101
|
Ye H, Zhang C, Li Z. LncRNA TMPO-AS1 promotes hepatocellular carcinoma progression via activating PI3K-AKT pathway. Minerva Gastroenterol (Torino) 2022; 68:344-346. [PMID: 34477348 DOI: 10.23736/s2724-5985.21.02908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Huan Ye
- Department of Hepatopancreatobiliary Surgery, Wuhan Puren Hospital, Wuhan, China
| | - Chenchen Zhang
- Department of Hepatobiliary Surgery, Wuhan N.1 Hospital, Wuhan, China
| | - Zhengcai Li
- Department of General Surgery, Jingmen Hospital of Traditional Chinese Medicine, Jingmen, China -
| |
Collapse
|
102
|
Wang N, Yang Y, Jin D, Zhang Z, Shen K, Yang J, Chen H, Zhao X, Yang L, Lu H. PARP inhibitor resistance in breast and gynecological cancer: Resistance mechanisms and combination therapy strategies. Front Pharmacol 2022; 13:967633. [PMID: 36091750 PMCID: PMC9455597 DOI: 10.3389/fphar.2022.967633] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/04/2022] [Indexed: 12/02/2022] Open
Abstract
Breast cancer and gynecological tumors seriously endanger women’s physical and mental health, fertility, and quality of life. Due to standardized surgical treatment, chemotherapy, and radiotherapy, the prognosis and overall survival of cancer patients have improved compared to earlier, but the management of advanced disease still faces great challenges. Recently, poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis) have been clinically approved for breast and gynecological cancer patients, significantly improving their quality of life, especially of patients with BRCA1/2 mutations. However, drug resistance faced by PARPi therapy has hindered its clinical promotion. Therefore, developing new drug strategies to resensitize cancers affecting women to PARPi therapy is the direction of our future research. Currently, the effects of PARPi in combination with other drugs to overcome drug resistance are being studied. In this article, we review the mechanisms of PARPi resistance and summarize the current combination of clinical trials that can improve its resistance, with a view to identify the best clinical treatment to save the lives of patients.
Collapse
Affiliation(s)
- Nannan Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Dongdong Jin
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment, Zhengzhou, China
| | - Zhenan Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Shen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huanhuan Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinyue Zhao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment, Zhengzhou, China
- *Correspondence: Li Yang, ; Huaiwu Lu,
| | - Huaiwu Lu
- Department of Gynaecological Oncology, Sun Yat Sen Memorial Hospital, Guangzhou, China
- *Correspondence: Li Yang, ; Huaiwu Lu,
| |
Collapse
|
103
|
Boozari M, Hosseinzadeh H. Crocin molecular signaling pathways at a glance: A comprehensive review. Phytother Res 2022; 36:3859-3884. [PMID: 35989419 DOI: 10.1002/ptr.7583] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/16/2022] [Accepted: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Crocin is a hydrophilic carotenoid that is synthesized in the flowers of the Crocus genus. Numerous in vitro and in vivo research projects have been published about the biological and pharmacological properties and toxicity of crocin. Crocin acts as a memory enhancer, anxiolytic, aphrodisiac, antidepressant, neuroprotective, and so on. Here, we introduce an updated and comprehensive review of crocin molecular mechanisms based on previously examined and mentioned in the literature. Different studies confirmed the significant effect of crocin to control pathological conditions, including oxidative stress, inflammation, metabolic disorders, neurodegenerative disorders, and cancer. The neuroprotective effect of crocin could be related to the activation of phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT)/mammalian target of rapamycin (mTOR), Notch, and cyclic-AMP response element-binding protein signaling pathways. The crocin also protects the cardiovascular system through the inhibitory effect on toll-like receptors. The regulatory effect of crocin on PI3K/AKT/mTOR, AMP-activated protein kinase, mitogen-activated protein kinases (MAPK), and peroxisome proliferator-activated receptor pathways can play an effective role in the treatment of metabolic disorders. The crocin has anticancer activity through the PI3K/AKT/mTOR, MAPK, vascular endothelial growth factor, Wnt/β-catenin, and Janus kinases-signal transducer and activator of transcription suppression. Also, the nuclear factor-erythroid factor 2-related factor 2 and p53 signaling pathway activation may be effective in the anticancer effect of crocin. Finally, among signaling pathways regulated by crocin, the most important ones seem to be those related to the regulatory effect on the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Motahareh Boozari
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
104
|
Barzaman K, Vafaei R, Samadi M, Kazemi MH, Hosseinzadeh A, Merikhian P, Moradi-Kalbolandi S, Eisavand MR, Dinvari H, Farahmand L. Anti-cancer therapeutic strategies based on HGF/MET, EpCAM, and tumor-stromal cross talk. Cancer Cell Int 2022; 22:259. [PMID: 35986321 PMCID: PMC9389806 DOI: 10.1186/s12935-022-02658-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 07/19/2022] [Indexed: 02/08/2023] Open
Abstract
As an intelligent disease, tumors apply several pathways to evade the immune system. It can use alternative routes to bypass intracellular signaling pathways, such as nuclear factor-κB (NF-κB), Wnt, and mitogen-activated protein (MAP)/phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR). Therefore, these mechanisms lead to therapeutic resistance in cancer. Also, these pathways play important roles in the proliferation, survival, migration, and invasion of cells. In most cancers, these signaling pathways are overactivated, caused by mutation, overexpression, etc. Since numerous molecules share these signaling pathways, the identification of key molecules is crucial to achieve favorable consequences in cancer therapy. One of the key molecules is the mesenchymal-epithelial transition factor (MET; c-Met) and its ligand hepatocyte growth factor (HGF). Another molecule is the epithelial cell adhesion molecule (EpCAM), which its binding is hemophilic. Although both of them are involved in many physiologic processes (especially in embryonic stages), in some cancers, they are overexpressed on epithelial cells. Since they share intracellular pathways, targeting them simultaneously may inhibit substitute pathways that tumor uses to evade the immune system and resistant to therapeutic agents.
Collapse
|
105
|
Li M, Yang N, Hao L, Zhou W, Li L, Liu L, Yang F, Xu L, Yao G, Zhu C, Xu W, Fang S. Melatonin Inhibits the Ferroptosis Pathway in Rat Bone Marrow Mesenchymal Stem Cells by Activating the PI3K/AKT/mTOR Signaling Axis to Attenuate Steroid-Induced Osteoporosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8223737. [PMID: 36035224 PMCID: PMC9410838 DOI: 10.1155/2022/8223737] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 12/12/2022]
Abstract
Steroid-induced osteoporosis (SIOP) is a form of secondary osteoporosis, but its specific mechanism remains unclear. Glucocorticoid (GC-)-induced death of osteoblasts and bone marrow mesenchymal stem cells (BMSCs) is an important factor in SIOP. Ferroptosis is an iron-dependent type of programmed cell death and can be induced by many factors. Herein, we aimed to explore whether GCs cause ferroptosis of BMSCs, identify pathways as possible therapeutic targets, and determine the underlying mechanisms of action. In this study, we used high-dose dexamethasone (DEX) to observe whether GCs induce ferroptosis of BMSCs. Additionally, we established a rat SIOP model and then assessed whether melatonin (MT) could inhibit the ferroptosis pathway to provide early protection against GC-induced SIOP and investigated the signaling pathways involved. In vitro experiments confirmed that DEX induces ferroptosis in BMSCs. MT significantly alleviates GC-induced ferroptosis of BMSCs. Pathway analysis showed that MT ameliorates ferroptosis by activating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) axis. MT upregulates the expression of PI3K, which is an important regulator of ferroptosis resistance. PI3K activators mimic the antiferroptotic effect of MT, but when the PI3K pathway is blocked, the effect of MT is weakened. Using in vivo experiments, we confirmed the in vitro results and observed that MT can obviously protect against SIOP induced by GC. Notably, even after the initiation of GC-induced ferroptosis, MT can confer protection against SIOP. Our research confirms that GC-induced ferroptosis is closely related to SIOP. MT can inhibit ferroptosis by activating the PI3K/AKT/mTOR signaling pathway, thereby inhibiting the occurrence of SIOP. Therefore, MT may be a novel agent for preventing and treating SIOP.
Collapse
Affiliation(s)
- Meng Li
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Lujiang Road No. 17, Hefei, 230001 Anhui, China
| | - Ning Yang
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Lujiang Road No. 17, Hefei, 230001 Anhui, China
| | - Li Hao
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Lujiang Road No. 17, Hefei, 230001 Anhui, China
| | - Wei Zhou
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Lujiang Road No. 17, Hefei, 230001 Anhui, China
| | - Lei Li
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Lujiang Road No. 17, Hefei, 230001 Anhui, China
| | - Lei Liu
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Lujiang Road No. 17, Hefei, 230001 Anhui, China
| | - Fang Yang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui, China
| | - Lei Xu
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Lujiang Road No. 17, Hefei, 230001 Anhui, China
| | - Gang Yao
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Lujiang Road No. 17, Hefei, 230001 Anhui, China
| | - Chen Zhu
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Lujiang Road No. 17, Hefei, 230001 Anhui, China
| | - Wei Xu
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Lujiang Road No. 17, Hefei, 230001 Anhui, China
| | - Shiyuan Fang
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Lujiang Road No. 17, Hefei, 230001 Anhui, China
| |
Collapse
|
106
|
Mortazavi M, Moosavi F, Martini M, Giovannetti E, Firuzi O. Prospects of targeting PI3K/AKT/mTOR pathway in pancreatic cancer. Crit Rev Oncol Hematol 2022; 176:103749. [PMID: 35728737 DOI: 10.1016/j.critrevonc.2022.103749] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the worst prognoses among all malignancies. PI3K/AKT/mTOR signaling pathway, a main downstream effector of KRAS is involved in the regulation of key hallmarks of cancer. We here report that whole-genome analyses demonstrate the frequent involvement of aberrant activations of PI3K/AKT/mTOR pathway components in PDAC patients and critically evaluate preclinical and clinical evidence on the application of PI3K/AKT/mTOR pathway targeting agents. Combinations of these agents with chemotherapeutics or other targeted therapies, including the modulators of cyclin-dependent kinases, receptor tyrosine kinases and RAF/MEK/ERK pathway are also examined. Although human genetic studies and preclinical pharmacological investigations have provided strong evidence on the role of PI3K/AKT/mTOR pathway in PDAC, clinical studies in general have not been as promising. Patient stratification seems to be the key missing point and with the advent of biomarker-guided clinical trials, targeting PI3K/AKT/mTOR pathway could provide valuable assets for treatment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Motahareh Mortazavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Cancer Pharmacology Lab, Fondazine Pisana per la Scienza, Pisa, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
107
|
Wu H, Wei M, Li Y, Ma Q, Zhang H. Research Progress on the Regulation Mechanism of Key Signal Pathways Affecting the Prognosis of Glioma. Front Mol Neurosci 2022; 15. [DOI: https:/doi.org/10.3389/fnmol.2022.910543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
As is known to all, glioma, a global difficult problem, has a high malignant degree, high recurrence rate and poor prognosis. We analyzed and summarized signal pathway of the Hippo/YAP, PI3K/AKT/mTOR, miRNA, WNT/β-catenin, Notch, Hedgehog, TGF-β, TCS/mTORC1 signal pathway, JAK/STAT signal pathway, MAPK signaling pathway, the relationship between BBB and signal pathways and the mechanism of key enzymes in glioma. It is concluded that Yap1 inhibitor may become an effective target for the treatment of glioma in the near future through efforts of generation after generation. Inhibiting PI3K/Akt/mTOR, Shh, Wnt/β-Catenin, and HIF-1α can reduce the migration ability and drug resistance of tumor cells to improve the prognosis of glioma. The analysis shows that Notch1 and Sox2 have a positive feedback regulation mechanism, and Notch4 predicts the malignant degree of glioma. In this way, notch cannot only be treated for glioma stem cells in clinic, but also be used as an evaluation index to evaluate the prognosis, and provide an exploratory attempt for the direction of glioma treatment. MiRNA plays an important role in diagnosis, and in the treatment of glioma, VPS25, KCNQ1OT1, KB-1460A1.5, and CKAP4 are promising prognostic indicators and a potential therapeutic targets for glioma, meanwhile, Rheb is also a potent activator of Signaling cross-talk etc. It is believed that these studies will help us to have a deeper understanding of glioma, so that we will find new and better treatment schemes to gradually conquer the problem of glioma.
Collapse
|
108
|
Wu H, Wei M, Li Y, Ma Q, Zhang H. Research Progress on the Regulation Mechanism of Key Signal Pathways Affecting the Prognosis of Glioma. Front Mol Neurosci 2022; 15:910543. [PMID: 35935338 PMCID: PMC9354928 DOI: 10.3389/fnmol.2022.910543] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
As is known to all, glioma, a global difficult problem, has a high malignant degree, high recurrence rate and poor prognosis. We analyzed and summarized signal pathway of the Hippo/YAP, PI3K/AKT/mTOR, miRNA, WNT/β-catenin, Notch, Hedgehog, TGF-β, TCS/mTORC1 signal pathway, JAK/STAT signal pathway, MAPK signaling pathway, the relationship between BBB and signal pathways and the mechanism of key enzymes in glioma. It is concluded that Yap1 inhibitor may become an effective target for the treatment of glioma in the near future through efforts of generation after generation. Inhibiting PI3K/Akt/mTOR, Shh, Wnt/β-Catenin, and HIF-1α can reduce the migration ability and drug resistance of tumor cells to improve the prognosis of glioma. The analysis shows that Notch1 and Sox2 have a positive feedback regulation mechanism, and Notch4 predicts the malignant degree of glioma. In this way, notch cannot only be treated for glioma stem cells in clinic, but also be used as an evaluation index to evaluate the prognosis, and provide an exploratory attempt for the direction of glioma treatment. MiRNA plays an important role in diagnosis, and in the treatment of glioma, VPS25, KCNQ1OT1, KB-1460A1.5, and CKAP4 are promising prognostic indicators and a potential therapeutic targets for glioma, meanwhile, Rheb is also a potent activator of Signaling cross-talk etc. It is believed that these studies will help us to have a deeper understanding of glioma, so that we will find new and better treatment schemes to gradually conquer the problem of glioma.
Collapse
Affiliation(s)
- Hao Wu
- Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Min Wei
- Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Yuping Li
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Qiang Ma
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Hengzhu Zhang
- Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| |
Collapse
|
109
|
Yang C, Song C, Wang Y, Zhou W, Zheng W, Zhou H, Deng G, Li H, Xiao W, Yang Z, Kong L, Ge H, Song Y, Sun Y. Re-Du-Ning injection ameliorates radiation-induced pneumonitis and fibrosis by inhibiting AIM2 inflammasome and epithelial-mesenchymal transition. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154184. [PMID: 35665679 DOI: 10.1016/j.phymed.2022.154184] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Radiation-induced lung injury (RILI) is a common side effect in chest radiotherapy patients, and there is no good medicine to treat it. Re-Du-Ning (RDN) injection is a traditional Chinese medicine that is clinically used to treat upper respiratory tract infections and acute bronchitis. RDN has the advantage of high safety and mild side effects. The mechanism of most traditional Chinese medicine preparations is unknown. PURPOSE To illustrate the mechanisms of RDN for the treatment of RILI. METHODS Female C57BL/6 mice were used to establish a RILI model via irradiation, and RDN injection was intraperitoneally administered at doses of 5, 10, and 20 ml/kg. The cytokines were measured by ELISA and qPCR. The data related to Absent in melanoma 2 (AIM2) inflammasome were analyzed via ELISA and a network pharmacological approach. In addition, the data related to epithelial-mesenchymal transition (EMT) were analyzed via immunofluorescence, Western blotting, and a network pharmacological approach. RESULTS RDN robustly alleviated RILI. Meanwhile, RDN downregulated inflammatory cells' infiltration and the expression of pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α. Next, the potential molecular mechanisms of RDN were predicted through network pharmacology analysis. RDN may ameliorate radiation pneumonitis (RP) by inhibiting AIM2-mediated pyroptosis. Moreover, RDN treatment inhibited EMT and phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT) pathway. The active compounds from Lonicera japonica Thunb. decreased the phosphorylation of Akt. CONCLUSION These findings demonstrate that RDN, as a traditional Chinese medicine preparation, will be a candidate drug for treating RILI.
Collapse
Affiliation(s)
- Chenxi Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Chenglin Song
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Yi Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Daming Road, Nanjing, Jiangsu, 210012 China
| | - Wencheng Zhou
- Department of Pharmacy, First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou 310006, China
| | - Wei Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Han Zhou
- Department of Radiation Oncology, Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210002, China
| | - Guoliang Deng
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Haibo Li
- Jiangsu Kanion Pharmaceutical Co. Ltd. and State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co. Ltd. and State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China
| | - Zhongqi Yang
- Department of Geriatrics, First Affiliated Hospital of Guangzhou University of Chinese Medicine, 16 Jichang Road, Guangzhou, Guangdong 510405, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Huiming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| | - Yaohong Song
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Daming Road, Nanjing, Jiangsu, 210012 China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| |
Collapse
|
110
|
Abstract
ABSTRACT The phosphosphatidylinositol-3-kinase (PI3K) signaling pathway is one of the most important intracellular signal transduction pathways affecting cell functions, such as apoptosis, translation, metabolism, and angiogenesis. Lung cancer is a malignant tumor with the highest morbidity and mortality rates in the world. It can be divided into two groups, non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC accounts for >85% of all lung cancers. There are currently many clinical treatment options for NSCLC; however, traditional methods such as surgery, chemotherapy, and radiotherapy have not been able to provide patients with good survival benefits. The emergence of molecular target therapy has improved the survival and prognosis of patients with NSCLC. In recent years, there have been an increasing number of studies on NSCLC and PI3K signaling pathways. Inhibitors of various parts of the PI3K pathway have appeared in various phases of clinical trials with NSCLC as an indication. This article focuses on the role of the PI3K signaling pathway in the occurrence and development of NSCLC and summarizes the current clinical research progress and possible development strategies.
Collapse
|
111
|
Wang H, Lin Z, Nian Z, Zhang W, Liu W, Yan F, Xiao Z, Wang X, Zhang Z, Ma Z, Liu Z. Hematopoietic transcription factor GFI1 promotes anchorage independence by sustaining ERK activity in cancer cells. J Clin Invest 2022; 132:149551. [PMID: 35819844 PMCID: PMC9433100 DOI: 10.1172/jci149551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/07/2022] [Indexed: 11/26/2022] Open
Abstract
The switch from anchorage-dependent to anchorage-independent growth is essential for epithelial metastasis. The underlying mechanism, however, is not fully understood. In this study, we identified growth factor independent-1 (GFI1), a transcription factor that drives the transition from adherent endothelial cells to suspended hematopoietic cells during hematopoiesis, as a critical regulator of anchorage independence in lung cancer cells. GFI1 elevated the numbers of circulating and lung-infiltrating tumor cells in xenograft models and predicted poor prognosis of patients with lung cancer. Mechanistically, GFI1 inhibited the expression of multiple adhesion molecules and facilitated substrate detachment. Concomitantly, GFI1 reconfigured the chromatin structure of the RASGRP2 gene and increased its expression, causing Rap1 activation and subsequent sustained ERK activation upon detachment, and this led to ERK signaling dependency in tumor cells. Our studies unveiled a mechanism by which carcinoma cells hijacked a hematopoietic factor to gain anchorage independence and suggested that the intervention of ERK signaling may suppress metastasis and improve the therapeutic outcome of patients with GFI1-positive lung cancer.
Collapse
Affiliation(s)
- Hao Wang
- Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Zhenzhen Lin
- Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Zhe Nian
- Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Wei Zhang
- Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Wenxu Liu
- Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Fei Yan
- Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Zengtuan Xiao
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xia Wang
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhenfa Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhenyi Ma
- Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Zhe Liu
- Department of Immunology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
112
|
Wang H, Chi L, Yu F, Dai H, Si X, Gao C, Wang Z, Liu L, Zheng J, Ke Y, Liu H, Zhang Q. The overview of Mitogen-activated extracellular signal-regulated kinase (MEK)-based dual inhibitor in the treatment of cancers. Bioorg Med Chem 2022; 70:116922. [PMID: 35849914 DOI: 10.1016/j.bmc.2022.116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022]
Abstract
Mitogen-activated extracellular signal-regulated kinase 1 and 2 (MEK1/2) are the critical components of the mitogen-activated protein kinase/extracellular signal-regulated kinase 1 and 2 (MAPK/ERK1/2) signaling pathway which is one of the well-characterized kinase cascades regulating cell proliferation, differentiation, growth, metabolism, survival and mobility both in normal and cancer cells. The aberrant activation of MAPK/ERK1/2 pathway is a hallmark of numerous human cancers, therefore targeting the components of this pathway to inhibit its dysregulation is a promising strategy for cancer treatment. Enormous efforts have been done in the development of MEK1/2 inhibitors and encouraging advancements have been made, including four inhibitors approved for clinical use. However, due to the multifactorial property of cancer and rapidly arising drug resistance, the clinical efficacy of these MEK1/2 inhibitors as monotherapy are far from ideal. Several alternative strategies have been developed to improve the limited clinical efficacy, including the dual inhibitor which is a single drug molecule able to simultaneously inhibit two targets. In this review, we first introduced the activation and function of the MAPK/ERK1/2 components and discussed the advantages of MEK1/2-based dual inhibitors compared with the single inhibitors and combination therapy in the treatment of cancers. Then, we overviewed the MEK1/2-based dual inhibitors for the treatment of cancers and highlighted the theoretical basis of concurrent inhibition of MEK1/2 and other targets for development of these dual inhibitors. Besides, the status and results of these dual inhibitors in both preclinical and clinical studies were also the focus of this review.
Collapse
Affiliation(s)
- Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Lingling Chi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Fuqiang Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Hongling Dai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Xiaojie Si
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Chao Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Zhengjie Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Limin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Jiaxin Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Yu Ke
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China.
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450052, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| | - Qiurong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| |
Collapse
|
113
|
Current and New Novel Combination Treatments for Metastatic Triple-Negative Breast Cancer. Curr Oncol 2022; 29:4748-4767. [PMID: 35877237 PMCID: PMC9323790 DOI: 10.3390/curroncol29070377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has a worse prognosis and remains the most challenging breast cancer subtype to treat. This is largely related to the heterogeneity of this disease and the lack of reliable oncological targets. In this review, we discuss the current standard-of-care treatment options for metastatic TNBC, including recent advances with the use of immunotherapy, PARP inhibitors and antibody-drug conjugates. This review also explores new agents and novel combinations arising in the field for the treatment of advanced TNBC.
Collapse
|
114
|
Liu T, Gong J, Lai G, Yang Y, Wu X, Wu X. Flavonoid extract Kushenol a exhibits anti-proliferative activity in breast cancer cells via suppression of PI3K/AKT/mTOR pathway. Cancer Med 2022; 12:1643-1654. [PMID: 35789211 PMCID: PMC9883544 DOI: 10.1002/cam4.4993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Kushenol A is natural flavonoid extract discovered in recent years, with potential anti-tumor activity. Its role in breast cancer is poorly understood. METHODS To investigate biological function of Kushenol A in breast cancer (BC), Cell Counting Kit-8 assay, colony formation assay, flow cytometry, western blotting, qPCR analysis, and xenograft mouse model were performed. RESULTS We found that Kushenol A treatment reduced proliferative capability and induced G0/G1 phase cell cycle arrest and apoptosis of BC cells in a concentration-dependent manner. Besides, Kushenol A treatment contributed to the upregulation of apoptosis-related and cell cycle-associated genes. In nude mice, Kushenol A administration repressed BC xenograft tumor growth. Mechanistically, phosphorylation levels of AKT and mTOR were markedly attenuated in Kushenol A-treated BC cells; however, there were no significant differences in total AKT and mTOR expressions. Moreover, PI3K inhibitor combined with Kushenol A exhibited synergistic inhibitory activity on cell proliferation. CONCLUSIONS Taken together, our findings suggested that Kushenol A suppressed BC cell proliferation by modulating PI3K/AKT/mTOR signaling pathway. Kushenol A may be a promising therapeutic drug for treating BC.
Collapse
Affiliation(s)
- Tao Liu
- Oncology DepartmentZhangzhou Zhengxing HospitalZhangzhouChina
| | - Jinhua Gong
- Xiamen Institute of Union Respiratory HealthXiamenChina
| | - Guobin Lai
- Oncology DepartmentZhangzhou Zhengxing HospitalZhangzhouChina
| | - Yichao Yang
- Oncology DepartmentZhangzhou Zhengxing HospitalZhangzhouChina
| | - Xiaoan Wu
- Oncology DepartmentZhangzhou Zhengxing HospitalZhangzhouChina
| | - Xiuping Wu
- Department of Breast SurgeryZhangzhou Zhengxing HospitalZhangzhouChina
| |
Collapse
|
115
|
Wu Y, Wu Y, Xu C, Sun W, You Z, Wang Y, Zhang S. CHMP1A suppresses the growth of renal cell carcinoma cells via regulation of the PI3K/mTOR/p53 signaling pathway. Genes Genomics 2022; 44:823-832. [PMID: 35583792 DOI: 10.1007/s13258-022-01237-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/23/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND CHMP1A, a member of the ESCRT-III complex family, has been indicated as a brand-new inhibitor gene of tumors. Our previous research has revealed that CHMP1A plays a vital role in the development and progression of renal cell carcinoma (RCC). OBJECTIVE To investigate the potential target pathway of the regulation of the tumor cell growth by CHMP1A. METHODS The effect of CHMP1A on mTOR pathway was elucidated by western blotting. The effect of CHMP1A on the expression of p53 was evaluated, and A498 cell growth was assessed by colony formation and MTT assays. The expression of p53 was knocked down by shRNA-p53, and the effect of CHMP1A on mTOR after knockdown of p53 was evaluated. The effect of CHMP1A on apoptosis and its relationship with MDM2 pathway were detected by western blotting and FCM. Finally, the relationship between the regulation of p53 by CHMP1A and the PI3K/mTOR pathway was detected. RESULTS This study showed that the mTOR pathway was suppressed significantly in CHMP1A-overexpressing A498 and 786-0 cells; moreover, the enhanced expression of p53 and the reduced proliferation were shown in CHMP1A-overexpressing A498 cells. Furthermore, CHMP1A was able to regulate the PI3K/PTEN/mTOR and MDM2/p53 pathways in order to suppress RCC. In addition, CHMP1A regulated Bax and Bcl-2 via MDM2/p53 to induce the apoptosis of tumor cells and upregulated the expression of p53 via the PI3K/mTOR pathway. CONCLUSIONS The results convey that CHMP1A-related suppression of RCC is closely related to the PI3K/mTOR/p53 pathway.
Collapse
Affiliation(s)
- Youping Wu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yueguo Wu
- School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Cong Xu
- School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wei Sun
- School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhenqiang You
- School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yin Wang
- School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Sheng Zhang
- School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China. .,Hangzhou Medical College, No.182 Tianmushan Road, 310013, Hangzhou, China.
| |
Collapse
|
116
|
Hu S, Ma W, Wang J, Ma Y, Zhou Z, Zhang R, Du K, Zhang H, Sun M, Jiang X, Tu H, Tang X, Yao X, Chen P. Synthesis and anticancer evaluations of novel 1H-imidazole [4,5-f][1,10] phenanthroline derivative for the treatment of colorectal cancer. Eur J Pharmacol 2022; 928:175120. [PMID: 35753402 DOI: 10.1016/j.ejphar.2022.175120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022]
Abstract
1H-imidazole [4,5-f][1,10] phenanthroline is a promising chemical structure for cancer treatment. Herein, we synthesized a novel 1H-imidazole [4,5-f][1,10] phenanthroline derivative named IPM714 and found it exhibited selectively colorectal cancer (CRC) cells inhibitory activities, with half maximal inhibitory concentration (IC50) of 1.74 μM and 2 μM in HCT116 cells and SW480 cells, respectively. The present study is intended to explore the cytotoxicity of IPM714 in cancer cells of various types and its anticancer mechanism in vitro. Cellular functional analyses indicated IPM714 can arrest HCT116 cell cycle in S phase and induce apoptosis in both HCT116 and SW480 cells. Western blot and molecular docking showed that IPM714 may suppress PI3K/AKT/mTOR pathway to inhibit cell proliferation and regulate cell cycle and apoptosis. This study proved IPM714 to be a promising drug in CRC therapy.
Collapse
Affiliation(s)
- Shujian Hu
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Wantong Ma
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Junyi Wang
- College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Wenzhou, 325060, PR China
| | - Yunhao Ma
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Zhongkun Zhou
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Rentao Zhang
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Kangjia Du
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Hao Zhang
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Mengze Sun
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Xinrong Jiang
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Hongyuan Tu
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Xiaoliang Tang
- College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, PR China
| | - Xiaojun Yao
- Macau Institute for Applied Research in Medicine and Health, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Peng Chen
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China.
| |
Collapse
|
117
|
Luo X, Gao Q, Zhou T, Tang R, Zhao Y, Zhang Q, Wang N, Ye H, Chen X, Chen S, Tang W, Zhao D. FOXP4-AS1 Inhibits Papillary Thyroid Carcinoma Proliferation and Migration Through the AKT Signaling Pathway. Front Oncol 2022; 12:900836. [PMID: 35720005 PMCID: PMC9202991 DOI: 10.3389/fonc.2022.900836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 12/24/2022] Open
Abstract
Papillary thyroid carcinoma, also known as PTC, is one of the commonest malignancies in the endocrine system. Long non-coding RNAs (lncRNAs) in PTC could maintain proliferative signaling, induce therapeutic resistance, activate invasion and migration, and sustain stem cell-like characteristics. In this paper, results showed that lncRNA forkhead box P4 antisense RNA 1 (FOXP4-AS1) is downregulated in PTC tissues and cell lines. Patients in TCGA cohort with a higher FOXP4-AS1 expression showed a higher disease-free interval (DFI) rate, and the expression of FOXP4-AS1 is shown to be linked to the clinical stage, T stage, N stage, and extraglandular invasion condition of the TC patients. FOXP4-AS1 is localized in the cell cytoplasmic domain of PTC cells. Functionally, upregulated FOXP4-AS1 inhibited PTC cell proliferation, apoptosis, and migration, whereas it downregulated FOXP4-AS1-promoted progression of PTC. In vivo assay also confirmed the tumor inhibitory effect of FOXP4-AS1 in PTC growth. Mechanism analysis indicated that FOXP4-AS1 can play its functions by regulating the AKT signaling pathway, and AKT inhibitor treatment could attenuate the impact of FOXP4-AS1 on PTC progression. Furthermore, FOXP4-AS1 also negatively regulates the expression of its host gene FOXP4. Collectively, we showed that FOXP4-AS1 inhibited PTC progression although AKT signaling and FOXP4-AS1 plays a tumor-suppressor role in PTC tumorigenesis.
Collapse
Affiliation(s)
- Xue Luo
- Clinical Medical College, Guizhou Medical University, Guiyang, China.,Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qingjun Gao
- Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tian Zhou
- Department of Breast Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Rui Tang
- Department of Thyroid and Breast Surgery, Bijie City First People's Hospital, Bijie, China
| | - Yu Zhao
- Department of Thyroid and Breast Surgery, Qian Xi Nan People's Hospital, Xingyi, China
| | - Qifang Zhang
- Key Laboratory of Endemic and Ethnic Minority Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Nanpeng Wang
- Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hui Ye
- Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xinghong Chen
- Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Song Chen
- Department of Thyroid and Breast Surgery, Jinyang Hospital Affiliated to Guizhou Medical University, Guiyang, China
| | - Wenli Tang
- Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Daiwei Zhao
- Clinical Medical College, Guizhou Medical University, Guiyang, China.,Department of Thyroid Surgery, the Second People's Hospital of Guizhou Province, Guiyang, China
| |
Collapse
|
118
|
Buckingham L, Hao T, O’Donnell J, Zhao Z, Zhang X, Fan Y, Sun W, Zhang Y, Suo H, Secord AA, Zhou C, Bae-Jump V. Ipatasertib, an oral AKT inhibitor, inhibits cell proliferation and migration, and induces apoptosis in serous endometrial cancer. Am J Cancer Res 2022; 12:2850-2862. [PMID: 35812065 PMCID: PMC9251705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/27/2022] [Indexed: 01/05/2023] Open
Abstract
Ipatasertib (IPAT) is an orally administered, selective protein kinase B (AKT) inhibitor with promising data in solid tumors in both pre-clinical studies and clinical trials. Given that the PI3K/AKT/mTOR pathway is frequently dysregulated in uterine serous carcinoma (USC), we aimed to explore the functional impact of IPAT on anti-tumorigenic activity in USC cell lines and primary cultures of USC. We found that IPAT significantly inhibited cell proliferation and colony formation in a dose-dependent manner in USC cells. Induction of cell cycle arrest and apoptosis was observed in IPAT-treated ARK1 and SPEC-2 cells. Treatment with IPAT resulted in reduced adhesion and invasion of both cell lines with a concomitant decrease in the expression of Snail, Slug, and N-Cadherin. Compared with single-drug treatment, the combination of IPAT and paclitaxel synergistically reduced cell proliferation and increased the activity of cleaved caspase 3 in both cell lines. Additionally, IPAT inhibited growth in four of five primary USC cultures, and three of five primary cultures also exhibited synergistic growth inhibition when paclitaxel and IPAT were combined. These results support that IPAT appears to be a promising targeted agent in the treatment of USC.
Collapse
Affiliation(s)
- Lindsey Buckingham
- Division of Gynecologic Oncology, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Tianran Hao
- Division of Gynecologic Oncology, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Jillian O’Donnell
- Division of Gynecologic Oncology, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Ziyi Zhao
- Division of Gynecologic Oncology, University of North Carolina at Chapel HillChapel Hill, NC, USA,Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care HospitalBeijing, China
| | - Xin Zhang
- Division of Gynecologic Oncology, University of North Carolina at Chapel HillChapel Hill, NC, USA,Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care HospitalBeijing, China
| | - Yali Fan
- Division of Gynecologic Oncology, University of North Carolina at Chapel HillChapel Hill, NC, USA,Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care HospitalBeijing, China
| | - Wenchuan Sun
- Division of Gynecologic Oncology, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Yingao Zhang
- Division of Gynecologic Oncology, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Hongyan Suo
- Division of Gynecologic Oncology, University of North Carolina at Chapel HillChapel Hill, NC, USA,Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care HospitalBeijing, China
| | - Angeles Alvarez Secord
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecologic, Duke Cancer Institute, Duke UniversityDurham, NC, USA
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel HillChapel Hill, NC, USA,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel HillChapel Hill, NC, USA,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel HillChapel Hill, NC, USA
| |
Collapse
|
119
|
Nazim UM, Bishayee K, Kang J, Yoo D, Huh SO, Sadra A. mTORC1-Inhibition Potentiating Metabolic Block by Tyrosine Kinase Inhibitor Ponatinib in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14112766. [PMID: 35681744 PMCID: PMC9179535 DOI: 10.3390/cancers14112766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary From a screen for metabolic inhibition by a panel of approved anticancer drugs and combining the lead compound with a mammalian target of rapamycin complex 1 (mTORC1) inhibitor, we demonstrated that the combination of ponatinib and sirolimus leads to synergistic tumor growth inhibition in a mouse xenograft tumor model of multiple myeloma. The rationale of combining the two drugs was to prevent metabolic escape due to glycolysis reprogramming and residual oxidative phosphorylation (OXPHOS). The robust increases in reactive oxygen species (ROS) due to a block in glycolysis were shown to be the lead contributor of cell viability loss. The drug combination in the doses used displayed no overt toxicity in the treated animals. Abstract Studies in targeting metabolism in cancer cells have shown the flexibility of cells in reprogramming their pathways away from a given metabolic block. Such behavior prompts a combination drug approach in targeting cancer metabolism, as a single compound may not address the tumor intractability. Overall, mammalian target of rapamycin complex 1 (mTORC1) signaling has been implicated as enabling metabolic escape in the case of a glycolysis block. From a library of compounds, the tyrosine kinase inhibitor ponatinib was screened to provide optimal reduction in metabolic activity in the production of adenosine triphosphate (ATP), pyruvate, and lactate for multiple myeloma cells; however, these cells displayed increasing levels of oxidative phosphorylation (OXPHOS), enabling them to continue generating ATP, although at a slower pace. The combination of ponatinib with the mTORC1 inhibitor, sirolimus, blocked OXPHOS; an effect also manifested in activity reductions for hexokinase 2 (HK2) and glucose-6-phosphate isomerase (GPI) glycolysis enzymes. There were also remarkably higher levels of reactive oxygen species (ROS) produced in mouse xenografts, on par with increased glycolytic block. The combination of ponatinib and sirolimus resulted in synergistic inhibition of tumor xenografts with no overt toxicity in treated mice for kidney and liver function or maintaining weight.
Collapse
|
120
|
Soltanshahi M, Taghiloo S, Asgarian-Omran H. Expression Modulation of Immune Checkpoint Molecules by Ibrutinib and Everolimus Through STAT3 in MCF-7 Breast Cancer Cells. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH 2022; 21:e127352. [PMID: 35873012 PMCID: PMC9293249 DOI: 10.5812/ijpr-127352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/08/2022] [Accepted: 04/26/2022] [Indexed: 12/05/2022]
Abstract
Tumor-targeted therapy with small-molecule inhibitors (SMIs) has been demonstrated to be a highly effective therapeutic strategy for various cancers. However, their possible associations with immune evasion mechanisms remain unknown. This study examined the association of inhibitors of the protein kinase B (AKT), mammalian target of rapamycin (mTOR), and Bruton’s tyrosine kinase (BTK) signaling pathways with the expression of immune checkpoint ligands programmed death-ligand 1 (PD-L1), CD155, and galectin-9 (Gal-9) in a breast cancer cell line. MCF-7 cells were treated with everolimus, MK-2206, and ibrutinib. An MTT assay was used to determine the optimal dose for all drugs. A real-time polymerase chain reaction was utilized to measure the mRNA expression of PD-L1, CD155, and Gal-9. The western blot technique was also employed to evaluate the protein expression of the phosphorylated signal transducer and activator of transcription 3 (STAT3). The optimal doses of everolimus, MK-2206, and ibrutinib were observed to be 200, 320, and 2000 nM, respectively. The PD-L1 and CD155 mRNA expression was significantly decreased following the treatment with everolimus and ibrutinib, but not with MK-2206. There were no differences in Gal-9 expression between the single-treated and control groups; however, combined treatment with everolimus and ibrutinib increased its mRNA expression. Everolimus and ibrutinib both inhibited constitutive STAT3 phosphorylation in MCF-7, which was more pronounced in combination treatment. The findings regarding the modulation of PD-L1, CD155, and Gal-9 molecules by SMIs emphasize the crosstalk between the expression of these immune checkpoint molecules and AKT/mTOR/BTK signaling pathways through STAT3 as a critical transcription factor.
Collapse
Affiliation(s)
- Mohsen Soltanshahi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Taghiloo
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Asgarian-Omran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Gastrointestinal Cancer Research Center, Noncommunicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Corresponding Author: Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran. Tel: +98-1133543081, Fax: +98-1133543249,
| |
Collapse
|
121
|
Potentials of long non-coding RNAs as biomarkers of colorectal cancer. Clin Transl Oncol 2022; 24:1715-1731. [PMID: 35581419 DOI: 10.1007/s12094-022-02834-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/04/2022] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor worldwide and the fourth major cause of cancer-related death, with high morbidity and increased mortality year by year. Although significant progress has been made in the therapy strategies for CRC, the great difficulty in early diagnosis, feeble susceptibility to radiotherapy and chemotherapy, and high recurrence rates have reduced therapeutic efficacy resulting in poor prognosis. Therefore, it is urgent to understand the pathogenesis of CRC and unravel novel biomarkers to improve the early diagnosis, treatment and prediction of CRC recurrence. Long non-coding RNAs (lncRNAs) are non-coding RNAs with a length of more than 200 nucleotides, which are abnormally expressed in tumor tissues and cell lines, activating or inhibiting specific genes through multiple mechanisms including transcription and translation. A growing number of studies have shown that lncRNAs are important regulators of microRNAs (miRNAs, miRs) expression in CRC and may be promising biomarkers and potential therapeutic targets in the research field of CRC. This review mainly summarizes the potential application value of lncRNAs as novel biomarkers in CRC diagnosis, radiotherapy, chemotherapy and prognosis. Additionally, the significance of lncRNA SNHGs family and lncRNA-miRNA networks in regulating the occurrence and development of CRC is mentioned, aiming to provide some insights for understanding the pathogenesis of CRC and developing new diagnostic and therapeutic strategies.
Collapse
|
122
|
Faria CC, Cascão R, Custódia C, Paisana E, Carvalho T, Pereira P, Roque R, Pimentel J, Miguéns J, Cortes-Ciriano I, Barata JT. Patient-derived models of brain metastases recapitulate human disseminated disease. Cell Rep Med 2022; 3:100623. [PMID: 35584628 PMCID: PMC9133464 DOI: 10.1016/j.xcrm.2022.100623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 02/01/2022] [Accepted: 04/08/2022] [Indexed: 12/02/2022]
Abstract
Dissemination of cancer cells from primary tumors to the brain occurs in many cancer patients, increasing morbidity and death. There is an unmet medical need to develop translational platforms to evaluate therapeutic responses. Toward this goal, we established a library of 23 patient-derived xenografts (PDXs) of brain metastases (BMs) from eight distinct primary tumors. In vivo tumor formation correlates with patients’ poor survival. Mouse subcutaneous xenografts develop spontaneous metastases and intracardiac PDXs increase dissemination to the CNS, both models mimicking the dissemination pattern of the donor patient. We test the FDA-approved drugs buparlisib (pan-PI3K inhibitor) and everolimus (mTOR inhibitor) and show their efficacy in treating our models. Finally, we show by RNA sequencing that human BMs and their matched PDXs have similar transcriptional profiles. Overall, these models of BMs recapitulate the biology of human metastatic disease and can be valuable translational platforms for precision medicine. Established PDXs of brain metastasis from multiple cancers PDXs recapitulate the dissemination pattern of patient tumors Patient-derived models of brain metastases are valuable to test anticancer drugs Human brain metastases and their PDXs retain similar transcriptional profiles
Collapse
Affiliation(s)
- Claudia C Faria
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal.
| | - Rita Cascão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Carlos Custódia
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Eunice Paisana
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Tânia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Pereira
- Laboratory of Neuropathology, Neurology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
| | - Rafael Roque
- Laboratory of Neuropathology, Neurology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
| | - José Pimentel
- Laboratory of Neuropathology, Neurology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
| | - José Miguéns
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
| | - Isidro Cortes-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
| | - João T Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
123
|
Song C, Yuan Y, Zhou J, He Z, Hu Y, Xie Y, Liu N, Wu L, Zhang J. Network Pharmacology-Based Prediction and Verification of Ginsenoside Rh2-Induced Apoptosis of A549 Cells via the PI3K/Akt Pathway. Front Pharmacol 2022; 13:878937. [PMID: 35600856 PMCID: PMC9114502 DOI: 10.3389/fphar.2022.878937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/20/2022] [Indexed: 11/29/2022] Open
Abstract
Ginsenoside Rh2 (G-Rh2), a rare protopanaxadiol (PPD)-type triterpene saponin, from Panax ginseng has anti-proliferation, anti-invasion, and anti-metastatic activity. However, the mechanisms by which G-Rh2 induces apoptosis of lung cancer cells are unclear. In the present work, a G-Rh2 target-lung cancer network was constructed and analyzed by the network pharmacology approach. A total of 91 compound-targets of G-Rh2 was obtained based on the compound-target network analysis, and 217 targets were identified for G-Rh2 against lung cancer by PPI network analysis. The 217 targets were significantly enriched in 103 GO terms with FDR <0.05 as threshold in the GO enrichment analysis. In KEGG pathway enrichment analysis, all the candidate targets were significantly enriched in 143 pathways, among of which PI3K-Akt signaling pathway was identified as one of the top enriched pathway. Besides, G-Rh2 induced apoptosis in human lung epithelial (A549) cells was verified in this work. G-Rh2 significantly inhibited the proliferation of A549 cells in a dose-dependent manner, and the apoptosis rate significantly increased from 4.4% to 78.7% using flow cytometry. Western blot analysis revealed that the phosphorylation levels of p85, PDK1, Akt and IκBα were significantly suppressed by G-Rh2. All the experimental findings were consistent with the network pharmacology results. Research findings in this work will provide potential therapeutic value for further mechanism investigations.
Collapse
Affiliation(s)
- Chao Song
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Yue Yuan
- School of Pharmaceutical Sciences, Institute for Chinese Materia Medica, Tsinghua University, Beijing, China
| | - Jing Zhou
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Ziliang He
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Yeye Hu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Yuan Xie
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Nan Liu
- Beijing Increasepharm Safety and Efficacy Co., Ltd, Beijing, China
- *Correspondence: Nan Liu, ; Lei Wu, ; Ji Zhang,
| | - Lei Wu
- Institute of Applied Chemistry, Academy of Sciences, Nanchang, China
- *Correspondence: Nan Liu, ; Lei Wu, ; Ji Zhang,
| | - Ji Zhang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huaian, China
- *Correspondence: Nan Liu, ; Lei Wu, ; Ji Zhang,
| |
Collapse
|
124
|
Chaudhuri A, Kumar DN, Dehari D, Singh S, Kumar P, Bolla PK, Kumar D, Agrawal AK. Emergence of Nanotechnology as a Powerful Cavalry against Triple-Negative Breast Cancer (TNBC). Pharmaceuticals (Basel) 2022; 15:542. [PMID: 35631368 PMCID: PMC9143332 DOI: 10.3390/ph15050542] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is considered one of the un-manageable types of breast cancer, involving devoid of estrogen, progesterone, and human epidermal growth factor receptor 2 (HER 2) receptors. Due to their ability of recurrence and metastasis, the management of TNBC remains a mainstay challenge, despite the advancements in cancer therapies. Conventional chemotherapy remains the only treatment regimen against TNBC and suffers several limitations such as low bioavailability, systemic toxicity, less targetability, and multi-drug resistance. Although various targeted therapies have been introduced to manage the hardship of TNBC, they still experience certain limitations associated with the survival benefits. The current research thus aimed at developing and improving the strategies for effective therapy against TNBC. Such strategies involved the emergence of nanoparticles. Nanoparticles are designated as nanocavalries, loaded with various agents (drugs, genes, etc.) to battle the progression and metastasis of TNBC along with overcoming the limitations experienced by conventional chemotherapy and targeted therapy. This article documents the treatment regimens of TNBC along with their efficacy towards different subtypes of TNBC, and the various nanotechnologies employed to increase the therapeutic outcome of FDA-approved drug regimens.
Collapse
Affiliation(s)
- Aiswarya Chaudhuri
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| | - Deepa Dehari
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| | - Sanjay Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
- Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
| | - Pradeep Kumar Bolla
- Department of Biomedical Engineering, College of Engineering, The University of Texas at El Paso, 500 W. University Ave, El Paso, TX 79968, USA;
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| |
Collapse
|
125
|
Fuso P, Muratore M, D’Angelo T, Paris I, Carbognin L, Tiberi G, Pavese F, Duranti S, Orlandi A, Tortora G, Scambia G, Fabi A. PI3K Inhibitors in Advanced Breast Cancer: The Past, The Present, New Challenges and Future Perspectives. Cancers (Basel) 2022; 14:2161. [PMID: 35565291 PMCID: PMC9103982 DOI: 10.3390/cancers14092161] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the leading cause of death in the female population and despite significant efforts made in diagnostic approaches and treatment strategies adopted for advanced breast cancer, the disease still remains incurable. Therefore, development of more effective systemic treatments constitutes a crucial need. Recently, several clinical trials were performed to find innovative predictive biomarkers and to improve the outcome of metastatic breast cancer through innovative therapeutic algorithms. In the pathogenesis of breast cancer, the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (PKB/AKT)-mammalian target of rapamycin (mTOR) axis is a key regulator of cell proliferation, growth, survival, metabolism, and motility, making it an interest and therapeutic target. Nevertheless, the PI3K/AKT/mTOR cascade includes a complex network of biological events, needing more sophisticated approaches for their use in cancer treatment. In this review, we described the rationale for targeting the PI3K pathway, the development of PI3K inhibitors and the future treatment directions of different breast cancer subtypes in the metastatic setting.
Collapse
Affiliation(s)
- Paola Fuso
- Department of Woman and Child Health and Public Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.M.); (I.P.); (L.C.); (G.T.); (F.P.); (G.S.)
| | - Margherita Muratore
- Department of Woman and Child Health and Public Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.M.); (I.P.); (L.C.); (G.T.); (F.P.); (G.S.)
| | - Tatiana D’Angelo
- Comprehensive Cancer Center, Unit of Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (T.D.); (A.O.); (G.T.)
| | - Ida Paris
- Department of Woman and Child Health and Public Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.M.); (I.P.); (L.C.); (G.T.); (F.P.); (G.S.)
| | - Luisa Carbognin
- Department of Woman and Child Health and Public Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.M.); (I.P.); (L.C.); (G.T.); (F.P.); (G.S.)
| | - Giordana Tiberi
- Department of Woman and Child Health and Public Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.M.); (I.P.); (L.C.); (G.T.); (F.P.); (G.S.)
| | - Francesco Pavese
- Department of Woman and Child Health and Public Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.M.); (I.P.); (L.C.); (G.T.); (F.P.); (G.S.)
| | - Simona Duranti
- Scientific Directorate, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Armando Orlandi
- Comprehensive Cancer Center, Unit of Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (T.D.); (A.O.); (G.T.)
| | - Giampaolo Tortora
- Comprehensive Cancer Center, Unit of Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (T.D.); (A.O.); (G.T.)
- Medical Oncology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giovanni Scambia
- Department of Woman and Child Health and Public Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.M.); (I.P.); (L.C.); (G.T.); (F.P.); (G.S.)
- Scientific Directorate, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
- Istituto di Ginecologia e Ostetricia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alessandra Fabi
- Precision Medicine in Breast Cancer Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| |
Collapse
|
126
|
Distinct resistance mechanisms arise to allosteric vs. ATP-competitive AKT inhibitors. Nat Commun 2022; 13:2057. [PMID: 35440108 PMCID: PMC9019088 DOI: 10.1038/s41467-022-29655-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 03/25/2022] [Indexed: 12/31/2022] Open
Abstract
The AKT kinases have emerged as promising therapeutic targets in oncology and both allosteric and ATP-competitive AKT inhibitors have entered clinical investigation. However, long-term efficacy of such inhibitors will likely be challenged by the development of resistance. We have established prostate cancer models of acquired resistance to the allosteric inhibitor MK-2206 or the ATP-competitive inhibitor ipatasertib following prolonged exposure. While alterations in AKT are associated with acquired resistance to MK-2206, ipatasertib resistance is driven by rewired compensatory activity of parallel signaling pathways. Importantly, MK-2206 resistance can be overcome by treatment with ipatasertib, while ipatasertib resistance can be reversed by co-treatment with inhibitors of pathways including PIM signaling. These findings demonstrate that distinct resistance mechanisms arise to the two classes of AKT inhibitors and that combination approaches may reverse resistance to ATP-competitive inhibition. How resistance to different classes of AKT inhibitors can emerge is unclear. Here, the authors show that resistance to allosteric inhibitors is mainly due to mutation of AKT1 while the ATP competitive resistance is driven by activation of PIM kinases in prostate cancer models.
Collapse
|
127
|
Chen K, Yan Z, Dong X, Liang Y, Yao Y, Zhang S, Liu W, Li C, Yao Y, Shi L. Genetic Polymorphisms in microRNA Genes Targeting PI3K/Akt Signal Pathway Modulate Cervical Cancer Susceptibility in a Chinese Population. Front Genet 2022; 13:856505. [PMID: 35495171 PMCID: PMC9047912 DOI: 10.3389/fgene.2022.856505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Polymorphisms in microRNA (miRNA) genes could influence the expression of miRNAs that regulate the PI3K/Akt signalling pathway and play crucial roles in cancer susceptibility. To investigate the association of single nucleotide polymorphisms (SNPs) in miRNA genes of PI3K/Akt with cervical intraepithelial neoplasia (CIN) and cervical cancer (CC), nine SNPs located in miRNA genes were selected for genotyping, and the association of these SNPs with CIN and CC risk was evaluated. A total of 1,402 participants were enrolled in the current study, including 698 healthy individuals in the control group, 431 patients with CC, and 273 patients with CIN. Nine SNPs in miRNA genes (rs107822 in miR-219a, rs10877887 in let-7i, rs2292832 in miR-149, rs353293 in miR-143, rs3746444 in miR-499, rs3803808 in miR-132, rs4078756 in miR-10b, rs629367 in let-7a, and rs7372209 in miR-26a) were genotyped using MassArray, and the association of these SNPs with CIN and CC were analysed. The results showed that the frequencies of rs107822 in miR-219a and rs2292832 in miR-149 were significantly different between the control and CC groups (p < 0.005). The C allele of rs107822 in miR-219a was associated with an increased risk of CC (OR = 1.29, 95%CI:1.09–1.54) whereas the C allele of rs2292832 in miR-149 was associated with a decreased risk of CC (OR = 0.77, 95%CI:0.64–0.92). The results of inheritance model analysis showed that the best-fit inheritance models for rs107822 and rs2292832 were log-additive. The 2CC + CT genotype of rs107822 could be a risk factor for CC when compared with the TT genotype (OR = 1.28, 95%CI:1.08–1.51). The 2CC + CT genotype of rs2292832 could be a protective factor against CC when compared with the TT genotype (OR = 0.76, 95%CI:0.64–0.92). However, no association of these SNPs with CIN was found in the current study. Our results suggest that rs107822 in the promoter region of miR-219a and rs2292832 in pre-miR-149 region are associated with the risk of CC.
Collapse
Affiliation(s)
- Kerong Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Zhiling Yan
- Department of Gynaecologic Oncology, The No. 3 Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xudong Dong
- The First People’s Hospital of Yunnan Province and The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yan Liang
- College of Nursing Health Sciences, Yunnan Open University, Kunming, China
| | - Yueting Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Shao Zhang
- Department of Gynaecologic Oncology, The No. 3 Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Weipeng Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Chuanyin Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
- *Correspondence: Chuanyin Li, ; Yufeng Yao, , ; Li Shi,
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
- *Correspondence: Chuanyin Li, ; Yufeng Yao, , ; Li Shi,
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
- *Correspondence: Chuanyin Li, ; Yufeng Yao, , ; Li Shi,
| |
Collapse
|
128
|
Lin Y, He F, Wu L, Xu Y, Du Q. Matrine Exerts Pharmacological Effects Through Multiple Signaling Pathways: A Comprehensive Review. Drug Des Devel Ther 2022; 16:533-569. [PMID: 35256842 PMCID: PMC8898013 DOI: 10.2147/dddt.s349678] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/03/2022] [Indexed: 12/16/2022] Open
Abstract
As The main effective monomer of the traditional Chinese medicine Sophora flavescens Ait, matrine has a broad scope of pharmacological activities such as anti-tumor, anti-inflammatory, analgesic, anti-fibrotic, anti-viral, anti-arrhythmia, and improving immune function. These actions explain its therapeutic effects in various types of tumors, cardiopathy, encephalomyelitis, allergic asthma, rheumatoid arthritis (RA), osteoporosis, and central nervous system (CNS) inflammation. Evidence has shown that the mechanism responsible for the pharmacological actions of matrine may be via the activation or inhibition of certain key molecules in several cellular signaling pathways including the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR), transforming growth factor-β/mothers against decapentaplegic homolog (TGF-β/Smad), nuclear factor kappa B (NF-κB), Wnt (wingless/ integration 1)/β-catenin, mitogen-activated protein kinases (MAPKs), and Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathways. This review comprehensively summarizes recent studies on the pharmacological mechanisms of matrine to provide a theoretical basis for molecular targeted therapies and further development and utilization of matrine.
Collapse
Affiliation(s)
- Yingda Lin
- Department of Pharmacy, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, People's Republic of China.,Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Fuming He
- Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Ling Wu
- Department of Pharmacy, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, People's Republic of China
| | - Yuan Xu
- Department of Pharmacy, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, People's Republic of China
| | - Qiu Du
- Department of Neurosurgery, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, People's Republic of China.,Department of Central Laboratory, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, People's Republic of China
| |
Collapse
|
129
|
El-Dydamony NM, Abdelnaby RM, Abdelhady R, Ali O, Fahmy MI, R. Fakhr Eldeen R, Helwa AA. Pyrimidine-5-carbonitrile based potential anticancer agents as apoptosis inducers through PI3K/AKT axis inhibition in leukaemia K562. J Enzyme Inhib Med Chem 2022; 37:895-911. [PMID: 35345960 PMCID: PMC8967206 DOI: 10.1080/14756366.2022.2051022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A novel series of 4-(4-Methoxyphenyl)-2-(methylthio)pyrimidine-5-carbonitrile was developed linked to an aromatic moiety via N-containing bridge and then evaluated for their cytotoxic activity against MCF-7 and K562 cell lines. Seven compounds exhibited the highest activity against both cell lines where compounds 4d and 7f were the most active against K562 cell line. Exploring their molecular mechanisms by enzyme inhibition assay on PI3Kδ/γ and AKT-1 showed that compound 7f was promising more than 4d with IC50 = 6.99 ± 0.36, 4.01 ± 0.55, and 3.36 ± 0.17 uM, respectively. Also, flowcytometric analysis revealed that 7f caused cell cycle arrest at S-phase followed by caspase 3 dependent apoptosis induction. Mechanistically, compound 7f proved to modulate the expression of PI3K, p-PI3K, AKT, p-AKT, Cyclin D1, and NFΚβ. Furthermore, in-vivo toxicity study indicated good safety profile for 7f. These findings suggest that the trimethoxy derivative 7f has strong potential as a multi-acting inhibitor on PI3K/AKT axis targeting breast cancer and leukaemia.
Collapse
Affiliation(s)
- Nehad M. El-Dydamony
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| | - Rana M. Abdelnaby
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Rasha Abdelhady
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Omaima Ali
- Cell Line Unit, Egyptian Drug Authority (EDA), Cairo, Egypt
| | - Mohamed I. Fahmy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Rasha R. Fakhr Eldeen
- Biochemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| | - Amira A. Helwa
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| |
Collapse
|
130
|
Targeting Wnt/Beta-Catenin Signaling in HPV-Positive Head and Neck Squamous Cell Carcinoma. Pharmaceuticals (Basel) 2022; 15:ph15030378. [PMID: 35337176 PMCID: PMC8955953 DOI: 10.3390/ph15030378] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 01/03/2023] Open
Abstract
Wnt/Beta-Catenin signaling is involved in the carcinogenesis of different solid malignant tumors. The interaction of Creb-binding protein (CBP) with Beta-Catenin is a pivotal component of the Wnt/Beta-Catenin signaling pathway. The first aim of this study was to evaluate the association of CBP expression with survival in patients with human papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HNSCC). Second, the in vitro effects of the inhibition of CBP/Beta-Catenin interaction were analyzed. In particular, the effects of ICG-001, an inhibitor of CBP/Beta-Catenin interaction, on proliferation, cell death, modulation of Wnt/Beta-Catenin target expression, and cell migration were examined in vitro. High CBP expression is significantly associated with better survival on mRNA and protein levels. Furthermore, we observed cytotoxic as well as anti-migratory effects of ICG-001. These effects were particularly more potent in the HPV-positive than in the -negative cell line. Mechanistically, ICG-001 treatment induced apoptosis and led to a downregulation of CBP, c-MYC, and Cyclin D1 in HPV-positive cells, indicating inhibition of Wnt/Beta-Catenin signaling. In conclusion, high CBP expression is observed in HPV-positive HNSCC patients with a good prognosis, and ICG-001 showed a promising antineoplastic potential, particularly in HPV-positive HNSCC cells. Therefore, ICG-001 may potentially become an essential component of treatment de-escalation regimens for HPV-positive HNSCC. Further studies are warranted for additional assessment of the mechanistic background of our in vitro findings.
Collapse
|
131
|
Wang M, Zhang W, Liu Y, Ma Z, Xiang W, Wen Y, Zhang D, Li Y, Li Y, Li T, Chen L, Zhou J. PDIA4 promotes glioblastoma progression via the PI3K/AKT/m-TOR pathway. Biochem Biophys Res Commun 2022; 597:83-90. [PMID: 35131603 DOI: 10.1016/j.bbrc.2022.01.115] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/16/2022]
Abstract
Protein disulfide isomerase A4 (PDIA4) is highly expressed in clear cell ovarian carcinoma and lung cancer. Through analysis of TCGA database and CGGA database, we noted that PDIA4 is a key promotor of glioblastoma (GBM). However, the detailed role and molecular mechanism of PDIA4 in GBM remain unclear. In this study, the expression pattern and biological role of PDIA4 in GBM was investigated. PDIA4 was overexpressed in GBM tumor samples and cell lines and positively correlated with pathological grades in glioma patients. In addition, downregulation of PDIA4 promoted apoptosis and inhibited proliferation of GBM. Meanwhile, there was a concurrent decrease in aerobic glycolysis metabolites. Mechanistically, PDIA4 downregulation promoted the apoptosis of GBM cells by increased the expression of apoptosis pathway proteins (caspase 3, caspase 9 and Bax). Downregulation of PDIA4 decreased energy demand and inhibited GBM growth in vitro and in vivo. Besides, such effect also inhibited the PI3K/AKT/m-TOR pathway by inhibiting protein phosphorylation levels of PI3K, AKT and m-TOR. After addition of PI3K/AKT/mTOR pathway activator 740Y-P, the effect of PDIA4 knockdown on GBM was reversed. Therefore, we believe that PDIA4 regulates the proliferation via activating the PI3K/AKT/m-TOR pathway and suppression of apoptosis in glioblastoma. It could be used as a potential target for the treatment of GBM.
Collapse
Affiliation(s)
- Ming Wang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China; Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China
| | - Wenyan Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China; Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China
| | - Yibo Liu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China; Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China
| | - Zhigang Ma
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China; Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China
| | - Wei Xiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China; Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China; Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China; Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China
| | - Yuqi Wen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China; Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China
| | - Dingkun Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Yanling Li
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China
| | - Yeming Li
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China; Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China
| | - Tao Li
- Laboratory of Mitochondria and Metabolism, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041, PR China.
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China; Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China; Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China; Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China.
| | - Jie Zhou
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China; Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China; Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China; Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China.
| |
Collapse
|
132
|
Yang R, Li Y, Wang H, Qin T, Yin X, Ma X. Therapeutic progress and challenges for triple negative breast cancer: targeted therapy and immunotherapy. MOLECULAR BIOMEDICINE 2022; 3:8. [PMID: 35243562 PMCID: PMC8894518 DOI: 10.1186/s43556-022-00071-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a subtype of breast cancer, with estrogen receptor, human epidermal growth factor receptor 2 and progesterone receptor negative. TNBC is characterized by high heterogeneity, high rates of metastasis, poor prognosis, and lack of therapeutic targets. Now the treatment of TNBC is still based on surgery and chemotherapy, which is effective only in initial stage but almost useless in advanced stage. And due to the lack of hormone target, hormonal therapies have little beneficial effects. In recent years, signaling pathways and receptor-specific targets have been reported to be effective in TNBC patients under specific clinical conditions. Now targeted therapies have been approved for many other cancers and even other subtypes of breast cancer, but treatment options for TNBC are still limited. Most of TNBC patients showed no response, which may be related to the heterogeneity of TNBC, therefore more effective treatments and predictive biomarkers are needed. In the present review, we summarize potential treatment opinions for TNBC based on the dysregulated receptors and signaling pathways, which play a significant role in multiple stages of TNBC development. We also focus on the application of immunotherapy in TNBC, and summarize the preclinical and clinical trials of therapy for patients with TNBC. We hope to accelerate the research and development of new drugs for TNBC by understanding the relevant mechanisms, and to improve survival.
Collapse
Affiliation(s)
- Ruoning Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy,Cancer Center, West China Hospital, 37 Guoxue Alley, Chengdu, 610041, PR, China.,Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yueyi Li
- Department of Biotherapy, State Key Laboratory of Biotherapy,Cancer Center, West China Hospital, 37 Guoxue Alley, Chengdu, 610041, PR, China
| | - Hang Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy,Cancer Center, West China Hospital, 37 Guoxue Alley, Chengdu, 610041, PR, China
| | - Taolin Qin
- West China Hospital, West China Medical School Sichuan University, Chengdu, PR, China
| | - Xiaomeng Yin
- Department of Biotherapy, State Key Laboratory of Biotherapy,Cancer Center, West China Hospital, 37 Guoxue Alley, Chengdu, 610041, PR, China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy,Cancer Center, West China Hospital, 37 Guoxue Alley, Chengdu, 610041, PR, China.
| |
Collapse
|
133
|
Wu D, Liu X, Mu J, Yang J, Wu F, Zhou H. Therapeutic Approaches Targeting Proteins in Tumor-Associated Macrophages and Their Applications in Cancers. Biomolecules 2022; 12:biom12030392. [PMID: 35327584 PMCID: PMC8945446 DOI: 10.3390/biom12030392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023] Open
Abstract
Tumor-associated macrophages (TAMs) promote tumor proliferation, invasion, angiogenesis, stemness, therapeutic resistance, and immune tolerance in a protein-dependent manner. Therefore, the traditional target paradigms are often insufficient to exterminate tumor cells. These pro-tumoral functions are mediated by the subsets of macrophages that exhibit canonical protein markers, while simultaneously having unique transcriptional features, which makes the proteins expressed on TAMs promising targets during anti-tumor therapy. Herein, TAM-associated protein-dependent target strategies were developed with the aim of either reducing the numbers of TAMs or inhibiting the pro-tumoral functions of TAMs. Furthermore, the recent advances in TAMs associated with tumor metabolism and immunity were extensively exploited to repolarize these TAMs to become anti-tumor elements and reverse the immunosuppressive tumor microenvironment. In this review, we systematically summarize these current studies to fully illustrate the TAM-associated protein targets and their inhibitors, and we highlight the potential clinical applications of targeting the crosstalk among TAMs, tumor cells, and immune cells in anti-tumor therapy.
Collapse
Affiliation(s)
- Deyang Wu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (D.W.); (J.M.); (J.Y.)
| | - Xiaowei Liu
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Jingtian Mu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (D.W.); (J.M.); (J.Y.)
| | - Jin Yang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (D.W.); (J.M.); (J.Y.)
| | - Fanglong Wu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (D.W.); (J.M.); (J.Y.)
- Correspondence: (F.W.); (H.Z.)
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (D.W.); (J.M.); (J.Y.)
- Correspondence: (F.W.); (H.Z.)
| |
Collapse
|
134
|
Badea MA, Balas M, Prodana M, Cojocaru FG, Ionita D, Dinischiotu A. Carboxyl-Functionalized Carbon Nanotubes Loaded with Cisplatin Promote the Inhibition of PI3K/Akt Pathway and Suppress the Migration of Breast Cancer Cells. Pharmaceutics 2022; 14:469. [PMID: 35214200 PMCID: PMC8878903 DOI: 10.3390/pharmaceutics14020469] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/30/2022] Open
Abstract
PI3K/Akt signaling is one of the most frequently dysregulated pathways in cancer, including triple-negative breast cancer. With considerable roles in tumor growth and proliferation, this pathway is studied as one of the main targets in controlling the therapies' efficiency. Nowadays, the development of nanoparticle-drug conjugates attracts a great deal of attention due to the advantages they provide in cancer treatment. Hence, the main purpose of this study was to design a nanoconjugate based on single-walled carbon nanotubes functionalized with carboxyl groups (SWCNT-COOH) and cisplatin (CDDP) and to explore the potential of inhibiting the PI3K/Akt signaling pathway. MDA-MB-231 cells were exposed to various doses (0.01-2 µg/mL SWCNT-COOH and 0.00632-1.26 µg/mL CDDP) of SWCNT-COOH-CDDP and free components for 24 and 48 h. In vitro biological tests revealed that SWCNT-COOH-CDDP had a high cytotoxic effect, as shown by a time-dependent decrease in cell viability and the presence of a significant number of dead cells in MDA-MB-231 cultures at higher doses. Moreover, the nanoconjugates induced the downregulation of PI3K/Akt signaling, as revealed by the decreased expression of PI3K and p-Akt in parallel with PTEN activation, the promotion of Akt protein degradation, and inhibition of tumor cell migration.
Collapse
Affiliation(s)
- Madalina Andreea Badea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, R-050095 Bucharest, Romania; (M.A.B.); (A.D.)
| | - Mihaela Balas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, R-050095 Bucharest, Romania; (M.A.B.); (A.D.)
| | - Mariana Prodana
- Department of General Chemistry, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 313 Splaiul Independentei, R-060042 Bucharest, Romania; (M.P.); (D.I.)
| | - Florentina Gina Cojocaru
- Department of Anatomy, Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, R-050095 Bucharest, Romania;
| | - Daniela Ionita
- Department of General Chemistry, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 313 Splaiul Independentei, R-060042 Bucharest, Romania; (M.P.); (D.I.)
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, R-050095 Bucharest, Romania; (M.A.B.); (A.D.)
| |
Collapse
|
135
|
Wang Y, Miao X, Jiang Y, Wu Z, Zhu X, Liu H, Wu X, Cai J, Ding X, Gong W. The synergistic antitumor effect of IL-6 neutralization with NVP-BEZ235 in hepatocellular carcinoma. Cell Death Dis 2022; 13:146. [PMID: 35165269 PMCID: PMC8844296 DOI: 10.1038/s41419-022-04583-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/30/2021] [Accepted: 01/24/2022] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) still ranks among the top cancers worldwide with high incidence and mortality. Due to abnormal activation of the PI3K/AKT/mTOR signalling pathway in HCC, targeting this pathway represents a potential therapeutic strategy. NVP-BEZ235 is a novel dual-targeted ATP-competitive PI3K/mTOR inhibitor that has shown effective antitumor effects. In this study, we found that interleukin-6 (IL-6) was significantly increased after exposure to NVP-BEZ235, and we proposed a treatment in which an anti-IL-6 antibody was combined with NVP-BEZ235 for HCC. In vitro results revealed that targeted inhibition of IL-6 potentiated the antitumor effects of NVP-BEZ235 in HCC cells. The mechanism might be attributed to their synergistic inhibitory activity on the PI3K/AKT/mTOR signalling pathway. Furthermore, an in vivo study demonstrated that combined administration of NVP-BEZ235 and anti-IL-6 Ab reduced HCC tumour load more effectively than either NVP-BEZ235 or anti-IL-6 Ab treatment alone. These findings add guidance value to the analysis of HCC and provide a reference for clinical treatment.
Collapse
Affiliation(s)
- Yao Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Xiaolong Miao
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yuancong Jiang
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zelai Wu
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xuhang Zhu
- Department of head and neck Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Han Liu
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoying Wu
- Department of Thyroid and Breast Surgery, Tongde Hospital of Zhejiang Province, Hangzhou City, China
| | - Jinzhen Cai
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, China. .,Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xianfeng Ding
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.
| | - Weihua Gong
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, 310058, China. .,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.
| |
Collapse
|
136
|
Zhang Y, Zhang Y, Ai B, Gong J, Li Y, Yu S, Cai X, Zhang L. GTF2E2 is a novel biomarker for recurrence after surgery and promotes progression of esophageal squamous cell carcinoma via miR-139-5p/GTF2E2/FUS axis. Oncogene 2022; 41:782-796. [PMID: 34853466 PMCID: PMC8816730 DOI: 10.1038/s41388-021-02122-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most lethal gastrointestinal malignancies with high mortality. Recurrence develops within only a few years after curative resection and perioperative adjuvant therapy in 30-50% of these patients. Therefore, it is essential to identify postoperative recurrence biomarkers to facilitate selecting the following surveillance and therapeutic strategies. The general transcription factor IIE subunit beta (GTF2E2) is crucial for physiological and pathological functions, but its roles in the aggression and recurrence of ESCC remain ambiguous. In this study, we found that GTF2E2 was highly expressed in ESCC samples, and elevated GTF2E2 expression predicted early recurrence after surgery for ESCC patients. High expression of GTF2E2 associated with more aggressive clinic features and poor prognosis. GTF2E2 promoted the proliferation and mobility of ESCC cells in vitro and in vivo. We further revealed that miR-139-5p repressed GTF2E2 expression by downregulating its mRNA through binding with Argonaute 2 (Ago2). Rescue assays suggested that miR-139-5p affected GTF2E2-mediated ESCC progression. Moreover, GTF2E2 positively interacted with FUS promoter and regulated FUS expression, and the phenotype changes caused by GTF2E2 manipulation were recovered by rescuing FUS expression in ESCC cells. Additionally, we demonstrated that GTF2E2 promotes ESCC cells progression via activation of the AKT/ERK/mTOR pathway. In conclusion, GTF2E2 may serve as a novel biomarker for recurrence after surgery and a potential therapeutic target for ESCC patients, and it promotes ESCC progression via miR-139-5p/GTF2E2/FUS axis.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Middle Aged
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Proliferation/genetics
- Disease Progression
- Esophageal Neoplasms/genetics
- Esophageal Neoplasms/pathology
- Esophageal Neoplasms/surgery
- Esophageal Neoplasms/metabolism
- Esophageal Squamous Cell Carcinoma/genetics
- Esophageal Squamous Cell Carcinoma/pathology
- Esophageal Squamous Cell Carcinoma/surgery
- Esophageal Squamous Cell Carcinoma/metabolism
- Gene Expression Regulation, Neoplastic
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/metabolism
- Prognosis
- Transcription Factors, TFII/genetics
- Transcription Factors, TFII/metabolism
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yuxin Zhang
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Bo Ai
- Thoracic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Juejun Gong
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yichen Li
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Shiying Yu
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| | - Xiuyu Cai
- Department of VIP Inpatient, Sun Yet-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No.651 Dongfeng Road East, Guangzhou, Guangdong, 510060, P. R. China.
| | - Li Zhang
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
137
|
Li HC, Zhang JM, Xu R, Wang YH, Xu W, Chen R, Wan XM, Zhang HL, Wang L, Wang XJ, Jiang LH, Liu B, Zhao Y, Chen YY, Dai YP, Li M, Zhang HQ, Yang Z, Bai L, Zhang J, Wang HB, Tian JW, Zhao YL, Cen XB. mTOR regulates cocaine-induced behavioural sensitization through the SynDIG1-GluA2 interaction in the nucleus accumbens. Acta Pharmacol Sin 2022; 43:295-306. [PMID: 34522005 PMCID: PMC8792044 DOI: 10.1038/s41401-021-00760-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/08/2021] [Indexed: 02/05/2023]
Abstract
Behavioral sensitization is a progressive increase in locomotor or stereotypic behaviours in response to drugs. It is believed to contribute to the reinforcing properties of drugs and to play an important role in relapse after cessation of drug abuse. However, the mechanism underlying this behaviour remains poorly understood. In this study, we showed that mTOR signaling was activated during the expression of behavioral sensitization to cocaine and that intraperitoneal or intra-nucleus accumbens (NAc) treatment with rapamycin, a specific mTOR inhibitor, attenuated cocaine-induced behavioural sensitization. Cocaine significantly modified brain lipid profiles in the NAc of cocaine-sensitized mice and markedly elevated the levels of phosphatidylinositol-4-monophosphates (PIPs), including PIP, PIP2, and PIP3. The behavioural effect of cocaine was attenuated by intra-NAc administration of LY294002, an AKT-specific inhibitor, suggesting that PIPs may contribute to mTOR activation in response to cocaine. An RNA-sequencing analysis of the downstream effectors of mTOR signalling revealed that cocaine significantly decreased the expression of SynDIG1, a known substrate of mTOR signalling, and decreased the surface expression of GluA2. In contrast, AAV-mediated SynDIG1 overexpression in NAc attenuated intracellular GluA2 internalization by promoting the SynDIG1-GluA2 interaction, thus maintaining GluA2 surface expression and repressing cocaine-induced behaviours. In conclusion, NAc SynDIG1 may play a negative regulatory role in cocaine-induced behavioural sensitization by regulating synaptic surface expression of GluA2.
Collapse
Affiliation(s)
- Hong-chun Li
- grid.13291.380000 0001 0807 1581National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Jia-mei Zhang
- grid.13291.380000 0001 0807 1581National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Rui Xu
- grid.13291.380000 0001 0807 1581National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Yong-hai Wang
- grid.440761.00000 0000 9030 0162Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005 China
| | - Wei Xu
- grid.13291.380000 0001 0807 1581National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Rong Chen
- grid.13291.380000 0001 0807 1581National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Xue-mei Wan
- grid.13291.380000 0001 0807 1581National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Hao-luo Zhang
- grid.13291.380000 0001 0807 1581National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Liang Wang
- grid.13291.380000 0001 0807 1581National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Xiao-jie Wang
- grid.13291.380000 0001 0807 1581National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Lin-hong Jiang
- grid.13291.380000 0001 0807 1581National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Bin Liu
- grid.440761.00000 0000 9030 0162Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005 China
| | - Ying Zhao
- grid.13291.380000 0001 0807 1581National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Yuan-yuan Chen
- grid.13291.380000 0001 0807 1581National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Yan-ping Dai
- grid.13291.380000 0001 0807 1581National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Min Li
- grid.13291.380000 0001 0807 1581National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Hua-qin Zhang
- grid.13291.380000 0001 0807 1581National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Zhen Yang
- grid.13291.380000 0001 0807 1581Histology and Imaging Platform, Core Facilities of West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Lin Bai
- grid.13291.380000 0001 0807 1581Histology and Imaging Platform, Core Facilities of West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Jie Zhang
- grid.13291.380000 0001 0807 1581Histology and Imaging Platform, Core Facilities of West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Hong-bo Wang
- grid.440761.00000 0000 9030 0162Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005 China
| | - Jing-wei Tian
- grid.440761.00000 0000 9030 0162Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005 China
| | - Ying-lan Zhao
- grid.13291.380000 0001 0807 1581National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Xiao-bo Cen
- grid.13291.380000 0001 0807 1581National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
138
|
Zhang X, Liu Z, Chen S, Li H, Dong L, Fu X. A new discovery: Total Bupleurum saponin extracts can inhibit the proliferation and induce apoptosis of colon cancer cells by regulating the PI3K/Akt/mTOR pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114742. [PMID: 34655668 DOI: 10.1016/j.jep.2021.114742] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/01/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bupleurum chinense DC has a history of using herb in China for more than 2000 years, which can be traced back to the Classic of Shennong Materia Medica in the Han Dynasty. Although Saikosaponin, the main active ingredient of Bupleurum, has the effects of anti-tumor, yet we still do not know the mechanism by total Bupleurum saponin extracts (TBSE) produces this effect on colon cancer. AIM OF THE STUDY It is predicted by network pharmacology that TBSE may play an anti-colon cancer role by regulating the PI3K-Akt-mTOR pathway. The purpose of this study is to investigate whether TBSE inhibits proliferation and promote apoptosis of colon cancer cells by regulating PI3K/Akt/mTOR pathway. MATERIALS AND METHODS The effect of saikosaponins on the proliferation of SW480 and SW620 cells was detected by CCK-8, apoptosis was determined by flow cytometry, morphological changes of cells were observed by microscope, nuclear morphological changes were observed after immunofluorescence staining, the expression of apoptosis-related proteins Bax, Bcl2, Caspase3, Caspase9, Cleaved Caspase3 and Cleaved Caspase9 were detected by Western Blot, and the expression of apoptosis-related genes Bax, Bcl2, Caspase3 and Caspase9 were detected by RT-PCR. According to the theory of network pharmacology, the potential targets of saikosaponins and colon cancer were predicted by database Pharmmapper and Genecards database respectively. The intersection of saikosaponins and colon cancer was enriched and analyzed on the Metascape platform. Then, the expression of PI3K/Akt/mTOR pathway related protein PI3K, Akt, Mtor, p-PI3K, p-Akt, p-mTOR were detected by Western Blot, and the corresponding amount of RNA expressions in the pathway was confirmed by RT-PCR. RESULTS The results of CCK-8 demonstrated that the survival rate of SW480 and SW620 cells decreased significantly when the concentration of TBSE was in the range of 25-200 μg/ml. The morphological observation showed that the cells lost normal cell morphology, cytoplasmic condensation, and partial loss of adhesion after treatment with TBSE. Flow cytometry indicated that the apoptosis rates of SW480 cells and SW620 cells treated with TBSE (50 μg/ml) were 48.47% ± 1.20% and 36.13% ± 1.76%, respectively. Western Blot firstly confirmed that TBSE significantly up-regulated the expression of pro-apoptotic proteins Bax, Caspase3, Caspase9, Cleaved Caspase3 and Cleaved Caspase9, and down-regulated the expression of anti-apoptotic protein Bcl2. And RT-PCR results implied that TBSE significantly up-regulated the gene expression of apoptotic factors Bax, Caspase3 and Caspase9, and significantly decreased the gene expression of Bcl2. It was predicted that the PI3K/Akt/mTOR pathway may be the main regulatory object of the antitumor effect of TBSE by network pharmacology. Subsequent WB experiment also revealed that TBSE could significantly down-regulate (P < 0.01) the expressions of PI3K, Akt, mTOR and phosphorylated proteins P-PI3K, P-Akt, P-MTOR. Meanwhile, RT-PCR results also indicated that TBSE could significantly down-regulate (P < 0.01) the gene expression levels of PI3K, Akt and mTOR. CONCLUSIONS TBSE activated Bax/Bcl2 and caspase-9/caspase-3 cascade to induced apoptosis of human colon cancer SW480 and SW60 cells in a dose-dependent manner, which was obviously related to the inhibition of PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Ningxia Medical University, Yinchuan, 750004, China; General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Zhenzhen Liu
- Ningxia Medical University, Yinchuan, 750004, China
| | | | - Hang Li
- Ningxia Medical University, Yinchuan, 750004, China
| | - Lin Dong
- Ningxia Medical University, Yinchuan, 750004, China
| | - Xueyan Fu
- Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
139
|
MiR-483 Promotes Colorectal Cancer Cell Biological Progression by Directly Targeting NDRG2 through Regulation of the PI3K/AKT Signaling Pathway and Epithelial-to-Mesenchymal Transition. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:4574027. [PMID: 35126924 PMCID: PMC8813246 DOI: 10.1155/2022/4574027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/10/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Colorectal cancer is the third frequent tumor in the whole world. MiR-483, located at the 11p15.5 locus, acts as an oncogene in multiple tumors. The purpose of this study is to explore the important roles of miR-483 in colorectal cancer. MATERIALS AND METHODS RT-qPCR and western blot were applied to calculate the mRNA levels of miR-483 and genes. The Kaplan-Meier method was conducted to calculate the survival of patients with colorectal cancer. The proliferation and invasive abilities were measured by Methyl Thiazolyl Tetrazolium (MTT) and transwell assays. RESULTS MiR-483 was upregulated in colorectal cancer tissues, and the upregulation of miR-483 predicted poor prognosis of colorectal cancer patients. NDRG2 was a target gene of miR-483 in colorectal cancer. Furthermore, miR-483 has been reported to promote colorectal cancer cell proliferation and invasion through targeting NDRG2 by the PI3K/AKT pathway and epithelial-to-mesenchymal transition (EMT). In addition, the overexpression of miR-483 promoted xenograft growth of LOVO cells. CONCLUSION MiR-483 promoted cell proliferation through the NDRG2/PI3K/AKT pathway and invasion-mediated EMT in colorectal cancer. In view of the multiple mechanisms of molecular immunotherapy, it is necessary to further study the relationship between miR-483 and colorectal cancer, so as to find a more direct and effective treatment method to prevent colorectal cancer.
Collapse
|
140
|
Associations of Genetic Polymorphisms of mTOR rs2295080 T/G and rs1883965 G/A with Susceptibility of Urinary System Cancers. DISEASE MARKERS 2022; 2022:1720851. [PMID: 35082928 PMCID: PMC8786550 DOI: 10.1155/2022/1720851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 12/18/2021] [Indexed: 11/18/2022]
Abstract
Background. Genetic polymorphisms in mammalian target of rapamycin (mTOR) signaling axis can influence the susceptibility of cancer. The relationship between mTOR gene variants rs2295080 T/G and rs1883965 G/A and the risk of cancer remains inconsistent. The present study is aimed at comprehensively investigating the association between mTOR polymorphisms and susceptibility to cancer. Methods. We conducted a comprehensive assessment using odds ratios (ORs), corresponding 95% confidence intervals (CIs), and in silico tools to evaluate the effect of mTOR variations. Immunohistochemical staining (IHS) and GSEA analysis were used to investigate the expression of mTOR in urinary system cancer. Results. The pooled analysis involved 22 case-control studies including 14,747 cancer patients and 16,399 controls. The rs2295080 T/G polymorphism was associated with the risk of cancer (G-allele versus T-allele,
,
–0.98,
; GT versus TT,
,
–0.96,
; GG+GT versus TT,
,
–0.96,
), especially for cancers of the urinary system, breast, and blood. Variation rs1883965 G/A was associated with cancer susceptibility, especially for digestive cancer. IHS analysis showed that mTOR was upregulated in prostate and bladder cancer. GSEA revealed that the insulin signaling pathway, lysine degradation pathway, and mTOR signaling pathway were enriched in the high mTOR expression group. Conclusions. The mTOR rs2295080 T/G polymorphism may be associated with susceptibility of urinary cancer. The expression of mTOR is positively correlated with tumor malignancy in prostate cancer.
Collapse
|
141
|
The Role of Vitamin D in Diabetic Nephropathy: A Translational Approach. Int J Mol Sci 2022; 23:ijms23020807. [PMID: 35054991 PMCID: PMC8775873 DOI: 10.3390/ijms23020807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/29/2022] Open
Abstract
According to several animal and human studies, vitamin D appears to play a significant role in the development of diabetic nephropathy. However, the possible renoprotective effect of vitamin D and its influence on the reversal of already existing renal damage remains doubtful. At this moment, there are a few hypotheses concerning the underlying molecular and genetic mechanisms including the link between vitamin D and inflammation, oxidative stress, and extracellular matrix accumulation. The present review aims to investigate the potential role of vitamin D in the development of diabetic kidney disease from a translational approach.
Collapse
|
142
|
Clinicogenomic characterization of prostate cancer liver metastases. Prostate Cancer Prostatic Dis 2022; 25:366-369. [PMID: 35022600 DOI: 10.1038/s41391-021-00486-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND The site of prostate cancer metastasis is an important predictor of oncologic outcomes, however, the clinicogenomic characteristics associated with the site are not well-defined. Herein, we characterize the genomic alterations associated with the metastatic site of prostate cancer. METHODS We analyzed clinical and genomic data from prostate cancer patients with metastatic disease and known metastatic sites from publicly available targeted sequencing data. RESULTS Prostate cancer metastasis to the liver versus other sites of metastasis conferred a high hazard for death in patients with metastatic prostate cancer (HR: 3.96, 95% CI: 2.4-6.5, p < 0.0001). Genomic analysis of metastatic tissues of prostate cancer-specific genes demonstrated that liver metastases were more enriched with MYC amplification (29.5% vs. 9.8%, FDR = 0.001), PTEN deletion (42% vs. 20.8%, FDR = 0.005), and PIK3CB amplification (8.2% vs. 0.9, FDR = 0.005) compared to other sites. No point mutations were significantly associated with liver metastasis compared to other metastatic sites. CONCLUSION Liver metastases in prostate cancer are associated with poor survival and aggressive genomic features, including MYC-amplification, PTEN-deletion, and PIK3CB-amplification. These findings could have prognostic, treatment, and trial implications.
Collapse
|
143
|
Chi F, Chen L, Jin X, He G, Liu Z, Han S. CKAP2L, transcriptionally inhibited by FOXP3, promotes breast carcinogenesis through the AKT/mTOR pathway. Exp Cell Res 2022; 412:113035. [DOI: 10.1016/j.yexcr.2022.113035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 12/26/2022]
|
144
|
Wang J, Hu K, Cai X, Yang B, He Q, Wang J, Weng Q. Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis. Acta Pharm Sin B 2022; 12:18-32. [PMID: 35127370 PMCID: PMC8799876 DOI: 10.1016/j.apsb.2021.07.023] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/13/2021] [Accepted: 07/09/2021] [Indexed: 01/03/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibrotic interstitial pneumonia with unknown causes. The incidence rate increases year by year and the prognosis is poor without cure. Recently, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT) signaling pathway can be considered as a master regulator for IPF. The contribution of the PI3K/AKT in fibrotic processes is increasingly prominent, with PI3K/AKT inhibitors currently under clinical evaluation in IPF. Therefore, PI3K/AKT represents a critical signaling node during fibrogenesis with potential implications for the development of novel anti-fibrotic strategies. This review epitomizes the progress that is being made in understanding the complex interpretation of the cause of IPF, and demonstrates that PI3K/AKT can directly participate to the greatest extent in the formation of IPF or cooperate with other pathways to promote the development of fibrosis. We further summarize promising PI3K/AKT inhibitors with IPF treatment benefits, including inhibitors in clinical trials and pre-clinical studies and natural products, and discuss how these inhibitors mitigate fibrotic progression to explore possible potential agents, which will help to develop effective treatment strategies for IPF in the near future.
Collapse
Affiliation(s)
- Jincheng Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kaili Hu
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuanyan Cai
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
145
|
Parkman GL, Foth M, Kircher DA, Holmen SL, McMahon M. The role of PI3'-lipid signalling in melanoma initiation, progression and maintenance. Exp Dermatol 2022; 31:43-56. [PMID: 34717019 PMCID: PMC8724390 DOI: 10.1111/exd.14489] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/11/2021] [Accepted: 10/19/2021] [Indexed: 01/03/2023]
Abstract
Phosphatidylinositol-3'-kinases (PI3Ks) are a family of lipid kinases that phosphorylate the 3' hydroxyl (OH) of the inositol ring of phosphatidylinositides (PI). Through their downstream effectors, PI3K generated lipids (PI3K-lipids hereafter) such as PI(3,4,5)P3 and PI(3,4)P2 regulate myriad biochemical and biological processes in both normal and cancer cells including responses to growth hormones and cytokines; the cell division cycle; cell death; cellular growth; angiogenesis; membrane dynamics; and autophagy and many aspects of cellular metabolism. Engagement of receptor tyrosine kinase by their cognate ligands leads to activation of members of the Class I family of PI3'-kinases (PI3Kα, β, δ & γ) leading to accumulation of PI3K-lipids. Importantly, PI3K-lipid accumulation is antagonized by the hydrolytic action of a number of PI3K-lipid phosphatases, most notably the melanoma suppressor PTEN (lipid phosphatase and tensin homologue). Downstream of PI3K-lipid production, the protein kinases AKT1-3 are believed to be key effectors of PI3'-kinase signalling in cells. Indeed, in preclinical models, activation of the PI3K→AKT signalling axis cooperates with alterations such as expression of the BRAFV600E oncoprotein kinase to promote melanoma progression and metastasis. In this review, we describe the different classes of PI3K-lipid effectors, and how they may promote melanomagenesis, influence the tumour microenvironment, melanoma maintenance and progression to metastatic disease. We also provide an update on both FDA-approved or experimental inhibitors of the PI3K→AKT pathway that are currently being evaluated for the treatment of melanoma either in preclinical models or in clinical trials.
Collapse
Affiliation(s)
- Gennie L. Parkman
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Mona Foth
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - David A. Kircher
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Sheri L. Holmen
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Martin McMahon
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| |
Collapse
|
146
|
The Immune Regulatory Role of Protein Kinase CK2 and Its Implications for Treatment of Cancer. Biomedicines 2021; 9:biomedicines9121932. [PMID: 34944749 PMCID: PMC8698504 DOI: 10.3390/biomedicines9121932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 01/15/2023] Open
Abstract
Protein Kinase CK2, a constitutively active serine/threonine kinase, fulfills its functions via phosphorylating hundreds of proteins in nearly all cells. It regulates a variety of cellular signaling pathways and contributes to cell survival, proliferation and inflammation. CK2 has been implicated in the pathogenesis of hematologic and solid cancers. Recent data have documented that CK2 has unique functions in both innate and adaptive immune cells. In this article, we review aspects of CK2 biology, functions of the major innate and adaptive immune cells, and how CK2 regulates the function of immune cells. Finally, we provide perspectives on how CK2 effects in immune cells, particularly T-cells, may impact the treatment of cancers via targeting CK2.
Collapse
|
147
|
Erickson EC, Toker A. Can Improved Use of Biomarkers Alter the Fate of PI3K Pathway Inhibitors in the Clinic? Cancer Res 2021; 81:6083-6086. [PMID: 34911776 PMCID: PMC8738958 DOI: 10.1158/0008-5472.can-21-2035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/01/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022]
Abstract
The high frequency of PI3K pathway alterations in cancer has motivated numerous efforts to develop drugs targeting this network. Although many potent and selective inhibitors have been developed and evaluated in preclinical models, their progress to clinical approval has been limited. Here we discuss the pressing need to develop improved biomarker strategies to guide patient selection and improve assessment of patient responses to PI3K pathway inhibitors to address unresolved issues surrounding the efficacy and tolerability of these compounds in patients with cancer.
Collapse
Affiliation(s)
- Emily C Erickson
- Department of Pathology, Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Alex Toker
- Department of Pathology, Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
148
|
Wang Q, Wang J, Xiang H, Ding P, Wu T, Ji G. The biochemical and clinical implications of phosphatase and tensin homolog deleted on chromosome ten in different cancers. Am J Cancer Res 2021; 11:5833-5855. [PMID: 35018228 PMCID: PMC8727805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is widely known as a tumor suppressor gene. It is located on chromosome 10q23 with 200 kb, and has dual activity of both protein and lipid phosphatase. In addition, as a targeted gene in multiple pathways, PTEN has a variety of physiological activities, such as those regulating the cell cycle, inducing cell apoptosis, and inhibiting cell invasion, etc. The PTEN gene have been identified in many kinds of cancers due to its mutations, deletions and inactivation, such as lung cancer, liver cancer, and breast cancer, and they are closely connected with the genesis and progression of cancers. To a large extent, the tumor suppressive function of PTEN is realized through its inhibition of the PI3K/AKT signaling pathway which controls cells apoptosis and development. In addition, PTEN loss has been associated with the prognosis of many cancers, such as lung cancer, liver cancer, and breast cancer. PTEN gene is related to many cancers and their pathological development. On the basis of a large number of related studies, this study describes in detail the structure, regulation, function and classical signal pathways of PTEN, as well as the relationship between various tumors related to PTEN. In addition, some drug studies targeting PTEN/PI3K/AKT/mTOR are also introduced in order to provide some directions for experimental research and clinical treatment of tumors.
Collapse
Affiliation(s)
- Qinyi Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Peilun Ding
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200032, China
| |
Collapse
|
149
|
Shen C, Shyu DL, Xu M, Yang L, Webb A, Duan W, Williams TM. Deregulation of AKT-mTOR Signaling Contributes to Chemoradiation Resistance in Lung Squamous Cell Carcinoma. Mol Cancer Res 2021; 20:425-433. [PMID: 34810212 DOI: 10.1158/1541-7786.mcr-21-0272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/31/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022]
Abstract
Lung squamous cell carcinoma (LUSC) accounts for one of three of non-small cell lung carcinoma (NSCLC) and 30% of LUSC patients present with locally advanced, unresectable/medically inoperable disease, who are commonly treated with definitive chemoradiation. However, disease relapse in the radiation fields occurs in one of three cases. We aim to explore the underlying molecular mechanisms of chemoradiation resistance of LUSC. Patient-derived xenograft (PDX) models of LUSC were established in immunodeficient mice, followed by treatment with cisplatin in combination with clinically relevant courses of ionizing radiation (20, 30, and 40 Gy). The recurrent tumors were extracted for functional proteomics using reverse phase protein analysis (RPPA). We found that phospho-AKT-S473, phospho-AKT-T308, phospho-S6-S235/6, and phospho-GSK3β-S9 were upregulated in the chemoradiation-resistant 20 Gy + cisplatin and 40 Gy + cisplatin tumors compared with those in the control tumors. Ingenuity pathway analysis of the RPPA data revealed that AKT-mTOR signaling was the most activated signaling pathway in the chemoradiation-resistant tumors. Similarly, elevated AKT-mTOR signaling was observed in stable 40 Gy and 60 Gy resistant HARA cell lines compared with the parental cell line. Accordingly, pharmacologic inhibition of mTOR kinase by Torin2 significantly sensitized LUSC cell lines to ionizing radiation. In conclusion, using chemoradiation-resistant PDX models coupled with RPPA proteomics analysis, we revealed that deregulation of AKT-mTOR signaling may contribute to the chemoradiation resistance of LUSC. IMPLICATIONS: Clonal selection of subpopulations with high AKT-mTOR signaling in heterogeneous tumors may contribute to relapse of LUSC after chemoradiation. mTOR kinase inhibitors may be promising radiosensitizing agents in upfront treatment to prevent acquired resistance.
Collapse
Affiliation(s)
- Changxian Shen
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California. .,The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Duan-Liang Shyu
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Min Xu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Linlin Yang
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California.,The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Amy Webb
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Wenrui Duan
- Herbert Wertheim College of Medicine at the Florida International University, Miami, Florida
| | - Terence M Williams
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California. .,The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| |
Collapse
|
150
|
Chen X, Wei L, Chi L, Guo X, Chen C, Guo Z, Liang J, Zheng Y, He J, Ye X. Adverse events of alpelisib: A postmarketing study of the World Health Organization pharmacovigilance database. Br J Clin Pharmacol 2021; 88:2180-2189. [PMID: 34786743 DOI: 10.1111/bcp.15143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/13/2021] [Accepted: 11/01/2021] [Indexed: 01/07/2023] Open
Abstract
AIMS To explore and describe the adverse reaction signals in the safety reporting for alpelisib. METHODS We performed a disproportionality analysis of the World Health Organization's VigiBase pharmacovigilance database from 1 January 2019 to 30 June 2021. Disproportionality analysis by information components (ICs) were used to evaluate the potential association between adverse events (AEs) and alpelisib. RESULTS A total of 33 327 reports were extracted, 5695 of them were chosen with alpelisib as the suspected drug. After combining the same ID, 687 cases remained. The 45-64-years group had the most cases (n = 203, 29.55%). There were 129 Preferred Terms with significant signals. Hyperglycaemia (IC025 = 6.74), breast cancer metastatic (IC025 = 5.85) and metastases to liver (IC025 = 4.70) were the AEs with the strongest signal. AEs with the most cases were hyperglycaemia (n = 595), rash (n = 535) and diarrhoea (n = 475). CONCLUSION We established a comprehensive list of AEs potentially associated with alpelisib. AEs with the most significant signals were hyperglycaemia, breast cancer metastatic, metastases to liver. The AEs with the most cases were hyperglycaemia, rash, diarrhoea, blood glucose increase and nausea.
Collapse
Affiliation(s)
| | | | | | | | - Chenxin Chen
- Department of Health Statistics, Faculty of Health Service, Naval Medical University, Shanghai, China
| | - Zhijian Guo
- Department of Health Statistics, Faculty of Health Service, Naval Medical University, Shanghai, China
| | - Jizhou Liang
- Department of Health Statistics, Faculty of Health Service, Naval Medical University, Shanghai, China
| | - Yi Zheng
- Department of Health Statistics, Faculty of Health Service, Naval Medical University, Shanghai, China
| | - Jia He
- Department of Health Statistics, Faculty of Health Service, Naval Medical University, Shanghai, China
| | - Xiaofei Ye
- Department of Health Statistics, Faculty of Health Service, Naval Medical University, Shanghai, China
| |
Collapse
|