvironment contains stromal cells, including endothelial cells and fibroblasts, that aid tumor growth and impair immune cell function. Many solid tumors remain difficult to cure because of tumor-promoting stromal cells, but current therapies targeting tumor stromal cells are constrained by modest efficacy and toxicities. TEM8 is a surface antigen selectively upregulated on tumor and tumor stromal cells, endothelial cells and fibroblasts that may be targeted with specific natural killer (NK) cell engagement. METHODS A Tri-specific Killer Engager (TriKE) against TEM8-'cam1615TEM8'-was generated using a mammalian expression system. Its function on NK cells was assessed by evaluation of degranulation, inflammatory cytokine production, and killing against tumor and stroma cell lines in standard co-culture and spheroid assays. cam1615TEM8-mediated proliferation and STAT5 phosphorylation in NK cells was tested and compared with T cells by flow cytometry. NK cell proliferation, tumor infiltration, and tumor and tumor-endothelium killing by cam1615TEM8 and interleukin-15 (IL-15) were assessed in NOD scid gamma (NSG) mice. RESULTS cam1615TEM8 selectively stimulates NK cell degranulation and inflammatory cytokine production against TEM8-expressing tumor and stromal cell lines. The increased activation translated to superior NK cell killing of TEM8-expressing tumor spheroids. cam1615TEM8 selectively stimulated NK cell but not T cell proliferation in vitro and enhanced NK cell proliferation, survival, and tumor infiltration in vivo. Finally, cam1615TEM8 stimulated NK cell killing of tumor and tumor endothelial cells in vivo. CONCLUSIONS Our findings indicate that the cam1615TEM8 TriKE is a novel anti-tumor, anti-stroma, and anti-angiogenic cancer therapy for patients with solid tumors. This multifunctional molecule works by selectively targeting and activating NK cells by costimulation with IL-15, and then targeting that activity to TEM8+ tumor cells and TEM8+ tumor stroma.
Collapse
Affiliation(s)
- Michael F Kaminski
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Laura Bendzick
- Obstetrics, Gynecology and Women's Health, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Rachel Hopps
- Obstetrics, Gynecology and Women's Health, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Marissa Kauffman
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Behiye Kodal
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Yvette Soignier
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Peter Hinderlie
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Joshua T Walker
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Todd R Lenvik
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Melissa A Geller
- Obstetrics, Gynecology and Women's Health, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Jeffrey S Miller
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Martin Felices
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| |
Collapse
|
148
|
Okuma A, Ishida Y, Kawara T, Hisada S, Araki S. Secretory co-factors in next-generation cellular therapies for cancer. Front Immunol 2022; 13:907022. [PMID: 36059449 PMCID: PMC9433659 DOI: 10.3389/fimmu.2022.907022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Since chimeric antigen receptor (CAR) T-cell therapies for hematologic malignancies were approved by the U.S. Food and Drug Administration, numerous "next-generation" CAR T cells have been developed to improve their safety, efficacy, and applicability. Although some of these novel therapeutic strategies are promising, it remains difficult to apply these therapies to solid tumors and to control adverse effects, such as cytokine release syndrome and neurotoxicity. CAR T cells are generated using highly scalable genetic engineering techniques. One of the major strategies for producing next-generation CAR T cells involves the integration of useful co-factor(s) into the artificial genetic design of the CAR gene, resulting in next-generation CAR T cells that express both CAR and the co-factor(s). Many soluble co-factors have been reported for CAR T cells and their therapeutic effects and toxicity have been tested by systemic injection; therefore, CAR T cells harnessing secretory co-factors could be close to clinical application. Here, we review the various secretory co-factors that have been reported to improve the therapeutic efficacy of CAR T cells and ameliorate adverse events. In addition, we discuss the different co-factor expression systems that have been used to optimize their beneficial effects. Altogether, we demonstrate that combining CAR T cells with secretory co-factors will lead to next-generation CAR T-cell therapies that can be used against broader types of cancers and might provide advanced tools for more complicated synthetic immunotherapies.
Collapse
Affiliation(s)
- Atsushi Okuma
- Center for Exploratory Research, Research and Development Group, Hitachi Ltd., Kobe, Japan
| | | | | | | | | |
Collapse
|
149
|
Valeri A, García-Ortiz A, Castellano E, Córdoba L, Maroto-Martín E, Encinas J, Leivas A, Río P, Martínez-López J. Overcoming tumor resistance mechanisms in CAR-NK cell therapy. Front Immunol 2022; 13:953849. [PMID: 35990652 PMCID: PMC9381932 DOI: 10.3389/fimmu.2022.953849] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the impressive results of autologous CAR-T cell therapy in refractory B lymphoproliferative diseases, CAR-NK immunotherapy emerges as a safer, faster, and cost-effective approach with no signs of severe toxicities as described for CAR-T cells. Permanently scrutinized for its efficacy, recent promising data in CAR-NK clinical trials point out the achievement of deep, high-quality responses, thus confirming its potential clinical use. Although CAR-NK cell therapy is not significantly affected by the loss or downregulation of its CAR tumor target, as in the case of CAR-T cell, a plethora of common additional tumor intrinsic or extrinsic mechanisms that could also disable NK cell function have been described. Therefore, considering lessons learned from CAR-T cell therapy, the emergence of CAR-NK cell therapy resistance can also be envisioned. In this review we highlight the processes that could be involved in its development, focusing on cytokine addiction and potential fratricide during manufacturing, poor tumor trafficking, exhaustion within the tumor microenvironment (TME), and NK cell short in vivo persistence on account of the limited expansion, replicative senescence, and rejection by patient’s immune system after lymphodepletion recovery. Finally, we outline new actively explored alternatives to overcome these resistance mechanisms, with a special emphasis on CRISPR/Cas9 mediated genetic engineering approaches, a promising platform to optimize CAR-NK cell function to eradicate refractory cancers.
Collapse
Affiliation(s)
- Antonio Valeri
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Almudena García-Ortiz
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Eva Castellano
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Laura Córdoba
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Elena Maroto-Martín
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Jessica Encinas
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Alejandra Leivas
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Paula Río
- Division of Hematopoietic Innovative Therapies, Biomedical Innovation Unit, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) and Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Joaquín Martínez-López
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- *Correspondence: Joaquín Martínez-López,
| |
Collapse
|
150
|
Yamada Y, Shimada Y, Makino Y, Kudo Y, Maehara S, Yamada T, Hagiwara M, Kakihana M, Ohira T, Ikeda N. Clinical utility of psoas muscle volume in assessment of sarcopenia in patients with early-stage non-small cell lung cancer. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04234-4. [PMID: 35916994 DOI: 10.1007/s00432-022-04234-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/20/2022] [Indexed: 10/16/2022]
Abstract
PURPOSE Sarcopenia influences postoperative outcomes of patients with non-small cell lung cancer (NSCLC). Imaging tools for evaluating and diagnosing sarcopenia have developed, and a novel method of psoas volume index (PVI) obtained by measuring bilateral psoas major muscle volume has been reported. However, the relationship between sarcopenia based on PVI and clinical outcomes has not been fully investigated for patients with early-stage NSCLC. This study aimed to clarify the utility of PVI values in assessing the relationshipe between sarcopenia and clinical outcomes. METHODS This study included 645 patients with stage I-II NSCLC who underwent curative lung resection between 2012 and 2017. Bilateral psoas major muscle volumes were calculated semi-automatically using a three-dimensional workstation. The cutoff value of PVI for defining sarcopenia was < 60.5 cm3/m3 for men and < 43.6 cm3/m3 for women. RESULTS The avrage time to obtaine PVI was only 25 s with the 3D system, and interobserver agreements for evauating sarcopenia on PVI was 1. A total of 159 patients (24.7%) were preoperatively diagnosed with sarcopenia. On multivariate analysis, sarcopenia was an independent prognostic factor for overall survival (OS, p < 0.001), recurrence-free survival (RFS, p < 0.001), and lung cancer-specific survival (LCS, p < 0.001). The 5-year OS, RFS, and LCS were significantly worse in sarcopenic patients than non-sarcopenic patients (88.8 vs. 72.4%, p < 0.001; 80.1 vs. 65.0%, p < 0.001; 92.4 vs. 78.9%, p < 0.001, respectively). CONCLUSION Sarcopenia diagnosed using PVI is an independent prognostic predictor of OS, RFS, and LCS in early-stage NSCLC.
Collapse
Affiliation(s)
- Yuki Yamada
- Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Yoshihisa Shimada
- Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Yojiro Makino
- Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Yujin Kudo
- Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Sachio Maehara
- Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Takafumi Yamada
- Department of Radiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Masaru Hagiwara
- Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Masatoshi Kakihana
- Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Tatsuo Ohira
- Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Norihiko Ikeda
- Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| |
Collapse
|