101
|
Vandersmissen HP, Van Hiel MB, Van Loy T, Vleugels R, Vanden Broeck J. Silencing D. melanogaster lgr1 impairs transition from larval to pupal stage. Gen Comp Endocrinol 2014; 209:135-47. [PMID: 25157788 DOI: 10.1016/j.ygcen.2014.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 08/10/2014] [Accepted: 08/14/2014] [Indexed: 12/27/2022]
Abstract
G protein-coupled receptors (GPCRs) play key roles in a wide diversity of physiological processes and signalling pathways. The leucine-rich repeats containing GPCRs (LGRs) are a subfamily that is well-conserved throughout most metazoan phyla and have important regulatory roles in vertebrates. Here, we report on the critical role of Drosophila melanogaster LGR1, the fruit fly homologue of the vertebrate glycoprotein hormone receptors, in development as a factor involved in the regulation of pupariation. Transcript profiling revealed that lgr1 transcripts are most abundant in third instar larvae and adult flies. The tissues displaying the highest transcript levels were the hindgut, the rectum and the salivary glands. Knockdown using RNA interference (RNAi) demonstrated that white pupa formation was severely suppressed in D. melanogaster lgr1 RNAi larvae. Associated with this developmental defect was a reduced ecdysteroid titer, which is in line with significantly reduced transcript levels detected for the Halloween genes shadow (sad) and spookier (spok) in the third instar lgr1 RNAi larvae compared to the control condition.
Collapse
Affiliation(s)
| | - Matthias Boris Van Hiel
- KU Leuven, Animal Physiology and Neurobiology, Naamsestraat 59, PO Box 2465, Leuven, Belgium.
| | - Tom Van Loy
- KU Leuven, Animal Physiology and Neurobiology, Naamsestraat 59, PO Box 2465, Leuven, Belgium.
| | - Rut Vleugels
- KU Leuven, Animal Physiology and Neurobiology, Naamsestraat 59, PO Box 2465, Leuven, Belgium.
| | - Jozef Vanden Broeck
- KU Leuven, Animal Physiology and Neurobiology, Naamsestraat 59, PO Box 2465, Leuven, Belgium.
| |
Collapse
|
102
|
Koyama T, Rodrigues MA, Athanasiadis A, Shingleton AW, Mirth CK. Nutritional control of body size through FoxO-Ultraspiracle mediated ecdysone biosynthesis. eLife 2014; 3:e03091. [PMID: 25421296 PMCID: PMC4337420 DOI: 10.7554/elife.03091] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 10/18/2014] [Indexed: 01/21/2023] Open
Abstract
Despite their fundamental importance for body size regulation, the mechanisms that stop growth are poorly understood. In Drosophila melanogaster, growth ceases in response to a peak of the molting hormone ecdysone that coincides with a nutrition-dependent checkpoint, critical weight. Previous studies indicate that insulin/insulin-like growth factor signaling (IIS)/Target of Rapamycin (TOR) signaling in the prothoracic glands (PGs) regulates ecdysone biosynthesis and critical weight. Here we elucidate a mechanism through which this occurs. We show that Forkhead Box class O (FoxO), a negative regulator of IIS/TOR, directly interacts with Ultraspiracle (Usp), part of the ecdysone receptor. While overexpressing FoxO in the PGs delays ecdysone biosynthesis and critical weight, disrupting FoxO-Usp binding reduces these delays. Further, feeding ecdysone to larvae eliminates the effects of critical weight. Thus, nutrition controls ecdysone biosynthesis partially via FoxO-Usp prior to critical weight, ensuring that growth only stops once larvae have achieved a target nutritional status.
Collapse
Affiliation(s)
- Takashi Koyama
- Development, Evolution and the Environment
Laboratory, Instituto Gulbenkian de
Ciência, Oeiras, Portugal
| | - Marisa A Rodrigues
- Development, Evolution and the Environment
Laboratory, Instituto Gulbenkian de
Ciência, Oeiras, Portugal
| | - Alekos Athanasiadis
- Protein-Nucleic Acids Interactions Laboratory,
Instituto Gulbenkian de Ciência,
Oeiras, Portugal
| | - Alexander W Shingleton
- Department of Biology, Lake Forest
College, Lake
Forest, United States
- Department of Zoology, Michigan State
University, East
Lansing, United States
| | - Christen K Mirth
- Development, Evolution and the Environment
Laboratory, Instituto Gulbenkian de
Ciência, Oeiras, Portugal
| |
Collapse
|
103
|
Chng WBA, Sleiman MSB, Schüpfer F, Lemaitre B. Transforming growth factor β/activin signaling functions as a sugar-sensing feedback loop to regulate digestive enzyme expression. Cell Rep 2014; 9:336-348. [PMID: 25284780 DOI: 10.1016/j.celrep.2014.08.064] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 07/24/2014] [Accepted: 08/25/2014] [Indexed: 12/20/2022] Open
Abstract
Organisms need to assess their nutritional state and adapt their digestive capacity to the demands for various nutrients. Modulation of digestive enzyme production represents a rational step to regulate nutriment uptake. However, the role of digestion in nutrient homeostasis has been largely neglected. In this study, we analyzed the mechanism underlying glucose repression of digestive enzymes in the adult Drosophila midgut. We demonstrate that glucose represses the expression of many carbohydrases and lipases. Our data reveal that the consumption of nutritious sugars stimulates the secretion of the transforming growth factor β (TGF-β) ligand, Dawdle, from the fat body. Dawdle then acts via circulation to activate TGF-β/Activin signaling in the midgut, culminating in the repression of digestive enzymes that are highly expressed during starvation. Thus, our study not only identifies a mechanism that couples sugar sensing with digestive enzyme expression but points to an important role of TGF-β/Activin signaling in sugar metabolism.
Collapse
Affiliation(s)
- Wen-Bin Alfred Chng
- Global Health Institute, School of Life Sciences, EPFL, Station 19, 1015 Lausanne, Switzerland.
| | - Maroun S Bou Sleiman
- Global Health Institute, School of Life Sciences, EPFL, Station 19, 1015 Lausanne, Switzerland
| | - Fanny Schüpfer
- Global Health Institute, School of Life Sciences, EPFL, Station 19, 1015 Lausanne, Switzerland
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, EPFL, Station 19, 1015 Lausanne, Switzerland.
| |
Collapse
|
104
|
Kim MJ, O’Connor MB. Anterograde Activin signaling regulates postsynaptic membrane potential and GluRIIA/B abundance at the Drosophila neuromuscular junction. PLoS One 2014; 9:e107443. [PMID: 25255438 PMCID: PMC4177838 DOI: 10.1371/journal.pone.0107443] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/10/2014] [Indexed: 12/16/2022] Open
Abstract
Members of the TGF-β superfamily play numerous roles in nervous system development and function. In Drosophila, retrograde BMP signaling at the neuromuscular junction (NMJ) is required presynaptically for proper synapse growth and neurotransmitter release. In this study, we analyzed whether the Activin branch of the TGF-β superfamily also contributes to NMJ development and function. We find that elimination of the Activin/TGF-β type I receptor babo, or its downstream signal transducer smox, does not affect presynaptic NMJ growth or evoked excitatory junctional potentials (EJPs), but instead results in a number of postsynaptic defects including depolarized membrane potential, small size and frequency of miniature excitatory junction potentials (mEJPs), and decreased synaptic densities of the glutamate receptors GluRIIA and B. The majority of the defective smox synaptic phenotypes were rescued by muscle-specific expression of a smox transgene. Furthermore, a mutation in actβ, an Activin-like ligand that is strongly expressed in motor neurons, phenocopies babo and smox loss-of-function alleles. Our results demonstrate that anterograde Activin/TGF-β signaling at the Drosophila NMJ is crucial for achieving normal abundance and localization of several important postsynaptic signaling molecules and for regulating postsynaptic membrane physiology. Together with the well-established presynaptic role of the retrograde BMP signaling, our findings indicate that the two branches of the TGF-β superfamily are differentially deployed on each side of the Drosophila NMJ synapse to regulate distinct aspects of its development and function.
Collapse
Affiliation(s)
- Myung-Jun Kim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
105
|
Bipartite recognition of DNA by TCF/Pangolin is remarkably flexible and contributes to transcriptional responsiveness and tissue specificity of wingless signaling. PLoS Genet 2014; 10:e1004591. [PMID: 25188465 PMCID: PMC4154663 DOI: 10.1371/journal.pgen.1004591] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 07/08/2014] [Indexed: 11/19/2022] Open
Abstract
The T-cell factor (TCF) family of transcription factors are major mediators of Wnt/β-catenin signaling in metazoans. All TCFs contain a High Mobility Group (HMG) domain that possesses specific DNA binding activity. In addition, many TCFs contain a second DNA binding domain, the C-clamp, which binds to DNA motifs referred to as Helper sites. While HMG and Helper sites are both important for the activation of several Wnt dependent cis-regulatory modules (W-CRMs), the rules of what constitutes a functional HMG-Helper site pair are unknown. In this report, we employed a combination of in vitro binding, reporter gene analysis and bioinformatics to address this question, using the Drosophila family member TCF/Pangolin (TCF/Pan) as a model. We found that while there were constraints for the orientation and spacing of HMG-Helper pairs, the presence of a Helper site near a HMG site in any orientation increased binding and transcriptional response, with some orientations displaying tissue-specific patterns. We found that altering an HMG-Helper site pair from a sub-optimal to optimal orientation/spacing dramatically increased the responsiveness of a W-CRM in several fly tissues. In addition, we used the knowledge gained to bioinformatically identify two novel W-CRMs, one that was activated by Wnt/β-catenin signaling in the prothoracic gland, a tissue not previously connected to this pathway. In sum, this work extends the importance of Helper sites in fly W-CRMs and suggests that the type of HMG-Helper pair is a major factor in setting the threshold for Wnt activation and tissue-responsiveness. Regulation of gene expression is controlled in large part by proteins known as transcription factors, which bind to specific DNA sequences in the genome. The DNA binding domains of transcription factors recognize short stretches (5–11 base pairs) of DNA with considerable sequence degeneracy. This means that a single DNA binding domain, on its own, cannot find its targets in the vast excess of genomic sequence. We are studying this question using TCF/Pangolin, a Drosophila transcription factor that mediates Wnt/β-catenin signaling, an important developmental cell-cell communication pathway. TCF/Pangolin contains two DNA binding domains that bind to a pair of DNA motifs known as HMG and Helper sites. We used a combination of biochemistry, genetics and bioinformatics to elucidate the spacing and orientation constraints of HMG-Helper site pairs. We found that HMG-Helper site spacing/orientation influenced the sensitivity of a target to Wnt signaling, as well as its tissue-responsiveness. We used this information to improve our ability to search the Drosophila genome for Wnt targets, one of which was activated by the pathway in the fly ring gland, the major endocrine organ in insects. Our work is relevant to related mammalian TCF family members, which are implicated in development, stem cell biology and the progression of cancer.
Collapse
|
106
|
Danielsen ET, Moeller ME, Dorry E, Komura-Kawa T, Fujimoto Y, Troelsen JT, Herder R, O'Connor MB, Niwa R, Rewitz KF. Transcriptional control of steroid biosynthesis genes in the Drosophila prothoracic gland by ventral veins lacking and knirps. PLoS Genet 2014; 10:e1004343. [PMID: 24945799 PMCID: PMC4063667 DOI: 10.1371/journal.pgen.1004343] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/17/2014] [Indexed: 12/21/2022] Open
Abstract
Specialized endocrine cells produce and release steroid hormones that govern development, metabolism and reproduction. In order to synthesize steroids, all the genes in the biosynthetic pathway must be coordinately turned on in steroidogenic cells. In Drosophila, the steroid producing endocrine cells are located in the prothoracic gland (PG) that releases the steroid hormone ecdysone. The transcriptional regulatory network that specifies the unique PG specific expression pattern of the ecdysone biosynthetic genes remains unknown. Here, we show that two transcription factors, the POU-domain Ventral veins lacking (Vvl) and the nuclear receptor Knirps (Kni), have essential roles in the PG during larval development. Vvl is highly expressed in the PG during embryogenesis and is enriched in the gland during larval development, suggesting that Vvl might function as a master transcriptional regulator in this tissue. Vvl and Kni bind to PG specific cis-regulatory elements that are required for expression of the ecdysone biosynthetic genes. Knock down of either vvl or kni in the PG results in a larval developmental arrest due to failure in ecdysone production. Furthermore, Vvl and Kni are also required for maintenance of TOR/S6K and prothoracicotropic hormone (PTTH) signaling in the PG, two major pathways that control ecdysone biosynthesis and PG cell growth. We also show that the transcriptional regulator, Molting defective (Mld), controls early biosynthetic pathway steps. Our data show that Vvl and Kni directly regulate ecdysone biosynthesis by transcriptional control of biosynthetic gene expression and indirectly by affecting PTTH and TOR/S6K signaling. This provides new insight into the regulatory network of transcription factors involved in the coordinated regulation of steroidogenic cell specific transcription, and identifies a new function of Vvl and Knirps in endocrine cells during post-embryonic development.
Collapse
Affiliation(s)
| | - Morten E. Moeller
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Elad Dorry
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Tatsuya Komura-Kawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshinori Fujimoto
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro, Tokyo, Japan
| | - Jesper T. Troelsen
- Department of Science, Systems and Models, Roskilde University, Roskilde, Denmark
| | - Rachel Herder
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michael B. O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ryusuke Niwa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- PRESTO, JST, Kawaguchi, Saitama, Japan
| | - Kim F. Rewitz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
107
|
Peterson AJ, O'Connor MB. Strategies for exploring TGF-β signaling in Drosophila. Methods 2014; 68:183-93. [PMID: 24680699 PMCID: PMC4057889 DOI: 10.1016/j.ymeth.2014.03.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 02/06/2023] Open
Abstract
The TGF-β pathway is an evolutionarily conserved signal transduction module that mediates diverse biological processes in animals. In Drosophila, both the BMP and Activin branches are required for viability. Studies rooted in classical and molecular genetic approaches continue to uncover new developmental roles for TGF-β signaling. We present an overview of the secreted ligands, transmembrane receptors and cellular Smad transducer proteins that compose the core pathway in Drosophila. An assortment of tools have been developed to conduct tissue-specific loss- and gain-of-function experiments for these pathway components. We discuss the deployment of these reagents, with an emphasis on appropriate usage and limitations of the available tools. Throughout, we note reagents that are in need of further improvement or development, and signaling features requiring further study. A general theme is that comparison of phenotypes for ligands, receptors, and Smads can be used to map tissue interactions, and to separate canonical and non-canonical signaling activities. Core TGF-β signaling components are subject to multiple layers of regulation, and are coupled to context-specific inputs and outputs. In addition to fleshing out how TGF-β signaling serves the fruit fly, we anticipate that future studies will uncover new regulatory nodes and modes and will continue to advance paradigms for how TGF-β signaling regulates general developmental processes.
Collapse
Affiliation(s)
- Aidan J Peterson
- Department of Genetics, Cell Biology & Development, 6-160 Jackson Hall, 321 Church St SE, University of Minnesota, Minneapolis, MN 55455, United States
| | - Michael B O'Connor
- Department of Genetics, Cell Biology & Development, 6-160 Jackson Hall, 321 Church St SE, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
108
|
Unexpected role of the steroid-deficiency protein ecdysoneless in pre-mRNA splicing. PLoS Genet 2014; 10:e1004287. [PMID: 24722212 PMCID: PMC3983036 DOI: 10.1371/journal.pgen.1004287] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/20/2014] [Indexed: 11/19/2022] Open
Abstract
The steroid hormone ecdysone coordinates insect growth and development, directing the major postembryonic transition of forms, metamorphosis. The steroid-deficient ecdysoneless1 (ecd1) strain of Drosophila melanogaster has long served to assess the impact of ecdysone on gene regulation, morphogenesis, or reproduction. However, ecd also exerts cell-autonomous effects independently of the hormone, and mammalian Ecd homologs have been implicated in cell cycle regulation and cancer. Why the Drosophila ecd1 mutants lack ecdysone has not been resolved. Here, we show that in Drosophila cells, Ecd directly interacts with core components of the U5 snRNP spliceosomal complex, including the conserved Prp8 protein. In accord with a function in pre-mRNA splicing, Ecd and Prp8 are cell-autonomously required for survival of proliferating cells within the larval imaginal discs. In the steroidogenic prothoracic gland, loss of Ecd or Prp8 prevents splicing of a large intron from CYP307A2/spookier (spok) pre-mRNA, thus eliminating this essential ecdysone-biosynthetic enzyme and blocking the entry to metamorphosis. Human Ecd (hEcd) can substitute for its missing fly ortholog. When expressed in the Ecd-deficient prothoracic gland, hEcd re-establishes spok pre-mRNA splicing and protein expression, restoring ecdysone synthesis and normal development. Our work identifies Ecd as a novel pre-mRNA splicing factor whose function has been conserved in its human counterpart. Whether the role of mammalian Ecd in cancer involves pre-mRNA splicing remains to be discovered.
Collapse
|
109
|
Smykal V, Daimon T, Kayukawa T, Takaki K, Shinoda T, Jindra M. Importance of juvenile hormone signaling arises with competence of insect larvae to metamorphose. Dev Biol 2014; 390:221-30. [PMID: 24662045 DOI: 10.1016/j.ydbio.2014.03.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 11/16/2022]
Abstract
Juvenile hormone (JH) postpones metamorphosis of insect larvae until they have attained an appropriate stage and size. Then, during the final larval instar, a drop in JH secretion permits a metamorphic molt that transforms larvae to adults either directly (hemimetaboly) or via a pupal stage (holometaboly). In both scenarios, JH precludes metamorphosis by activating the Kr-h1 gene through a JH receptor, Methoprene-tolerant (Met). Removal of Met, Kr-h1, or JH itself triggers deleterious precocious metamorphosis. Although JH is thought to maintain the juvenile status throughout larval life, various methods of depleting JH failed to induce metamorphosis in early-instar larvae. To determine when does JH signaling become important for the prevention of precocious metamorphosis, we chose the hemimetabolous bug, Pyrrhocoris apterus, and the holometabolous silkworm, Bombyx mori. Both species undergo a fixed number of five larval instars. Pyrrhocoris larvae subjected to RNAi-mediated knockdown of Met or Kr-h1 underwent precocious adult development when treated during the fourth (penultimate) instar, but younger larvae proved increasingly resistant to loss of either gene. The earliest instar developing minor signs of precocious metamorphosis was the third. Therefore, the JH-response genes may not be required to maintain the larval program during the first two larval instars. Next, we examined Bombyx mod mutants that cannot synthesize authentic, epoxidized forms of JH. Although mod larvae expressed Kr-h1 mRNA at severely reduced levels since hatching, they only entered metamorphosis by pupating after four, rarely three instars. Based on findings in Pyrrhocoris and Bombyx, we propose that insect postembryonic development is initially independent of JH. Only later, when larvae gain competence to enter metamorphosis, JH signaling becomes necessary to prevent precocious metamorphosis and to optimize growth.
Collapse
Affiliation(s)
- Vlastimil Smykal
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic; Department of Molecular Biology, Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Takaaki Daimon
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Takumi Kayukawa
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Keiko Takaki
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic
| | - Tetsuro Shinoda
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Marek Jindra
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic; Animal, Food and Health Sciences Division, Commonwealth Scientific and Industrial Research Organization, North Ryde, NSW 2113, Australia.
| |
Collapse
|
110
|
Wang H, Lai D, Yuan M, Xu H. Growth inhibition and differences in protein profiles in azadirachtin-treated Drosophila melanogaster larvae. Electrophoresis 2014; 35:1122-9. [PMID: 24458307 DOI: 10.1002/elps.201300318] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 12/16/2013] [Accepted: 01/12/2014] [Indexed: 11/06/2022]
Abstract
Azadirachtin A is a very effective biopesticide widely used in insect pest control. It has strong antifeeding and growth inhibitory activity against most insects, however, its mode of action is still unclear. Proteomic experiments using 2DE indicate significant effects of Azadirachtin A on the amount of proteins related to growth inhibition in Drosophila melanogaster larvae. Twenty-one spots with different intensity in azadirachtin-treated larvae were identified. These proteins are involved in cytoskeletal organization, transcription and translation, hormonal regulation, and energy metabolism. Protein network analysis reveals heat shock protein 23 to be a potential target of azadirachtin. These results provide new insights into understanding the mechanism of growth inhibition in insects in response to azadirachtin.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, P.R. China
| | | | | | | |
Collapse
|
111
|
Mechanistic target of rapamycin (mTOR) signaling genes in decapod crustaceans: cloning and tissue expression of mTOR, Akt, Rheb, and p70 S6 kinase in the green crab, Carcinus maenas, and blackback land crab, Gecarcinus lateralis. Comp Biochem Physiol A Mol Integr Physiol 2013; 168:25-39. [PMID: 24269559 DOI: 10.1016/j.cbpa.2013.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/29/2013] [Accepted: 11/13/2013] [Indexed: 01/01/2023]
Abstract
Mechanistic target of rapamycin (mTOR) controls global translation of mRNA into protein by phosphorylating p70 S6 kinase (S6K) and eIF4E-binding protein-1. Akt and Rheb, a GTP-binding protein, regulate mTOR protein kinase activity. Molting in crustaceans is regulated by ecdysteroids synthesized by a pair of molting glands, or Y-organs (YOs), located in the cephalothorax. During premolt, the YOs hypertrophy and increase production of ecdysteroids. Rapamycin (1μM) inhibited ecdysteroid secretion in Carcinus maenas and Gecarcinus lateralis YOs in vitro, indicating that ecdysteroidogenesis requires mTOR-dependent protein synthesis. The effects of molting on the expression of four key mTOR signaling genes (mTOR, Akt, Rheb, and S6K) in the YO was investigated. Partial cDNAs encoding green crab (C. maenas) mTOR (4031bp), Akt (855bp), and S6K (918bp) were obtained from expressed sequence tags. Identity/similarity of the deduced amino acid sequence of the C. maenas cDNAs to human orthologs were 72%/81% for Cm-mTOR, 58%/73% for Cm-Akt, and 77%/88% for Cm-S6K. mTOR, Akt, S6K, and elongation factor 2 (EF2) in C. maenas and blackback land crab (G. lateralis) were expressed in all tissues examined. The two species differed in the effects of molting on gene expression in the YO. In G. lateralis, Gl-mTOR, Gl-Akt, and Gl-EF2 mRNA levels were increased during premolt. By contrast, molting had no effect on the expression of Cm-mTOR, Cm-Akt, Cm-S6K, Cm-Rheb, and Cm-EF2. These data suggest that YO activation during premolt involves up regulation of mTOR signaling genes in G. lateralis, but is not required in C. maenas.
Collapse
|
112
|
Moeller ME, Danielsen ET, Herder R, O'Connor MB, Rewitz KF. Dynamic feedback circuits function as a switch for shaping a maturation-inducing steroid pulse in Drosophila. Development 2013; 140:4730-9. [PMID: 24173800 DOI: 10.1242/dev.099739] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Steroid hormones trigger the onset of sexual maturation in animals by initiating genetic response programs that are determined by steroid pulse frequency, amplitude and duration. Although steroid pulses coordinate growth and timing of maturation during development, the mechanisms generating these pulses are not known. Here we show that the ecdysone steroid pulse that drives the juvenile-adult transition in Drosophila is determined by feedback circuits in the prothoracic gland (PG), the major steroid-producing tissue of insect larvae. These circuits coordinate the activation and repression of hormone synthesis, the two key parameters determining pulse shape (amplitude and duration). We show that ecdysone has a positive-feedback effect on the PG, rapidly amplifying its own synthesis to trigger pupariation as the onset of maturation. During the prepupal stage, a negative-feedback signal ensures the decline in ecdysone levels required to produce a temporal steroid pulse that drives developmental progression to adulthood. The feedback circuits rely on a developmental switch in the expression of Broad isoforms that transcriptionally activate or silence components in the ecdysone biosynthetic pathway. Remarkably, our study shows that the same well-defined genetic program that stimulates a systemic downstream response to ecdysone is also utilized upstream to set the duration and amplitude of the ecdysone pulse. Activation of this switch-like mechanism ensures a rapid, self-limiting PG response that functions in producing steroid oscillations that can guide the decision to terminate growth and promote maturation.
Collapse
Affiliation(s)
- Morten E Moeller
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
113
|
Flatt T, Amdam GV, Kirkwood TBL, Omholt SW. Life-history evolution and the polyphenic regulation of somatic maintenance and survival. QUARTERLY REVIEW OF BIOLOGY 2013; 88:185-218. [PMID: 24053071 DOI: 10.1086/671484] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Here we discuss life-history evolution from the perspective of adaptive phenotypic plasticity, with a focus on polyphenisms for somatic maintenance and survival. Polyphenisms are adaptive discrete alternative phenotypes that develop in response to changes in the environment. We suggest that dauer larval diapause and its associated adult phenotypes in the nematode (Caenorhabditis elegans), reproductive dormancy in the fruit fly (Drosophila melanogaster) and other insects, and the worker castes of the honey bee (Apis mellifera) are examples of what may be viewed as the polyphenic regulation of somatic maintenance and survival. In these and other cases, the same genotype can--depending upon its environment--express either of two alternative sets of life-history phenotypes that differ markedly with respect to somatic maintenance, survival ability, and thus life span. This plastic modulation of somatic maintenance and survival has traditionally been underappreciated by researchers working on aging and life history. We review the current evidence for such adaptive life-history switches and their molecular regulation and suggest that they are caused by temporally and/or spatially varying, stressful environments that impose diversifying selection, thereby favoring the evolution of plasticity of somatic maintenance and survival under strong regulatory control. By considering somatic maintenance and survivorship from the perspective of adaptive life-history switches, we may gain novel insights into the mechanisms and evolution of aging.
Collapse
Affiliation(s)
- Thomas Flatt
- Institut für Populationsgenetik, Vetmeduni Vienna, A-1210 Vienna, Austria.
| | | | | | | |
Collapse
|
114
|
Teratocyte-secreting proteins of an endoparasitoid wasp, Cotesia plutellae, prevent host metamorphosis by altering endocrine signals. Comp Biochem Physiol A Mol Integr Physiol 2013; 166:251-62. [PMID: 23830810 DOI: 10.1016/j.cbpa.2013.06.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/26/2013] [Accepted: 06/26/2013] [Indexed: 12/22/2022]
Abstract
An endoparasitoid wasp, Cotesia plutellae, parasitizes young larvae of the diamondback moth, Plutella xylostella, with its parasitic factors of polydnavirus, venom, ovarian proteins, and teratocytes (TCs). TCs are originated from embryonic serosal membrane at hatch of C. plutellae egg. Injection of in vitro cultured TCs significantly prolonged a larval period of nonparasitized P. xylostella and impaired a larva-to-pupa metamorphosis. This developmental alteration was also induced by injection of TC-cultured medium (TCM). However, heat-treated TCM significantly lost the inhibitory activity against larval development of P. xylostella. Larvae treated with TC or TCM appeared to undergo abnormal endocrine conditions. Juvenile hormone esterase activity was significantly suppressed at early last instar by injection of TC or TCM. In addition, expression of ecdysone receptor at final instar was lost, but that of insulin receptor was maintained until the end of the larval period in TC or TCM treatment. A proteomic analysis of TCM predicted several teratocyte-secreting proteins (TSPs). The inhibitory effect of host development by TCs was significantly enhanced by an addition of another parasitic factor, C. plutellae bracovirus. These results suggest that C. plutellae TC plays a crucial role in alteration of host development by secreting TSPs.
Collapse
|
115
|
Local requirement of the Drosophila insulin binding protein imp-L2 in coordinating developmental progression with nutritional conditions. Dev Biol 2013; 381:97-106. [PMID: 23773803 DOI: 10.1016/j.ydbio.2013.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/31/2013] [Accepted: 06/06/2013] [Indexed: 11/21/2022]
Abstract
In Drosophila, growth takes place during the larval stages until the formation of the pupa. Starvation delays pupariation to allow prolonged feeding, ensuring that the animal reaches an appropriate size to form a fertile adult. Pupariation is induced by a peak of the steroid hormone ecdysone produced by the prothoracic gland (PG) after larvae have reached a certain body mass. Local downregulation of the insulin/insulin-like growth factor signaling (IIS) activity in the PG interferes with ecdysone production, indicating that IIS activity in the PG couples the nutritional state to development. However, the underlying mechanism is not well understood. In this study we show that the secreted Imaginal morphogenesis protein-Late 2 (Imp-L2), a growth inhibitor in Drosophila, is involved in this process. Imp-L2 inhibits the activity of the Drosophila insulin-like peptides by direct binding and is expressed by specific cells in the brain, the ring gland, the gut and the fat body. We demonstrate that Imp-L2 is required to regulate and adapt developmental timing to nutritional conditions by regulating IIS activity in the PG. Increasing Imp-L2 expression at its endogenous sites using an Imp-L2-Gal4 driver delays pupariation, while Imp-L2 mutants exhibit a slight acceleration of development. These effects are strongly enhanced by starvation and are accompanied by massive alterations of ecdysone production resulting most likely from increased Imp-L2 production by neurons directly contacting the PG and not from elevated Imp-L2 levels in the hemolymph. Taken together our results suggest that Imp-L2-expressing neurons sense the nutritional state of Drosophila larvae and coordinate dietary information and ecdysone production to adjust developmental timing under starvation conditions.
Collapse
|
116
|
Ghosh SM, Testa ND, Shingleton AW. Temperature-size rule is mediated by thermal plasticity of critical size in Drosophila melanogaster. Proc Biol Sci 2013; 280:20130174. [PMID: 23595269 PMCID: PMC3652456 DOI: 10.1098/rspb.2013.0174] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 03/28/2013] [Indexed: 11/12/2022] Open
Abstract
Most ectotherms show an inverse relationship between developmental temperature and body size, a phenomenon known as the temperature-size rule (TSR). Several competing hypotheses have been proposed to explain its occurrence. According to one set of views, the TSR results from inevitable biophysical effects of temperature on the rates of growth and differentiation, whereas other views suggest the TSR is an adaptation that can be achieved by a diversity of mechanisms in different taxa. Our data reveal that the fruitfly, Drosophila melanogaster, obeys the TSR using a novel mechanism: reduction in critical size at higher temperatures. In holometabolous insects, attainment of critical size initiates the hormonal cascade that terminates growth, and hence, Drosophila larvae appear to instigate the signal to stop growth at a smaller size at higher temperatures. This is in contrast to findings from another holometabolous insect, Manduca sexta, in which the TSR results from the effect of temperature on the rate and duration of growth. This contrast suggests that there is no single mechanism that accounts for the TSR. Instead, the TSR appears to be an adaptation that is achieved at a proximate level through different mechanisms in different taxa.
Collapse
Affiliation(s)
- Shampa M Ghosh
- Department of Zoology: Ecology, Evolutionary Biology and Behavior Program, Michigan State University, East Lansing, MI 48824, USA.
| | | | | |
Collapse
|
117
|
Andersen DS, Colombani J, Léopold P. Coordination of organ growth: principles and outstanding questions from the world of insects. Trends Cell Biol 2013; 23:336-44. [PMID: 23587490 DOI: 10.1016/j.tcb.2013.03.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 01/07/2023]
Abstract
In animal species undergoing determinate growth, the making of a full-size adult body requires a series of coordinated growth events culminating in the cessation of growth that precedes sexual maturation. The merger between physiology and genetics now coming to pass in the Drosophila model allows us to decipher these growth events with an unsurpassed level of sophistication. Here, we review several coordination mechanisms that represent fundamental aspects of growth control: adaptation of growth to environmental cues, interorgan coordination, and the coordination of growth with developmental transitions. The view is emerging of an integrated process where organ-autonomous growth is coordinated with both developmental and environmental cues to define final body size.
Collapse
Affiliation(s)
- D S Andersen
- University of Nice-Sophia Antipolis, CNRS, and INSERM, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France
| | | | | |
Collapse
|
118
|
Peterson AJ, O'Connor MB. Activin receptor inhibition by Smad2 regulates Drosophila wing disc patterning through BMP-response elements. Development 2013; 140:649-59. [PMID: 23293296 DOI: 10.1242/dev.085605] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Imaginal disc development in Drosophila requires coordinated cellular proliferation and tissue patterning. In our studies of TGFβ superfamily signaling components, we found that a protein null mutation of Smad2, the only Activin subfamily R-Smad in the fruit fly, produces overgrown wing discs that resemble gain of function for BMP subfamily signaling. The wing discs are expanded specifically along the anterior-posterior axis, with increased proliferation in lateral regions. The morphological defect is not observed in mutants for the TGFβ receptor baboon, and epistasis tests showed that baboon is epistatic to Smad2 for disc overgrowth. Rescue experiments indicate that Baboon binding, but not canonical transcription factor activity, of Smad2 is required for normal disc growth. Smad2 mutant discs generate a P-Mad stripe that is narrower and sharper than the normal gradient, and activation targets are correspondingly expressed in narrowed domains. Repression targets of P-Mad are profoundly mis-regulated, with brinker and pentagone reporter expression eliminated in Smad2 mutants. Loss of expression requires a silencer element previously shown to be controlled by BMP signaling. Epistasis experiments show that Baboon, Mad and Schnurri are required to mediate the ectopic silencer output in the absence of Smad2. Taken together, our results show that loss of Smad2 permits promiscuous Baboon activity, which represses genes subject to control by Mad-dependent silencer elements. The absence of Brinker and Pentagone in Smad2 mutants explains the compound wing disc phenotype. Our results highlight the physiological relevance of substrate inhibition of a kinase, and reveal a novel interplay between the Activin and BMP pathways.
Collapse
Affiliation(s)
- Aidan J Peterson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
119
|
Regulation of Drosophila metamorphosis by xenobiotic response regulators. PLoS Genet 2013; 9:e1003263. [PMID: 23408904 PMCID: PMC3567155 DOI: 10.1371/journal.pgen.1003263] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 12/06/2012] [Indexed: 12/30/2022] Open
Abstract
Mammalian Nrf2-Keap1 and the homologous Drosophila CncC-dKeap1 protein complexes regulate both transcriptional responses to xenobiotic compounds as well as native cellular and developmental processes. The relationships between the functions of these proteins in xenobiotic responses and in development were unknown. We investigated the genes regulated by CncC and dKeap1 during development and the signal transduction pathways that modulate their functions. CncC and dKeap1 were enriched within the nuclei in many tissues, in contrast to the reported cytoplasmic localization of Keap1 and Nrf2 in cultured mammalian cells. CncC and dKeap1 occupied ecdysone-regulated early puffs on polytene chromosomes. Depletion of either CncC or dKeap1 in salivary glands selectively reduced early puff gene transcription. CncC and dKeap1 depletion in the prothoracic gland as well as cncCK6/K6 and dKeap1EY5/EY5 loss of function mutations in embryos reduced ecdysone-biosynthetic gene transcription. In contrast, dKeap1 depletion and the dKeap1EY5/EY5 loss of function mutation enhanced xenobiotic response gene transcription in larvae and embryos, respectively. Depletion of CncC or dKeap1 in the prothoracic gland delayed pupation by decreasing larval ecdysteroid levels. CncC depletion suppressed the premature pupation and developmental arrest caused by constitutive Ras signaling in the prothoracic gland; conversely, constitutive Ras signaling altered the loci occupied by CncC on polytene chromosomes and activated transcription of genes at these loci. The effects of CncC and dKeap1 on both ecdysone-biosynthetic and ecdysone-regulated gene transcription, and the roles of CncC in Ras signaling in the prothoracic gland, establish the functions of these proteins in the neuroendocrine axis that coordinates insect metamorphosis. Human Nrf2-Keap1 and the fruit fly CncC-dKeap1 protein complexes function both in response to foreign chemicals and in development. We found that CncC and dKeap1 control fruit fly development by regulating the production and actions of the principal hormone that controls the transformation of larvae into pupae. In hormone-responsive cells, CncC and dKeap1 bound to the genes that are activated by the hormone. When the amount of CncC or dKeap1 in these cells was reduced, the genes were not activated efficiently. When the amount of CncC or dKeap1 was reduced in the organ where the hormone is made, the genes whose products make the hormone were not activated efficiently. Because less hormone was made, it took longer for the larvae to turn into pupae, and the resulting pupae were bigger. Reduction of the amount of CncC intercepted previously identified signals for pupation. Nrf2 is required for the same signals to cause cancer in mice. The effects of CncC and dKeap1 both on genes that control hormone production and on genes that are switched on by the hormone in different organs indicate that they have multiple roles in the transformation of fruit fly larvae into pupae.
Collapse
|
120
|
Vogel KJ, Brown MR, Strand MR. Phylogenetic investigation of Peptide hormone and growth factor receptors in five dipteran genomes. Front Endocrinol (Lausanne) 2013; 4:193. [PMID: 24379806 PMCID: PMC3863949 DOI: 10.3389/fendo.2013.00193] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 11/29/2013] [Indexed: 12/26/2022] Open
Abstract
Peptide hormones and growth factors bind to membrane receptors and regulate a myriad of processes in insects and other metazoans. The evolutionary relationships among characterized and uncharacterized ("orphan") receptors can provide insights into receptor-ligand biology and narrow target choices in deorphanization studies. However, the large number and low sequence conservation of these receptors make evolutionary analysis difficult. Here, we characterized the G-protein-coupled receptors (GPCRs), receptor guanylyl cyclases (RGCs), and protein kinase receptors (PKRs) of mosquitoes and select other flies by interrogating the genomes of Aedes aegypti, Anopheles gambiae, Culex quinquefasciatus, Drosophila melanogaster, and D. mojavensis. Sequences were grouped by receptor type, clustered using the program CLANS, aligned using HMMR, and phylogenetic trees built using PhyML. Our results indicated that PKRs had relatively few orphan clades whereas GPCRs and RGCs had several. In addition, more than half of the Class B secretin-like GPCRs and RGCs remained uncharacterized. Additional studies revealed that Class B GPCRs exhibited more gain and loss events than other receptor types. Finally, using the neuropeptide F family of insect receptors and the neuropeptide Y family of vertebrate receptors, we also show that functional sites considered critical for ligand binding are conserved among distinct family members and between distantly related taxa. Overall, our results provide the first comprehensive analysis of peptide hormone and growth factor receptors for a major insect group.
Collapse
Affiliation(s)
- Kevin J. Vogel
- Department of Entomology, The University of Georgia, Athens, GA, USA
- *Correspondence: Kevin J. Vogel, Department of Entomology, The University of Georgia, 413 Biological Sciences Building, Athens, GA 30602, USA e-mail:
| | - Mark R. Brown
- Department of Entomology, The University of Georgia, Athens, GA, USA
| | - Michael R. Strand
- Department of Entomology, The University of Georgia, Athens, GA, USA
| |
Collapse
|
121
|
Yamanaka N, Rewitz KF, O’Connor MB. Ecdysone control of developmental transitions: lessons from Drosophila research. ANNUAL REVIEW OF ENTOMOLOGY 2013; 58:497-516. [PMID: 23072462 PMCID: PMC4060523 DOI: 10.1146/annurev-ento-120811-153608] [Citation(s) in RCA: 450] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The steroid hormone ecdysone is the central regulator of insect developmental transitions. Recent new advances in our understanding of ecdysone action have relied heavily on the application of Drosophila melanogaster molecular genetic tools to study insect metamorphosis. In this review, we focus on three major aspects of Drosophila ecdysone biology: (a) factors that regulate the timing of ecdysone release, (b) molecular basis of stage- and tissue-specific responses to ecdysone, and (c) feedback regulation and coordination of ecdysone signaling.
Collapse
Affiliation(s)
- Naoki Yamanaka
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Kim F. Rewitz
- Department of Science, Systems and Models, Roskilde University, 4000 Roskilde, Denmark
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
122
|
Di Cara F, King-Jones K. How clocks and hormones act in concert to control the timing of insect development. Curr Top Dev Biol 2013; 105:1-36. [PMID: 23962837 DOI: 10.1016/b978-0-12-396968-2.00001-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During the last century, insect model systems have provided fascinating insights into the endocrinology and developmental biology of all animals. During the insect life cycle, molts and metamorphosis delineate transitions from one developmental stage to the next. In most insects, pulses of the steroid hormone ecdysone drive these developmental transitions by activating signaling cascades in target tissues. In holometabolous insects, ecdysone triggers metamorphosis, the remarkable remodeling of an immature larva into a sexually mature adult. The input from another developmental hormone, juvenile hormone (JH), is required to repress metamorphosis by promoting juvenile fates until the larva has acquired sufficient nutrients to survive metamorphosis. Ecdysone and JH act together as key endocrine timers to precisely control the onset of developmental transitions such as the molts, pupation, or eclosion. In this review, we will focus on the role of the endocrine system and the circadian clock, both individually and together, in temporally regulating insect development. Since this is not a coherent field, we will review recent developments that serve as examples to illuminate this complex topic. First, we will consider studies conducted in Rhodnius that revealed how circadian pathways exert temporal control over the production and release of ecdysone. We will then take a look at molecular and genetic data that revealed the presence of two circadian clocks, located in the brain and the prothoracic gland, that regulate eclosion rhythms in Drosophila. In this context, we will also review recent developments that examined how the ecdysone hierarchy delays the differentiation of the crustacean cardioactive peptide (CCAP) neurons, an event that is critical for the timing of ecdysis and eclosion. Finally, we will discuss some recent findings that transformed our understanding of JH function.
Collapse
Affiliation(s)
- Francesca Di Cara
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
123
|
Ou Q, King-Jones K. What goes up must come down: transcription factors have their say in making ecdysone pulses. Curr Top Dev Biol 2013; 103:35-71. [PMID: 23347515 DOI: 10.1016/b978-0-12-385979-2.00002-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Insect metamorphosis is one of the most fascinating biological processes in the animal kingdom. The dramatic transition from an immature juvenile to a reproductive adult is under the control of the steroid hormone ecdysone, also known as the insect molting hormone. During Drosophila development, periodic pulses of ecdysone are released from the prothoracic glands, upon which the hormone is rapidly converted in peripheral tissues to its biologically active form, 20-hydroxyecdysone. Each hormone pulse has a unique profile and causes different developmental events, but we only have a rudimentary understanding of how the timing, amplitude, and duration of a given pulse are controlled. A key component involved in the timing of ecdysone pulses is PTTH, a brain-derived neuropeptide. PTTH stimulates ecdysone production through a Ras/Raf/ERK signaling cascade; however, comparatively little is known about the downstream targets of this pathway. In recent years, it has become apparent that transcriptional regulation plays a critical role in regulating the synthesis of ecdysone, but only one transcription factor has a well-defined link to PTTH. Interestingly, many of the ecdysteroidogenic transcription factors were originally characterized as primary response genes in the ecdysone signaling cascade that elicits the biological responses to the hormone in target tissues. To review these developments, we will first provide an overview of the transcription factors that act in the Drosophila ecdysone regulatory hierarchy. We will then discuss the roles of these transcriptional regulators in controlling ecdysone synthesis. In the last section, we will briefly outline transcription factors that likely have roles in regulating ecdysone synthesis but have not been formally identified as downstream effectors of ecdysone.
Collapse
Affiliation(s)
- Qiuxiang Ou
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
124
|
Rewitz KF, Yamanaka N, O'Connor MB. Developmental checkpoints and feedback circuits time insect maturation. Curr Top Dev Biol 2013; 103:1-33. [PMID: 23347514 DOI: 10.1016/b978-0-12-385979-2.00001-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The transition from juvenile to adult is a fundamental process that allows animals to allocate resource toward reproduction after completing a certain amount of growth. In insects, growth to a species-specific target size induces pulses of the steroid hormone ecdysone that triggers metamorphosis and reproductive maturation. The past few years have seen significant progress in understanding the interplay of mechanisms that coordinate timing of ecdysone production and release. These studies show that the neuroendocrine system monitors complex size-related and nutritional signals, as well as external cues, to time production and release of ecdysone. Based on results discussed here, we suggest that developmental progression to adulthood is controlled by checkpoints that regulate the genetic timing program enabling it to adapt to different environmental conditions. These checkpoints utilize a number of signaling pathways to modulate ecdysone production in the prothoracic gland. Release of ecdysone activates an autonomous cascade of both feedforward and feedback signals that determine the duration of the ecdysone pulse at each developmental transitions. Conservation of the genetic mechanisms that coordinate the juvenile-adult transition suggests that insights from the fruit fly Drosophila will provide a framework for future investigation of developmental timing in metazoans.
Collapse
Affiliation(s)
- Kim F Rewitz
- Department of Biology, Cell and Neurobiology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
125
|
Zeng X, Hou SX. Broad relays hormone signals to regulate stem cell differentiation in Drosophila midgut during metamorphosis. Development 2012; 139:3917-25. [PMID: 23048182 DOI: 10.1242/dev.083030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Like the mammalian intestine, the Drosophila adult midgut is constantly replenished by multipotent intestinal stem cells (ISCs). Although it is well known that adult ISCs arise from adult midgut progenitors (AMPs), relatively little is known about the mechanisms that regulate AMP specification. Here, we demonstrate that Broad (Br)-mediated hormone signaling regulates AMP specification. Br is highly expressed in AMPs temporally during the larva-pupa transition stage, and br loss of function blocks AMP differentiation. Furthermore, Br is required for AMPs to develop into functional ISCs. Conversely, br overexpression drives AMPs toward premature differentiation. In addition, we found that Br and Notch (N) signaling function in parallel pathways to regulate AMP differentiation. Our results reveal a molecular mechanism whereby Br-mediated hormone signaling directly regulates stem cells to generate adult cells during metamorphosis.
Collapse
Affiliation(s)
- Xiankun Zeng
- The Mouse Cancer Genetics Program, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, USA.
| | | |
Collapse
|
126
|
Takaesu NT, Stinchfield MJ, Shimizu K, Arase M, Quijano JC, Watabe T, Miyazono K, Newfeld SJ. Drosophila CORL is required for Smad2-mediated activation of Ecdysone Receptor expression in the mushroom body. Development 2012; 139:3392-401. [PMID: 22874913 DOI: 10.1242/dev.079442] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CORL proteins (FUSSEL/SKOR proteins in humans) are related to Sno/Ski oncogenes but their developmental roles are unknown. We have cloned Drosophila CORL and show that its expression is restricted to distinct subsets of cells in the central nervous system. We generated a deletion of CORL and noted that homozygous individuals rarely survive to adulthood. Df(4)dCORL adult escapers display mushroom body (MB) defects and Df(4)dCORL larvae are lacking Ecdysone Receptor (EcR-B1) expression in MB neurons. This is phenocopied in CORL-RNAi and Smad2-RNAi clones in wild-type larvae. Furthermore, constitutively active Baboon (type I receptor upstream of Smad2) cannot stimulate EcR-B1 MB expression in Df(4)dCORL larvae, which demonstrates a formal requirement for CORL in Smad2 signaling. Studies of mouse Corl1 (Skor1) revealed that it binds specifically to Smad3. Overall, the data suggest that CORL facilitates Smad2 activity upstream of EcR-B1 in the MB. The conservation of neural expression and strong sequence homology of all CORL proteins suggests that this is a new family of Smad co-factors.
Collapse
Affiliation(s)
- Norma T Takaesu
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Kamimura M, Saito H, Niwa R, Niimi T, Toyoda K, Ueno C, Kanamori Y, Shimura S, Kiuchi M. Fungal ecdysteroid-22-oxidase, a new tool for manipulating ecdysteroid signaling and insect development. J Biol Chem 2012; 287:16488-98. [PMID: 22427652 PMCID: PMC3351327 DOI: 10.1074/jbc.m112.341180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/13/2012] [Indexed: 11/06/2022] Open
Abstract
Steroid hormones ecdysteroids regulate varieties of developmental processes in insects. Although the ecdysteroid titer can be increased experimentally with ease, its artificial reduction, although desirable, is very difficult to achieve. Here we characterized the ecdysteroid-inactivating enzyme ecdysteroid-22-oxidase (E22O) from the entomopathogenic fungus Nomuraea rileyi and used it to develop methods for reducing ecdysteroid titer and thereby controlling insect development. K(m) and K(cat) values of the purified E22O for oxidizing ecdysone were 4.4 μM and 8.4/s, respectively, indicating that E22O can inactivate ecdysone more efficiently than other ecdysteroid inactivating enzymes characterized so far. The cloned E22O cDNA encoded a FAD-dependent oxidoreductase. Injection of recombinant E22O into the silkworm Bombyx mori interfered with larval molting and metamorphosis. In the hemolymph of E22O-injected pupae, the titer of hormonally active 20-hydroxyecdysone decreased and concomitantly large amounts of inactive 22-dehydroecdysteroids accumulated. E22O injection also prevented molting of various other insects. In the larvae of the crambid moth Haritalodes basipunctalis, E22O injection induced a diapause-like developmental arrest, which, as in normal diapause, was broken by chilling. Transient expression of the E22O gene by in vivo lipofection effectively decreased the 20-hydroxyecdysone titer and blocked molting in B. mori. Transgenic expression of E22O in Drosophila melanogaster caused embryonic morphological defects, phenotypes of which were very similar to those of the ecdysteroid synthesis deficient mutants. Thus, as the first available simple but versatile tool for reducing the internal ecdysteroid titer, E22O could find use in controlling a broad range of ecdysteroid-associated developmental and physiological phenomena.
Collapse
Affiliation(s)
- Manabu Kamimura
- National Institute of Agrobiological Sciences, Owashi, Tsukuba, Ibaraki 305-8634, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Schaedel ON, Gerisch B, Antebi A, Sternberg PW. Hormonal signal amplification mediates environmental conditions during development and controls an irreversible commitment to adulthood. PLoS Biol 2012; 10:e1001306. [PMID: 22505848 PMCID: PMC3323525 DOI: 10.1371/journal.pbio.1001306] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 03/02/2012] [Indexed: 11/25/2022] Open
Abstract
A dual mechanism regulates the developmental fate choice in C. elegans in response to population density: variation of the threshold of DA hormone required to commit to a certain fate and a positive feedback loop that amplifies this hormonal signal to ensure an organism-wide developmental fate choice. Many animals can choose between different developmental fates to maximize fitness. Despite the complexity of environmental cues and life history, different developmental fates are executed in a robust fashion. The nematode Caenorhabditis elegans serves as a powerful model to examine this phenomenon because it can adopt one of two developmental fates (adulthood or diapause) depending on environmental conditions. The steroid hormone dafachronic acid (DA) directs development to adulthood by regulating the transcriptional activity of the nuclear hormone receptor DAF-12. The known role of DA suggests that it may be the molecular mediator of environmental condition effects on the developmental fate decision, although the mechanism is yet unknown. We used a combination of physiological and molecular biology techniques to demonstrate that commitment to reproductive adult development occurs when DA levels, produced in the neuroendocrine XXX cells, exceed a threshold. Furthermore, imaging and cell ablation experiments demonstrate that the XXX cells act as a source of DA, which, upon commitment to adult development, is amplified and propagated in the epidermis in a DAF-12 dependent manner. This positive feedback loop increases DA levels and drives adult programs in the gonad and epidermis, thus conferring the irreversibility of the decision. We show that the positive feedback loop canalizes development by ensuring that sufficient amounts of DA are dispersed throughout the body and serves as a robust fate-locking mechanism to enforce an organism-wide binary decision, despite noisy and complex environmental cues. These mechanisms are not only relevant to C. elegans but may be extended to other hormonal-based decision-making mechanisms in insects and mammals. During development, many animals choose between mutually exclusive fates, such as workers, soldiers, or queens in bees or ants. The choice between states is uniform throughout the animal since mixtures of these fates are not observed in the wild. The nematode Caenorhabditis elegans larvae integrate environmental conditions and have two choices: mature into reproductive adults or arrest development as dauer larvae—a latent form that can survive harsh conditions. The decision between both fates is governed by the hormone dafachronic acid (DA), however its regulation during development in response to environmental conditions has been unclear. In this study we show how two mechanisms are responsible for the integration of environmental conditions and the coordination of the decision between many tissues. We first show that a threshold mechanism integrates population density with the internal amount of DA made in the head. A normal population density has a low threshold of DA needed for worms to become adults, whereas a high population density increases this threshold and leads worms to develop into dauer larvae. We then show that the low levels of DA released from the head are amplified in the hypodermis (the main body syncytial epithelium) via a positive feedback loop, coordinating the decision over the animal. Disruption of this positive feedback yields abnormal adults. We propose that the positive feedback serves as a fate-locking mechanism enforcing an organismal binary decision—either adult or dauer—despite noisy and uncertain environmental conditions.
Collapse
Affiliation(s)
- Oren N. Schaedel
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Birgit Gerisch
- Max-Planck-Institute for Biology of Ageing, Koeln, Germany
| | - Adam Antebi
- Max-Planck-Institute for Biology of Ageing, Koeln, Germany
- Baylor College of Medicine, Huffington Center on Aging, Houston, Texas, United States of America
- * E-mail: (PWS); (AA)
| | - Paul W. Sternberg
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (PWS); (AA)
| |
Collapse
|
129
|
Abstract
Adult body size in higher animals is dependent on the amount of growth that occurs during the juvenile stage. The duration of juvenile development, therefore, must be flexible and responsive to environmental conditions. When immature animals experience environmental stresses such as malnutrition or disease, maturation can be delayed until conditions improve and normal growth can resume. In contrast, when animals are raised under ideal conditions that promote rapid growth, internal checkpoints ensure that maturation does not occur until juvenile development is complete. Although the mechanisms that regulate growth and gate the onset of maturation have been investigated for decades, the emerging links between childhood obesity, early onset puberty, and adult metabolic disease have placed a new emphasis on this field. Remarkably, genetic studies in the fruit fly Drosophila melanogaster have shown that the central regulatory pathways that control growth and the timing of sexual maturation are conserved through evolution, and suggest that this aspect of animal life history is regulated by a common genetic architecture. This review focuses on these conserved mechanisms and highlights recent studies that explore how Drosophila coordinates developmental growth with environmental conditions.
Collapse
Affiliation(s)
- Jason M Tennessen
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA
| | | |
Collapse
|
130
|
Mirth CK, Shingleton AW. Integrating body and organ size in Drosophila: recent advances and outstanding problems. Front Endocrinol (Lausanne) 2012; 3:49. [PMID: 22654869 PMCID: PMC3356080 DOI: 10.3389/fendo.2012.00049] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/12/2012] [Indexed: 11/17/2022] Open
Abstract
OVER THE PAST TWO DECADES, FUNDAMENTAL STRIDES IN PHYSIOLOGY AND GENETICS HAVE ALLOWED US TO FINALLY GRASP THE DEVELOPMENTAL MECHANISMS REGULATING BODY SIZE, PRIMARILY IN ONE MODEL ORGANISM: the fruit fly Drosophila melanogaster. In Drosophila, as in all animals, final body size is regulated by the rate and duration of growth. These studies have identified important roles for the insulin and the target of rapamycin (TOR) signaling pathways in regulating the growth rate of the larva, the stage most important in determining final adult size. Furthermore, they have shown that the insulin/TOR pathway interacts with hormonal systems, like ecdysone and juvenile hormone, to regulate the timing of development and hence the duration of growth. This interaction allows the growing larvae to integrate cues from the environment with environmentally sensitive developmental windows to ensure that optimal size and proportions are reached given the larval rearing conditions. Results from this work have opened up new avenues of studies, including how environmental cues are integrated to regulate developmental time and how organs maintain proportional growth. Other researchers interested in the evolution of body size are beginning to apply these results to studies of body size evolution and the generation of allometry. With these new findings, and with the developments to come, the field of size control finds itself in the fortunate position of finally being able to tackle century old questions of how organisms achieve final adult size and proportions. This review discusses the state of the art of size control from a Drosophila perspective, and outlines an approach to resolving outstanding issues.
Collapse
Affiliation(s)
- Christen Kerry Mirth
- Development, Evolution and the Environment Lab, Instituto Gulbenkian de Ciência, Fundação Calouste GulbenkianOerias, Portugal
- *Correspondence: Christen Kerry Mirth, Development, Evolution and the Environment Lab, Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal. e-mail: ; Alexander W. Shingleton, Department of Zoology, Michigan State University, East Lansing, 203 Natural Science Building, East Lansing, MI 48824, USA. e-mail:
| | - Alexander W. Shingleton
- Department of Zoology, Michigan State UniversityEast Lansing, MI, USA
- *Correspondence: Christen Kerry Mirth, Development, Evolution and the Environment Lab, Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal. e-mail: ; Alexander W. Shingleton, Department of Zoology, Michigan State University, East Lansing, 203 Natural Science Building, East Lansing, MI 48824, USA. e-mail:
| |
Collapse
|
131
|
Tanaka Y. Recent topics on the regulatory mechanism of ecdysteroidogenesis by the prothoracic glands in insects. Front Endocrinol (Lausanne) 2011; 2:107. [PMID: 22645515 PMCID: PMC3355830 DOI: 10.3389/fendo.2011.00107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/06/2011] [Indexed: 11/30/2022] Open
Abstract
Molting and metamorphosis are strictly regulated by steroid hormones known as ecdysteroids. It is now widely recognized that ecdysteroid biosynthesis (ecdysteroidogenesis) in the prothoracic gland (PG) is regulated by the tropic factor prothoracicotropic hormone (PTTH). However, the importance of PTTH in the induction of molting and metamorphosis remains unclear, and other mechanisms are thought to be involved in the regulation of ecdysteroidogenesis by the PG. Recently, new regulatory mechanisms, prothoracicostatic factors, and neural regulation have been explored using the silkworm, Bombyx mori, and two circulating prothoracicostatic factors, prothoracicostatic peptide (PTSP) and Bommo-myosuppressin (BMS), have been identified. Whereas PTTH and BMS are secreted from the brain, PTSP is secreted from the peripheral neurosecretory system - the epiproctodeal gland - during the molting stage. The molecular basis of neural regulation of ecdysteroidogenesis has been revealed for the first time in B. mori. The innervating neurons supply both Bommo-FMRF related peptide (BRFa) and orcokinin to maintain low levels of ecdysteroids during the feeding stage. These complex regulatory mechanisms - involving tropic and static factors, peripheral neurosecretory cells as well as the central neuroendocrine system, and neural regulation in addition to circulating factors collaborate to regulate ecdysteroidogenesis. Thus, together they create the finely tuned fluctuations in ecdysteroid titers needed in the hemolymph during insect development.
Collapse
Affiliation(s)
- Yoshiaki Tanaka
- Insect Growth Regulation Research Unit, Division of Insect Science, National Institute of Agrobiological SciencesTsukuba, Japan
| |
Collapse
|
132
|
Abstract
Sterol metabolites are critical signaling molecules that regulate metabolism, development, and homeostasis. Oxysterols, bile acids (BAs), and steroids work primarily through cognate sterol-responsive nuclear hormone receptors to control these processes through feed-forward and feedback mechanisms. These signaling pathways are conserved from simple invertebrates to mammals. Indeed, results from various model organisms have yielded fundamental insights into cholesterol and BA homeostasis, lipid and glucose metabolism, protective mechanisms, tissue differentiation, development, reproduction, and even aging. Here, we review how sterols act through evolutionarily ancient mechanisms to control these processes.
Collapse
Affiliation(s)
- Joshua Wollam
- Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
133
|
Ou Q, Magico A, King-Jones K. Nuclear receptor DHR4 controls the timing of steroid hormone pulses during Drosophila development. PLoS Biol 2011; 9:e1001160. [PMID: 21980261 PMCID: PMC3181225 DOI: 10.1371/journal.pbio.1001160] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 08/15/2011] [Indexed: 12/15/2022] Open
Abstract
Pulses of the steroid hormone ecdysone are turned off periodically through nucleo-cytoplasmic oscillations of a nuclear receptor that counteracts the neuropeptide signaling pathway responsible for activating hormone pulses in Drosophila melanogaster. In insects, precisely timed periodic pulses of the molting hormone ecdysone control major developmental transitions such as molts and metamorphosis. The synthesis and release of ecdysone, a steroid hormone, is itself controlled by PTTH (prothoracicotopic hormone). PTTH transcript levels oscillate with an 8 h rhythm, but its significance regarding the timing of ecdysone pulses is unclear. PTTH acts on its target tissue, the prothoracic gland (PG), by activating the Ras/Raf/ERK pathway through its receptor Torso, however direct targets of this pathway have yet to be identified. Here, we demonstrate that Drosophila Hormone Receptor 4 (DHR4), a nuclear receptor, is a key target of the PTTH pathway and establishes temporal boundaries by terminating ecdysone pulses. Specifically, we show that DHR4 oscillates between the nucleus and cytoplasm of PG cells, and that the protein is absent from PG nuclei at developmental times when low titer ecdysone pulses occur. This oscillatory behavior is blocked when PTTH or torso function is abolished, resulting in nuclear accumulation of DHR4, while hyperactivating the PTTH pathway results in cytoplasmic retention of the protein. Increasing DHR4 levels in the PG can delay or arrest development. In contrast, reducing DHR4 function in the PG triggers accelerated development, which is caused by precocious ecdysone signaling due to a failure to repress ecdysone pulses. Finally, we show that DHR4 negatively regulates the expression of a hitherto uncharacterized cytochrome P450 gene, Cyp6t3. Disruption of Cyp6t3 function causes low ecdysteroid titers and results in heterochronic phenotypes and molting defects, indicating a novel role in the ecdysone biosynthesis pathway. We propose a model whereby nuclear DHR4 controls the duration of ecdysone pulses by negatively regulating ecdysone biosynthesis through repression of Cyp6t3, and that this repressive function is temporarily overturned via the PTTH pathway by removing DHR4 from the nuclear compartment. Steroid hormones play fundamental roles in development and disease. They are often released as pulses, thereby orchestrating multiple physiological and developmental changes throughout the body. Hormone pulses must be regulated in a way so that they have a defined beginning, peak, and end. In Drosophila, pulses of the steroid hormone ecdysone govern all major developmental transitions, such as the molts or the transformation of a larva to a pupa. While we have a relatively good understanding of how an ecdysone pulse is initiated, little is known about how hormone production is turned off. In this study, we identify a critical regulator of this process, the nuclear receptor DHR4. When we interfere with the function of DHR4 specifically in the ecdysone-producing gland, we find that larvae develop much faster than normal, and that this is caused by the inability to turn off ecdysone production. We show that DHR4 oscillates between cytoplasm and nucleus of ecdysone-producing cells under the control of a neuropeptide that regulates ecdysone production. When the neuropeptide pathway is inactive, DHR4 enters the nucleus and represses another gene, Cyp6t3, for which we show a novel role in the production of ecdysone.
Collapse
Affiliation(s)
- Qiuxiang Ou
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Adam Magico
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
134
|
Yamanaka N, O'Connor MB. Nitric oxide directly regulates gene expression during Drosophila development: need some gas to drive into metamorphosis? Genes Dev 2011; 25:1459-63. [PMID: 21764850 DOI: 10.1101/gad.2080411] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Nitric oxide (NO) is an important second messenger involved in numerous biological processes, but how it regulates gene expression is not well understood. In this issue of Genes & Development, Cáceres and colleagues (pp. 1476-1485) report a critical requirement of NO as a direct regulator of gene expression through its binding to a heme-containing nuclear receptor in Drosophila. This may be an anciently evolved mechanism to coordinate behavior and metabolism during animal development.
Collapse
Affiliation(s)
- Naoki Yamanaka
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, USA
| | | |
Collapse
|