101
|
Detection of multiple biomarkers associated with satellite cell fate in the contused skeletal muscle of rats for wound age estimation. Int J Legal Med 2023; 137:875-886. [PMID: 36797435 DOI: 10.1007/s00414-023-02971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 02/08/2023] [Indexed: 02/18/2023]
Abstract
From the perspective of forensic wound age estimation, experiments related to skeletal muscle regeneration after injury have rarely been reported. Here, we examined the time-dependent expression patterns of multiple biomarkers associated with satellite cell fate, including the transcription factor paired box 7 (Pax7), myoblast determination protein (MyoD), myogenin, and insulin-like growth factor (IGF-1), using immunohistochemistry, western blotting, and quantitative real-time PCR in contused skeletal muscle. An animal model of skeletal muscle contusion was established in 30 Sprague-Dawley male rats, and another five rats were employed as non-contused controls. Morphometrically, the data obtained from the numbers of Pax7 + , MyoD + , and myogenin + cells were highly correlated with the wound age. Pax7, MyoD, myogenin, and IGF-1 expression patterns were upregulated after injury at both the mRNA and protein levels. Pax7, MyoD, and myogenin protein expression levels confirmed the results of the morphometrical analysis. Additionally, the relative quantity of IGF-1 protein > 0.92 suggested a wound age of 3 to 7 days. The relative quantity of Pax7 mRNA > 2.44 also suggested a wound age of 3 to 7 days. Relative quantities of Myod1, Myog, and Igf1 mRNA expression > 2.78, > 7.80, or > 3.13, respectively, indicated a wound age of approximately 3 days. In conclusion, the expression levels of Pax7, MyoD, myogenin, and IGF-1 were upregulated in a time-dependent manner during skeletal muscle wound healing, suggesting the potential for using them as candidate biomarkers for wound age estimation in skeletal muscle.
Collapse
|
102
|
Schneider J, Sundaravinayagam D, Blume A, Marg A, Grunwald S, Metzler E, Escobar H, Müthel S, Wang H, Wollersheim T, Weber-Carstens S, Akalin A, Di Virgilio M, Tursun B, Spuler S. Disintegration of the NuRD Complex in Primary Human Muscle Stem Cells in Critical Illness Myopathy. Int J Mol Sci 2023; 24:2772. [PMID: 36769095 PMCID: PMC9916927 DOI: 10.3390/ijms24032772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Critical illness myopathy (CIM) is an acquired, devastating, multifactorial muscle-wasting disease with incomplete recovery. The impact on hospital costs and permanent loss of quality of life is enormous. Incomplete recovery might imply that the function of muscle stem cells (MuSC) is impaired. We tested whether epigenetic alterations could be in part responsible. We characterized human muscle stem cells (MuSC) isolated from early CIM and analyzed epigenetic alterations (CIM n = 15, controls n = 21) by RNA-Seq, immunofluorescence, analysis of DNA repair, and ATAC-Seq. CIM-MuSC were transplanted into immunodeficient NOG mice to assess their regenerative potential. CIM-MuSC exhibited significant growth deficits, reduced ability to differentiate into myotubes, and impaired DNA repair. The chromatin structure was damaged, as characterized by alterations in mRNA of histone 1, depletion or dislocation of core proteins of nucleosome remodeling and deacetylase complex, and loosening of multiple nucleosome-spanning sites. Functionally, CIM-MuSC had a defect in building new muscle fibers. Further, MuSC obtained from the electrically stimulated muscle of CIM patients was very similar to control MuSC, indicating the impact of muscle contraction in the onset of CIM. CIM not only affects working skeletal muscle but has a lasting and severe epigenetic impact on MuSC.
Collapse
Affiliation(s)
- Joanna Schneider
- Muscle Research Unit, Experimental and Clinical Research Center, A Joint Cooperation of the Charité Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Lindenberger Weg 80, 13125 Berlin, Germany
- Charité Universitätsmedizin Berlin, Department of Pediatric Neurology, 13353 Berlin, Germany
- Berlin Institute of Health–Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Devakumar Sundaravinayagam
- Laboratory of DNA Repair and Maintenance of Genome Stability, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13092 Berlin, Germany
| | - Alexander Blume
- Berlin Institute of Medical Systems Biology (BIMSB), Max Delbruck Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Andreas Marg
- Muscle Research Unit, Experimental and Clinical Research Center, A Joint Cooperation of the Charité Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Stefanie Grunwald
- Muscle Research Unit, Experimental and Clinical Research Center, A Joint Cooperation of the Charité Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Eric Metzler
- Muscle Research Unit, Experimental and Clinical Research Center, A Joint Cooperation of the Charité Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Helena Escobar
- Muscle Research Unit, Experimental and Clinical Research Center, A Joint Cooperation of the Charité Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Stefanie Müthel
- Muscle Research Unit, Experimental and Clinical Research Center, A Joint Cooperation of the Charité Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Lindenberger Weg 80, 13125 Berlin, Germany
- Berlin Institute of Medical Systems Biology (BIMSB), Max Delbruck Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Haicui Wang
- Muscle Research Unit, Experimental and Clinical Research Center, A Joint Cooperation of the Charité Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Tobias Wollersheim
- Berlin Institute of Health–Universitätsmedizin Berlin, 10117 Berlin, Germany
- Charité Universitätsmedizin Berlin, Department of Anesthesiology and Operative Intensive Care Medicine, 13353 Berlin, Germany
| | - Steffen Weber-Carstens
- Charité Universitätsmedizin Berlin, Department of Anesthesiology and Operative Intensive Care Medicine, 13353 Berlin, Germany
| | - Altuna Akalin
- Berlin Institute of Medical Systems Biology (BIMSB), Max Delbruck Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Michela Di Virgilio
- Laboratory of DNA Repair and Maintenance of Genome Stability, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13092 Berlin, Germany
| | - Baris Tursun
- Berlin Institute of Medical Systems Biology (BIMSB), Max Delbruck Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, A Joint Cooperation of the Charité Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Lindenberger Weg 80, 13125 Berlin, Germany
| |
Collapse
|
103
|
Hirano K, Tsuchiya M, Shiomi A, Takabayashi S, Suzuki M, Ishikawa Y, Kawano Y, Takabayashi Y, Nishikawa K, Nagao K, Umemoto E, Kitajima Y, Ono Y, Nonomura K, Shintaku H, Mori Y, Umeda M, Hara Y. The mechanosensitive ion channel PIEZO1 promotes satellite cell function in muscle regeneration. Life Sci Alliance 2023; 6:6/2/e202201783. [PMID: 36446523 PMCID: PMC9711862 DOI: 10.26508/lsa.202201783] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/30/2022] Open
Abstract
Muscle satellite cells (MuSCs), myogenic stem cells in skeletal muscles, play an essential role in muscle regeneration. After skeletal muscle injury, quiescent MuSCs are activated to enter the cell cycle and proliferate, thereby initiating regeneration; however, the mechanisms that ensure successful MuSC division, including chromosome segregation, remain unclear. Here, we show that PIEZO1, a calcium ion (Ca2+)-permeable cation channel activated by membrane tension, mediates spontaneous Ca2+ influx to control the regenerative function of MuSCs. Our genetic engineering approach in mice revealed that PIEZO1 is functionally expressed in MuSCs and that Piezo1 deletion in these cells delays myofibre regeneration after injury. These results are, at least in part, due to a mitotic defect in MuSCs. Mechanistically, this phenotype is caused by impaired PIEZO1-Rho signalling during myogenesis. Thus, we provide the first concrete evidence that PIEZO1, a bona fide mechanosensitive ion channel, promotes proliferation and regenerative functions of MuSCs through precise control of cell division.
Collapse
Affiliation(s)
- Kotaro Hirano
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.,School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Masaki Tsuchiya
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.,PRESTO, JST, Kawaguchi-shi, Saitama, Japan
| | - Akifumi Shiomi
- Microfluidics RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Seiji Takabayashi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Miki Suzuki
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yudai Ishikawa
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yuya Kawano
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yutaka Takabayashi
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kaori Nishikawa
- Microfluidics RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Kohjiro Nagao
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Eiji Umemoto
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yasuo Kitajima
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Keiko Nonomura
- Division of Embryology, National Institute for Basic Biology, Aichi, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI, Okazaki, Japan.,Department of Life Science and Technology, Tokyo Tech, Yokohama, Japan
| | - Hirofumi Shintaku
- Microfluidics RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Masato Umeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yuji Hara
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
104
|
Ding D, Braun T. Efficient Genome-Wide Chromatin Profiling by CUT&RUN with Low Numbers of Muscle Stem Cells. Methods Mol Biol 2023; 2640:413-430. [PMID: 36995610 DOI: 10.1007/978-1-0716-3036-5_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Adult muscle stem cells (MuSCs), also called satellite cells, are situated under the basal lamina of myofibers in skeletal muscles. MuSCs are instrumental for postnatal muscle growth and regeneration of skeletal muscles. Under physiological conditions, the majority of MuSCs is actively maintained in a quiescent state but becomes rapidly activated during muscle regeneration, which is accompanied with massive changes in the epigenome. Moreover, aging, but also pathological conditions, such as in muscle dystrophy, results in profound changes of the epigenome, which can be monitored with different approaches. However, a better understanding of the role of chromatin dynamics in MuSCs and its function for skeletal muscle physiology and disease has been hampered by technical limitations, mostly due to the relatively low number of MuSCs but also due to the strongly condensed chromatin state of quiescent MuSCs. Traditional chromatin immunoprecipitation (ChIP) usually requires large amounts of cells and has several other shortcomings. Cleavage Under Targets and Release Using Nuclease (CUT&RUN) is a simple alternative to ChIP for chromatin profiling, providing higher efficiency and better resolution at lower costs. CUT&RUN maps genome-wide chromatin features, including genome-wide localization of transcription factor binding in small numbers of freshly isolated MuSCs, facilitating analysis of different subpopulations of MuSCs. Here we describe an optimized protocol to profile global chromatin in freshly isolated MuSCs using CUT&RUN.
Collapse
Affiliation(s)
- Dong Ding
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany.
| |
Collapse
|
105
|
Ganassi M, Zammit PS, Hughes SM. Isolation, Culture, and Analysis of Zebrafish Myofibers and Associated Muscle Stem Cells to Explore Adult Skeletal Myogenesis. Methods Mol Biol 2023; 2640:21-43. [PMID: 36995585 DOI: 10.1007/978-1-0716-3036-5_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Adult skeletal musculature experiences continuous physical stress, and hence requires maintenance and repair to ensure its continued efficient functioning. The population of resident muscle stem cells (MuSCs), termed satellite cells, resides beneath the basal lamina of adult myofibers, contributing to both muscle hypertrophy and regeneration. Upon exposure to activating stimuli, MuSCs proliferate to generate new myoblasts that differentiate and fuse to regenerate or grow myofibers. Moreover, many teleost fish undergo continuous growth throughout life, requiring continual nuclear recruitment from MuSCs to initiate and grow new fibers, a process that contrasts with the determinate growth observed in most amniotes. In this chapter, we describe a method for the isolation, culture, and immunolabeling of adult zebrafish myofibers that permits examination of both myofiber characteristics ex vivo and the MuSC myogenic program in vitro. Morphometric analysis of isolated myofibers is suitable to assess differences among slow and fast muscles or to investigate cellular features such as sarcomeres and neuromuscular junctions. Immunostaining for Pax7, a canonical stemness marker, identifies MuSCs on isolated myofibers for study. Furthermore, the plating of viable myofibers allows MuSC activation and expansion and downstream analysis of their proliferative and differentiative dynamics, thus providing a suitable, parallel alternative to amniote models for the study of vertebrate myogenesis.
Collapse
Affiliation(s)
- Massimo Ganassi
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
| |
Collapse
|
106
|
Nalbandian M, Zhao M, Sakurai H. Evaluation of hiPSC-Derived Muscle Progenitor Cell Transplantation in a Mouse Duchenne Muscular Dystrophy Model. Methods Mol Biol 2023; 2587:527-536. [PMID: 36401048 DOI: 10.1007/978-1-0716-2772-3_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
For cell therapy toward Duchenne muscle dystrophy (DMD), muscle progenitor cells derived from human-induced pluripotent stem cell (hiPSC-MuPCs) are recognized as a good candidate, and currently, cell transplantation of hiPSC-MuPCs is being tested with several DMD animal models. In this article, we describe an efficient method to dissociate, purify by cell sorting, transplant, and evaluate the transplantation efficacy of hiPSC-MuPCs.
Collapse
Affiliation(s)
- Minas Nalbandian
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Mingming Zhao
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Hidetoshi Sakurai
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
| |
Collapse
|
107
|
Sesillo FB, Rajesh V, Wong M, Duran P, Rudell JB, Rundio CP, Baynes BB, Laurent LC, Sacco A, Christman KL, Alperin M. Muscle stem cells and fibro-adipogenic progenitors in female pelvic floor muscle regeneration following birth injury. NPJ Regen Med 2022; 7:72. [PMID: 36526635 PMCID: PMC9758192 DOI: 10.1038/s41536-022-00264-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Pelvic floor muscle (PFM) injury during childbirth is a key risk factor for pelvic floor disorders that affect millions of women worldwide. Muscle stem cells (MuSCs), supported by the fibro-adipogenic progenitors (FAPs) and immune cells, are indispensable for the regeneration of injured appendicular skeletal muscles. However, almost nothing is known about their role in PFM regeneration following birth injury. To elucidate the role of MuSCs, FAPs, and immune infiltrate in this context, we used radiation to perturb cell function and followed PFM recovery in a validated simulated birth injury (SBI) rat model. Non-irradiated and irradiated rats were euthanized at 3,7,10, and 28 days post-SBI (dpi). Twenty-eight dpi, PFM fiber cross-sectional area (CSA) was significantly lower and the extracellular space occupied by immune infiltrate was larger in irradiated relative to nonirradiated injured animals. Following SBI in non-irradiated animals, MuSCs and FAPs expanded significantly at 7 and 3 dpi, respectively; this expansion did not occur in irradiated animals at the same time points. At 7 and 10 dpi, we observed persistent immune response in PFMs subjected to irradiation compared to non-irradiated injured PFMs. CSA of newly regenerated fibers was also significantly smaller following SBI in irradiated compared to non-irradiated injured PFMs. Our results demonstrate that the loss of function and decreased expansion of MuSCs and FAPs after birth injury lead to impaired PFM recovery. These findings form the basis for further studies focused on the identification of novel therapeutic targets to counteract postpartum PFM dysfunction and the associated pelvic floor disorders.
Collapse
Affiliation(s)
- Francesca Boscolo Sesillo
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Female Pelvic Medicine and Reconstructive Surgery, University of California, San Diego, San Diego, CA, 92037, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92037, USA
| | - Varsha Rajesh
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92161, USA
| | - Michelle Wong
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Female Pelvic Medicine and Reconstructive Surgery, University of California, San Diego, San Diego, CA, 92037, USA
| | - Pamela Duran
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92037, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - John B Rudell
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Female Pelvic Medicine and Reconstructive Surgery, University of California, San Diego, San Diego, CA, 92037, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92037, USA
| | - Courtney P Rundio
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Female Pelvic Medicine and Reconstructive Surgery, University of California, San Diego, San Diego, CA, 92037, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92037, USA
| | - Brittni B Baynes
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Female Pelvic Medicine and Reconstructive Surgery, University of California, San Diego, San Diego, CA, 92037, USA
| | - Louise C Laurent
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92037, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Maternal-Fetal Medicine, University of San Diego, La Jolla, CA, 92037, USA
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Karen L Christman
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92037, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Marianna Alperin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Female Pelvic Medicine and Reconstructive Surgery, University of California, San Diego, San Diego, CA, 92037, USA.
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92037, USA.
| |
Collapse
|
108
|
Plisak U, Szczepaniak J, Żmigrodzka M, Giercuszkiewicz-Hecold B, Witkowska-Piłaszewicz O. Changes in novel anti-infalmmatory cytokine concetration in the bood of endurance and race horses at different levels of training. Comput Struct Biotechnol J 2022; 21:418-424. [PMID: 36618977 PMCID: PMC9798135 DOI: 10.1016/j.csbj.2022.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Several anti-inflammatory cytokines have been proposed as markers for exercise monitoring in humans such as the interleukin 1 receptor agonist (IL-ra), or interleukin 13 (IL-13). Equine athletes may be considered a model for human exercise physiology research, however there is a lack of such studies of this species. Thus, we decided to examine the changes of IL-1ra and IL-13 in serum concentration during aerobic (endurance) and anaerobic (race) exercise in horses of different fitness levels in comparison with the well-known anti-inflammatory cytokine interleukin 10 (IL-10). The group of endurance horses (n = 13) consisted of animals competing over 100 (n = 7) and 120 km (n = 6) rides. The group of racehorses (n = 18) consisted of trained (n = 9) and untrained (n = 9) animals. The blood samples were obtained before and after the exercise. The ELISA test was performed to evaluate the changes of IL-1ra, IL-13 and IL-10 during different types of exercise. In endurance horses there was an increase in IL-13 (p = 0.0012) after the 100 km ride and in IL-1ra (p = 0.0411) after the 120 km ride. In race horses there was a higher IL-13 basal serum concentration in the untrained group, as well as a decrease of IL-13 after exercise (p = 0.0188). In trained racehorses there was an increase in IL-1ra (p < 0.0001) and IL-13 after exercise (p = 0.0028). In conclusion, the reaction of IL-1ra and IL-13 to different types of exercise differ from each other. Thus, in future, they may be helpful in monitoring the fitness of horses, however more research is needed.
Collapse
Affiliation(s)
- Urszula Plisak
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Jarosław Szczepaniak
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Magdalena Żmigrodzka
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Beata Giercuszkiewicz-Hecold
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Olga Witkowska-Piłaszewicz
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
- Corresponding author at: Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland.
| |
Collapse
|
109
|
Replication collisions induced by de-repressed S-phase transcription are connected with malignant transformation of adult stem cells. Nat Commun 2022; 13:6907. [PMID: 36376321 PMCID: PMC9663592 DOI: 10.1038/s41467-022-34577-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 10/29/2022] [Indexed: 11/16/2022] Open
Abstract
Transcription replication collisions (TRCs) constitute a major intrinsic source of genome instability but conclusive evidence for a causal role of TRCs in tumor initiation is missing. We discover that lack of the H4K20-dimethyltransferase KMT5B (also known as SUV4-20H1) in muscle stem cells de-represses S-phase transcription by increasing H4K20me1 levels, which induces TRCs and aberrant R-loops in oncogenic genes. The resulting replication stress and aberrant mitosis activate ATR-RPA32-P53 signaling, promoting cellular senescence, which turns into rapid rhabdomyosarcoma formation when p53 is absent. Inhibition of S-phase transcription ameliorates TRCs and formation of R-loops in Kmt5b-deficient MuSCs, validating the crucial role of H4K20me1-dependent, tightly controlled S-phase transcription for preventing collision errors. Low KMT5B expression is prevalent in human sarcomas and associated with tumor recurrence, suggesting a common function of KMT5B in sarcoma formation. The study uncovers decisive functions of KMT5B for maintaining genome stability by repressing S-phase transcription via control of H4K20me1 levels.
Collapse
|
110
|
Ji S, Ma P, Cao X, Wang J, Yu X, Luo X, Lu J, Hou W, Zhang Z, Yan Y, Dong Y, Wang H. Myoblast-derived exosomes promote the repair and regeneration of injured skeletal muscle in mice. FEBS Open Bio 2022; 12:2213-2226. [PMID: 36325691 PMCID: PMC9714366 DOI: 10.1002/2211-5463.13504] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/17/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
When skeletal muscle is damaged, satellite cells (SCs) are activated to proliferate rapidly and fuse with the damaged muscle fibers to form new muscle fibers, thereby promoting muscle growth and remodeling and repair of trauma. Exosomes from differentiating human skeletal muscle cells trigger myogenesis of stem cells and provide biochemical cues for skeletal muscle regeneration. Therefore, we hypothesized that, when muscles are injured, myoblast-derived exosomes may regulate muscle repair and regeneration. Here, we investigated the underlying mechanism by applying C2C12-derived exosomes to injured mouse skeletal muscles. The expression levels of skeletal muscle regeneration factors paired box 7 and lipid-promoting factor peroxisome proliferator-activated receptor γ were upregulated, whereas the expression levels of fibrosis factors collagen-1 and α-smooth muscle actin decreased. The expression of proliferating cell nuclear antigen was elevated after applying C2C12-derived exosomes to SCs. Application of C2C12-derived exosomes to fibro-adipogenic progenitors resulted in an increase in peroxisome proliferator-activated receptor γ expression and adipogenesis capacity, whereas α-smooth muscle actin expression and fibrosis capacity decreased. Analysis of the transcriptome and proteome of SCs after treatment with exosomes showed the involvement of multiple biological processes, including proliferation and differentiation of SCs, muscle regeneration, skeletal muscle atrophy, and the inflammatory response after muscle injury. Hence, our data suggest that C2C12-derived exosomes can promote the regeneration of skeletal muscle fibers, accelerate the production of fat from damaged muscles, inhibit the fibrosis of damaged muscles, and accelerate injury repair, which is related to exosome-mediated regulation of the proliferation of SCs, differentiation of fibro-adipogenic progenitors, and modulation of SC mRNA expression and protein formation and decomposition.
Collapse
Affiliation(s)
- Shusen Ji
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Pei Ma
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Xiaorui Cao
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Juan Wang
- Department of Nephrology, Shanghai General HospitalShanghai Jiao Tong University School of MedicineChina
| | - Xiuju Yu
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Xiaomao Luo
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Jiayin Lu
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Wei Hou
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | | | - Yi Yan
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Yanjun Dong
- College of Veterinary MedicineChina Agricultural UniversityBeijingChina
| | - Haidong Wang
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| |
Collapse
|
111
|
Tcf12 is required to sustain myogenic genes synergism with MyoD by remodelling the chromatin landscape. Commun Biol 2022; 5:1201. [DOI: 10.1038/s42003-022-04176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractMuscle stem cells (MuSCs) are essential for skeletal muscle development and regeneration, ensuring muscle integrity and normal function. The myogenic proliferation and differentiation of MuSCs are orchestrated by a cascade of transcription factors. In this study, we elucidate the specific role of transcription factor 12 (Tcf12) in muscle development and regeneration based on loss-of-function studies. Muscle-specific deletion of Tcf12 cause muscle weight loss owing to the reduction of myofiber size during development. Inducible deletion of Tcf12 specifically in adult MuSCs delayed muscle regeneration. The examination of MuSCs reveal that Tcf12 deletion resulted in cell-autonomous defects during myogenesis and Tcf12 is necessary for proper myogenic gene expression. Mechanistically, TCF12 and MYOD work together to stabilise chromatin conformation and sustain muscle cell fate commitment-related gene and chromatin architectural factor expressions. Altogether, our findings identify Tcf12 as a crucial regulator of MuSCs chromatin remodelling that regulates muscle cell determination and participates in skeletal muscle development and regeneration.
Collapse
|
112
|
Hong SE, Kneissl J, Cho A, Kim MJ, Park S, Lee J, Woo S, Kim S, Kim JS, Kim SY, Jung S, Kim J, Shin JY, Chae JH, Choi M. Transcriptome-based variant calling and aberrant mRNA discovery enhance diagnostic efficiency for neuromuscular diseases. J Med Genet 2022; 59:1075-1081. [PMID: 35387801 PMCID: PMC9613860 DOI: 10.1136/jmedgenet-2021-108307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/08/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Whole-exome sequencing-based diagnosis of rare diseases typically yields 40%-50% of success rate. Precise diagnosis of the patients with neuromuscular disorders (NMDs) has been hampered by locus heterogeneity or phenotypic heterogeneity. We evaluated the utility of transcriptome sequencing as an independent approach in diagnosing NMDs. METHODS The RNA sequencing (RNA-Seq) of muscle tissues from 117 Korean patients with suspected Mendelian NMD was performed to evaluate the ability to detect pathogenic variants. Aberrant splicing and CNVs were inspected to identify additional causal genetic factors for NMD. Aberrant splicing events in Dystrophin (DMD) were investigated by using antisense oligonucleotides (ASOs). A non-negative matrix factorisation analysis of the transcriptome data followed by cell type deconvolution was performed to cluster samples by expression-based signatures and identify cluster-specific gene ontologies. RESULTS Our pipeline called 38.1% of pathogenic variants exclusively from the muscle transcriptomes, demonstrating a higher diagnostic rate than that achieved via exome analysis (34.9%). The discovery of variants causing aberrant splicing allowed the application of ASOs to the patient-derived cells, providing a therapeutic approach tailored to individual patients. RNA-Seq data further enabled sample clustering by distinct gene expression profiles that corresponded to clinical parameters, conferring additional advantages over exome sequencing. CONCLUSION The RNA-Seq-based diagnosis of NMDs achieves an increased diagnostic rate and provided pathogenic status information, which is not easily accessible through exome analysis.
Collapse
Affiliation(s)
- Sung Eun Hong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jana Kneissl
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Anna Cho
- Department of Pediatrics, Rare Disease Center, Seoul National University Bundang Hospital, Gyeonggi-do, Korea
| | - Man Jin Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea
| | - Soojin Park
- Department of Pediatrics, Pediatric Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea
| | - Jeongeun Lee
- Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, Korea
| | - Sijae Woo
- Graduate School of Medical Science and Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Sora Kim
- Department of Genome Medicine and Science, Gachon University College of Medicine, Incheon, Korea
| | - Jun-Soon Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
- Department of Neurology, Seoul National University Bundang Hospital, Geyonggi-do, Korea
| | - Soo Yeon Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Pediatrics, Pediatric Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea
| | - Sungwon Jung
- Department of Genome Medicine and Science, Gachon University College of Medicine, Incheon, Korea
- Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Incheon, Korea
| | - Jinkuk Kim
- Graduate School of Medical Science and Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Je-Young Shin
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
| | - Jong-Hee Chae
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Pediatrics, Pediatric Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
113
|
Sinha S, Elbaz‐Alon Y, Avinoam O. Ca 2+ as a coordinator of skeletal muscle differentiation, fusion and contraction. FEBS J 2022; 289:6531-6542. [PMID: 35689496 PMCID: PMC9795905 DOI: 10.1111/febs.16552] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/05/2022] [Accepted: 06/09/2022] [Indexed: 12/30/2022]
Abstract
Muscle regeneration is essential for vertebrate muscle homeostasis and recovery after injury. During regeneration, muscle stem cells differentiate into myocytes, which then fuse with pre-existing muscle fibres. Hence, differentiation, fusion and contraction must be tightly regulated during regeneration to avoid the disastrous consequences of premature fusion of myocytes to actively contracting fibres. Cytosolic calcium (Ca2+ ), which is coupled to both induction of myogenic differentiation and contraction, has more recently been implicated in the regulation of myocyte-to-myotube fusion. In this viewpoint, we propose that Ca2+ -mediated coordination of differentiation, fusion and contraction is a feature selected in the amniotes to facilitate muscle regeneration.
Collapse
Affiliation(s)
- Sansrity Sinha
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Yael Elbaz‐Alon
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Ori Avinoam
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
114
|
Lv W, Jiang W, Luo H, Tong Q, Niu X, Liu X, Miao Y, Wang J, Guo Y, Li J, Zhan X, Hou Y, Peng Y, Wang J, Zhao S, Xu Z, Zuo B. Long noncoding RNA lncMREF promotes myogenic differentiation and muscle regeneration by interacting with the Smarca5/p300 complex. Nucleic Acids Res 2022; 50:10733-10755. [PMID: 36200826 PMCID: PMC9561262 DOI: 10.1093/nar/gkac854] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/11/2022] [Accepted: 09/23/2022] [Indexed: 11/12/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play important roles in the spatial and temporal regulation of muscle development and regeneration. Nevertheless, the determination of their biological functions and mechanisms underlying muscle regeneration remains challenging. Here, we identified a lncRNA named lncMREF (lncRNA muscle regeneration enhancement factor) as a conserved positive regulator of muscle regeneration among mice, pigs and humans. Functional studies demonstrated that lncMREF, which is mainly expressed in differentiated muscle satellite cells, promotes myogenic differentiation and muscle regeneration. Mechanistically, lncMREF interacts with Smarca5 to promote chromatin accessibility when muscle satellite cells are activated and start to differentiate, thereby facilitating genomic binding of p300/CBP/H3K27ac to upregulate the expression of myogenic regulators, such as MyoD and cell differentiation. Our results unravel a novel temporal-specific epigenetic regulation during muscle regeneration and reveal that lncMREF/Smarca5-mediated epigenetic programming is responsible for muscle cell differentiation, which provides new insights into the regulatory mechanism of muscle regeneration.
Collapse
Affiliation(s)
- Wei Lv
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Wei Jiang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Hongmei Luo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Qian Tong
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xiaoyu Niu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xiao Liu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yang Miao
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jingnan Wang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yiwen Guo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jianan Li
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xizhen Zhan
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yunqing Hou
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yaxin Peng
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jian Wang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shuhong Zhao
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| | - Zaiyan Xu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| |
Collapse
|
115
|
Sun H, Shen L, Zhang P, Lin F, Ma J, Wu Y, Yu H, Sun L. Inhibition of High-Temperature Requirement Protein A2 Protease Activity Represses Myogenic Differentiation via UPRmt. Int J Mol Sci 2022; 23:ijms231911761. [PMID: 36233059 PMCID: PMC9569504 DOI: 10.3390/ijms231911761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
Skeletal muscles require muscle satellite cell (MuSC) differentiation to facilitate the replenishment and repair of muscle fibers. A key step in this process is called myogenic differentiation. The differentiation ability of MuSCs decreases with age and can result in sarcopenia. Although mitochondria have been reported to be involved in myogenic differentiation by promoting a bioenergetic remodeling, little is known about the interplay of mitochondrial proteostasis and myogenic differentiation. High-temperature-requirement protein A2 (HtrA2/Omi) is a protease that regulates proteostasis in the mitochondrial intermembrane space (IMS). Mice deficient in HtrA2 protease activity show a distinct phenotype of sarcopenia. To investigate the role of IMS proteostasis during myogenic differentiation, we treated C2C12 myoblasts with UCF101, a specific inhibitor of HtrA2 during differentiation process. A key step in this process is called myogenic differentiation. The differentiation ability of MuSCs decreases with age and can result in sarcopenia. Further, CHOP, p-eIF2α, and other mitochondrial unfolded protein response (UPRmt)-related proteins are upregulated. Therefore, we suggest that imbalance of mitochondrial IMS proteostasis acts via a retrograde signaling pathway to inhibit myogenic differentiation via the UPRmt pathway. These novel mechanistic insights may have implications for the development of new strategies for the treatment of sarcopenia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huimei Yu
- Correspondence: (H.Y.); (L.S.); Tel.: +86-0431-8561-9495 (H.Y. & L.S.)
| | - Liankun Sun
- Correspondence: (H.Y.); (L.S.); Tel.: +86-0431-8561-9495 (H.Y. & L.S.)
| |
Collapse
|
116
|
Negroni E, Kondili M, Muraine L, Bensalah M, Butler-Browne GS, Mouly V, Bigot A, Trollet C. Muscle fibro-adipogenic progenitors from a single-cell perspective: Focus on their “virtual” secretome. Front Cell Dev Biol 2022; 10:952041. [PMID: 36200044 PMCID: PMC9527288 DOI: 10.3389/fcell.2022.952041] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscle is a highly plastic tissue composed of a number of heterogeneous cell populations that, by interacting and communicating with each other, participate to the muscle homeostasis, and orchestrate regeneration and repair in healthy and diseased conditions. Although muscle regeneration relies on the activity of muscle stem cells (MuSCs), many other cellular players such as inflammatory, vascular and tissue-resident mesenchymal cells participate and communicate with MuSCs to sustain the regenerative process. Among them, Fibro-Adipogenic Progenitors (FAPs), a muscle interstitial stromal population, are crucial actors during muscle homeostasis and regeneration, interacting with MuSCs and other cellular players and dynamically producing and remodelling the extra-cellular matrix. Recent emerging single-cell omics technologies have resulted in the dissection of the heterogeneity of each cell populations within skeletal muscle. In this perspective we have reviewed the recent single-cell omics studies with a specific focus on FAPs in mouse and human muscle. More precisely, using the OutCyte prediction tool, we analysed the “virtual” secretome of FAPs, in resting and regenerating conditions, to highlight the potential of RNAseq data for the study of cellular communication.
Collapse
|
117
|
Yang YX, Liu MS, Liu XJ, Zhang YC, Hu YY, Gao RS, Pang EK, Hou L, Wang JC, Fei WY. Porous Se@SiO 2 nanoparticles improve oxidative injury to promote muscle regeneration via modulating mitochondria. Nanomedicine (Lond) 2022; 17:1547-1565. [PMID: 36331417 DOI: 10.2217/nnm-2022-0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background: Acute skeletal muscle injuries are common among physical or sports traumas. The excessive oxidative stress at the site of injury impairs muscle regeneration. The authors have recently developed porous Se@SiO2 nanoparticles (NPs) with antioxidant properties. Methods: The protective effects were evaluated by cell proliferation, myogenic differentiation and mitochondrial activity. Then, the therapeutic effect was investigated in a cardiotoxin-induced muscle injury rat model. Results: Porous Se@SiO2 NPs significantly protected the morphological and functional stability of mitochondria, thus protecting satellite cells from H2O2-induced damage to cell proliferation and myogenic differentiation. In the rat model, intervention with porous Se@SiO2 NPs promoted muscle regeneration. Conclusion: This study reveals the application potential of porous Se@SiO2 NPs in skeletal muscle diseases related to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yu-Xia Yang
- Dalian Medical University, Dalian, 116044, People's Republic of China.,Sports Medicine Department, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Ming-Sheng Liu
- Sports Medicine Department, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Xi-Jian Liu
- School of Chemistry & Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, People's Republic of China
| | - Yu-Cheng Zhang
- Dalian Medical University, Dalian, 116044, People's Republic of China.,Sports Medicine Department, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Yang-Yang Hu
- Sports Medicine Department, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Rang-Shan Gao
- Dalian Medical University, Dalian, 116044, People's Republic of China.,Sports Medicine Department, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Er-Kai Pang
- Dalian Medical University, Dalian, 116044, People's Republic of China.,Sports Medicine Department, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Lei Hou
- Dalian Medical University, Dalian, 116044, People's Republic of China.,Sports Medicine Department, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Jing-Cheng Wang
- Sports Medicine Department, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Wen-Yong Fei
- Sports Medicine Department, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| |
Collapse
|
118
|
Dong A, Liu J, Lin K, Zeng W, So WK, Hu S, Cheung TH. Global chromatin accessibility profiling analysis reveals a chronic activation state in aged muscle stem cells. iScience 2022; 25:104954. [PMID: 36093058 PMCID: PMC9459695 DOI: 10.1016/j.isci.2022.104954] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 06/30/2022] [Accepted: 08/12/2022] [Indexed: 11/26/2022] Open
|
119
|
Huo F, Liu Q, Liu H. Contribution of muscle satellite cells to sarcopenia. Front Physiol 2022; 13:892749. [PMID: 36035464 PMCID: PMC9411786 DOI: 10.3389/fphys.2022.892749] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Sarcopenia, a disorder characterized by age-related muscle loss and reduced muscle strength, is associated with decreased individual independence and quality of life, as well as a high risk of death. Skeletal muscle houses a normally mitotically quiescent population of adult stem cells called muscle satellite cells (MuSCs) that are responsible for muscle maintenance, growth, repair, and regeneration throughout the life cycle. Patients with sarcopenia are often exhibit dysregulation of MuSCs homeostasis. In this review, we focus on the etiology, assessment, and treatment of sarcopenia. We also discuss phenotypic and regulatory mechanisms of MuSC quiescence, activation, and aging states, as well as the controversy between MuSC depletion and sarcopenia. Finally, we give a multi-dimensional treatment strategy for sarcopenia based on improving MuSC function.
Collapse
Affiliation(s)
- Fengjiao Huo
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hailiang Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
- *Correspondence: Hailiang Liu,
| |
Collapse
|
120
|
Yu B, Liu J, Zhang J, Mu T, Feng X, Ma R, Gu Y. Regulatory role of RNA N6-methyladenosine modifications during skeletal muscle development. Front Cell Dev Biol 2022; 10:929183. [PMID: 35990615 PMCID: PMC9389409 DOI: 10.3389/fcell.2022.929183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/28/2022] [Indexed: 01/07/2023] Open
Abstract
Functional cells in embryonic myogenesis and postnatal muscle development undergo multiple stages of proliferation and differentiation, which are strict procedural regulation processes. N6-methyladenosine (m6A) is the most abundant RNA modification that regulates gene expression in specific cell types in eukaryotes and regulates various biological activities, such as RNA processing and metabolism. Recent studies have shown that m6A modification-mediated transcriptional and post-transcriptional regulation plays an essential role in myogenesis. This review outlines embryonic and postnatal myogenic differentiation and summarizes the important roles played by functional cells in each developmental period. Furthermore, the key roles of m6A modifications and their regulators in myogenesis were highlighted, and the synergistic regulation of m6A modifications with myogenic transcription factors was emphasized to characterize the cascade of transcriptional and post-transcriptional regulation during myogenesis. This review also discusses the crosstalk between m6A modifications and non-coding RNAs, proposing a novel mechanism for post-transcriptional regulation during skeletal muscle development. In summary, the transcriptional and post-transcriptional regulatory mechanisms mediated by m6A and their regulators may help develop new strategies to maintain muscle homeostasis, which are expected to become targets for animal muscle-specific trait breeding and treatment of muscle metabolic diseases.
Collapse
|
121
|
From cyclins to CDKIs: Cell cycle regulation of skeletal muscle stem cell quiescence and activation. Exp Cell Res 2022; 420:113275. [PMID: 35931143 DOI: 10.1016/j.yexcr.2022.113275] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/12/2022] [Accepted: 07/03/2022] [Indexed: 11/22/2022]
Abstract
After extensive proliferation during development, the adult skeletal muscle cells remain outside the cell cycle, either as post-mitotic myofibers or as quiescent muscle stem cells (MuSCs). Despite its terminally differentiated state, adult skeletal muscle has a remarkable regeneration potential, driven by MuSCs. Upon injury, MuSC quiescence is reversed to support tissue growth and repair and it is re-established after the completion of muscle regeneration. The distinct cell cycle states and transitions observed in the different myogenic populations are orchestrated by elements of the cell cycle machinery. This consists of i) complexes of cyclins and Cyclin-Dependent Kinases (CDKs) that ensure cell cycle progression and ii) their negative regulators, the Cyclin-Dependent Kinase Inhibitors (CDKIs). In this review we discuss the roles of these factors in developmental and adult myogenesis, with a focus on CDKIs that have emerging roles in stem cell functions.
Collapse
|
122
|
Fukada SI, Higashimoto T, Kaneshige A. Differences in muscle satellite cell dynamics during muscle hypertrophy and regeneration. Skelet Muscle 2022; 12:17. [PMID: 35794679 PMCID: PMC9258228 DOI: 10.1186/s13395-022-00300-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/29/2022] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle homeostasis and function are ensured by orchestrated cellular interactions among several types of cells. A noticeable aspect of skeletal muscle biology is the drastic cell-cell communication changes that occur in multiple scenarios. The process of recovering from an injury, which is known as regeneration, has been relatively well investigated. However, the cellular interplay that occurs in response to mechanical loading, such as during resistance training, is poorly understood compared to regeneration. During muscle regeneration, muscle satellite cells (MuSCs) rebuild multinuclear myofibers through a stepwise process of proliferation, differentiation, fusion, and maturation, whereas during mechanical loading-dependent muscle hypertrophy, MuSCs do not undergo such stepwise processes (except in rare injuries) because the nuclei of MuSCs become directly incorporated into the mature myonuclei. In this review, six specific examples of such differences in MuSC dynamics between regeneration and hypertrophy processes are discussed.
Collapse
Affiliation(s)
- So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Tatsuyoshi Higashimoto
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Akihiro Kaneshige
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| |
Collapse
|
123
|
Liu L, Liu X, Fu Y, Fang W, Wang C. Whole-body transcriptome analysis provides insights into the cascade of sequential expression events involved in growth, immunity, and metabolism during the molting cycle in Scylla paramamosain. Sci Rep 2022; 12:11395. [PMID: 35794121 PMCID: PMC9259733 DOI: 10.1038/s41598-022-14783-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
The molecular mechanisms underlying the dynamic process of crab molting are still poorly understood at the individual level. We investigated global expression changes in the mud crab, Scylla paramamosain, at the transcriptome level and revealed a cascade of sequential expression events for genes involved in various aspects of the molting process using whole-body sequencing of juvenile crabs. RNA-sequencing (RNA-seq) produced 139.49 Gb of clean reads and 20,436 differentially expressed genes (DEGs) among different molting stages. The expression patterns for genes involved in several molecular events critical for molting, such as cuticle reconstruction, cytoskeletal structure remodeling, hormone regulation, immune responses, and metabolism, were characterized and considered as mechanisms underlying molting in S. paramamosain. Among these genes, we identified 10,695 DEGs in adjacent molting stages. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that significantly enriched pathways included structural constituents of cuticle, binding and chitin metabolic processes, steroid hormone biosynthesis, insulin resistance, and amino sugar metabolic processes. The expression profiles of 12 functional genes detected via RNA-seq were corroborated via real-time RT-PCR assays. The results revealed gene expression profiles across the molting cycle and identified possible activation pathways for future investigation of the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Lei Liu
- School of Marine Sciences, Ningbo University, No.169, Qixing South Road, Meishan Port District, Beilun District, Ningbo, 315832, Zhejiang, China
| | - Xiao Liu
- School of Marine Sciences, Ningbo University, No.169, Qixing South Road, Meishan Port District, Beilun District, Ningbo, 315832, Zhejiang, China
| | - Yuanyuan Fu
- Ningbo Institute of Oceanography, Ningbo, 315832, China
| | - Wei Fang
- School of Marine Sciences, Ningbo University, No.169, Qixing South Road, Meishan Port District, Beilun District, Ningbo, 315832, Zhejiang, China
| | - Chunlin Wang
- School of Marine Sciences, Ningbo University, No.169, Qixing South Road, Meishan Port District, Beilun District, Ningbo, 315832, Zhejiang, China.
| |
Collapse
|
124
|
Zhang H, Kim HT, Feeley BT, Lin G, Lue TF, Liu M, Banie L, Liu X. Microenergy acoustic pulses promotes muscle regeneration through in situ activation of muscle stem cells. J Orthop Res 2022; 40:1621-1631. [PMID: 34657315 PMCID: PMC9013392 DOI: 10.1002/jor.25184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/16/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023]
Abstract
Microenergy acoustic pulses (MAP) is a modified low-intensity extracorporeal shock wave therapy that currently used for treating musculoskeletal disorders. However, its function on muscle regeneration after ischemia-reperfusion injury (IRI) remains unknown. This study aimed to explore the effect of MAP on muscle injury after IRI and its underlying mechanisms. Ten-week-old C57BL/6J mice underwent unilateral hindlimb IRI followed with or without MAP treatment. Wet weight of tibialis anterior muscles at both injury and contralateral sides were measured followed with histology analysis at 3 weeks after IRI. In in vitro study, the myoblasts, endothelial cells and fibro-adipogenic progenitors (FAP) were treated with MAP. Cell proliferation and differentiation were assessed, and related gene expressions were measured by real-time PCR. Our results showed that MAP significantly increased the muscle weight and centrally nucleated regenerating muscle fiber size along with a trend in activating satellite cells. In vitro data indicated that MAP promoted myoblast proliferation and differentiation and endothelial cells migration. MAP also induced FAP brown/beige adipogenesis, a promyogenic phenotype of FAPs. Our findings demonstrate the beneficial function of MAP in promoting muscle regeneration after IR injury by inducing muscle stem cells proliferation and differentiation.
Collapse
Affiliation(s)
- He Zhang
- Department of Physical Education, Central South University, Hunan, China,Department of Orthopaedic Surgery, San Francisco Veterans Affair Health Care System, San Francisco, CA, USA,Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Hubert T. Kim
- Department of Orthopaedic Surgery, San Francisco Veterans Affair Health Care System, San Francisco, CA, USA,Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Brian T. Feeley
- Department of Orthopaedic Surgery, San Francisco Veterans Affair Health Care System, San Francisco, CA, USA,Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Tom F. Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Mengyao Liu
- Department of Orthopaedic Surgery, San Francisco Veterans Affair Health Care System, San Francisco, CA, USA,Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Lia Banie
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Xuhui Liu
- Department of Orthopaedic Surgery, San Francisco Veterans Affair Health Care System, San Francisco, CA, USA,Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, CA, USA,Corresponding author: Xuhui Liu, MD, 1700 Owens Street, San Francisco, CA 94158, Tel: 415-575-0546, Fax: 415-750-2181,
| |
Collapse
|
125
|
Buckley KH, Nestor-Kalinoski AL, Pizza FX. Intercellular Adhesion Molecule-1 Enhances Myonuclear Transcription during Injury-Induced Muscle Regeneration. Int J Mol Sci 2022; 23:7028. [PMID: 35806032 PMCID: PMC9267068 DOI: 10.3390/ijms23137028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/11/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
The local inflammatory environment of injured skeletal muscle contributes to the resolution of the injury by promoting the proliferation of muscle precursor cells during the initial stage of muscle regeneration. However, little is known about the extent to which the inflammatory response influences the later stages of regeneration when newly formed (regenerating myofibers) are accumulating myonuclei and undergoing hypertrophy. Our prior work indicated that the inflammatory molecule ICAM-1 facilitates regenerating myofiber hypertrophy through a process involving myonuclear positioning and/or transcription. The present study tested the hypothesis that ICAM-1 enhances global transcription within regenerating myofibers by augmenting the transcriptional activity of myonuclei positioned in linear arrays (nuclear chains). We found that transcription in regenerating myofibers was ~2-fold higher in wild type compared with ICAM-1-/- mice at 14 and 28 days post-injury. This occurred because the transcriptional activity of individual myonuclei in nuclei chains, nuclear clusters, and a peripheral location were ~2-fold higher in wild type compared with ICAM-1-/- mice during regeneration. ICAM-1's enhancement of transcription in nuclear chains appears to be an important driver of myofiber hypertrophy as it was statistically associated with an increase in myofiber size during regeneration. Taken together, our findings indicate that ICAM-1 facilitates myofiber hypertrophy after injury by enhancing myonuclear transcription.
Collapse
Affiliation(s)
- Kole H. Buckley
- School of Exercise and Rehabilitation Sciences, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606, USA;
| | | | - Francis X. Pizza
- School of Exercise and Rehabilitation Sciences, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606, USA;
| |
Collapse
|
126
|
Wang S, Li L, Cook C, Zhang Y, Xia Y, Liu Y. A potential fate decision landscape of the TWEAK/Fn14 axis on stem and progenitor cells: a systematic review. Stem Cell Res Ther 2022; 13:270. [PMID: 35729659 PMCID: PMC9210594 DOI: 10.1186/s13287-022-02930-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022] Open
Abstract
Stem and progenitor cells (SPCs) possess self-remodeling ability and differentiation potential and are responsible for the regeneration and development of organs and tissue systems. However, the precise mechanisms underlying the regulation of SPC biology remain unclear. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) acts on miscellaneous cells via binding to fibroblast growth factor-inducible 14 (Fn14) and exerts pleiotropic functions in the regulation of divergent stem cell fates. TWEAK/Fn14 signaling can regulate the proliferation, differentiation, and migration of multiple SPCs as well as tumorigenesis in certain contexts. Although TWEAK’s roles in modulating multiple SPCs are sparsely reported, the systemic effector functions of this multifaceted protein have not been fully elucidated. In this review, we summarized the fate decisions of TWEAK/Fn14 signaling on multiple stem cells and characterized its potential in stem cell therapy.
Collapse
Affiliation(s)
- Sijia Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Liang Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Christopher Cook
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Yufei Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, Shaanxi, China.
| | - Yale Liu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
127
|
Regulation of Non-Coding RNA in the Growth and Development of Skeletal Muscle in Domestic Chickens. Genes (Basel) 2022; 13:genes13061033. [PMID: 35741795 PMCID: PMC9222894 DOI: 10.3390/genes13061033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Chicken is the most widely consumed meat product worldwide and is a high-quality source of protein for humans. The skeletal muscle, which accounts for the majority of chicken products and contains the most valuable components, is tightly correlated to meat product yield and quality. In domestic chickens, skeletal muscle growth is regulated by a complex network of molecules that includes some non-coding RNAs (ncRNAs). As a regulator of muscle growth and development, ncRNAs play a significant function in the development of skeletal muscle in domestic chickens. Recent advances in sequencing technology have contributed to the identification and characterization of more ncRNAs (mainly microRNAs (miRNAs), long non-coding RNAs (LncRNAs), and circular RNAs (CircRNAs)) involved in the development of domestic chicken skeletal muscle, where they are widely involved in proliferation, differentiation, fusion, and apoptosis of myoblasts and satellite cells, and the specification of muscle fiber type. In this review, we summarize the ncRNAs involved in the skeletal muscle growth and development of domestic chickens and discuss the potential limitations and challenges. It will provide a theoretical foundation for future comprehensive studies on ncRNA participation in the regulation of skeletal muscle growth and development in domestic chickens.
Collapse
|
128
|
Larson AA, Shams AS, McMillin SL, Sullivan BP, Vue C, Roloff ZA, Batchelor E, Kyba M, Lowe DA. Estradiol deficiency reduces the satellite cell pool by impairing cell cycle progression. Am J Physiol Cell Physiol 2022; 322:C1123-C1137. [PMID: 35442828 PMCID: PMC9169829 DOI: 10.1152/ajpcell.00429.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/31/2022] [Accepted: 04/17/2022] [Indexed: 12/22/2022]
Abstract
The size of the satellite cell pool is reduced in estradiol (E2)-deficient female mice and humans. Here, we use a combination of in vivo and in vitro approaches to identify mechanisms, whereby E2 deficiency impairs satellite cell maintenance. By measuring satellite cell numbers in mice at several early time points postovariectomy (Ovx), we determine that satellite cell numbers decline by 33% between 10 and 14 days post-Ovx in tibialis anterior and gastrocnemius muscles. At 14 days post-Ovx, we demonstrate that satellite cells have a reduced propensity to transition from G0/G1 to S and G2/M phases, compared with cells from ovary-intact mice, associated with changes in two key satellite cell cycle regulators, ccna2 and p16INK4a. Further, freshly isolated satellite cells treated with E2 in vitro have 62% greater cell proliferation and require less time to complete the first division. Using clonal and differentiation assays, we measured 69% larger satellite cell colonies and enhanced satellite cell-derived myoblast differentiation with E2 treatment compared with vehicle-treated cells. Together, these results identify a novel mechanism for preservation of the satellite cell pool by E2 via promotion of satellite cell cycling.
Collapse
Affiliation(s)
- Alexie A Larson
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Ahmed S Shams
- Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota
- Human Anatomy and Embryology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Shawna L McMillin
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Brian P Sullivan
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Cha Vue
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Zachery A Roloff
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Eric Batchelor
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Michael Kyba
- Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Dawn A Lowe
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
129
|
Efficient Isolation of Lymphocytes and Myogenic Cells from the Tissue of Muscle Regeneration. Cells 2022; 11:cells11111754. [PMID: 35681449 PMCID: PMC9179359 DOI: 10.3390/cells11111754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
Isolation of both lymphocytes and myogenic cells from muscle tissue is required for elucidating the cellular and molecular mechanisms of muscle regeneration. Here, we aimed to establish an optimal method obtaining a high yield of lymphocytes during muscle regeneration. After the muscle injury, we observed higher infiltration of lymphocytic cells in the muscle on day 3 after injury. Then, we compared two different white blood cell isolation methods, the Percoll gradient and CD45-magnetic bead methods, to assess the percentage and number of T and B cells. Flow cytometry analysis showed that the CD45-magnetic bead method has a better efficiency in isolating CD4+, CD8+ T cells, and B cells from injured muscle tissues of wild-type and mdx mice than that by the Percoll gradient method. Moreover, we found that the CD45-negative fraction from wild-type and mdx mice includes myogenic cells. In conclusion, we report that the CD45-magnetic bead method is suitable to isolate T and B cells during muscle regeneration with higher purity and yield and can also isolate myogenic cells within the same sample. This method provides a technical basis for further studies on muscle regeneration, involving lymphocytes and muscle cells, with a wide range of clinical applications.
Collapse
|
130
|
Metzler E, Escobar H, Sunaga-Franze DY, Sauer S, Diecke S, Spuler S. Generation of hiPSC-Derived Skeletal Muscle Cells: Exploiting the Potential of Skeletal Muscle-Derived hiPSCs. Biomedicines 2022; 10:1204. [PMID: 35625941 PMCID: PMC9138862 DOI: 10.3390/biomedicines10051204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 12/28/2022] Open
Abstract
Cell therapies for muscle wasting disorders are on the verge of becoming a realistic clinical perspective. Muscle precursor cells derived from human induced pluripotent stem cells (hiPSCs) represent the key to unrestricted cell numbers indispensable for the treatment of generalized muscle wasting such as cachexia or intensive care unit (ICU)-acquired weakness. We asked how the cell of origin influences efficacy and molecular properties of hiPSC-derived muscle progenitor cells. We generated hiPSCs from primary muscle stem cells and from peripheral blood mononuclear cells (PBMCs) of the same donors (n = 4) and compared their molecular profiles, myogenic differentiation potential, and ability to generate new muscle fibers in vivo. We show that reprogramming into hiPSCs from primary muscle stem cells was faster and 35 times more efficient than from blood cells. Global transcriptome comparison revealed significant differences, but differentiation into induced myogenic cells using a directed transgene-free approach could be achieved with muscle- and PBMC-derived hiPSCs, and both cell types generated new muscle fibers in vivo. Differences in myogenic differentiation efficiency were identified with hiPSCs generated from individual donors. The generation of muscle-stem-cell-derived hiPSCs is a fast and economic method to obtain unrestricted cell numbers for cell-based therapies in muscle wasting disorders, and in this aspect are superior to blood-derived hiPSCs.
Collapse
Affiliation(s)
- Eric Metzler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; (H.E.); (D.Y.S.-F.); (S.S.); (S.D.)
- Experimental and Clinical Research Center, a Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and Charité—Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Helena Escobar
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; (H.E.); (D.Y.S.-F.); (S.S.); (S.D.)
- Experimental and Clinical Research Center, a Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and Charité—Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Daniele Yumi Sunaga-Franze
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; (H.E.); (D.Y.S.-F.); (S.S.); (S.D.)
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Genomics Platform, Hannoversche Straße 28, 10115 Berlin, Germany
| | - Sascha Sauer
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; (H.E.); (D.Y.S.-F.); (S.S.); (S.D.)
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Genomics Platform, Hannoversche Straße 28, 10115 Berlin, Germany
| | - Sebastian Diecke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; (H.E.); (D.Y.S.-F.); (S.S.); (S.D.)
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Pluripotent Stem Cells Platform, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Simone Spuler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; (H.E.); (D.Y.S.-F.); (S.S.); (S.D.)
- Experimental and Clinical Research Center, a Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and Charité—Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
| |
Collapse
|
131
|
Pruller J, Figeac N, Zammit PS. DVL1 and DVL3 require nuclear localisation to regulate proliferation in human myoblasts. Sci Rep 2022; 12:8388. [PMID: 35589804 PMCID: PMC9120025 DOI: 10.1038/s41598-022-10536-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/25/2022] [Indexed: 11/09/2022] Open
Abstract
WNT signalling is essential for regulating a diverse range of cellular processes. In skeletal muscle, the WNT pathway plays crucial roles in maintenance of the stem cell pool and myogenic differentiation. Focus is usually directed at examining the function of central components of the WNT pathway, including β-CATENIN and the GSK3β complex and TCF/LEF transcription factors, in tissue homeostasis and cancer. Other core components of the WNT pathway though, are three dishevelled (DVL) proteins: membrane associated proteins that propagate WNT signalling from membrane to nucleus. Here we examined DVL function in human myogenesis and the muscle-related cancer alveolar rhabdomyosarcoma. We demonstrate that DVL1 and DVL3 are necessary for efficient proliferation in human myoblasts and are important for timely myogenic differentiation. DVL1 and DVL3 also contribute to regulation of proliferation in rhabdomyosarcoma. DVL1 or DVL3 must be present in the nucleus to regulate proliferation, but they operate through different protein domains: DVL3 requires the DIX and PDZ domains, while DVL1 does not. Importantly, DVL1 and DVL3 activity is independent of markedly increased translocation of β-CATENIN to the nucleus, normally a hallmark of active canonical WNT signalling.
Collapse
Affiliation(s)
- Johanna Pruller
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, UK
| | - Nicolas Figeac
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, UK
| | - Peter S Zammit
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, UK.
| |
Collapse
|
132
|
Williams K, Yokomori K, Mortazavi A. Heterogeneous Skeletal Muscle Cell and Nucleus Populations Identified by Single-Cell and Single-Nucleus Resolution Transcriptome Assays. Front Genet 2022; 13:835099. [PMID: 35646075 PMCID: PMC9136090 DOI: 10.3389/fgene.2022.835099] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Single-cell RNA-seq (scRNA-seq) has revolutionized modern genomics, but the large size of myotubes and myofibers has restricted use of scRNA-seq in skeletal muscle. For the study of muscle, single-nucleus RNA-seq (snRNA-seq) has emerged not only as an alternative to scRNA-seq, but as a novel method providing valuable insights into multinucleated cells such as myofibers. Nuclei within myofibers specialize at junctions with other cell types such as motor neurons. Nuclear heterogeneity plays important roles in certain diseases such as muscular dystrophies. We survey current methods of high-throughput single cell and subcellular resolution transcriptomics, including single-cell and single-nucleus RNA-seq and spatial transcriptomics, applied to satellite cells, myoblasts, myotubes and myofibers. We summarize the major myonuclei subtypes identified in homeostatic and regenerating tissue including those specific to fiber type or at junctions with other cell types. Disease-specific nucleus populations were found in two muscular dystrophies, FSHD and Duchenne muscular dystrophy, demonstrating the importance of performing transcriptome studies at the single nucleus level in muscle.
Collapse
Affiliation(s)
- Katherine Williams
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, United States
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
133
|
Kny M, Fielitz J. Hidden Agenda - The Involvement of Endoplasmic Reticulum Stress and Unfolded Protein Response in Inflammation-Induced Muscle Wasting. Front Immunol 2022; 13:878755. [PMID: 35615361 PMCID: PMC9124858 DOI: 10.3389/fimmu.2022.878755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Critically ill patients at the intensive care unit (ICU) often develop a generalized weakness, called ICU-acquired weakness (ICUAW). A major contributor to ICUAW is muscle atrophy, a loss of skeletal muscle mass and function. Skeletal muscle assures almost all of the vital functions of our body. It adapts rapidly in response to physiological as well as pathological stress, such as inactivity, immobilization, and inflammation. In response to a reduced workload or inflammation muscle atrophy develops. Recent work suggests that adaptive or maladaptive processes in the endoplasmic reticulum (ER), also known as sarcoplasmic reticulum, contributes to this process. In muscle cells, the ER is a highly specialized cellular organelle that assures calcium homeostasis and therefore muscle contraction. The ER also assures correct folding of proteins that are secreted or localized to the cell membrane. Protein folding is a highly error prone process and accumulation of misfolded or unfolded proteins can cause ER stress, which is counteracted by the activation of a signaling network known as the unfolded protein response (UPR). Three ER membrane residing molecules, protein kinase R-like endoplasmic reticulum kinase (PERK), inositol requiring protein 1a (IRE1a), and activating transcription factor 6 (ATF6) initiate the UPR. The UPR aims to restore ER homeostasis by reducing overall protein synthesis and increasing gene expression of various ER chaperone proteins. If ER stress persists or cannot be resolved cell death pathways are activated. Although, ER stress-induced UPR pathways are known to be important for regulation of skeletal muscle mass and function as well as for inflammation and immune response its function in ICUAW is still elusive. Given recent advances in the development of ER stress modifying molecules for neurodegenerative diseases and cancer, it is important to know whether or not therapeutic interventions in ER stress pathways have favorable effects and these compounds can be used to prevent or treat ICUAW. In this review, we focus on the role of ER stress-induced UPR in skeletal muscle during critical illness and in response to predisposing risk factors such as immobilization, starvation and inflammation as well as ICUAW treatment to foster research for this devastating clinical problem.
Collapse
Affiliation(s)
- Melanie Kny
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jens Fielitz
- Department of Molecular Cardiology, DZHK (German Center for Cardiovascular Research), Partner Site, Greifswald, Germany
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
134
|
Wang J, Broer T, Chavez T, Zhou CJ, Tran S, Xiang Y, Khodabukus A, Diao Y, Bursac N. Myoblast deactivation within engineered human skeletal muscle creates a transcriptionally heterogeneous population of quiescent satellite-like cells. Biomaterials 2022; 284:121508. [PMID: 35421801 PMCID: PMC9289780 DOI: 10.1016/j.biomaterials.2022.121508] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 03/18/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022]
Abstract
Satellite cells (SCs), the adult Pax7-expressing stem cells of skeletal muscle, are essential for muscle repair. However, in vitro investigations of SC function are challenging due to isolation-induced SC activation, loss of native quiescent state, and differentiation to myoblasts. In the present study, we optimized methods to deactivate in vitro expanded human myoblasts within a 3D culture environment of engineered human skeletal muscle tissues ("myobundles"). Immunostaining and gene expression analyses revealed that a fraction of myoblasts within myobundles adopted a quiescent phenotype (3D-SCs) characterized by increased Pax7 expression, cell cycle exit, and activation of Notch signaling. Similar to native SCs, 3D-SC quiescence is regulated by Notch and Wnt signaling while loss of quiescence and reactivation of 3D-SCs can be induced by growth factors including bFGF. Myobundle injury with a bee toxin, melittin, induces robust myofiber fragmentation, functional decline, and 3D-SC proliferation. By applying single cell RNA-sequencing (scRNA-seq), we discover the existence of two 3D-SC subpopulations (quiescent and activated), identify deactivation-associated gene signature using trajectory inference between 2D myoblasts and 3D-SCs, and characterize the transcriptomic changes within reactivated 3D-SCs in response to melittin-induced injury. These results demonstrate the ability of an in vitro engineered 3D human skeletal muscle environment to support the formation of a quiescent and heterogeneous SC population recapitulating several aspects of the native SC phenotype, and provide a platform for future studies of human muscle regeneration and disease-associated SC dysfunction.
Collapse
Affiliation(s)
- Jason Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Torie Broer
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Taylor Chavez
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Chris J Zhou
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sabrina Tran
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Yu Xiang
- Department of Cell Biology, Duke University, Durham, NC, USA
| | | | - Yarui Diao
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
135
|
Bachman JF, Chakkalakal JV. Insights into muscle stem cell dynamics during postnatal development. FEBS J 2022; 289:2710-2722. [PMID: 33811430 PMCID: PMC9947813 DOI: 10.1111/febs.15856] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
During development, resident stem cell populations contribute to the growth and maturation of tissue and organs. In skeletal muscle, muscle stem cells, or satellite cells (SCs), are responsible for the maturation of postnatal myofibers. However, the role SCs play in later stages of postnatal growth, and thus, when they enter a mature quiescent state is controversial. Here, we discuss the current literature regarding the role SCs play in all stages of postnatal growth, from birth to puberty onset to young adulthood. We additionally highlight the implications of SC loss or dysfunction during developmental stages, both in the context of experimental paradigms and disease settings.
Collapse
Affiliation(s)
- John F Bachman
- Department of Pathology and Laboratory Medicine, Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester NY, United States.,Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester NY, United States
| | - Joe V Chakkalakal
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester NY, United States.,Department of Biomedical Engineering, University of Rochester, Rochester NY, United States.,Wilmot Cancer Institute, University of Rochester Medical Center, Rochester NY, United States.,Stem Cell and Regenerative Medicine Institute, and The Rochester Aging Research Center, University of Rochester Medical Center, Rochester NY, United States.,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester NY, United States
| |
Collapse
|
136
|
Trolese MC, Scarpa C, Melfi V, Fabbrizio P, Sironi F, Rossi M, Bendotti C, Nardo G. Boosting the peripheral immune response in the skeletal muscles improved motor function in ALS transgenic mice. Mol Ther 2022; 30:2760-2784. [PMID: 35477657 PMCID: PMC9372324 DOI: 10.1016/j.ymthe.2022.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 11/26/2022] Open
Abstract
Monocyte chemoattractant protein-1 (MCP1) is one of the most powerful pro-inflammatory chemokines. However, its signalling is pivotal in driving injured axon and muscle regeneration.
Collapse
Affiliation(s)
- Maria Chiara Trolese
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Carlotta Scarpa
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Valentina Melfi
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Paola Fabbrizio
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Francesca Sironi
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Martina Rossi
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy;.
| | - Giovanni Nardo
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy;.
| |
Collapse
|
137
|
Nalbandian M, Zhao M, Kato H, Jonouchi T, Nakajima-Koyama M, Yamamoto T, Sakurai H. Single-cell RNA-seq reveals heterogeneity in hiPSC-derived muscle progenitors and E2F family as a key regulator of proliferation. Life Sci Alliance 2022; 5:5/8/e202101312. [PMID: 35459735 PMCID: PMC9034463 DOI: 10.26508/lsa.202101312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/25/2022] Open
Abstract
This study identified and characterized four different populations of muscle progenitor cells derived from human induced pluripotent stem cells. Human pluripotent stem cell-derived muscle progenitor cells (hiPSC-MuPCs) resemble fetal-stage muscle progenitor cells and possess in vivo regeneration capacity. However, the heterogeneity of hiPSC-MuPCs is unknown, which could impact the regenerative potential of these cells. Here, we established an hiPSC-MuPC atlas by performing single-cell RNA sequencing of hiPSC-MuPC cultures. Bioinformatic analysis revealed four cell clusters for hiPSC-MuPCs: myocytes, committed, cycling, and noncycling progenitors. Using FGFR4 as a marker for noncycling progenitors and cycling cells and CD36 as a marker for committed and myocyte cells, we found that FGFR4+ cells possess a higher regenerative capacity than CD36+ cells. We also identified the family of E2F transcription factors are key regulators of hiPSC-MuPC proliferation. Our study provides insights on the purification of hiPSC-MuPCs with higher regenerative potential and increases the understanding of the transcriptional regulation of hiPSC-MuPCs.
Collapse
Affiliation(s)
- Minas Nalbandian
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Mingming Zhao
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Hiroki Kato
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Asahi Kasei Co., Ltd., Tokyo, Japan
| | - Tatsuya Jonouchi
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - May Nakajima-Koyama
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.,Medical-risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Hidetoshi Sakurai
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
138
|
Lee EJ, Shaikh S, Baig MH, Park SY, Lim JH, Ahmad SS, Ali S, Ahmad K, Choi I. MIF1 and MIF2 Myostatin Peptide Inhibitors as Potent Muscle Mass Regulators. Int J Mol Sci 2022; 23:ijms23084222. [PMID: 35457038 PMCID: PMC9031736 DOI: 10.3390/ijms23084222] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023] Open
Abstract
The use of peptides as drugs has progressed over time and continues to evolve as treatment paradigms change and new drugs are developed. Myostatin (MSTN) inhibition therapy has shown great promise for the treatment of muscle wasting diseases. Here, we report the MSTN-derived novel peptides MIF1 (10-mer) and MIF2 (10-mer) not only enhance myogenesis by inhibiting MSTN and inducing myogenic-related markers but also reduce adipogenic proliferation and differentiation by suppressing the expression of adipogenic markers. MIF1 and MIF2 were designed based on in silico interaction studies between MSTN and its receptor, activin type IIB receptor (ACVRIIB), and fibromodulin (FMOD). Of the different modifications of MIF1 and MIF2 examined, Ac-MIF1 and Ac-MIF2-NH2 significantly enhanced cell proliferation and differentiation as compared with non-modified peptides. Mice pretreated with Ac-MIF1 or Ac-MIF2-NH2 prior to cardiotoxin-induced muscle injury showed more muscle regeneration than non-pretreated controls, which was attributed to the induction of myogenic genes and reduced MSTN expression. These findings imply that Ac-MIF1 and Ac-MIF2-NH2 might be valuable therapeutic agents for the treatment of muscle-related diseases.
Collapse
Affiliation(s)
- Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (E.J.L.); (S.S.); (J.H.L.); (S.S.A.); (S.A.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (E.J.L.); (S.S.); (J.H.L.); (S.S.A.); (S.A.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu 42415, Korea;
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (E.J.L.); (S.S.); (J.H.L.); (S.S.A.); (S.A.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (E.J.L.); (S.S.); (J.H.L.); (S.S.A.); (S.A.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (E.J.L.); (S.S.); (J.H.L.); (S.S.A.); (S.A.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (E.J.L.); (S.S.); (J.H.L.); (S.S.A.); (S.A.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: (K.A.); (I.C.)
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (E.J.L.); (S.S.); (J.H.L.); (S.S.A.); (S.A.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: (K.A.); (I.C.)
| |
Collapse
|
139
|
Ripolone M, Velardo D, Mondello S, Zanotti S, Magri F, Minuti E, Cazzaniga S, Fortunato F, Ciscato P, Tiberio F, Sciacco M, Moggio M, Bettica P, Comi GP. Muscle histological changes in a large cohort of patients affected with Becker muscular dystrophy. Acta Neuropathol Commun 2022; 10:48. [PMID: 35395784 PMCID: PMC8994373 DOI: 10.1186/s40478-022-01354-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/25/2022] [Indexed: 11/17/2022] Open
Abstract
Becker muscular dystrophy (BMD) is a severe X-linked muscle disease. Age of onset, clinical variability, speed of progression and affected tissues display wide variability, making a clinical trial design for drug development very complex. The histopathological changes in skeletal muscle tissue are central to the pathogenesis, but they have not been thoroughly elucidated yet. Here we analysed muscle biopsies from a large cohort of BMD patients, focusing our attention on the histopathological muscle parameters, as fibrosis, fatty replacement, fibre cross sectional area, necrosis, regenerating fibres, splitting fibres, internalized nuclei and dystrophy evaluation. We correlated histological parameters with both demographic features and clinical functional evaluations. The most interesting results of our study are the accurate quantification of fibroadipose tissue replacement and the identification of some histopathological aspects that well correlate with clinical performances. Through correlation analysis, we divided our patients into three clusters with well-defined histological and clinical features. In conclusion, this is the first study that analyses in detail the histological characteristics of muscle biopsies in a large cohort of BMD patients, correlating them to a functional impairment. The collection of these data help to better understand the histopathological progression of the disease and can be useful to validate any pharmacological trial in which the modification of muscle biopsy is utilized as outcome measure.
Collapse
|
140
|
Sun C, Kannan S, Choi IY, Lim H, Zhang H, Chen GS, Zhang N, Park SH, Serra C, Iyer SR, Lloyd TE, Kwon C, Lovering RM, Lim SB, Andersen P, Wagner KR, Lee G. Human pluripotent stem cell-derived myogenic progenitors undergo maturation to quiescent satellite cells upon engraftment. Cell Stem Cell 2022; 29:610-619.e5. [PMID: 35395188 PMCID: PMC9000524 DOI: 10.1016/j.stem.2022.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/10/2021] [Accepted: 03/09/2022] [Indexed: 12/19/2022]
Abstract
Human pluripotent stem cell (hPSC)-derived myogenic progenitor cell (MPC) transplantation is a promising therapeutic approach for a variety of degenerative muscle disorders. Here, using an MPC-specific fluorescent reporter system (PAX7::GFP), we demonstrate that hPSC-derived MPCs can contribute to the regeneration of myofibers in mice following local injury and in mice deficient of dystrophin (mdx). We also demonstrate that a subset of PAX7::GFP MPCs engraft within the basal lamina of regenerated myofibers, adopt a quiescent state, and contribute to regeneration upon reinjury and in mdx mouse models. This subset of PAX7::GFP MPCs undergo a maturation process and remodel their molecular characteristics to resemble those of late-stage fetal MPCs/adult satellite cells following in vivo engraftment. These in-vivo-matured PAX7::GFP MPCs retain a cell-autonomous ability to regenerate and can repopulate in the niche of secondary recipient mice, providing a proof of principle for future hPSC-based cell therapy for muscle disorders.
Collapse
Affiliation(s)
- Congshan Sun
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Genetic Muscle Disorders, The Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Suraj Kannan
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Biomedical Engineering and Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - In Young Choi
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - HoTae Lim
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Grace S Chen
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Nancy Zhang
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Seong-Hyun Park
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Carlo Serra
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Genetic Muscle Disorders, The Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Shama R Iyer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thomas E Lloyd
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chulan Kwon
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Biomedical Engineering and Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Su Bin Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Peter Andersen
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kathryn R Wagner
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Genetic Muscle Disorders, The Kennedy Krieger Institute, Baltimore, MD 21205, USA.
| | - Gabsang Lee
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
141
|
Buckley KH, Nestor-Kalinoski AL, Pizza FX. Positional Context of Myonuclear Transcription During Injury-Induced Muscle Regeneration. Front Physiol 2022; 13:845504. [PMID: 35492593 PMCID: PMC9040890 DOI: 10.3389/fphys.2022.845504] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/02/2022] [Indexed: 01/31/2023] Open
Abstract
Fundamental aspects underlying downstream processes of skeletal muscle regeneration, such as myonuclear positioning and transcription are poorly understood. This investigation begins to address deficiencies in knowledge by examining the kinetics of myonuclear accretion, positioning, and global transcription during injury-induced muscle regeneration in mice. We demonstrate that myonuclear accretion plateaus within 7 days of an injury and that the majority (∼70%) of myonuclei are centrally aligned in linear arrays (nuclear chains) throughout the course of regeneration. Relatively few myonuclei were found in a peripheral position (∼20%) or clustered (∼10%) together during regeneration. Importantly, transcriptional activity of individual myonuclei in nuclear chains was high, and greater than that of peripheral or clustered myonuclei. Transcription occurring primarily in nuclear chains elevated the collective transcriptional activity of regenerating myofibers during the later stage of regeneration. Importantly, the number of myonuclei in chains and their transcriptional activity were statistically correlated with an increase in myofiber size during regeneration. Our findings demonstrate the positional context of transcription during regeneration and highlight the importance of centralized nuclear chains in facilitating hypertrophy of regenerating myofibers after injury.
Collapse
Affiliation(s)
- Kole H. Buckley
- School of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, OH, United States
| | | | - Francis X. Pizza
- School of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, OH, United States
| |
Collapse
|
142
|
Ganassi M, Zammit PS. Involvement of muscle satellite cell dysfunction in neuromuscular disorders: Expanding the portfolio of satellite cell-opathies. Eur J Transl Myol 2022; 32:10064. [PMID: 35302338 PMCID: PMC8992676 DOI: 10.4081/ejtm.2022.10064] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/11/2022] [Indexed: 12/03/2022] Open
Abstract
Neuromuscular disorders are a heterogeneous group of acquired or hereditary conditions that affect striated muscle function. The resulting decrease in muscle strength and motility irreversibly impacts quality of life. In addition to directly affecting skeletal muscle, pathogenesis can also arise from dysfunctional crosstalk between nerves and muscles, and may include cardiac impairment. Muscular weakness is often progressive and paralleled by continuous decline in the ability of skeletal muscle to functionally adapt and regenerate. Normally, the skeletal muscle resident stem cells, named satellite cells, ensure tissue homeostasis by providing myoblasts for growth, maintenance, repair and regeneration. We recently defined 'Satellite Cell-opathies' as those inherited neuromuscular conditions presenting satellite cell dysfunction in muscular dystrophies and myopathies (doi:10.1016/j.yexcr.2021.112906). Here, we expand the portfolio of Satellite Cell-opathies by evaluating the potential impairment of satellite cell function across all 16 categories of neuromuscular disorders, including those with mainly neurogenic and cardiac involvement. We explore the expression dynamics of myopathogenes, genes whose mutation leads to skeletal muscle pathogenesis, using transcriptomic analysis. This revealed that 45% of myopathogenes are differentially expressed during early satellite cell activation (0 - 5 hours). Of these 271 myopathogenes, 83 respond to Pax7, a master regulator of satellite cells. Our analysis suggests possible perturbation of satellite cell function in many neuromuscular disorders across all categories, including those where skeletal muscle pathology is not predominant. This characterisation further aids understanding of pathomechanisms and informs on development of prognostic and diagnostic tools, and ultimately, new therapeutics.
Collapse
Affiliation(s)
- Massimo Ganassi
- King's College London, Randall Centre for Cell and Molecular Biophysics, Guy's Campus, London.
| | - Peter S Zammit
- King's College London, Randall Centre for Cell and Molecular Biophysics, Guy's Campus, London.
| |
Collapse
|
143
|
Nativ-Zeltzer N, Kuhn MA, Evangelista L, Anderson JD, Nolta JA, Farwell DG, Canestrari E, Jankowski RJ, Belafsky PC. Autologous Muscle-Derived Cell Therapy for Swallowing Impairment in Patients Following Treatment for Head and Neck Cancer. Laryngoscope 2022; 132:523-527. [PMID: 33988246 PMCID: PMC8909914 DOI: 10.1002/lary.29606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/08/2021] [Accepted: 04/19/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVES/HYPOTHESIS To evaluate the safety and potential efficacy of autologous muscle-derived cells (AMDCs) for the treatment of swallowing impairment following treatment for oropharynx cancer. STUDY DESIGN Prospective, phase I, open label, clinical trial. METHODS Oropharynx cancer survivors disease free ≥2 years post chemoradiation were recruited. All patients had swallowing impairment but were not feeding tube dependent (Functional Oral Intake Scale [FOIS] ≥ 5). Muscle tissue (50-250 mg) was harvested from the vastus lateralis and 150 × 106 AMDCs were prepared (Cook MyoSite Inc., Pittsburgh, PA). The cells were injected into four sites throughout the intrinsic tongue musculature. Participants were followed for 24 months. The primary outcome measure was safety. Secondary endpoints included objective measures on swallowing fluoroscopy, oral and pharyngeal pressure, and changes in patient-reported outcomes. RESULTS Ten individuals were enrolled. 100% (10/10) were male. The mean age of the cohort was 65 (±8.87) years. No serious adverse event occurred. Mean tongue pressure increased significantly from 26.3 (±11.1) to 31.8 (±9.5) kPa (P = .017). The mean penetration-aspiration scale did not significantly change from 5.6 (±2.1) to 6.8 (±1.8), and the mean FOIS did not significantly change from 5.4 (±0.5) to 4.6 (±0.7). The incidence of pneumonia was 30% (3/10) and only 10% (1/10) experienced deterioration in swallowing function throughout 2 years of follow-up. The mean eating assessment tool (EAT-10) did not significantly change from 24.1 (±5.57) to 21.3 (±6.3) (P = .12). CONCLUSION Results of this phase I clinical trial demonstrate that injection of 150 × 106 AMDCs into the tongue is safe and may improve tongue strength, which is durable at 2 years. A blinded placebo-controlled trial is warranted. LEVEL OF EVIDENCE 3 Laryngoscope, 132:523-527, 2022.
Collapse
Affiliation(s)
- Nogah Nativ-Zeltzer
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis Medical Center, Sacramento, California, U.S.A
| | - Maggie A Kuhn
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis Medical Center, Sacramento, California, U.S.A
| | - Lisa Evangelista
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis Medical Center, Sacramento, California, U.S.A
| | - Johnathon D Anderson
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis Medical Center, Sacramento, California, U.S.A
| | - Jan A Nolta
- Institute for Regenerative Cures, Department of Internal Medicine, University of California, Davis, Sacramento, California, U.S.A
| | - D Gregory Farwell
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis Medical Center, Sacramento, California, U.S.A
| | | | | | - Peter C Belafsky
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis Medical Center, Sacramento, California, U.S.A
| |
Collapse
|
144
|
Lee H, Han NR, Kim SJ, Yun JI, Lee ST. Development of a High-Yield Isolation Protocol Optimized for the Retrieval of Active Muscle Satellite Cells from Mouse Skeletal Muscle Tissue. Int J Stem Cells 2022; 15:283-290. [PMID: 35220284 PMCID: PMC9396018 DOI: 10.15283/ijsc21179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/26/2021] [Accepted: 01/04/2022] [Indexed: 12/03/2022] Open
Abstract
Background and Objectives Difficulties often encountered in separating and purifying active muscle satellite cells (MSCs) from skeletal muscle tissues have limited the supply of cells for muscle therapy and artificial meat production. Here, we report an effective isolation protocol to economically and conveniently retrieve active MSCs from skeletal muscle tissues in mice. Methods and Results We optimized an enzyme-based tissue digestion protocol for isolating skeletal muscle-derived primary cell population having a large number of active MSCs and described a method of differential plating (DP) for improving purity of active MSCs from skeletal muscle-derived primary cell population. Then, the age of the mouse appropriate to the isolation of a large number of active MSCs was elucidated. The best isolation yield of active MSCs from mouse skeletal muscle tissues was induced by the application of DP method to the primary cell population harvested from skeletal muscle tissues of 2-week-old mice digested in 0.2% (w/v) collagenase type II for 30 min at 37℃ and then in 0.1% (w/v) pronase for 5 min at 37℃. Conclusions The protocol we developed not only facilitates the isolation of MSCs but also maximizes the retrieval of active MSCs. Our expectation is that this protocol will contribute to the development of original technologies essential for muscle therapy and artificial meat industrialization in the future.
Collapse
Affiliation(s)
- Hyun Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon, Korea
| | | | - Seong Jae Kim
- Department of Animal Life Science, Kangwon National University, Chuncheon, Korea
| | | | - Seung Tae Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon, Korea
- KustoGen Inc., Chuncheon, Korea
- Department of Applied Animal Science, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
145
|
Richardson L, Wang D, Hughes R, Johnson CA, Peckham M. RNA-Seq analysis of a Pax3-expressing myoblast clone in-vitro and effect of culture surface stiffness on differentiation. Sci Rep 2022; 12:2841. [PMID: 35181706 PMCID: PMC8857316 DOI: 10.1038/s41598-022-06795-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/02/2022] [Indexed: 11/09/2022] Open
Abstract
Skeletal muscle satellite cells cultured on soft surfaces (12 kPa) show improved differentiation than cells cultured on stiff surfaces (approximately 100 kPa). To better understand the reasons for this, we performed an RNA-Seq analysis for a single satellite cell clone (C1F) derived from the H2kb-tsA58 immortomouse, which differentiates into myotubes under tightly regulated conditions (withdrawal of ɣ-interferon, 37 °C). The largest change in overall gene expression occurred at day 1, as cells switched from proliferation to differentiation. Surprisingly, further analysis showed that proliferating C1F cells express Pax3 and not Pax7, confirmed by immunostaining, yet their subsequent differentiation into myotubes is normal, and enhanced on softer surfaces, as evidenced by significantly higher expression levels of myogenic regulatory factors, sarcomeric genes, enhanced fusion and improved myofibrillogenesis. Levels of mRNA encoding extracellular matrix structural constituents and related genes were consistently upregulated on hard surfaces, suggesting that a consequence of differentiating satellite cells on hard surfaces is that they attempt to manipulate their niche prior to differentiating. This comprehensive RNA-Seq dataset will be a useful resource for understanding Pax3 expressing cells.
Collapse
Affiliation(s)
- Louise Richardson
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Dapeng Wang
- LeedsOmics, University of Leeds, Leeds, LS2 9JT, UK.,Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Ruth Hughes
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Colin A Johnson
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Michelle Peckham
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
146
|
Rocheteau P, Warot G, Chapellier M, Zampaolo M, Chretien F, Piquemal F. Cryopreserved Stem Cells Incur Damages Due To Terrestrial Cosmic Rays Impairing Their Integrity Upon Long-Term Storage. Cell Transplant 2022; 31:9636897211070239. [PMID: 35170351 PMCID: PMC8855380 DOI: 10.1177/09636897211070239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Stem cells have the capacity to ensure the renewal of tissues and organs. They
could be used in the future for a wide range of therapeutic purposes and are
preserved at liquid nitrogen temperature to prevent any chemical or biological
activity up to several decades before their use. We show that the cryogenized
cells accumulate damages coming from natural radiations, potentially inducing
DNA double-strand breaks (DSBs). Such DNA damage in stem cells could lead to
either mortality of the cells upon thawing or a mutation diminishing the
therapeutic potential of the treatment. Many studies show how stem cells react
to different levels of radiation; the effect of terrestrial cosmic rays being
key, it is thus also important to investigate the effect of the natural
radiation on the cryopreserved stem cell behavior over time. Our study showed
that the cryostored stem cells totally shielded from cosmic rays had less DSBs
upon long-term storage. This could have important implications on the long-term
cryostorage strategy and quality control of different cell banks.
Collapse
Affiliation(s)
- P Rocheteau
- Human Histopathology and Animal Models, Department of Infection & Epidemiology, Institut Pasteur, Paris, France
| | - G Warot
- Laboratoire de Physique Subatomique et Corpusculaire, UMR 5821, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Grenoble Institute of Technology (Institute of Engineering University Grenoble Alpes), LPSC-IN2P3, Grenoble, France
| | - M Chapellier
- Laboratoire de Physique Subatomique et Corpusculaire, UMR 5821, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Grenoble Institute of Technology (Institute of Engineering University Grenoble Alpes), LPSC-IN2P3, Grenoble, France
| | - M Zampaolo
- Laboratoire de Physique Subatomique et Corpusculaire, UMR 5821, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Grenoble Institute of Technology (Institute of Engineering University Grenoble Alpes), LPSC-IN2P3, Grenoble, France
| | - F Chretien
- Human Histopathology and Animal Models, Department of Infection & Epidemiology, Institut Pasteur, Paris, France
| | - F Piquemal
- Centre d'Etudes Nucléaires de Bordeaux Gradignan, UMR 5797, Centre National de la Recherche Scientifique and Université de Bordeaux, Gradignan, France
| |
Collapse
|
147
|
CPEB1 directs muscle stem cell activation by reprogramming the translational landscape. Nat Commun 2022; 13:947. [PMID: 35177647 PMCID: PMC8854658 DOI: 10.1038/s41467-022-28612-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/14/2022] [Indexed: 11/08/2022] Open
Abstract
Skeletal muscle stem cells, also called Satellite Cells (SCs), are actively maintained in quiescence but can activate quickly upon extrinsic stimuli. However, the mechanisms of how quiescent SCs (QSCs) activate swiftly remain elusive. Here, using a whole mouse perfusion fixation approach to obtain bona fide QSCs, we identify massive proteomic changes during the quiescence-to-activation transition in pathways such as chromatin maintenance, metabolism, transcription, and translation. Discordant correlation of transcriptomic and proteomic changes reveals potential translational regulation upon SC activation. Importantly, we show Cytoplasmic Polyadenylation Element Binding protein 1 (CPEB1), post-transcriptionally affects protein translation during SC activation by binding to the 3' UTRs of different transcripts. We demonstrate phosphorylation-dependent CPEB1 promoted Myod1 protein synthesis by binding to the cytoplasmic polyadenylation elements (CPEs) within its 3' UTRs to regulate SC activation and muscle regeneration. Our study characterizes CPEB1 as a key regulator to reprogram the translational landscape directing SC activation and subsequent proliferation.
Collapse
|
148
|
Dominici C, Richard S. Muscle stem cell polarity requires QKI-mediated alternative splicing of Integrin Alpha-7 (Itga7). Life Sci Alliance 2022; 5:5/5/e202101192. [PMID: 35165120 PMCID: PMC8860092 DOI: 10.26508/lsa.202101192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/30/2022] Open
Abstract
The RNA-binding protein Quaking (QKI) is a post-transcriptional regulator of genes encoding polarity proteins in muscle stem cells. Loss of QKI in MuSCs results in reduced myogenic progenitors and a striking muscle regeneration defect. Muscle stem cells (MuSCs) have the ability to carry out the specialized function of cell polarization, which is required for the production of one repopulating cell and one myogenic progenitor cell with muscle regeneration capabilities. The mechanisms which regulate proteins involved in establishing MuSC polarity such as Dmd and Itga7 are currently not well understood. Herein, we define the RNA-binding protein Quaking (QKI) as a major regulator alternative splicing of key MuSC polarity factors including Dmd, Itga7, Mark2, and Numb. We generate a conditional QKI knockout mouse, and for the first time it is shown in vivo that deficiency of QKI in MuSCs results in reduced asymmetric cell divisions, leading to a loss of the myogenic progenitor cell population and striking muscle regeneration defects. Transcriptomic analysis of QKI-deficient MuSCs identifies QKI as a regulator of the splicing events which give rise to the mutually exclusive Itga7-X1 and -X2 isoforms. We observe increased X1 expression in QKI-deficient MuSCs and recapitulate this splicing event using antisense oligonucleotide directed against a quaking binding site within the Itga7 mRNA. Interestingly, recreating this single splicing event is detrimental to the polarization of Itga7 and Dmd proteins, and leads to a drastic reduction of the myogenic progenitor population, highlighting the significance of QKI-mediated alternative splicing of Itga7 in maintaining MuSC polarity. Altogether, these findings define a novel role for QKI as a post-transcriptional regulator of MuSC polarity.
Collapse
Affiliation(s)
- Claudia Dominici
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Medicine, Human Genetics and Biochemistry, McGill University, Montréal, Québec, Canada
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Medicine, Human Genetics and Biochemistry, McGill University, Montréal, Québec, Canada
| |
Collapse
|
149
|
Gugliuzza MV, Crist C. Muscle stem cell adaptations to cellular and environmental stress. Skelet Muscle 2022; 12:5. [PMID: 35151369 PMCID: PMC8840228 DOI: 10.1186/s13395-022-00289-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/30/2022] [Indexed: 12/21/2022] Open
Abstract
Background Lifelong regeneration of the skeletal muscle is dependent on a rare population of resident skeletal muscle stem cells, also named ‘satellite cells’ for their anatomical position on the outside of the myofibre and underneath the basal lamina. Muscle stem cells maintain prolonged quiescence, but activate the myogenic programme and the cell cycle in response to injury to expand a population of myogenic progenitors required to regenerate muscle. The skeletal muscle does not regenerate in the absence of muscle stem cells. Main body The notion that lifelong regeneration of the muscle is dependent on a rare, non-redundant population of stem cells seems contradictory to accumulating evidence that muscle stem cells have activated multiple stress response pathways. For example, muscle stem cell quiescence is mediated in part by the eIF2α arm of the integrated stress response and by negative regulators of mTORC1, two translational control pathways that downregulate protein synthesis in response to stress. Muscle stem cells also activate pathways to protect against DNA damage, heat shock, and environmental stress. Here, we review accumulating evidence that muscle stem cells encounter stress during their prolonged quiescence and their activation. While stress response pathways are classically described to be bimodal whereby a threshold dictates cell survival versus cell death responses to stress, we review evidence that muscle stem cells additionally respond to stress by spontaneous activation and fusion to myofibres. Conclusion We propose a cellular stress test model whereby the prolonged state of quiescence and the microenvironment serve as selective pressures to maintain muscle stem cell fitness, to safeguard the lifelong regeneration of the muscle. Fit muscle stem cells that maintain robust stress responses are permitted to maintain the muscle stem cell pool. Unfit muscle stem cells are depleted from the pool first by spontaneous activation, or in the case of severe stress, by activating cell death or senescence pathways.
Collapse
|
150
|
Soulez M, Tanguay PL, Dô F, Dort J, Crist C, Kotlyarov A, Gaestel M, Ferron M, Dumont NA, Meloche S. ERK3-MK5 signaling regulates myogenic differentiation and muscle regeneration by promoting FoxO3 degradation. J Cell Physiol 2022; 237:2271-2287. [PMID: 35141958 DOI: 10.1002/jcp.30695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 12/25/2022]
Abstract
The physiological functions and downstream effectors of the atypical mitogen-activated protein kinase extracellular signal-regulated kinase 3 (ERK3) remain to be characterized. We recently reported that mice expressing catalytically-inactive ERK3 (Mapk6KD/KD ) exhibit a reduced postnatal growth rate as compared to control mice. Here, we show that genetic inactivation of ERK3 impairs postnatal skeletal muscle growth and adult muscle regeneration after injury. Loss of MAPK-activated protein kinase 5 (MK5) phenocopies the muscle phenotypes of Mapk6KD/KD mice. At the cellular level, genetic or pharmacological inactivation of ERK3 or MK5 induces precocious differentiation of C2C12 or primary myoblasts, concomitant with MyoD activation. Reciprocally, ectopic expression of activated MK5 inhibits myogenic differentiation. Mechanistically, we show that MK5 directly phosphorylates FoxO3, promoting its degradation and reducing its association with MyoD. Depletion of FoxO3 rescues in part the premature differentiation of C2C12 myoblasts observed upon inactivation of ERK3 or MK5. Our findings reveal that ERK3 and its substrate MK5 act in a linear signaling pathway to control postnatal myogenic differentiation.
Collapse
Affiliation(s)
- Mathilde Soulez
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - Pierre-Luc Tanguay
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada.,Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Ipsen Biopharmaceuticals Canada, Mississauga, Ontario, Canada
| | - Florence Dô
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - Junio Dort
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada.,School of Rehabilitation, Université de Montréal, Montreal, Quebec, Canada
| | - Colin Crist
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Alexey Kotlyarov
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Mathieu Ferron
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada.,Department of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Nicolas A Dumont
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada.,School of Rehabilitation, Université de Montréal, Montreal, Quebec, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada.,Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|