101
|
Zhang J, Qu L, Wei J, Jiang S, Xu L, Wang L, Cheng F, Jiang K, Buggs J, Liu R. A new mechanism for the sex differences in angiotensin II-induced hypertension: the role of macula densa NOS1β-mediated tubuloglomerular feedback. Am J Physiol Renal Physiol 2020; 319:F908-F919. [PMID: 33044868 DOI: 10.1152/ajprenal.00312.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Females are protected against the development of angiotensin II (ANG II)-induced hypertension compared with males, but the mechanisms have not been completely elucidated. In the present study, we hypothesized that the effect of ANG II on the macula densa nitric oxide (NO) synthase 1β (NOS1β)-mediated tubuloglomerular feedback (TGF) mechanism is different between males and females, thereby contributing to the sexual dimorphism of ANG II-induced hypertension. We used microperfusion, micropuncture, clearance of FITC-inulin, and radio telemetry to examine the sex differences in the changes of macula densa NOS1β expression and activity, TGF response, natriuresis, and blood pressure (BP) after a 2-wk ANG II infusion in wild-type and macula densa-specific NOS1 knockout mice. In wild-type mice, ANG II induced higher expression of macula densa NOS1β, greater NO generation by the macula densa, and a lower TGF response in vitro and in vivo in females than in males; the increases of glomerular filtration rate, urine flow rate, and Na+ excretion in response to an acute volume expansion were significantly greater and the BP responses to ANG II were significantly less in females than in males. In contrast, these sex differences in the effects of ANG II on TGF, natriuretic response, and BP were largely diminished in knockout mice. In addition, tissue culture of human kidney biopsies (renal cortex) with ANG II resulted in a greater increase in NOS1β expression in females than in males. In conclusion, macula densa NOS1β-mediated TGF is a novel and important mechanism for the sex differences in ANG II-induced hypertension.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Larry Qu
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jin Wei
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Shan Jiang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Lan Xu
- College of Public Health, University of South Florida, Tampa, Florida
| | - Lei Wang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Feng Cheng
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Kun Jiang
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jacentha Buggs
- Advanced Organ Disease and Transplantation Institute, Tampa General Hospital, Tampa, Florida
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
102
|
Filipeanu CM, Lazartigues E. From cell surface to nucleus: Mas transportation in hypertension. Cardiovasc Res 2020; 116:1929-1931. [PMID: 32246824 DOI: 10.1093/cvr/cvaa087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Catalin M Filipeanu
- Department of Pharmacology, Howard University, College of Medicine, 520 W St. NW, Washington, DC 20059, USA
| | - Eric Lazartigues
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Southeast Louisiana Veterans Health Care Systems, New Orleans, LA 70119, USA
| |
Collapse
|
103
|
Wang F, Zhou B. Investigation of angiotensin-I-converting enzyme (ACE) inhibitory tri-peptides: a combination of 3D-QSAR and molecular docking simulations. RSC Adv 2020; 10:35811-35819. [PMID: 35517085 PMCID: PMC9056908 DOI: 10.1039/d0ra05119e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/24/2020] [Indexed: 01/06/2023] Open
Abstract
Angiotensin-I-converting enzyme (ACE) is a key enzyme in the regulation of peripheral blood pressure and electrolyte homeostasis. Therefore, ACE is considered as a promising target for treatment of hypertension. In the present work, in order to investigate the binding interactions between ACE and tri-peptides, three-dimensional quantitative structure-activity relationship (3D-QSAR) models using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods were developed. Three different alignment methods (template ligand-based, docking-based, and common scaffold-based) were employed to construct reliable 3D-QSAR models. Statistical parameters derived from the QSAR models indicated that the template ligand-based CoMFA (R cv 2 = 0.761, R pred 2 = 0.6257) and CoMSIA (R cv 2 = 0.757, R pred 2 = 0.6969) models were better than the other alignment-based models. In addition, molecular docking studies were carried out to predict the binding modes of the peptides to ACE. The peptide-enzyme interactions were consistent with the derived 3D contour maps. Overall, the insights gained from this study would offer theoretical references for understanding the mechanism of action of tri-peptides when binding to ACE and aid in the design of more potent tri-peptides.
Collapse
Affiliation(s)
- Fangfang Wang
- School of Life Science, Linyi University Linyi 276000 China
| | - Bo Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, College of Basic Medical, Guizhou Medical University Guizhou 550004 China
| |
Collapse
|
104
|
Chaudhary M. COVID-19 susceptibility: potential of ACE2 polymorphisms. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020; 21:54. [PMID: 38624559 PMCID: PMC7502288 DOI: 10.1186/s43042-020-00099-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/09/2020] [Indexed: 02/08/2023] Open
Abstract
Background Angiotensin-converting enzyme 2 (ACE2) is a metallopeptidase that primarily functions as a negative regulator of renin angiotensin system (RAS) by converting angiotensin II (Ang II) to angiotensin 1-7. Contrary to this, another RAS component, angiotensin-converting enzyme (ACE) catalyzes synthesis of Ang II from angiotensin I (Ang I) that functions as active compound in blood pressure regulation. This indicates importance of ACE/ACE2 level in regulating blood pressure by targeting Ang II. An outbreak of severe acute respiratory syndrome (SARS) highlighted the additional role of ACE2 as a receptor for SARS coronavirus (SARS-CoV) infection. Main body of the abstract ACE2 is a functional receptor for SARS-CoV and SARS-CoV-2. Activation of spike (S)-protein by either type II transmembrane serine proteases (TTSPs) or cathepsin-mediated cleavage initiates receptor binding and viral entry. In addition to TTSPs, ACE2 can also be trimmed by ADAM 17 (a disintegrin and metalloproteinase 17) that competes for the same receptor. Cleavage by TTSPs activates ACE2 receptor for binding, whereas ADAM17 releases extracellular fragment called soluble ACE2 (sACE2). Structural studies of both ACE2 and S-protein have found critical sites involved in binding mechanism. In addition to studies on structural motifs, few single-nucleotide polymorphism (SNPs) studies have been done to find an association between genetic variants and SARS susceptibility. Though no association was found in those reports, but seeing the non-reproducibility of SNP studies among different ethnic groups, screening of ACE2 SNPs in individual population can be undertaken. Short conclusion Thus, screening for novel SNPs focussing on recently identified critical regions of ACE2 can be targeted to monitor susceptibility towards coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Mayank Chaudhary
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207 India
| |
Collapse
|
105
|
Engin AB, Engin ED, Engin A. Two important controversial risk factors in SARS-CoV-2 infection: Obesity and smoking. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 78:103411. [PMID: 32422280 PMCID: PMC7227557 DOI: 10.1016/j.etap.2020.103411] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 05/09/2023]
Abstract
The effects of obesity and smoking in the coronavirus disease 2019 (COVID-19) pandemic remain controversial. Angiotensin converting enzyme 2 (ACE2), a component of the renin-angiotensin system (RAS), is the human cell receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19. ACE2 expression increases on lung alveolar epithelial cells and adipose tissue due to obesity, smoking and air pollution. A significant relationship exists between air pollution and SARS-CoV-2 infection, as more severe COVID-19 symptoms occur in smokers; comorbid conditions due to obesity or excess ectopic fat accumulation as underlying risk factors for severe COVID-19 strongly encourage the virus/ACE2 receptor-ligand interaction concept. Indeed, obesity, air pollution and smoking associated risk factors share underlying pathophysiologies that are related to the Renin-Angiotensin-System in SARS-CoV-2 infection. The aim of this review is to emphasize the mechanism of receptor-ligand interaction and its impact on the enhanced risk of death due to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Hipodrom, Ankara, Turkey.
| | - Evren Doruk Engin
- Ankara University, Biotechnology Institute, Gumusdere Campus, Kecioren, Ankara, Turkey
| | - Atilla Engin
- Gazi University, Faculty of Medicine, Department of General Surgery, Besevler, Ankara, Turkey
| |
Collapse
|
106
|
Uso terapéutico de los inhibidores de la enzima convertidora de angiotensina en pacientes con COVID-19: las «dos caras de la moneda». REVISTA COLOMBIANA DE CARDIOLOGÍA 2020. [PMCID: PMC7365126 DOI: 10.1016/j.rccar.2020.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
La evidencia actual es limitada para determinar el impacto del uso de los inhibidores de la enzima convertidora de angiotensina (IECA) en la predisposición al empeoramiento de la enfermedad del coronavirus 2019 (COVID-19). Inicialmente se reportó que en los pacientes con progresión grave de la COVID-19 existía una mortalidad elevada, los cuales tenían antecedentes de hipertensión arterial, diabetes mellitus, enfermedad cardiovascular y enfermedad renal crónica. Parte de estos pacientes también tenía en común que utilizaban IECA, lo cual alertó a la comunidad médica sobre su riesgo potencial en coexistencia con COVID-19. Sin embargo, estudios más recientes de casos-controles encontraron que los inhibidores del sistema renina-angiotensina, incluyendo los IECA, no incrementan el riesgo de COVID-19 o de requerir admisión hospitalaria por esta causa. Diferentes revistas científicas han facilitado el acceso a reportes preliminares, dejando a discreción de la comunidad médica y científica hacer uso de dicha información para promover el desarrollo de estudios que confirmen experimentalmente dichos hallazgos, preclínicos y epidemiológicos, que finalmente impacten en las decisiones de la práctica clínica para beneficiar a los pacientes con COVID-19. En esta revisión de la literatura se exploran los diferentes efectos mediados por los IECA que podrían estar relacionados con la respuesta inmune durante la infección y la transmisión de COVID-19, compilando evidencia disponible que evalúa si en realidad representan un riesgo o si, por el contrario, confieren un efecto protector.
Collapse
|
107
|
Kangussu LM, Marzano LAS, Souza CF, Dantas CC, Miranda AS, Simões e Silva AC. The Renin-Angiotensin System and the Cerebrovascular Diseases: Experimental and Clinical Evidence. Protein Pept Lett 2020; 27:463-475. [DOI: 10.2174/0929866527666191218091823] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/07/2019] [Accepted: 11/04/2019] [Indexed: 12/28/2022]
Abstract
Cerebrovascular Diseases (CVD) comprise a wide spectrum of disorders, all sharing an
acquired or inherited alteration of the cerebral vasculature. CVD have been associated with
important changes in systemic and tissue Renin-Angiotensin System (RAS). The aim of this review
was to summarize and to discuss recent findings related to the modulation of RAS components in
CVD. The role of RAS axes is more extensively studied in experimentally induced stroke. By
means of AT1 receptors in the brain, Ang II hampers cerebral blood flow and causes tissue
ischemia, inflammation, oxidative stress, cell damage and apoptosis. On the other hand, Ang-(1-7)
by stimulating Mas receptor promotes angiogenesis in brain tissue, decreases oxidative stress,
neuroinflammation, and improves cognition, cerebral blood flow, neuronal survival, learning and
memory. In regard to clinical studies, treatment with Angiotensin Converting Enzyme (ACE)
inhibitors and AT1 receptor antagonists exerts preventive and therapeutic effects on stroke. Besides
stroke, studies support a similar role of RAS molecules also in traumatic brain injury and cerebral
aneurysm. The literature supports a beneficial role for the alternative RAS axis in CVD. Further
studies are necessary to investigate the therapeutic potential of ACE2 activators and/or Mas
receptor agonists in patients with CVD.
Collapse
Affiliation(s)
- Lucas M. Kangussu
- Department of Morphology – Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas Alexandre Santos Marzano
- Interdisciplinary Laboratory of Medical Investigation - Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cássio Ferraz Souza
- Interdisciplinary Laboratory of Medical Investigation - Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carolina Couy Dantas
- Interdisciplinary Laboratory of Medical Investigation - Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aline Silva Miranda
- Interdisciplinary Laboratory of Medical Investigation - Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Cristina Simões e Silva
- Interdisciplinary Laboratory of Medical Investigation - Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
108
|
Nakagawa P, Nair AR, Agbor LN, Gomez J, Wu J, Zhang SY, Lu KT, Morgan DA, Rahmouni K, Grobe JL, Sigmund CD. Increased Susceptibility of Mice Lacking Renin-b to Angiotensin II-Induced Organ Damage. HYPERTENSION (DALLAS, TEX. : 1979) 2020; 76:468-477. [PMID: 32507043 DOI: 10.1161/hypertensionaha.120.14972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several cardiac and renal diseases are attributed to a dysregulation of the renin-angiotensin system. Renin, the rate-limiting enzyme of the renin-angiotensin system, has 2 isoforms. The classical renin isoform (renin-a) encoding preprorenin is mainly confined to the juxtaglomerular cells and released into the circulation upon stimulation. Alternatively, renin-b is predicted to remain intracellular and is expressed in the brain, heart, and adrenal gland. In the brain, ablation of renin-b (Ren-bNull mice) results in increased brain renin-angiotensin system activity. However, the consequences of renin-b ablation in tissues outside the brain remain unknown. Therefore, we hypothesized that renin-b protects from hypertensive cardiac and renal end-organ damage in mice. Ren-bNull mice exhibited normal blood pressure at baseline. Thus, we induced hypertension by using a slow pressor dose of Ang II (angiotensin II). Ang II increased blood pressure in both wild type and Ren-bNull to the same degree. Although the blood pressure between Ren-bNull and wild-type mice was elevated equally, 4-week infusion of Ang II resulted in exacerbated cardiac remodeling in Ren-bNull mice compared with wild type. Ren-bNull mice also exhibited a modest increase in renal glomerular matrix deposition, elevated plasma aldosterone, and a modestly enhanced dipsogenic response to Ang II. Interestingly, ablation of renin-b strongly suppressed plasma renin, but renal cortical renin mRNA was preserved. Altogether, these data indicate that renin-b might play a protective role in the heart, and thus renin-b could be a potential target to treat hypertensive heart disease.
Collapse
Affiliation(s)
- Pablo Nakagawa
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee (P.N., J.G., J.W., K.-T.L., J.L.G., C.D.S.)
| | - Anand R Nair
- Department of Neuroscience and Pharmacology, Roy J. and Lucille. Carver College of Medicine, University of Iowa (A.R.N., L.A., S.Y.Z., D.A.M., K.R.)
| | - Larry N Agbor
- Department of Neuroscience and Pharmacology, Roy J. and Lucille. Carver College of Medicine, University of Iowa (A.R.N., L.A., S.Y.Z., D.A.M., K.R.)
| | - Javier Gomez
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee (P.N., J.G., J.W., K.-T.L., J.L.G., C.D.S.)
| | - Jing Wu
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee (P.N., J.G., J.W., K.-T.L., J.L.G., C.D.S.)
| | - Shao Yang Zhang
- Department of Neuroscience and Pharmacology, Roy J. and Lucille. Carver College of Medicine, University of Iowa (A.R.N., L.A., S.Y.Z., D.A.M., K.R.)
| | - Ko-Ting Lu
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee (P.N., J.G., J.W., K.-T.L., J.L.G., C.D.S.)
| | - Donald A Morgan
- Department of Neuroscience and Pharmacology, Roy J. and Lucille. Carver College of Medicine, University of Iowa (A.R.N., L.A., S.Y.Z., D.A.M., K.R.)
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, Roy J. and Lucille. Carver College of Medicine, University of Iowa (A.R.N., L.A., S.Y.Z., D.A.M., K.R.)
| | - Justin L Grobe
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee (P.N., J.G., J.W., K.-T.L., J.L.G., C.D.S.)
| | - Curt D Sigmund
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee (P.N., J.G., J.W., K.-T.L., J.L.G., C.D.S.)
| |
Collapse
|
109
|
Renin-Angiotensin System in Lung Tumor and Microenvironment Interactions. Cancers (Basel) 2020; 12:cancers12061457. [PMID: 32503281 PMCID: PMC7352181 DOI: 10.3390/cancers12061457] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/24/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
The mechanistic involvement of the renin-angiotensin system (RAS) reaches beyond cardiovascular physiopathology. Recent knowledge pinpoints a pleiotropic role for this system, particularly in the lung, and mainly through locally regulated alternative molecules and secondary pathways. Angiotensin peptides play a role in cell proliferation, immunoinflammatory response, hypoxia and angiogenesis, which are critical biological processes in lung cancer. This manuscript reviews the literature supporting a role for the renin-angiotensin system in the lung tumor microenvironment and discusses whether blockade of this pathway in clinical settings may serve as an adjuvant therapy in lung cancer.
Collapse
|
110
|
Kaltenecker CC, Domenig O, Kopecky C, Antlanger M, Poglitsch M, Berlakovich G, Kain R, Stegbauer J, Rahman M, Hellinger R, Gruber C, Grobe N, Fajkovic H, Eskandary F, Böhmig GA, Säemann MD, Kovarik JJ. Critical Role of Neprilysin in Kidney Angiotensin Metabolism. Circ Res 2020; 127:593-606. [PMID: 32418507 DOI: 10.1161/circresaha.119.316151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RATIONALE Kidney homeostasis is critically determined by the coordinated activity of the renin-angiotensin system (RAS), including the balanced synthesis of its main effector peptides Ang (angiotensin) II and Ang (1-7). The condition of enzymatic overproduction of Ang II relative to Ang (1-7) is termed RAS dysregulation and leads to cellular signals, which promote hypertension and organ damage, and ultimately progressive kidney failure. ACE2 (angiotensin-converting enzyme 2) and NEP (neprilysin) induce the alternative, and potentially reno-protective axis by enhancing Ang (1-7) production. However, their individual contribution to baseline RAS balance and whether their activities change in chronic kidney disease (CKD) has not yet been elucidated. OBJECTIVE To examine whether NEP-mediated Ang (1-7) generation exceeds Ang II formation in the healthy kidney compared with diseased kidney. METHODS AND RESULTS In this exploratory study, we used liquid chromatography-tandem mass spectrometry to measure Ang II and Ang (1-7) synthesis rates of ACE, chymase and NEP, ACE2, PEP (prolyl-endopeptidase), PCP (prolyl-carboxypeptidase) in kidney biopsy homogenates in 11 healthy living kidney donors, and 12 patients with CKD. The spatial expression of RAS enzymes was determined by immunohistochemistry. Healthy kidneys showed higher NEP-mediated Ang (1-7) synthesis than Ang II formation, thus displaying a strong preference towards the reno-protective alternative RAS axis. In contrast, in CKD kidneys higher levels of Ang II were recorded, which originated from mast cell chymase activity. CONCLUSIONS Ang (1-7) is the dominant RAS peptide in healthy human kidneys with NEP rather than ACE2 being essential for its generation. Severe RAS dysregulation is present in CKD dictated by high chymase-mediated Ang II formation. Kidney RAS enzyme analysis might lead to novel therapeutic approaches for CKD.
Collapse
Affiliation(s)
- Christopher C Kaltenecker
- From the Division of Nephrology and Dialysis, Department of Internal Medicine III (C.C.K., F.E., G.A.B., J.J.K.), Medical University of Vienna, Austria
| | - Oliver Domenig
- Attoquant Diagnostics GmbH, Vienna, Austria (O.D., M.P.)
| | - Chantal Kopecky
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia (C.K.)
| | - Marlies Antlanger
- 2nd Department of Internal Medicine, Kepler University Hospital, Med Campus III, Linz, Austria (M.A.)
| | | | - Gabriela Berlakovich
- Division of Transplantation, Department of Surgery (G.B.), Medical University of Vienna, Austria
| | - Renate Kain
- Department of Pathology (R.K.), Medical University of Vienna, Austria
| | - Johannes Stegbauer
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany (J.S., M.R.)
| | - Masudur Rahman
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany (J.S., M.R.)
| | - Roland Hellinger
- Center for Physiology and Pharmacology (R.H., C.G.), Medical University of Vienna, Austria
| | - Christian Gruber
- Center for Physiology and Pharmacology (R.H., C.G.), Medical University of Vienna, Austria
| | - Nadja Grobe
- Renal Research Institute, New York, NY (N.G.)
| | - Harun Fajkovic
- Department of Urology (H.F.), Medical University of Vienna, Austria
| | - Farsad Eskandary
- From the Division of Nephrology and Dialysis, Department of Internal Medicine III (C.C.K., F.E., G.A.B., J.J.K.), Medical University of Vienna, Austria
| | - Georg A Böhmig
- From the Division of Nephrology and Dialysis, Department of Internal Medicine III (C.C.K., F.E., G.A.B., J.J.K.), Medical University of Vienna, Austria
| | - Marcus D Säemann
- 6th Medical Department with Nephrology and Dialysis, Wilhelminenhospital, Vienna, Austria (M.D.S.).,Sigmund-Freud University, Vienna, Austria (M.D.S.)
| | - Johannes J Kovarik
- From the Division of Nephrology and Dialysis, Department of Internal Medicine III (C.C.K., F.E., G.A.B., J.J.K.), Medical University of Vienna, Austria
| |
Collapse
|
111
|
The Interplay of Renin-Angiotensin System and Toll-Like Receptor 4 in the Inflammation of Diabetic Nephropathy. J Immunol Res 2020; 2020:6193407. [PMID: 32411800 PMCID: PMC7210546 DOI: 10.1155/2020/6193407] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/12/2020] [Indexed: 01/11/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most serious chronic kidney diseases and the major cause of end-stage renal failure worldwide. The underlying mechanisms of DN are complex and required to be further investigated. Both innate immunity and renin-angiotensin system (RAS) play critical roles in the pathogenesis of DN. Except for traditional functions, abnormally regulated RAS has been proved to be involved in the inflammatory process of DN. Toll-like receptor 4 (TLR4) is the most deeply studied pattern recognition receptor in the innate immune system, and its activation has been reported to mediate the development of DN. In this review, we aim at discussing how dysregulated RAS affects TLR4 activation in the kidney that contributes to the exploration of the pathogenesis of DN. Understanding the interplay of RAS and TLR4 in inducing the progression of DN may provide new insights to develop effective treatments.
Collapse
|
112
|
Noh K, Yang QJ, Sekhon L, Quach HP, Chow ECY, Pang KS. Noteworthy idiosyncrasies of 1α,25-dihydroxyvitamin D 3 kinetics for extrapolation from mouse to man: Commentary. Biopharm Drug Dispos 2020; 41:126-148. [PMID: 32319119 DOI: 10.1002/bdd.2223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/30/2020] [Accepted: 03/06/2020] [Indexed: 12/17/2022]
Abstract
Calcitriol or 1,25-dihydroxyvitamin D3 [1,25(OH)2 D3 ] is the active ligand of the vitamin D receptor (VDR) that plays a vital role in health and disease. Vitamin D is converted to the relatively inactive metabolite, 25-hydroxyvitamin D3 [25(OH)D3 ], by CYP27A1 and CYP2R1 in the liver, then to 1,25(OH)2 D3 by a specific, mitochondrial enzyme, CYP27B1 (1α-hydroxylase) that is present primarily in the kidney. The degradation of both metabolites is mostly carried out by the more ubiquitous mitochondrial enzyme, CYP24A1. Despite the fact that calcitriol inhibits its formation and degradation, allometric scaling revealed strong interspecies correlation of the net calcitriol clearance (CL estimated from dose/AUC∞ ), production rate (PR), and basal, plasma calcitriol concentration with body weight (BW). PBPK-PD (physiologically based pharmacokinetic-pharmacodynamic) modeling confirmed the dynamic interactions between calcitriol and Cyp27b1/Cyp24a1 on the decrease in the PR and increase in CL in mice. Close scrutiny of the literature revealed that basal levels of calcitriol had not been taken into consideration for estimating the correct AUC∞ and CL after exogenous calcitriol dosing in both animals and humans, leading to an overestimation of AUC∞ and underestimation of the plasma CL. In humans, CL was decreased in chronic kidney disease but increased in cancer. Collectively, careful pharmacokinetic data analysis and improved definition are achieved with PBPK-PD modeling, which embellishes the complexity of dose, enzyme regulation, and disease conditions. Allometric scaling and PBPK-PD modeling were applied successfully to extend the PBPK model to predict calcitriol kinetics in cancer patients.
Collapse
Affiliation(s)
- Keumhan Noh
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada
| | - Qi Joy Yang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada
| | - Lavtej Sekhon
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada
| | - Holly P Quach
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada
| | - Edwin C Y Chow
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada
| | - K Sandy Pang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada
| |
Collapse
|
113
|
Junhai Z, Jing Y, Li L. Cerebral Salt-wasting Syndrome in a Critically Ill Patient: An Easily Neglected Syndrome in Intensive Care Unit (ICU). J Natl Med Assoc 2020; 112:258-261. [PMID: 32327187 DOI: 10.1016/j.jnma.2020.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/11/2019] [Accepted: 03/20/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Cerebral salt-wasting syndrome (CSWS), which usually secondary to cerebral diseases, is characterized by hyponatremia and hypovolemia. In clinical practice, it is quite difficult to distinguish CSWS from other hyponatremia syndrome, especially in Intensive Care Unit (ICU) where the conditions of patients are more complicated. Nonetheless, it is crucial because treatments might be fundamentally different. CASE PRESENTATION We discuss a case of patient who presented with refractory hyponatremia and hypovolemia after traumatic brain injury, finally was diagnosed with CSWS, and successfully treated with corticotropin. CONCLUSIONS This case report provides a unique opportunity to observe the trigger of subdural effusion-induced CSWS, and also it provides the classical therapy for CSWS in a critically ill patient. In view of the difficulty to tell CSWS from other similar diseases in ICU, ICU doctors should be aware of such condition.
Collapse
Affiliation(s)
- Zhen Junhai
- Department of Critical Care Medicine, Zhejiang Hospital, Lingyin Road NO.12, Hangzhou, 310013, China
| | - Yan Jing
- Department of Critical Care Medicine, Zhejiang Hospital, Lingyin Road NO.12, Hangzhou, 310013, China
| | - Li Li
- Department of Critical Care Medicine, Zhejiang Hospital, Lingyin Road NO.12, Hangzhou, 310013, China.
| |
Collapse
|
114
|
Jahandideh F, Wu J. Perspectives on the Potential Benefits of Antihypertensive Peptides towards Metabolic Syndrome. Int J Mol Sci 2020; 21:E2192. [PMID: 32235782 PMCID: PMC7139547 DOI: 10.3390/ijms21062192] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
In addition to the regulation of blood pressure, the renin-angiotensin system (RAS) also plays a key role in the onset and development of insulin resistance, which is central to metabolic syndrome (MetS). Due to the interplay between RAS and insulin resistance, antihypertensive compounds may exert beneficial effects in the management of MetS. Food-derived bioactive peptides with RAS blocking properties can potentially improve adipose tissue dysfunction, glucose intolerance, and insulin resistance involved in the pathogenesis of MetS. This review discusses the pathophysiology of hypertension and the association between RAS and pathogenesis of the MetS. The effects of bioactive peptides with RAS modulating effects on other components of the MetS are discussed. While the in vivo reports on the effectiveness of antihypertensive peptides against MetS are encouraging, the exact mechanism by which these peptides infer their effects on glucose and lipid handling is mostly unknown. Therefore, careful design of experiments along with standardized physiological models to study the effect of antihypertensive peptides on insulin resistance and obesity could help to clarify this relationship.
Collapse
Affiliation(s)
- Forough Jahandideh
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| |
Collapse
|
115
|
Menikdiwela KR, Ramalingam L, Rasha F, Wang S, Dufour JM, Kalupahana NS, Sunahara KKS, Martins JO, Moustaid-Moussa N. Autophagy in metabolic syndrome: breaking the wheel by targeting the renin-angiotensin system. Cell Death Dis 2020; 11:87. [PMID: 32015340 PMCID: PMC6997396 DOI: 10.1038/s41419-020-2275-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/12/2022]
Abstract
Metabolic syndrome (MetS) is a complex, emerging epidemic which disrupts the metabolic homeostasis of several organs, including liver, heart, pancreas, and adipose tissue. While studies have been conducted in these research areas, the pathogenesis and mechanisms of MetS remain debatable. Lines of evidence show that physiological systems, such as the renin-angiotensin system (RAS) and autophagy play vital regulatory roles in MetS. RAS is a pivotal system known for controlling blood pressure and fluid balance, whereas autophagy is involved in the degradation and recycling of cellular components, including proteins. Although RAS is activated in MetS, the interrelationship between RAS and autophagy varies in glucose homeostatic organs and their cross talk is poorly understood. Interestingly, autophagy is attenuated in the liver during MetS, whereas autophagic activity is induced in adipose tissue during MetS, indicating tissue-specific discordant roles. We discuss in vivo and in vitro studies conducted in metabolic tissues and dissect their tissue-specific effects. Moreover, our review will focus on the molecular mechanisms by which autophagy orchestrates MetS and the ways future treatments could target RAS in order to achieve metabolic homeostasis.
Collapse
Affiliation(s)
- Kalhara R Menikdiwela
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Fahmida Rasha
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Shu Wang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Jannette M Dufour
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Nishan S Kalupahana
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
- Department of Physiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Karen K S Sunahara
- Department of Experimental Physiopatholgy, Medical School University of São Paulo, São Paulo, Brazil
| | - Joilson O Martins
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University Sao Paulo (FCF/USP), São Paulo, Brazil
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA.
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
116
|
A colorful view of the brain renin-angiotensin system. Hypertens Res 2020; 43:357-359. [PMID: 31953528 DOI: 10.1038/s41440-020-0396-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/21/2022]
|
117
|
Fish and fish side streams are valuable sources of high-value components. FOOD QUALITY AND SAFETY 2019. [DOI: 10.1093/fqsafe/fyz024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
The current practice of fish processing generates increasing quantities of side streams and waste, such as skin, heads, frames, viscera, and fillet cut offs. These may account for up to 70% of the fish used in industrial processing. Low-value fish catches, and under-utilized fish species comprise another source of side streams. These side streams have been discarded in the environment leading to environmental problems or they have ended up as low commercial value products, such as feed for fur animals and aquaculture. However, several studies have shown that fish side streams contain valuable bioactive ingredients and fractions, such as fish oils, proteins and peptides, collagen, gelatin, enzymes, chitin, and minerals. These compounds and fractions may provide the opportunity to develop novel applications in health promoting foods, special feeds, nutraceuticals, pharmaceuticals, and cosmetic products. Better utilization of side streams and low-value fish would simultaneously improve both the environmental and ecological sustainability of production. This review summarizes the current knowledge on fish and fish side streams as sources of high-value components such as peptides with antimicrobial, antioxidative, antihypertensive, and antihyperglycemic properties, proteins such as fish collagen and gelatin, fish enzymes, fish oils and fatty acids, polysaccharides like glucosaminoglycans, chitin and chitosan, vitamin D, and minerals. Production technologies for recovering the high-value fractions and potential product applications are discussed. Furthermore, safety aspects related to the raw material, technologies, and fractions are considered.
Collapse
|
118
|
Kilmister EJ, Paterson C, Brasch HD, Davis PF, Tan ST. The Role of the Renin-Angiotensin System and Vitamin D in Keloid Disorder-A Review. Front Surg 2019; 6:67. [PMID: 32039229 PMCID: PMC6988818 DOI: 10.3389/fsurg.2019.00067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022] Open
Abstract
Keloid disorder (KD) is a fibroproliferative condition characterized by excessive dermal collagen deposition in response to wounding and/or inflammation of the skin. Despite intensive research, treatment for KD remains empirical and unsatisfactory. Activation of the renin-angiotensin system (RAS) leads to fibrosis in various organs through its direct effect and the resultant hypertension, and activation of the immune system. The observation of an increased incidence of KD in dark-skinned individuals who are predisposed to vitamin D deficiency (VDD) and hypertension, and the association of KD with hypertension and VDD, all of which are associated with an elevated activity of the RAS, provides clues to the pathogenesis of KD. There is increasing evidence implicating embryonic-like stem (ESC) cells that express ESC markers within keloid-associated lymphoid tissues (KALTs) in keloid lesions. These primitive cells express components of the RAS, cathepsins B, D, and G that constitute bypass loops of the RAS, and vitamin D receptor (VDR). This suggests that the RAS directly, and through signaling pathways that converge on the RAS, including VDR-mediated mechanisms and the immune system, may play a critical role in regulating the primitive population within the KALTs. This review discusses the role of the RAS, its relationship with hypertension, vitamin D, VDR, VDD, and the immune system that provide a microenvironmental niche in regulating the ESC-like cells within the KALTs. These ESC-like cells may be a novel therapeutic target for the treatment of this enigmatic and challenging condition, by modulating the RAS using inhibitors of the RAS and its bypass loops and convergent signaling pathways.
Collapse
Affiliation(s)
| | | | - Helen D Brasch
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Paul F Davis
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Swee T Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand.,Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Wellington, New Zealand
| |
Collapse
|
119
|
Pan X, Liang P, Teng L, Ren Y, Peng J, Liu W, Yang Y. Study on molecular mechanisms of nattokinase in pharmacological action based on label-free liquid chromatography-tandem mass spectrometry. Food Sci Nutr 2019; 7:3185-3193. [PMID: 31660132 PMCID: PMC6804763 DOI: 10.1002/fsn3.1157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/11/2019] [Accepted: 06/16/2019] [Indexed: 01/10/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading causes of premature death and disability in people around the world. Therefore, the prevention and treatment of CVDs has become an important subject. In this study, we verified the thrombolytic activities of a nattokinase-like protease named NK-01 in vivo. Label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) technique was used in our study. NK-01 could inhibit the activity of coagulation factors though the up-regulation of proteinase C inhibitors and protein S. NK-01 also could inhibit the angiotensinogen conversion to AngII and promote the degradation of kininogen to reduce the blood pressure. In addition, NK-01 could increase the content of paraoxonase 1, which could prevent atherosclerosis. In our study, we found that NK-01 cloud effect some key proteins which participant in CVDs associated metabolic processes such as coagulation system, blood pressure, and atherosclerosis. Taken together, the underlying molecular mechanisms for the biological beneficial of NK-01 were investigated. Our proteomic study will provide further theoretical basis for application of NK in prevention or adjuvant treatment in biomedicine areas.
Collapse
Affiliation(s)
- Xia Pan
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Pengyu Liang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Luyao Teng
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Yuhao Ren
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Jixian Peng
- Shandong Ruiying Pioneer Pharmaceutical Co., LtdHezeChina
| | - Weizhi Liu
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Yan Yang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| |
Collapse
|
120
|
Shamseldeen AM, Ali Eshra M, Ahmed Rashed L, Fathy Amer M, Elham Fares A, Samir Kamar S. Omega-3 attenuates high fat diet-induced kidney injury of female rats and renal programming of their offsprings. Arch Physiol Biochem 2019; 125:367-377. [PMID: 29741967 DOI: 10.1080/13813455.2018.1471511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/27/2018] [Indexed: 02/07/2023]
Abstract
Context: Maternal diet composition could influence fetal organogenesis. Objective: We investigated effects of high fat diet (HFD) intake alone or combined with omega 3 during pregnancy, lactation and early days of weaning on nephrogenesis of pups and maternal renal function and morphology. Material and methods: Mothers and their pups included in each group were supplied with the same diet composition. Rats were divided into group I, II and III supplied with chow of either 10 kcal%, 45 kcal% or 45 kcal% from fat together with omega-3 respectively. Results: Group II showed increased serum urea and creatinine, renal TNF-α, IL1β. Structural injury was observed in mothers and their pups as Bowman's capsule and tubular dilatation and increased expression of PCNA that were decreased following omega-3 supplementation added to down regulation of Wnt4, Pax2 gene and podocin expression. Discussion and conclusion: Omega-3 supplementation improves lipid nephrotoxicity observed in mothers and their pups.
Collapse
Affiliation(s)
| | - Mohammed Ali Eshra
- a Department of Physiology Faculty of Medicine, Cairo University , Cairo , Egypt
| | - Laila Ahmed Rashed
- b Department of Biochemistry Faculty of Medicine, Cairo University , Cairo , Egypt
| | - Marwa Fathy Amer
- b Department of Biochemistry Faculty of Medicine, Cairo University , Cairo , Egypt
| | - Amal Elham Fares
- c Department of Medical Histology Faculty of Medicine, Cairo University , Cairo , Egypt
| | - Samaa Samir Kamar
- c Department of Medical Histology Faculty of Medicine, Cairo University , Cairo , Egypt
| |
Collapse
|
121
|
Kissling LS, Akerman AP, Cotter JD. Heat-induced hypervolemia: Does the mode of acclimation matter and what are the implications for performance at Tokyo 2020? Temperature (Austin) 2019; 7:129-148. [PMID: 33015241 DOI: 10.1080/23328940.2019.1653736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Tokyo 2020 will likely be the most heat stressful Olympics to date, so preparation to mitigate the effects of humid heat will be essential for performance in several of the 33 sports. One key consideration is heat acclimation (HA); the repeated exposure to heat to elicit physiological and psychophysical adaptations that improve tolerance and exercise performance in the heat. Heat can be imposed in various ways, including exercise in the heat, hot water immersion, or passive exposure to hot air (e.g., sauna). The physical requirements of each sport will determine the impact that the heat has on performance, and the adaptations required from HA to mitigate these effects. This review focuses on one key adaptation, plasma volume expansion (PVE), and how the mode of HA may affect the kinetics of adaptation. PVE constitutes a primary HA-mediated adaptation and contributes to functional adaptations (e.g., lower heart rate and increased heat loss capacity), which may be particularly important in athletes of "sub-elite" cardiorespiratory fitness (e.g., team sports), alongside athletes of prolonged endurance events. This review: i) highlights the ability of exercise in the heat, hot-water immersion, and passive hot air to expand PV, providing the first quantitative assessment of the efficacy of different heating modes; ii) discusses how this may apply to athletes at Tokyo 2020; and iii) provides recommendations regarding the protocol of HA and the prospect for achieving PVE (and the related outcomes).
Collapse
Affiliation(s)
- Lorenz S Kissling
- The School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Ashley P Akerman
- The School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand.,Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - James D Cotter
- The School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
122
|
Expression of Components of the Renin-Angiotensin System by the Embryonic Stem Cell–Like Population within Keloid Lesions. Plast Reconstr Surg 2019; 144:372-384. [DOI: 10.1097/prs.0000000000005867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
123
|
White MC, Fleeman R, Arnold AC. Sex differences in the metabolic effects of the renin-angiotensin system. Biol Sex Differ 2019; 10:31. [PMID: 31262355 PMCID: PMC6604144 DOI: 10.1186/s13293-019-0247-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity is a global epidemic that greatly increases risk for developing cardiovascular disease and type II diabetes. Sex differences in the obese phenotype are well established in experimental animal models and clinical populations. While having higher adiposity and obesity prevalence, females are generally protected from obesity-related metabolic and cardiovascular complications. This protection is, at least in part, attributed to sex differences in metabolic effects of hormonal mediators such as the renin-angiotensin system (RAS). Previous literature has predominantly focused on the vasoconstrictor arm of the RAS and shown that, in contrast to male rodent models of obesity and diabetes, females are protected from metabolic and cardiovascular derangements produced by angiotensinogen, renin, and angiotensin II. A vasodilator arm of the RAS has more recently emerged which includes angiotensin-(1-7), angiotensin-converting enzyme 2 (ACE2), mas receptors, and alamandine. While accumulating evidence suggests that activation of components of this counter-regulatory axis produces positive effects on glucose homeostasis, lipid metabolism, and energy balance in male animal models, female comparison studies and clinical data related to metabolic outcomes are lacking. This review will summarize current knowledge of sex differences in metabolic effects of the RAS, focusing on interactions with gonadal hormones and potential clinical implications.
Collapse
Affiliation(s)
- Melissa C White
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA
| | - Rebecca Fleeman
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, 500 University Drive, Mail Code H109, Hershey, PA, 17033, USA
| | - Amy C Arnold
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, 500 University Drive, Mail Code H109, Hershey, PA, 17033, USA.
| |
Collapse
|
124
|
Renin Activity in Heart Failure with Reduced Systolic Function-New Insights. Int J Mol Sci 2019; 20:ijms20133182. [PMID: 31261774 PMCID: PMC6651297 DOI: 10.3390/ijms20133182] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/27/2022] Open
Abstract
Regardless of the cause, symptomatic heart failure (HF) with reduced ejection fraction (rEF) is characterized by pathological activation of the renin–angiotensin–aldosterone system (RAAS) with sodium retention and extracellular fluid expansion (edema). Here, we review the role of active renin, a crucial, upstream enzymatic regulator of the RAAS, as a prognostic and diagnostic plasma biomarker of heart failure with reduced ejection fraction (HFrEF) progression; we also discuss its potential as a pharmacological bio-target in HF therapy. Clinical and experimental studies indicate that plasma renin activity is elevated with symptomatic HFrEF with edema in patients, as well as in companion animals and experimental models of HF. Plasma renin activity levels are also reported to be elevated in patients and animals with rEF before the development of symptomatic HF. Modulation of renin activity in experimental HF significantly reduces edema formation and the progression of systolic dysfunction and improves survival. Thus, specific assessment and targeting of elevated renin activity may enhance diagnostic and therapeutic precision to improve outcomes in appropriate patients with HFrEF.
Collapse
|
125
|
Park HJ, Kim JY, Kim HS, Lee SH, Jang JS, Lee MH. Synergistic effect of fruit-seed mixed juice on inhibition of angiotensin I-converting enzyme and activation of NO production in EA.hy926 cells. Food Sci Biotechnol 2019; 28:881-893. [PMID: 31093447 PMCID: PMC6484055 DOI: 10.1007/s10068-018-0512-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/30/2018] [Accepted: 11/11/2018] [Indexed: 01/01/2023] Open
Abstract
Commonly consumed fruit juices possess low inhibitory activity of angiotensin I-converting enzyme (ACE), which plays central role in elevation of blood pressure. The ACE inhibitory activity of fruit-seed mixed juice may be improved via synergistic interactions. In this study, the investigated synergistic, additive, and antagonistic effects of fruit-seed combination on ACE inhibition were investigated. Thirteen fruits and 15 seeds including legumes, nuts, and cereals were combined in pairs; pear-hemp seed-pumpkin seed juice (3-mixed juice) displayed the highest ACE inhibition resulting from synergistic interactions. Additionally, nitric oxide production in human endothelial cells was promoted by 3-mixed juice. Three-mixed juice showed antioxidant activities such as DNA protective, DPPH radical scavenging, and reducing effects. These results suggested that combinations of different food categories are beneficial for improving biological functions such as vascular health. Three-mixed juice, which shows high ACE inhibitory activity, may be useful as an anti-hypertensive agent and for treating hypertension.
Collapse
Affiliation(s)
- Hye-Jung Park
- Food Research Center, Angel Co., Ltd., Busan, 46988 Korea
| | - Ji-Youn Kim
- Food Research Center, Angel Co., Ltd., Busan, 46988 Korea
| | - Hee Sook Kim
- Food Research Center, Angel Co., Ltd., Busan, 46988 Korea
| | - Sang-Hyeon Lee
- Major in Pharmaceutical Engineering, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Busan, 46958 Korea
| | - Jeong Su Jang
- Food Research Center, Angel Co., Ltd., Busan, 46988 Korea
| | - Mun Hyon Lee
- Food Research Center, Angel Co., Ltd., Busan, 46988 Korea
| |
Collapse
|
126
|
Nair AR, Agbor LN, Mukohda M, Liu X, Hu C, Wu J, Sigmund CD. Interference With Endothelial PPAR (Peroxisome Proliferator-Activated Receptor)-γ Causes Accelerated Cerebral Vascular Dysfunction in Response to Endogenous Renin-Angiotensin System Activation. Hypertension 2019; 72:1227-1235. [PMID: 30354810 DOI: 10.1161/hypertensionaha.118.11857] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Low-salt diet is beneficial in salt-sensitive hypertension but may provoke cardiovascular risk in patients with heart failure, diabetes mellitus, or other cardiovascular abnormalities because of endogenous renin-angiotensin system activation. PPAR (peroxisome proliferator-activated receptor)-γ is a transcription factor which promotes an antioxidant pathway in the endothelium. We studied transgenic mice expressing a dominant-negative mutation in PPAR-γ selectively in the endothelium (E-V290M) to test the hypothesis that endothelial PPAR-γ plays a protective role in response to low salt-mediated renin-angiotensin system activation. Plasma renin and Ang II (angiotensin II) were significantly and equally increased in all mice fed low salt for 6 weeks. Vasorelaxation to acetylcholine was not affected in basilar artery from E-V290M at baseline but was significantly and selectively impaired in E-V290M after low salt. Unlike basilar artery, low salt was not sufficient to induce vascular dysfunction in carotid artery or aorta. Endothelial dysfunction in the basilar artery from E-V290M mice fed low salt was attenuated by scavengers of superoxide, inhibitors of NADPH oxidase, or blockade of the Ang II AT1 (angiotensin type-1) receptor. Simultaneous AT1 and AT2 receptor blockade revealed that the restoration of endothelial function after AT1 receptor blockade was not a consequence of AT2 receptor activation. We conclude that interference with PPAR-γ in the endothelium produces endothelial dysfunction in the cerebral circulation in response to low salt-mediated activation of the endogenous renin-angiotensin system, mediated at least in part, through AT1 receptor activation and perturbed redox homeostasis. Moreover, our data suggest that the cerebral circulation may be particularly sensitive to inhibition of PPAR-γ activity and renin-angiotensin system activation.
Collapse
Affiliation(s)
- Anand R Nair
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Larry N Agbor
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Masashi Mukohda
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Xuebo Liu
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Chunyan Hu
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Jing Wu
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Curt D Sigmund
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| |
Collapse
|
127
|
Graus-Nunes F, Santos FDO, Marinho TDS, Miranda CS, Barbosa-da-Silva S, Souza-Mello V. Beneficial effects of losartan or telmisartan on the local hepatic renin-angiotensin system to counter obesity in an experimental model. World J Hepatol 2019; 11:359-369. [PMID: 31114640 PMCID: PMC6504859 DOI: 10.4254/wjh.v11.i4.359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/23/2019] [Accepted: 03/16/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Obesity has been associated with hepatic overexpression of the renin-angiotensin system (RAS). AIM To evaluate the action of two angiotensin II (ANGII) receptor blockers (losartan or telmisartan) on the modulation of local hepatic RAS and the resulting metabolic effects in a diet-induced obesity murine model. METHODS Twenty C57BL/6 mice were randomly divided into two nutritional groups for 10 wk: control group (C, n = 5, 10% of energy as fat) or high-fat group (HF, n = 15, 50% of energy as fat). After treatment started, the HF group was randomly divided into three groups: untreated HF group (n = 5), HF treated with losartan (HFL, n = 5) and HF treated with telmisartan (HFT, n = 5). The treatments lasted for 5 wk, and the dose was 10 mg/kg body mass. RESULTS HF diet induced body mass gain (+28%, P < 0.0001), insulin resistance (+69%, P = 0.0079), high hepatic triacylglycerol (+127%, P = 0.0004), and overexpression of intrahepatic angiotensin-converting enzyme (ACE) 1/ ANGII type 1 receptor (AT1r) (+569.02% and +141.40%, respectively, P < 0.0001). The HFL and HFT groups showed higher ACE2/rMAS gene expression compared to the HF group (ACE2: +465.57%, P = 0.0002 for HFL and +345.17%, P = 0.0049 for HFT; rMAS: +711.39%, P < 0.0001 for HFL and +539.75%, P < 0.0001 for HFT), followed by reduced insulin/glucose ratio (-30% for HFL and -33% for HFT, P = 0.0181), hepatic triacylglycerol levels (-28%, P = 0.0381 for HFL; and -45%, P = 0.0010 for HFT, and Plin2 expression. CONCLUSION Modulation of the intrahepatic RAS, with favored involvement of the ACE2/rMAS axis over the ACE1/AT1r axis after losartan or telmisartan treatments, caused hepatic and metabolic beneficial effects as demonstrated by reduced hepatic triacylglycerol levels coupled with reduced PLIN 2 expression and improved glycemic control.
Collapse
Affiliation(s)
- Francielle Graus-Nunes
- Laboratório de Morfometria, Metabolismo e Doenças Cardiovasculares, Departamento de Anatomia, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro 20551-030, Brazil
| | - Felipe de Oliveira Santos
- Laboratório de Morfometria, Metabolismo e Doenças Cardiovasculares, Departamento de Anatomia, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro 20551-030, Brazil
| | - Thatiany de Souza Marinho
- Laboratório de Morfometria, Metabolismo e Doenças Cardiovasculares, Departamento de Anatomia, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro 20551-030, Brazil
| | - Carolline Santos Miranda
- Laboratório de Morfometria, Metabolismo e Doenças Cardiovasculares, Departamento de Anatomia, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro 20551-030, Brazil
| | - Sandra Barbosa-da-Silva
- Laboratório de Morfometria, Metabolismo e Doenças Cardiovasculares, Departamento de Anatomia, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro 20551-030, Brazil
| | - Vanessa Souza-Mello
- Laboratório de Morfometria, Metabolismo e Doenças Cardiovasculares, Departamento de Anatomia, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro 20551-030, Brazil.
| |
Collapse
|
128
|
Morales-Rubio RA, Alvarado-Cruz I, Manzano-León N, Andrade-Oliva MDLA, Uribe-Ramirez M, Quintanilla-Vega B, Osornio-Vargas Á, De Vizcaya-Ruiz A. In utero exposure to ultrafine particles promotes placental stress-induced programming of renin-angiotensin system-related elements in the offspring results in altered blood pressure in adult mice. Part Fibre Toxicol 2019; 16:7. [PMID: 30691489 PMCID: PMC6350404 DOI: 10.1186/s12989-019-0289-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/13/2019] [Indexed: 12/16/2022] Open
Abstract
Background Exposure to particulate matter (PM) is associated with an adverse intrauterine environment, which can promote adult cardiovascular disease (CVD) risk. Ultrafine particles (UFP) (small size and large surface area/mass ratio) are systemically distributed, induce inflammation and oxidative stress, and have been associated with vascular endothelial dysfunction and arterial vasoconstriction, increasing hypertension risk. Placental stress and alterations in methylation of promoter regions of renin-angiotensin system (RAS)-related elements could be involved in UFP exposure-related programming of hypertension. We investigated whether in utero UFP exposure promotes placental stress by inflammation and oxidative stress, alterations in hydroxysteroid dehydrogenase 11b-type 2 (HSD11B2) and programming of RAS-related elements, and result in altered blood pressure in adult offspring. UFP were collected from ambient air using an aerosol concentrator and physicochemically characterized. Pregnant C57BL/6J pun/pun female mice were exposed to collected UFP (400 μg/kg accumulated dose) by intratracheal instillation and compared to control (nonexposed) and sterile H2O (vehicle) exposed mice. Embryo reabsorption and placental stress by measurement of the uterus, placental and fetal weights, dam serum and fetal cortisol, placental HSD11B2 DNA methylation and protein levels, were evaluated. Polycyclic aromatic hydrocarbon (PAH) biotransformation (CYP1A1 and NQO1 (NAD(P)H dehydrogenase (quinone)1)) enzymes, inflammation and oxidative stress in placentas and fetuses were measured. Postnatal day (PND) 50 in male offspring blood pressure was measured. Methylation and protein expression of (RAS)-related elements, angiotensin II receptor type 1 (AT1R) and angiotensin I-converting enzyme (ACE) in fetuses and lungs of PND 50 male offspring were also assessed. Results In utero UFP exposure induced placental stress as indicated by an increase in embryo reabsorption, decreases in the uterus, placental, and fetal weights, and HSD11B2 hypermethylation and protein downregulation. In utero UFP exposure induced increases in the PAH-biotransforming enzymes, intrauterine oxidative damage and inflammation and stimulated programming and activation of AT1R and ACE, which resulted in increased blood pressure in the PND 50 male offspring. Conclusions In utero UFP exposure promotes placental stress through inflammation and oxidative stress, and programs RAS-related elements that result in altered blood pressure in the offspring. Exposure to UFP during fetal development could influence susceptibility to CVD in adulthood. Electronic supplementary material The online version of this article (10.1186/s12989-019-0289-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Russell A Morales-Rubio
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Isabel Alvarado-Cruz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Natalia Manzano-León
- Departamento de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, México
| | - Maria-de-Los-Angeles Andrade-Oliva
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Marisela Uribe-Ramirez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Betzabet Quintanilla-Vega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | | | - Andrea De Vizcaya-Ruiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México.
| |
Collapse
|
129
|
He R, Yang YJ, Wang Z, Xing CR, Yuan J, Wang LF, Udenigwe C, Ju XR. Rapeseed protein-derived peptides, LY, RALP, and GHS, modulates key enzymes and intermediate products of renin-angiotensin system pathway in spontaneously hypertensive rat. NPJ Sci Food 2019; 3:1. [PMID: 31304273 PMCID: PMC6550218 DOI: 10.1038/s41538-018-0033-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/19/2018] [Indexed: 01/10/2023] Open
Abstract
Rapeseed proteins are a rich source of bioactive peptides. LY, RALP and GHS were previously identified from rapeseed protein hydrolysates as potent ACE and renin inhibiting peptides. In this study, the rapeseed peptides were individually evaluated for their molecular mechanisms and regulatory effects on components of the renin-angiotensin system in spontaneously hypertensive rats (SHR), including the mRNA and/or protein levels of angiotensin-converting enzyme (ACE), renin, ACE2, angiotensin II and angiotensin-(1-7) in myocardial tissues. Oral administration of 30 mg peptides/kg body weight every 2 days for five weeks significantly decreased the systolic blood pressure and the myocardial mRNA and protein levels of ACE and renin in SHR. LY, RALP and GHS also increased the expression of ACE2, angiotensin-(1-7) and Mas receptor levels, which may have mediated their antihypertensive activity. Dipeptide LY also inhibited angiotensin II protein expression in the heart tissue. Taken together, the finding demonstrates the multi-target physiological effects of the rapeseed peptides, beyond ACE and renin inhibition, which enhances knowledge of the antihypertensive mechanisms of food protein-derived peptides.
Collapse
Affiliation(s)
- Rong He
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023 China
| | - Yi-Jie Yang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023 China
| | - Zhigao Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Chang-rui Xing
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023 China
| | - Jian Yuan
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023 China
| | - Li-Feng Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023 China
| | - Chibuike Udenigwe
- School of Nutrition Sciences, University of Ottawa, Ottawa, ON K1H 8L1 Canada
| | - Xing-Rong Ju
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023 China
| |
Collapse
|
130
|
Kopp W. How Western Diet And Lifestyle Drive The Pandemic Of Obesity And Civilization Diseases. Diabetes Metab Syndr Obes 2019; 12:2221-2236. [PMID: 31695465 PMCID: PMC6817492 DOI: 10.2147/dmso.s216791] [Citation(s) in RCA: 417] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
Westernized populations are plagued by a plethora of chronic non-infectious degenerative diseases, termed as "civilization diseases", like obesity, diabetes, cardiovascular diseases, cancer, autoimmune diseases, Alzheimer's disease and many more, diseases which are rare or virtually absent in hunter-gatherers and other non-westernized populations. There is a growing awareness that the cause of this amazing discrepancy lies in the profound changes in diet and lifestyle during recent human history. This paper shows that the transition from Paleolithic nutrition to Western diets, along with lack of corresponding genetic adaptations, cause significant distortions of the fine-tuned metabolism that has evolved over millions of years of human evolution in adaptation to Paleolithic diets. With the increasing spread of Western diet and lifestyle worldwide, overweight and civilization diseases are also rapidly increasing in developing countries. It is suggested that the diet-related key changes in the developmental process include an increased production of reactive oxygen species and oxidative stress, development of hyperinsulinemia and insulin resistance, low-grade inflammation and an abnormal activation of the sympathetic nervous system and the renin-angiotensin system, all of which play pivotal roles in the development of diseases of civilization. In addition, diet-related epigenetic changes and fetal programming play an important role. The suggested pathomechanism is also able to explain the well-known but not completely understood close relationship between obesity and the wide range of comorbidities, like type 2 diabetes mellitus, cardiovascular disease, etc., as diseases of the same etiopathology. Changing our lifestyle in accordance with our genetic makeup, including diet and physical activity, may help prevent or limit the development of these diseases.
Collapse
Affiliation(s)
- Wolfgang Kopp
- Retired Head, Diagnostikzentrum Graz, Graz8043, Austria
- Correspondence: Wolfgang Kopp Mariatrosterstraße 41, Graz8043, Austria Email
| |
Collapse
|
131
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 727] [Impact Index Per Article: 103.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
132
|
Sá C, Pestana D, Calhau C, Faria A. Unravelling the Effect of p,p'-Dichlorodiphenyldichloroethylene (DDE) in Hypertension of Wistar Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12847-12854. [PMID: 30415545 DOI: 10.1021/acs.jafc.8b05001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hypertension is a multifactorial disease with limited knowledge of the involved mechanisms. p,p'-DDE ( p,p'-dichlorodiphenyldichloroethylene) is a pollutant commonly found in tissues that interferes with endocrine signaling. This study aimed to evaluate the mechanism of hypertension triggered by p,p'-DDE exposure in the presence or absence of a HF (high-fat) diet in rats. The renin-angiotensin system (RAS) was evaluated by qPCR in liver and adipose tissue (AT), and a transcriptome analysis comparing visceral AT of HF diet and HF/DDE groups was performed. HF diet influenced RAS, but the p,p'-DDE effect was more evident in liver than in AT (interaction between the diet and p,p'-DDE treatment affected aldosterone receptor and angiotensin converting enzyme 2 expression in liver, p < 0.05, two-way ANOVA). p,p'-DDE induced a decrease in the expression of genes involved in the retinoid acid biosynthesis pathway (Crabp1; -2.07-fold; p = 0.018), eNOS activation (Nos1; -1.64-fold; p = 0.012), and regulation and urea cycle (Ass1; -2.07-fold; p = 0.02). This study suggested that p,p'-DDE may play a fundamental role in the pathogenesis of hypertension, not exclusively in RAS but also by induction of hyperuricemia and increased oxidative stress, which may lead to endoplasmic reticulum stress and vascular injury.
Collapse
Affiliation(s)
- Carla Sá
- CINTESIS , Center for Health Technology and Services Research , Al. Prof. Hernâni Monteiro , 4200-369 Porto , Portugal
- Department of Biochemistry, Faculty of Medicine , University of Porto , Al. Prof. Hernâni Monteiro , 4200-369 Porto , Portugal
| | - Diogo Pestana
- CINTESIS , Center for Health Technology and Services Research , Al. Prof. Hernâni Monteiro , 4200-369 Porto , Portugal
- Nutrition & Metabolism , NOVA Medical School - FCM Universidade Nova de Lisboa , Campo Mártires da Pátria, 130 1169-056 Lisboa , Portugal
| | - Conceição Calhau
- CINTESIS , Center for Health Technology and Services Research , Al. Prof. Hernâni Monteiro , 4200-369 Porto , Portugal
- Nutrition & Metabolism , NOVA Medical School - FCM Universidade Nova de Lisboa , Campo Mártires da Pátria, 130 1169-056 Lisboa , Portugal
| | - Ana Faria
- CINTESIS , Center for Health Technology and Services Research , Al. Prof. Hernâni Monteiro , 4200-369 Porto , Portugal
- Nutrition & Metabolism , NOVA Medical School - FCM Universidade Nova de Lisboa , Campo Mártires da Pátria, 130 1169-056 Lisboa , Portugal
- Comprehensive Health Research Centre NOVA Medical School - FCM Universidade Nova de Lisboa , Campo Mártires da Pátria, 130 1169-056 Lisboa , Portugal
| |
Collapse
|
133
|
Abstract
The human cerebral vasculature originates in the fourth week of gestation and continues to expand and diversify well into the first few years of postnatal life. A key feature of this growth is smooth muscle differentiation, whereby smooth muscle cells within cerebral arteries transform from migratory to proliferative to synthetic and finally to contractile phenotypes. These phenotypic transformations can be reversed by pathophysiological perturbations such as hypoxia, which causes loss of contractile capacity in immature cerebral arteries. In turn, loss of contractility affects all whole-brain cerebrovascular responses, including those involved in flow-metabolism coupling, vasodilatory responses to acute hypoxia and hypercapnia, cerebral autoregulation, and reactivity to activation of perivascular nerves. Future strategies to minimize cerebral injury following hypoxia-ischemic insults in the immature brain might benefit by targeting treatments to preserve and promote contractile differentiation in the fetal cerebrovasculature. This could potentially be achieved through inhibition of receptor tyrosine kinase-mediated growth factors, such as vascular endothelial growth factor and platelet-derived growth factor, which are mobilized by hypoxic and ischemic injury and which facilitate contractile dedifferentiation. Interruption of the effects of other vascular mitogens, such as endothelin and angiotensin-II, and even some miRNA species, also could be beneficial. Future experimental work that addresses these possibilities offers promise to improve current clinical management of neonates who have suffered and survived hypoxic, ischemic, asphyxic, or inflammatory cerebrovascular insults.
Collapse
Affiliation(s)
- William J Pearce
- From the Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA.
| |
Collapse
|
134
|
Abstract
The causes of essential hypertension remain an enigma. Interactions between genetic and external factors are generally recognized to act as aetiological mechanisms that trigger the pathogenesis of high blood pressure. However, the questions of which genes and factors are involved, and when and where such interactions occur, remain unresolved. Emerging evidence indicates that the hypertensive response to pressor stimuli, like many other physiological and behavioural adaptations, can become sensitized to particular stimuli. Studies in animal models show that, similarly to other response systems controlled by the brain, hypertensive response sensitization (HTRS) is mediated by neuroplasticity. The brain circuitry involved in HTRS controls the sympathetic nervous system. This Review outlines evidence supporting the phenomenon of HTRS and describes the range of physiological and psychosocial stressors that can produce a sensitized hypertensive state. Also discussed are the cellular and molecular changes in the brain neural network controlling sympathetic tone involved in long-term storage of information relating to stressors, which could serve to maintain a sensitized state. Finally, this Review concludes with a discussion of why a sensitized hypertensive response might previously have been beneficial and increased biological fitness under some environmental conditions and why today it has become a health-related liability.
Collapse
Affiliation(s)
- Alan Kim Johnson
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA.
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, USA.
- Department of Pharmacology, University of Iowa, Iowa City, IA, USA.
- The François M. Abboud Cardiovascular Center, Iowa City, IA, USA.
| | - Baojian Xue
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
- The François M. Abboud Cardiovascular Center, Iowa City, IA, USA
| |
Collapse
|
135
|
Eltablawy N, Ashour H, Rashed LA, Hamza WM. Vitamin D protection from rat diabetic nephropathy is partly mediated through Klotho expression and renin-angiotensin inhibition. Arch Physiol Biochem 2018; 124:461-467. [PMID: 29308676 DOI: 10.1080/13813455.2018.1423624] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE We hypothesised that vitamin D has a beneficial renal protective effect from diabetic nephropathy (DN). METHODS Four rat groups were included: normal control (control), type 2 diabetes for eight weeks (DM), treated group with angiotensin receptor blocker losartan (DM + L), and vitamin D-treated group started from the onset of diabetes (DM + Vit D). RESULTS In the both treated groups, we found a significant (p < .05) reduction in the renal pro-inflammatory and profibrotic markers induced by diabetes. Vitamin D caused more reduction in monocyte chemoattractant protein-1 (MCP-1), transforming growth factor (TGFβ-1), and renin-angiotensin levels that gave better kidney function compared to the DM + L group. CONCLUSION Vitamin D may have a valuable role in the renal protective effect from DN, this may occur via expression of its VDR, Klotho and blocking renin-angiotensin activation, so vitamin D should be considered as a target in renal prophylactic measures against DN.
Collapse
Affiliation(s)
- Nashwa Eltablawy
- a Department of Medical Physiology , Kasr Alainy, Faculty of Medicine, Cairo University , Cairo , Egypt
| | - Hend Ashour
- a Department of Medical Physiology , Kasr Alainy, Faculty of Medicine, Cairo University , Cairo , Egypt
| | - Laila Ahmed Rashed
- b Department of Medical Biochemistry , Kasr Alainy, Faculty of Medicine, Cairo University , Cairo , Egypt
| | - Wael Mostafa Hamza
- c Department of Pathology (Nephropathology) , Kasr Alainy, Faculty of Medicine, Cairo University , Cairo , Egypt
| |
Collapse
|
136
|
The renin-angiotensin system in cardiovascular autonomic control: recent developments and clinical implications. Clin Auton Res 2018; 29:231-243. [PMID: 30413906 DOI: 10.1007/s10286-018-0572-5] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 10/25/2018] [Indexed: 10/27/2022]
Abstract
Complex and bidirectional interactions between the renin-angiotensin system (RAS) and autonomic nervous system have been well established for cardiovascular regulation under both physiological and pathophysiological conditions. Most research to date has focused on deleterious effects of components of the vasoconstrictor arm of the RAS on cardiovascular autonomic control, such as renin, angiotensin II, and aldosterone. The recent discovery of prorenin and the prorenin receptor have further increased our understanding of RAS interactions in autonomic brain regions. Therapies targeting these RAS components, such as angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers, are commonly used for treatment of hypertension and cardiovascular diseases, with blood pressure-lowering effects attributed in part to sympathetic inhibition and parasympathetic facilitation. In addition, a vasodilatory arm of the RAS has emerged that includes angiotensin-(1-7), ACE2, and alamandine, and promotes beneficial effects on blood pressure in part by reducing sympathetic activity and improving arterial baroreceptor reflex function in animal models. The role of the vasodilatory arm of the RAS in cardiovascular autonomic regulation in clinical populations, however, has yet to be determined. This review will summarize recent developments in autonomic mechanisms involved in the effects of the RAS on cardiovascular regulation, with a focus on newly discovered pathways and therapeutic targets for this hormone system.
Collapse
|
137
|
Fialla AD, Schaffalitzky de Muckadell OB, Bie P, Thiesson HC. Activation of RAAS in a rat model of liver cirrhosis: no effect of losartan on renal sodium excretion. BMC Nephrol 2018; 19:238. [PMID: 30231858 PMCID: PMC6146747 DOI: 10.1186/s12882-018-1039-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 09/10/2018] [Indexed: 11/29/2022] Open
Abstract
Background Liver cirrhosis is characterized by avid sodium retention where the activation of the renin angiotensin aldosterone system (RAAS) is considered to be the hallmark of the sodium retaining mechanisms. The direct effect of angiotensin II (ANGII) on the AT-1 receptor in the proximal tubules is partly responsible for the sodium retention. The aim was to estimate the natriuretic and neurohumoral effects of an ANGII receptor antagonist (losartan) in the late phase of the disease in a rat model of liver cirrhosis. Methods Bile duct ligated (BDL) and sham operated rats received 2 weeks of treatment with losartan 4 mg/kg/day or placebo, given by gastric gavage 5 weeks after surgery. Daily sodium and potassium intakes and renal excretions were measured. Results The renal sodium excretion decreased in the BDL animals and this was not affected by losartan treatment. At baseline the plasma renin concentration (PRC) was similar in sham and BDL animals, but increased urinary excretion of ANGII and an increase P-Aldosterone was observed in the placebo treated BDL animals. The PRC was more than 150 times higher in the losartan treated BDL animals (p < 0.001) which indicated hemodynamic impairment. Conclusions Losartan 4 mg/kg/day did not increase renal sodium excretion in this model of liver cirrhosis, although the urinary ANGII excretion was increased. The BDL animals tolerated Losartan poorly, and the treatment induced a 150 times higher PRC.
Collapse
Affiliation(s)
- A D Fialla
- Department of Gastroenterology and Hepatology, Odense University Hospital, Sdr Boulevard, 5000 Odense C 29, Odense, Denmark.
| | - O B Schaffalitzky de Muckadell
- Department of Gastroenterology and Hepatology, Odense University Hospital, Sdr Boulevard, 5000 Odense C 29, Odense, Denmark
| | - P Bie
- Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - H C Thiesson
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
138
|
Zanatta E, Polito P, Favaro M, Larosa M, Marson P, Cozzi F, Doria A. Therapy of scleroderma renal crisis: State of the art. Autoimmun Rev 2018; 17:882-889. [DOI: 10.1016/j.autrev.2018.03.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
|
139
|
Oakes JM, Fuchs RM, Gardner JD, Lazartigues E, Yue X. Nicotine and the renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol 2018; 315:R895-R906. [PMID: 30088946 DOI: 10.1152/ajpregu.00099.2018] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cigarette smoking is the single most important risk factor for the development of cardiovascular and pulmonary diseases (CVPD). Although cigarette smoking has been in constant decline since the 1950s, the introduction of e-cigarettes or electronic nicotine delivery systems 10 yr ago has attracted former smokers as well as a new generation of consumers. Nicotine is a highly addictive substance, and it is currently unclear whether e-cigarettes are "safer" than regular cigarettes or whether they have the potential to reverse the health benefits, notably on the cardiopulmonary system, acquired with the decline of tobacco smoking. Of great concern, nicotine inhalation devices are becoming popular among young adults and youths, emphasizing the need for awareness and further study of the potential cardiopulmonary risks of nicotine and associated products. This review focuses on the interaction between nicotine and the renin-angiotensin system (RAS), one of the most important regulatory systems on autonomic, cardiovascular, and pulmonary functions in both health and disease. The literature presented in this review strongly suggests that nicotine alters the homeostasis of the RAS by upregulating the detrimental angiotensin-converting enzyme (ACE)/angiotensin (ANG)-II/ANG II type 1 receptor axis and downregulating the compensatory ACE2/ANG-(1-7)/Mas receptor axis, contributing to the development of CVPD.
Collapse
Affiliation(s)
- Joshua M Oakes
- Department of Physiology, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| | - Robert M Fuchs
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| | - Jason D Gardner
- Department of Physiology, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| | - Eric Lazartigues
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| | - Xinping Yue
- Department of Physiology, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| |
Collapse
|
140
|
Haspula D, Clark MA. Molecular Basis of the Brain Renin Angiotensin System in Cardiovascular and Neurologic Disorders: Uncovering a Key Role for the Astroglial Angiotensin Type 1 Receptor AT1R. J Pharmacol Exp Ther 2018; 366:251-264. [PMID: 29752427 DOI: 10.1124/jpet.118.248831] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/08/2018] [Indexed: 12/13/2022] Open
Abstract
The central renin angiotensin system (RAS) is one of the most widely investigated cardiovascular systems in the brain. It is implicated in a myriad of cardiovascular diseases. However, studies from the last decade have identified its involvement in several neurologic abnormalities. Understanding the molecular functionality of the various RAS components can thus provide considerable insight into the phenotypic differences and mechanistic drivers of not just cardiovascular but also neurologic disorders. Since activation of one of its primary receptors, the angiotensin type 1 receptor (AT1R), results in an augmentation of oxidative stress and inflammatory cytokines, it becomes essential to investigate not just neuronal RAS but glial RAS as well. Glial cells are key homeostatic regulators in the brain and are critical players in the resolution of overt oxidative stress and neuroinflammation. Designing better and effective therapeutic strategies that target the brain RAS could well hinge on understanding the molecular basis of both neuronal and glial RAS. This review provides a comprehensive overview of the major studies that have investigated the mechanisms and regulation of the brain RAS, and it also provides insight into the potential role of glial AT1Rs in the pathophysiology of cardiovascular and neurologic disorders.
Collapse
Affiliation(s)
- Dhanush Haspula
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin (D.H.); and College of Pharmacy, Department of Pharmaceutical Sciences, Nova Southeastern University, Ft. Lauderdale, Florida (M.A.C.)
| | - Michelle A Clark
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin (D.H.); and College of Pharmacy, Department of Pharmaceutical Sciences, Nova Southeastern University, Ft. Lauderdale, Florida (M.A.C.)
| |
Collapse
|
141
|
Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev 2018; 98:1241-1334. [PMID: 29717932 PMCID: PMC6088145 DOI: 10.1152/physrev.00043.2017] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.
Collapse
Affiliation(s)
- Charles A. Ducsay
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ravi Goyal
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William J. Pearce
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
142
|
Wu CH, Mohammadmoradi S, Chen JZ, Sawada H, Daugherty A, Lu HS. Renin-Angiotensin System and Cardiovascular Functions. Arterioscler Thromb Vasc Biol 2018; 38:e108-e116. [PMID: 29950386 PMCID: PMC6039412 DOI: 10.1161/atvbaha.118.311282] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Chia-Hua Wu
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Pharmacology and Nutritional Sciences (C.-H.W., S.M., A.D., H.S.L.)
| | - Shayan Mohammadmoradi
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Pharmacology and Nutritional Sciences (C.-H.W., S.M., A.D., H.S.L.)
| | - Jeff Z Chen
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Physiology (J.Z.C., A.D., H.S.L.), University of Kentucky, Lexington
| | - Hisashi Sawada
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Pharmacology and Nutritional Sciences (C.-H.W., S.M., A.D., H.S.L.)
- Department of Physiology (J.Z.C., A.D., H.S.L.), University of Kentucky, Lexington
| | - Hong S Lu
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Pharmacology and Nutritional Sciences (C.-H.W., S.M., A.D., H.S.L.)
- Department of Physiology (J.Z.C., A.D., H.S.L.), University of Kentucky, Lexington
| |
Collapse
|
143
|
Moraes PL, Kangussu LM, da Silva LG, Castro CH, Santos RAS, Ferreira AJ. Cardiovascular effects of small peptides of the renin angiotensin system. Physiol Rep 2018; 5:5/22/e13505. [PMID: 29162655 PMCID: PMC5704081 DOI: 10.14814/phy2.13505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/04/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022] Open
Abstract
The renin‐angiotensin system (RAS) is a unique hormonal cascade which is composed by multiple enzymes and effector peptides. Recently, new peptides presenting biological activity have been discovered, increasing the complexity of the RAS. Here, we evaluated the effects of small peptides of the RAS in coronary bed of rats. Firstly, we examined the direct effect of small angiotensinergic peptides [Angiotensin (Ang) ‐(1–5), Ang‐(1–4) Ang‐(1–3), and Ang‐(1–2)] in coronary vessels. Noteworthy, it was observed that Ang‐(1–4), Ang‐(1–3), and Ang‐(1–2) caused a significant reduction in pressure perfusion. Because Ang‐(1–2) was the smallest peptide tested and presented the major effect, we decided to investigate its mechanisms of action. The effect of Ang‐(1–2) was partially dependent on the Mas receptor, nitric oxide release and angiotensin‐converting enzyme. Importantly, Ang‐(1–2) reduced the blood pressure of Wistar rats and SHR. Interestingly, SHR presented a more pronounced decrease in blood pressure levels than Wistar rats. Altogether, these data showed that angiotensinergic small peptides hold biological activities in coronary bed of rats.
Collapse
Affiliation(s)
- Patrícia L Moraes
- Department of Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lucas M Kangussu
- Department Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luiz Gonzaga da Silva
- Life Sciences Institute, Federal University of Juiz de Fora, Governador Valadares, Brazil
| | - Carlos H Castro
- Department of Physiological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Robson A S Santos
- Department Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Anderson J Ferreira
- Department of Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
144
|
Neuroprotection via AT2 receptor agonists in ischemic stroke. Clin Sci (Lond) 2018; 132:1055-1067. [DOI: 10.1042/cs20171549] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 12/12/2022]
Abstract
Stroke is a devastating disease that afflicts millions of people each year worldwide. Ischemic stroke, which accounts for ~88% of cases, occurs when blood supply to the brain is decreased, often because of thromboembolism or atherosclerotic occlusion. This deprives the brain of oxygen and nutrients, causing immediate, irreversible necrosis within the core of the ischemic area, but more delayed and potentially reversible neuronal damage in the surrounding brain tissue, the penumbra. The only currently approved therapies for ischemic stroke, the thrombolytic agent recombinant tissue plasminogen activator (rtPA) and the endovascular clot retrieval/destruction processes, are aimed at restoring blood flow to the infarcted area, but are only available for a minority of patients and are not able in most cases to completely restore neurological deficits. Consequently, there remains a need for agents that will protect neurones against death following ischemic stroke. Here, we evaluate angiotensin II (Ang II) type 2 (AT2) receptor agonists as a possible therapeutic target for this disease. We first provide an overview of stroke epidemiology, pathophysiology, and currently approved therapies. We next review the large amount of preclinical evidence, accumulated over the past decade and a half, which indicates that AT2 receptor agonists exert significant neuroprotective effects in various animal models, and discuss the potential mechanisms involved. Finally, after discussing the challenges of delivering blood–brain barrier (BBB) impermeable AT2 receptor agonists to the infarcted areas of the brain, we summarize the evidence for and against the development of these agents as a promising therapeutic strategy for ischemic stroke.
Collapse
|
145
|
Sonar SA, Lal G. Blood–brain barrier and its function during inflammation and autoimmunity. J Leukoc Biol 2018. [DOI: 10.1002/jlb.1ru1117-428r order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Abstract
The blood–brain barrier (BBB) is an important physiologic barrier that separates CNS from soluble inflammatory mediators and effector immune cells from peripheral circulation. The optimum function of the BBB is necessary for the homeostasis, maintenance, and proper neuronal function. The clinical and experimental findings have shown that BBB dysfunction is an early hallmark of various neurologic disorders ranging from inflammatory autoimmune, neurodegenerative, and traumatic diseases to neuroinvasive infections. Significant progress has been made in the understanding of the regulation of BBB function under homeostatic and neuroinflammatory conditions. Several neurologic disease-modifying drugs have shown to improve the BBB function. However, they have a broad-acting immunomodulatory function and can increase the risk of life-threatening infections. The recent development of in vitro multicomponent 3-dimensional BBB models coupled with fluidics chamber as well as a cell-type specific reporter and knockout mice gave a new boost to our understanding of the dynamics of the BBB. In the review, we discuss the current understanding of BBB composition and recent findings that illustrate the critical regulatory elements of the BBB function under physiologic and inflammatory conditions, and also suggested the strategies to control BBB structure and function.
Collapse
|
146
|
Sonar SA, Lal G. Blood–brain barrier and its function during inflammation and autoimmunity. J Leukoc Biol 2018. [DOI: 10.1002/jlb.1ru1117-428r order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Abstract
The blood–brain barrier (BBB) is an important physiologic barrier that separates CNS from soluble inflammatory mediators and effector immune cells from peripheral circulation. The optimum function of the BBB is necessary for the homeostasis, maintenance, and proper neuronal function. The clinical and experimental findings have shown that BBB dysfunction is an early hallmark of various neurologic disorders ranging from inflammatory autoimmune, neurodegenerative, and traumatic diseases to neuroinvasive infections. Significant progress has been made in the understanding of the regulation of BBB function under homeostatic and neuroinflammatory conditions. Several neurologic disease-modifying drugs have shown to improve the BBB function. However, they have a broad-acting immunomodulatory function and can increase the risk of life-threatening infections. The recent development of in vitro multicomponent 3-dimensional BBB models coupled with fluidics chamber as well as a cell-type specific reporter and knockout mice gave a new boost to our understanding of the dynamics of the BBB. In the review, we discuss the current understanding of BBB composition and recent findings that illustrate the critical regulatory elements of the BBB function under physiologic and inflammatory conditions, and also suggested the strategies to control BBB structure and function.
Collapse
|
147
|
Sonar SA, Lal G. Blood–brain barrier and its function during inflammation and autoimmunity. J Leukoc Biol 2018. [DOI: 10.1002/jlb.1ru1117-428r order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Abstract
The blood–brain barrier (BBB) is an important physiologic barrier that separates CNS from soluble inflammatory mediators and effector immune cells from peripheral circulation. The optimum function of the BBB is necessary for the homeostasis, maintenance, and proper neuronal function. The clinical and experimental findings have shown that BBB dysfunction is an early hallmark of various neurologic disorders ranging from inflammatory autoimmune, neurodegenerative, and traumatic diseases to neuroinvasive infections. Significant progress has been made in the understanding of the regulation of BBB function under homeostatic and neuroinflammatory conditions. Several neurologic disease-modifying drugs have shown to improve the BBB function. However, they have a broad-acting immunomodulatory function and can increase the risk of life-threatening infections. The recent development of in vitro multicomponent 3-dimensional BBB models coupled with fluidics chamber as well as a cell-type specific reporter and knockout mice gave a new boost to our understanding of the dynamics of the BBB. In the review, we discuss the current understanding of BBB composition and recent findings that illustrate the critical regulatory elements of the BBB function under physiologic and inflammatory conditions, and also suggested the strategies to control BBB structure and function.
Collapse
|
148
|
Sonar SA, Lal G. Blood–brain barrier and its function during inflammation and autoimmunity. J Leukoc Biol 2018. [DOI: 10.1002/jlb.1ru1117-428r and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Abstract
The blood–brain barrier (BBB) is an important physiologic barrier that separates CNS from soluble inflammatory mediators and effector immune cells from peripheral circulation. The optimum function of the BBB is necessary for the homeostasis, maintenance, and proper neuronal function. The clinical and experimental findings have shown that BBB dysfunction is an early hallmark of various neurologic disorders ranging from inflammatory autoimmune, neurodegenerative, and traumatic diseases to neuroinvasive infections. Significant progress has been made in the understanding of the regulation of BBB function under homeostatic and neuroinflammatory conditions. Several neurologic disease-modifying drugs have shown to improve the BBB function. However, they have a broad-acting immunomodulatory function and can increase the risk of life-threatening infections. The recent development of in vitro multicomponent 3-dimensional BBB models coupled with fluidics chamber as well as a cell-type specific reporter and knockout mice gave a new boost to our understanding of the dynamics of the BBB. In the review, we discuss the current understanding of BBB composition and recent findings that illustrate the critical regulatory elements of the BBB function under physiologic and inflammatory conditions, and also suggested the strategies to control BBB structure and function.
Collapse
|
149
|
Sonar SA, Lal G. Blood–brain barrier and its function during inflammation and autoimmunity. J Leukoc Biol 2018. [DOI: 10.1002/jlb.1ru1117-428r order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Abstract
The blood–brain barrier (BBB) is an important physiologic barrier that separates CNS from soluble inflammatory mediators and effector immune cells from peripheral circulation. The optimum function of the BBB is necessary for the homeostasis, maintenance, and proper neuronal function. The clinical and experimental findings have shown that BBB dysfunction is an early hallmark of various neurologic disorders ranging from inflammatory autoimmune, neurodegenerative, and traumatic diseases to neuroinvasive infections. Significant progress has been made in the understanding of the regulation of BBB function under homeostatic and neuroinflammatory conditions. Several neurologic disease-modifying drugs have shown to improve the BBB function. However, they have a broad-acting immunomodulatory function and can increase the risk of life-threatening infections. The recent development of in vitro multicomponent 3-dimensional BBB models coupled with fluidics chamber as well as a cell-type specific reporter and knockout mice gave a new boost to our understanding of the dynamics of the BBB. In the review, we discuss the current understanding of BBB composition and recent findings that illustrate the critical regulatory elements of the BBB function under physiologic and inflammatory conditions, and also suggested the strategies to control BBB structure and function.
Collapse
|
150
|
Sonar SA, Lal G. Blood–brain barrier and its function during inflammation and autoimmunity. J Leukoc Biol 2018. [DOI: 10.1002/jlb.1ru1117-428r order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Abstract
The blood–brain barrier (BBB) is an important physiologic barrier that separates CNS from soluble inflammatory mediators and effector immune cells from peripheral circulation. The optimum function of the BBB is necessary for the homeostasis, maintenance, and proper neuronal function. The clinical and experimental findings have shown that BBB dysfunction is an early hallmark of various neurologic disorders ranging from inflammatory autoimmune, neurodegenerative, and traumatic diseases to neuroinvasive infections. Significant progress has been made in the understanding of the regulation of BBB function under homeostatic and neuroinflammatory conditions. Several neurologic disease-modifying drugs have shown to improve the BBB function. However, they have a broad-acting immunomodulatory function and can increase the risk of life-threatening infections. The recent development of in vitro multicomponent 3-dimensional BBB models coupled with fluidics chamber as well as a cell-type specific reporter and knockout mice gave a new boost to our understanding of the dynamics of the BBB. In the review, we discuss the current understanding of BBB composition and recent findings that illustrate the critical regulatory elements of the BBB function under physiologic and inflammatory conditions, and also suggested the strategies to control BBB structure and function.
Collapse
|