101
|
Lim SM, Li X, Schiesser J, Holland AM, Elefanty AG, Stanley EG, Micallef SJ. Temporal restriction of pancreatic branching competence during embryogenesis is mirrored in differentiating embryonic stem cells. Stem Cells Dev 2011; 21:1662-74. [PMID: 22034992 DOI: 10.1089/scd.2011.0513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To develop methods for the generation of insulin-producing β-cells for the treatment of diabetes, we have used GFP-tagged embryonic stem cells (ESCs) to elucidate the process of pancreas development. Using the reporter Pdx1(GFP/w) ESC line, we have previously described a serum-free differentiation protocol in which Pdx1-GFP(+) cells formed GFP bright (GFP(br)) epithelial buds that resembled those present in the developing mouse pancreas. In this study we extend these findings to demonstrate that these cells can undergo a process of branching morphogenesis, similar to that seen during pancreatic development of the mid-gestation embryo. These partially disaggregated embryoid bodies containing GFP(br) buds initially form epithelial ring-like structures when cultured in Matrigel. After several days in culture, these rings undergo a process of proliferation and form a ramified network of epithelial branches. Comparative analysis of explanted dissociated pancreatic buds from E13.5 Pdx1(GFP/w) embryos and ESC-derived GFP(br) buds reveal a similar process of proliferation and branching, with both embryonic Pdx1(GFP/w) branching pancreatic epithelium and ESC-derived GFP(br) branching organoids expressing markers representing epithelial (EpCAM and E-Cadherin), ductal (Mucin1), exocrine (Amylase and Carboxypeptidase 1A), and endocrine cell types (Glucagon and Somatostatin). ESC-derived branching structures also expressed a suite of genes indicative of ongoing pancreatic differentiation, paralleling gene expression within similar structures derived from the E13.5 fetal pancreas. In summary, differentiating mouse ESCs can generate pancreatic material that has significant similarity to the fetal pancreatic anlagen, providing an in vitro platform for investigating the cellular and molecular mechanisms underpinning pancreatic development.
Collapse
Affiliation(s)
- Sue Mei Lim
- Monash Immunology and Stem Cell Laboratories (MISCL), Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
102
|
Essential role of the small GTPase Ran in postnatal pancreatic islet development. PLoS One 2011; 6:e27879. [PMID: 22114719 PMCID: PMC3219697 DOI: 10.1371/journal.pone.0027879] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 10/27/2011] [Indexed: 01/13/2023] Open
Abstract
The small GTPase Ran orchestrates pleiotropic cellular responses of nucleo-cytoplasmic shuttling, mitosis and subcellular trafficking, but whether deregulation of these pathways contributes to disease pathogenesis has remained elusive. Here, we generated transgenic mice expressing wild type (WT) Ran, loss-of-function Ran T24N mutant or constitutively active Ran G19V mutant in pancreatic islet β cells under the control of the rat insulin promoter. Embryonic pancreas and islet development, including emergence of insulin+ β cells, was indistinguishable in control or transgenic mice. However, by one month after birth, transgenic mice expressing any of the three Ran variants exhibited overt diabetes, with hyperglycemia, reduced insulin production, and nearly complete loss of islet number and islet mass, in vivo. Deregulated Ran signaling in transgenic mice, adenoviral over-expression of WT or mutant Ran in isolated islets, or short hairpin RNA (shRNA) silencing of endogenous Ran in model insulinoma INS-1 cells, all resulted in decreased expression of the pancreatic and duodenal homeobox transcription factor, PDX-1, and reduced β cell proliferation, in vivo. These data demonstrate that a finely-tuned balance of Ran GTPase signaling is essential for postnatal pancreatic islet development and glucose homeostasis, in vivo.
Collapse
|
103
|
Courtney M, Pfeifer A, Al-Hasani K, Gjernes E, Vieira A, Ben-Othman N, Collombat P. In vivo conversion of adult α-cells into β-like cells: a new research avenue in the context of type 1 diabetes. Diabetes Obes Metab 2011; 13 Suppl 1:47-52. [PMID: 21824256 DOI: 10.1111/j.1463-1326.2011.01441.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Type 1 diabetes is caused by the loss of insulin-producing β-cells as a result of an autoimmune condition. Despite current therapeutic approaches aimed at restoring the insulin supply, complications caused by variations in glycaemia may still arise with age. There is therefore mounting interest in the establishment of alternative therapies. Most current approaches consist in designing rational protocols for in vitro or in vivo cell differentiation/reprogramming from a number of cell sources, including stem, progenitor or differentiated cells. Towards this ultimate goal, it is clear that we need to gain further insight into the interplay between signalling events and transcriptional networks that act in concert throughout pancreatic morphogenesis. This short review will therefore focus on the main events underlying pancreatic development with particular emphasis on the genetic determinants implicated, as well as on the relatively new concept of endocrine cell reprogramming, that is the conversion of pancreatic α-cells into cells displaying a β-cell phenotype.
Collapse
Affiliation(s)
- M Courtney
- Inserm U636, Diabetes Genetics Team, Nice, France
| | | | | | | | | | | | | |
Collapse
|
104
|
Dubois CL, Shih HP, Seymour PA, Patel NA, Behrmann JM, Ngo V, Sander M. Sox9-haploinsufficiency causes glucose intolerance in mice. PLoS One 2011; 6:e23131. [PMID: 21829703 PMCID: PMC3149078 DOI: 10.1371/journal.pone.0023131] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 07/07/2011] [Indexed: 01/08/2023] Open
Abstract
The HMG box transcription factor Sox9 plays a critical role in progenitor cell expansion during pancreas organogenesis and is required for proper endocrine cell development in the embryo. Based on in vitro studies it has been suggested that Sox9 controls expression of a network of important developmental regulators, including Tcf2/MODY5, Hnf6, and Foxa2, in pancreatic progenitor cells. Here, we sought to: 1) determine whether Sox9 regulates this transcriptional network in vivo and 2) investigate whether reduced Sox9 gene dosage leads to impaired glucose homeostasis in adult mice. Employing two genetic models of temporally-controlled Sox9 inactivation in pancreatic progenitor cells, we demonstrate that contrary to in vitro findings, Sox9 is not required for Tcf2, Hnf6, or Foxa2 expression in vivo. Moreover, our analysis revealed a novel role for Sox9 in maintaining the expression of Pdx1/MODY4, which is an important transcriptional regulator of beta-cell development. We further show that reduced beta-cell mass in Sox9-haploinsufficient mice leads to glucose intolerance during adulthood. Sox9-haploinsufficient mice displayed 50% reduced beta-cell mass at birth, which recovered partially via a compensatory increase in beta-cell proliferation early postnatally. Endocrine islets from mice with reduced Sox9 gene dosage exhibited normal glucose stimulated insulin secretion. Our findings show Sox9 plays an important role in endocrine development by maintaining Ngn3 and Pdx1 expression. Glucose intolerance in Sox9-haploinsufficient mice suggests that mutations in Sox9 could play a role in diabetes in humans.
Collapse
Affiliation(s)
- Claire L. Dubois
- Department of Pediatrics and Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Hung Ping Shih
- Department of Pediatrics and Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Philip A. Seymour
- Department of Pediatrics and Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Nisha A. Patel
- Department of Pediatrics and Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - James M. Behrmann
- Department of Pediatrics and Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Victoria Ngo
- Department of Pediatrics and Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Maike Sander
- Department of Pediatrics and Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
105
|
Zou G, Liu T, Zhang L, Liu Y, Li M, Du X, Xu F, Guo L, Liu Z. Induction of pancreatic β-cell-like cells from CD44+/CD105+ human amniotic fluids via epigenetic regulation of the pancreatic and duodenal homeobox factor 1 promoter. DNA Cell Biol 2011; 30:739-48. [PMID: 21612404 DOI: 10.1089/dna.2010.1144] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pancreatic and duodenal homeobox factor 1 (PDX-1) maintains β-cell function and differentiation via direct regulation of multiple islet cell genes. However, the molecular mechanisms involved in this process remain unknown. Here, we show that PDX-1 plays an important role in the induction of CD44+/CD105+ human amniotic fluid cells (HuAFCs) into functional pancreatic β-cell-like cells in vitro. CD44+/CD105+ HuAFCs were transfected with either siRNA targeting PDX-1 (siRNA-PDX-1) or mock plasmid (siRNA-MOCK). Following induction, siRNA-MOCK-transfected cells differentiated into β-cell-like cells that expressed multiple islet cell markers and produced insulin and C-peptide in a glucose-regulated manner. However, siRNA-PDX-1-transfected cells did not fully differentiate into β-cell-like cells. Further, we observed epigenetic changes at the PDX-1 gene locus in induced CD44(+)/CD105(+) HuAFCs. Therefore, CD44+/CD105+ HuAFCs could be a source of human pancreatic β-cell-like cells with potential uses in cell replacement therapy for diabetes.
Collapse
Affiliation(s)
- Gang Zou
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Chen C, Chai J, Singh L, Kuo CY, Jin L, Feng T, Marzano S, Galeni S, Zhang N, Iacovino M, Qin L, Hara M, Stein R, Bromberg JS, Kyba M, Ku HT. Characterization of an in vitro differentiation assay for pancreatic-like cell development from murine embryonic stem cells: detailed gene expression analysis. Assay Drug Dev Technol 2011; 9:403-19. [PMID: 21395400 DOI: 10.1089/adt.2010.0314] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Embryonic stem (ES) cell technology may serve as a platform for the discovery of drugs to treat diseases such as diabetes. However, because of difficulties in establishing reliable ES cell differentiation methods and in creating cost-effective plating conditions for the high-throughput format, screening for molecules that regulate pancreatic beta cells and their immediate progenitors has been limited. A relatively simple and inexpensive differentiation protocol that allows efficient generation of insulin-expressing cells from murine ES cells was previously established in our laboratories. In this report, this system is characterized in greater detail to map developmental cell stages for future screening experiments. Our results show that sequential activation of multiple gene markers for undifferentiated ES cells, epiblast, definitive endoderm, foregut, and pancreatic lineages was found to follow the sequence of events that mimics pancreatic ontogeny. Cells that expressed enhanced green fluorescent protein, driven by pancreatic and duodenal homeobox 1 or insulin 1 promoter, correctly expressed known beta cell lineage markers. Overexpression of Sox17, an endoderm fate-determining transcription factor, at a very early stage of differentiation (days 2-3) enhanced pancreatic gene expression. Overexpression of neurogenin3, an endocrine progenitor cell marker, induced glucagon expression at stages when pancreatic and duodenal homeobox 1 message was present (days 10-16). Forced expression (between days 16 and 25) of MafA, a pancreatic maturation factor, resulted in enhanced expression of insulin genes, glucose transporter 2 and glucokinase, and glucose-responsive insulin secretion. Day 20 cells implanted in vivo resulted in pancreatic-like cells. Together, our differentiation assay recapitulates the proceedings and behaviors of pancreatic development and will be valuable for future screening of beta cell effectors.
Collapse
Affiliation(s)
- Chialin Chen
- Department of Diabetes, Endocrinology, and Metabolism, Beckman Research Institute of City of Hope, Duarte, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Affiliation(s)
- Philip A Seymour
- Department of Pediatrics, The University of California San Diego Stem Cell Program, University of California San Diego, La Jolla, California, USA
| | | |
Collapse
|
108
|
Tehrani Z, Lin S. Antagonistic interactions of hedgehog, Bmp and retinoic acid signals control zebrafish endocrine pancreas development. Development 2011; 138:631-40. [PMID: 21228001 DOI: 10.1242/dev.050450] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pancreatic organogenesis is promoted or restricted by different signaling pathways. In amniotes, inhibition of hedgehog (Hh) activity in the early embryonic endoderm is a prerequisite for pancreatic specification. However, in zebrafish, loss of Hh signaling leads to a severe reduction of β-cells, leading to some ambiguity as to the role of Hh during pancreas development and whether its function has completely diverged between species. Here, we have employed genetic and pharmacological manipulations to temporally delineate the role of Hh in zebrafish endocrine pancreas development and investigate its relationship with the Bmp and retinoic acid (RA) signaling pathways. We found that Hh is required at the start of gastrulation for the medial migration and differentiation of pdx1-expressing pancreatic progenitors at later stages. This early positive role of Hh promotes β-cell lineage differentiation by restricting the repressive effects of Bmp. Inhibition of Bmp signaling in the early gastrula leads to increased β-cell numbers and partially rescued β-cell formation in Hh-deficient embryos. By the end of gastrulation, Hh switches to a negative role by antagonizing RA-mediated specification of the endocrine pancreas, but continues to promote differentiation of exocrine progenitors. We show that RA downregulates the Hh signaling components ptc1 and smo in endodermal explants, indicating a possible molecular mechanism for blocking axial mesoderm-derived Hh ligands from the prepancreatic endoderm during the specification stage. These results identify multiple sequential roles for Hh in pancreas development and highlight an unexpected antagonistic relationship between Hh and other signaling pathways to control pancreatic specification and differentiation.
Collapse
Affiliation(s)
- Zahra Tehrani
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095-1606, USA
| | | |
Collapse
|
109
|
Pound LD, Hang Y, Sarkar SA, Wang Y, Milam LA, Oeser JK, Printz RL, Lee CE, Stein R, Hutton JC, O’Brien RM. The pancreatic islet β-cell-enriched transcription factor Pdx-1 regulates Slc30a8 gene transcription through an intronic enhancer. Biochem J 2011; 433:95-105. [PMID: 20942803 PMCID: PMC4130494 DOI: 10.1042/bj20101488] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The SLC30A8 gene encodes the zinc transporter ZnT-8, which provides zinc for insulin-hexamer formation. Genome-wide association studies have shown that a polymorphic variant in SLC30A8 is associated with altered susceptibility to Type 2 diabetes and we recently reported that glucose-stimulated insulin secretion is decreased in islets isolated from Slc30a8-knockout mice. The present study examines the molecular basis for the islet-specific expression of Slc30a8. VISTA analyses identified two conserved regions in Slc30a8 introns 2 and 3, designated enhancers A and B respectively. Transfection experiments demonstrated that enhancer B confers elevated fusion gene expression in both βTC-3 cells and αTC-6 cells. In contrast, enhancer A confers elevated fusion gene expression selectively in βTC-3 and not αTC-6 cells. These data suggest that enhancer A is an islet β-cell-specific enhancer and that the mechanisms controlling Slc30a8 expression in α- and β-cells are overlapping, but distinct. Gel retardation and ChIP (chromatin immunoprecipitation) assays revealed that the islet-enriched transcription factor Pdx-1 binds enhancer A in vitro and in situ respectively. Mutation of two Pdx-1-binding sites in enhancer A markedly reduces fusion gene expression suggesting that this factor contributes to Slc30a8 expression in β-cells, a conclusion consistent with developmental studies showing that restriction of Pdx-1 to pancreatic islet β-cells correlates with the induction of Slc30a8 gene expression and ZnT-8 protein expression in vivo.
Collapse
Affiliation(s)
- Lynley D. Pound
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Yan Hang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Suparna A. Sarkar
- Barbara Davis Center for Childhood Diabetes, University of Colorado at Denver, Aurora, Colorado 80045
| | - Yingda Wang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Laurel A. Milam
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - James K. Oeser
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Richard L. Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Catherine E. Lee
- Barbara Davis Center for Childhood Diabetes, University of Colorado at Denver, Aurora, Colorado 80045
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - John C. Hutton
- Barbara Davis Center for Childhood Diabetes, University of Colorado at Denver, Aurora, Colorado 80045
| | - Richard M. O’Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
110
|
Stein R. Insulin Gene Transcription: Factors Involved in Cell Type–Specific and Glucose‐Regulated Expression in Islet β Cells are Also Essential During Pancreatic Development. Compr Physiol 2011. [DOI: 10.1002/cphy.cp070202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
111
|
Patel YC, Liu J, Galanopoulou A, Papachristou DN. Production, Action, and Degradation of Somatostatin. Compr Physiol 2011. [DOI: 10.1002/cphy.cp070209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
112
|
Gniuli D, Calcagno A, Dalla Libera L, Calvani R, Leccesi L, Caristo ME, Vettor R, Castagneto M, Ghirlanda G, Mingrone G. High-fat feeding stimulates endocrine, glucose-dependent insulinotropic polypeptide (GIP)-expressing cell hyperplasia in the duodenum of Wistar rats. Diabetologia 2010; 53:2233-40. [PMID: 20585935 DOI: 10.1007/s00125-010-1830-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 05/24/2010] [Indexed: 02/01/2023]
Abstract
AIMS/HYPOTHESIS Incretins are hormones released by enteroendocrine cells in response to meals, depending upon absorption of nutrients. The present study aimed to elucidate the mechanisms through which a high-fat diet (HFD) induces insulin resistance and insulin hypersecretion by focusing on the effects on enteroendocrine cells, especially those secreting glucose-dependent insulinotropic polypeptide (GIP). METHODS Forty male Wistar rats, 4 months old, were randomised into two groups; one group received a chow diet and the other one received a purified tripalmitin-based HFD ad libitum. An OGTT was performed every 10 days and histological and immunofluorescence evaluations of the duodenum were obtained at 60 days from the beginning of the diets. Plasma glucose, insulin, GIP and glucagon-like peptide-1 (GLP-1) levels were measured. Immunofluorescence analysis of duodenal sections for pancreatic duodenal homeobox-1 (PDX-1), KI67, GLP-1, GIP and insulin were performed. RESULTS Compared with chow diet, HFD induced a progressive significant increase of the glucose, insulin and GIP responses to OGTT, whereas GLP-1 circulating levels were reduced over time. After 60 days of HFD, cellular agglomerates of KI67 and PDX-1 positive cells, negative for insulin and GLP-1 but positive for GIP staining, were found inside the duodenal mucosa, and apoptosis was significantly increased. CONCLUSIONS/INTERPRETATION With the limitation that we could not establish a causal relationship between events, our study shows that HFD stimulates duodenal proliferation of endocrine cells differentiating towards K cells and oversecreting GIP. The progressive increment of GIP levels might represent the stimulus for insulin hypersecretion and insulin resistance.
Collapse
Affiliation(s)
- D Gniuli
- Department of Internal Medicine and Diabetes Unit, Università Cattolica del Sacro Cuore, L.go Gemelli 8, 00168 Roma, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Ma J, Wang JD, Zhang WJ, Zou B, Chen WJ, Lam CSC, Chen MH, Pang R, Tan VPY, Hung IF, Lan HY, Wang QY, Wong BCY. Promoter hypermethylation and histone hypoacetylation contribute to pancreatic-duodenal homeobox 1 silencing in gastric cancer. Carcinogenesis 2010; 31:1552-60. [PMID: 20622005 DOI: 10.1093/carcin/bgq140] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND AIMS The expression of pancreatic-duodenal homeobox 1 (PDX1) in gastric cancer is aberrantly reduced. The aim of this study was to elucidate the regulation of DNA methylation and histone acetylation at the promoter for PDX1 silencing in gastric cancer. METHODS PDX1 expression in response to demethylation and acetylation was detected in human gastric cancer cell lines by reverse transcription-polymerase chain reaction (PCR) and western blot. Four CpG islands within the 5'-flanking region of PDX1 gene were analyzed with their transcription activities being detected by dual luciferase assay. Promoter hypermethylation was identified in gastric cancer cell lines and cancer tissues by methylation-specific PCR or bisulfite DNA sequencing PCR analysis. Histone acetylation was determined by chromatin immunoprecipitation (ChIP) assay. RESULTS Demethylation by 5'-aza-2'-deoxycytidine (5'-aza-dC) and/or acetylation by trichostatin A (TSA) restored PDX1 expression in gastric cancer cells. Hypermethylation was found in four CpG islands in six of seven cancer cell lines. However, only the distal CpG island located in the promoter fragment of PDX1, F383 (c.-2063 to -1681 nt upstream of the ATG start codon) displayed significant transcriptional activity that could be suppressed by SssI methylase and increased by 5'-aza-dC and TSA. More than 70% of the single CpG sites in F383 were methylated with hypermethylation of F383 fragment more common in gastric cancerous tissues compared with the paired normal tissues (P < 0.05). ChIP assay showed F383 was also associated with low hypoacetylation level of the histones. CONCLUSION Promoter hypermethylation and histone hypoacetylation contribute to PDX1 silencing in gastric cancer.
Collapse
Affiliation(s)
- Juan Ma
- Department of Gastroenterology and Hepatology, Guangdong General Hospital, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Kordowich S, Mansouri A, Collombat P. Reprogramming into pancreatic endocrine cells based on developmental cues. Mol Cell Endocrinol 2010; 323:62-9. [PMID: 20025937 DOI: 10.1016/j.mce.2009.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Due to the increasing prevalence of type 1 diabetes and the complications arising from actual therapies, alternative treatments need to be established. In order to compensate the beta-cell deficiency associated with type 1 diabetes, current researches focus on new strategies to generate insulin-producing beta cells for transplantation purpose, including the differentiation of stem or progenitor cells, as well as the transdifferentiation of dispensable mature cell types. However, to successfully force any cell to adopt a functional beta-cell fate or phenotype, a better understanding of the molecular mechanisms underlying the genesis of these in vivo is required. The present short review summarizes the hitherto known functions and interplays of several key factors involved in the differentiation of the endocrine cell lineages during pancreas morphogenesis, as well as there potential in generating beta cells. Furthermore, an emphasize is made on beta-cell regeneration and the determinants implicated.
Collapse
Affiliation(s)
- Simon Kordowich
- Max-Planck Institute for Biophysical Chemistry, Department of Molecular Cell Biology, Am Fassberg, D-37077 Göttingen, Germany
| | | | | |
Collapse
|
115
|
Al-Masri M, Krishnamurthy M, Li J, Fellows GF, Dong HH, Goodyer CG, Wang R. Effect of forkhead box O1 (FOXO1) on beta cell development in the human fetal pancreas. Diabetologia 2010; 53:699-711. [PMID: 20033803 DOI: 10.1007/s00125-009-1632-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
Abstract
AIMS/HYPOTHESIS Recent studies have demonstrated that in adult murine beta cells the forkhead box O1 (FOXO1) transcription factor regulates proliferation and stress resistance. However, the role of FOXO1 during pancreatic development remains largely unknown. The present study aimed to characterise the expression of the FOXO1 transcription factor in the early to mid-gestation human fetal pancreas and to understand its role in islet cell development. METHODS Human (8-21 week fetal age) pancreases were examined using immunohistological, quantitative RT-PCR and western blotting. Isolated human (18-21 week) fetal islet epithelial cell clusters were treated with insulin or glucose, or transfected with FOXO1 small interfering RNA (siRNA). RESULTS Nuclear and cytoplasmic FOXO1 were widely produced during human fetal endocrine pancreatic development, co-localising in cells with the transcription factors pancreatic and duodenal homeobox 1 (PDX-1) and neurogenin 3 (NGN3) as well as cytokeratin 19 (CK19), insulin and glucagon. Treatment with exogenous insulin (50 nmol/l) induced the nuclear exclusion of FOXO1 in both cytokeratin 19 (CK19)(+) (p < 0.01) and insulin(+) cells (p < 0.05) in parallel with increased phospho-Akt (p < 0.05) production. siRNA knockdown of FOXO1 significantly increased the number of NGN3(+) (p < 0.01) and NK6 homeobox 1 (NKX6-1)(+) (p < 0.05) cells in parallel with increases in insulin gene expression (p < 0.03) and C-peptide(+) cells (p < 0.05) and reduced levels of hairy and enhancer of split 1 (HES1) (p < 0.01). CONCLUSIONS/INTERPRETATION Our results indicate that FOXO1 may negatively regulate beta cell differentiation in the human fetal pancreas by controlling critical transcription factors, including NGN3 and NKX6-1. These data suggest that the manipulation of FOXO1 levels may be a useful tool for improving cell-based strategies for the treatment of diabetes.
Collapse
Affiliation(s)
- M Al-Masri
- Children's Health Research Institute, University of Western Ontario, London, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
116
|
Carlsson GL, Scott Heller R, Serup P, Hyttel P. Immunohistochemistry of Pancreatic Development in Cattle and Pig. Anat Histol Embryol 2010; 39:107-19. [DOI: 10.1111/j.1439-0264.2009.00985.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
117
|
Coad RA, Dutton JR, Tosh D, Slack JMW. Inhibition of Hes1 activity in gall bladder epithelial cells promotes insulin expression and glucose responsiveness. Biochem Cell Biol 2010; 87:975-87. [PMID: 19935883 DOI: 10.1139/o09-063] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The biliary system has a close developmental relationship with the pancreas, evidenced by the natural occurrence of small numbers of biliary-derived beta-cells in the biliary system and by the replacement of biliary epithelium with pancreatic tissue in mice lacking the transcription factor Hes1. In normal pancreatic development, Hes1 is known to repress endocrine cell formation. Here we show that glucose-responsive insulin secretion can be induced in biliary epithelial cells when activity of the transcription factor Hes1 is antagonised. We describe a new culture system for adult murine gall bladder epithelial cells (GBECs), free from fibroblast contamination. We show that Hes1 is expressed both in adult murine gall bladder and in cultured GBECs. We have created a new dominant negative Hes1 (DeltaHes1) by removal of the DNA-binding domain, and show that it antagonises Hes1 function in vivo. When DeltaHes1 is introduced into the GBEC it causes expression of insulin RNA and protein. Furthermore, it confers upon the cells the ability to secrete insulin following exposure to increased external glucose. GBEC cultures are induced to express a wider range of mature beta cell markers when co-transduced with DeltaHes1 and the pancreatic transcription factor Pdx1. Introduction of DeltaHes1 and Pdx1 can therefore initiate a partial respecification of phenotype from biliary epithelial cell towards the pancreatic beta cell.
Collapse
Affiliation(s)
- R A Coad
- Stem Cell Institute, University of Minnesota, MTRF, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
118
|
Kordowich S, Mansouri A, Collombat P. Reprogramming into pancreatic endocrine cells based on developmental cues. Mol Cell Endocrinol 2010; 315:11-8. [PMID: 19897012 PMCID: PMC2814956 DOI: 10.1016/j.mce.2009.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 09/14/2009] [Accepted: 10/24/2009] [Indexed: 01/30/2023]
Abstract
Due to the increasing prevalence of type 1 diabetes and the complications arising from actual therapies, alternative treatments need to be established. In order to compensate the beta-cell deficiency associated with type 1 diabetes, current research focuses on new strategies to generate insulin-producing beta-cells for transplantation purpose, including the differentiation of stem or progenitor cells, as well as the transdifferentiation of dispensable mature cell types. However, to successfully force specific cells to adopt a functional beta-cell fate or phenotype, a better understanding of the molecular mechanisms underlying beta-cell genesis is required. The present short review summarizes the hitherto known functions and interplays of several key factors involved in the development of the different endocrine cell lineages during pancreas morphogenesis, as well as their potential to direct the generation of beta-cells. Furthermore, an emphasis is made on beta-cell regeneration and the determinants implicated.
Collapse
Affiliation(s)
- Simon Kordowich
- Max-Planck Institute for Biophysical Chemistry, Department of Molecular Cell Biology, Am Fassberg, D-37077 Göttingen, Germany
| | | | | |
Collapse
|
119
|
Wilson LM, Wong SHK, Yu N, Geras-Raaka E, Raaka BM, Gershengorn MC. Insulin but not glucagon gene is silenced in human pancreas-derived mesenchymal stem cells. Stem Cells 2010; 27:2703-11. [PMID: 19785038 DOI: 10.1002/stem.229] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We previously characterized human islet-derived precursor cells (hIPCs) as a specific type of mesenchymal stem cell capable of differentiating to insulin (INS)- and glucagon (GCG)-expressing cells. However, during proliferative expansion, INS transcript becomes undetectable and then cannot be induced, a phenomenon consistent with silencing of the INS gene. We explored this possibility by determining whether ectopic expression of transcription factors known to induce transcription of this gene in beta cells, pancreatic and duodenal homeobox factor 1 (Pdx1), V-maf musculoaponeurotic fibrosarcoma oncogene homolog A (Mafa), and neurogenic differentiation 1 (Neurod1), would activate INS gene expression in long-term hIPC cultures. Coexpression of all three transcription factors had little effect on INS mRNA levels but unexpectedly increased GCG mRNA at least 100,000-fold. In contrast to the endogenous promoter, an exogenous rat INS promoter was activated by expression of Pdx1 and Mafa in hIPCs. Chromatin immunoprecipitation (ChIP) assays using antibodies directed at posttranslationally modified histones show that regions of the INS and GCG genes have similar levels of activation-associated modifications but the INS gene has higher levels of repression-associated modifications. Furthermore, the INS gene was found to be less accessible to micrococcal nuclease digestion than the GCG gene. Lastly, ChIP assays show that exogenously expressed Pdx1 and Mafa bind at very low levels to the INS promoter and at 20- to 25-fold higher levels to the GCG promoter in hIPCs. We conclude that the INS gene in hIPCs is modified epigenetically ("silenced") so that it is resistant to activation by transcription factors.
Collapse
Affiliation(s)
- Leah M Wilson
- Clinical Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-8029, USA
| | | | | | | | | | | |
Collapse
|
120
|
Mogami H, Yura S, Tatsumi K, Fujii T, Fujita K, Kakui K, Kondoh E, Inoue T, Fujii S, Yodoi J, Konishi I. Thioredoxin binding protein-2 inhibits excessive fetal hypoglycemia during maternal starvation by suppressing insulin secretion in mice. Pediatr Res 2010; 67:138-43. [PMID: 19809375 DOI: 10.1203/pdr.0b013e3181c2f4cc] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glucose is a major fuel for fetal development. Fetal blood glucose level is mainly dependent on maternal blood glucose concentration, though it is also regulated by fetal insulin level. Thioredoxin binding protein-2 (TBP-2), which is identical to vitamin D3 up-regulated protein (VDUP1) and thioredoxin interacting protein (Txnip), was recently reported to be a key transcriptional factor controlling glucose metabolism. Here, we elucidated the functions of TBP-2 in maintaining blood glucose homeostasis during the fetal period. TBP-2(+/-) female mice were mated with TBP-2(+/-) male mice; beginning 16.5-d post coitum, pregnant mice were fed or fasted for 24 h. Under conditions of maternal starvation, the blood glucose levels of TBP-2(-/-) fetuses were significantly lower than those of TBP-2(+/+) fetuses, corresponding to the elevated plasma insulin levels of TBP-2(-/-) fetuses compared with those of TBP-2(+/+) fetuses. There was no difference between TBP-2(+/+) and TBP-2(-/-) fetuses in terms of their pancreatic beta-cell masses or the expression of placental glucose transporters under conditions of either maternal feeding or fasting. Thus, during maternal fasting, fetal TBP-2 suppresses excessive insulin secretion to maintain the fetus's glucose levels, implying that TBP-2 is a critical molecule in mediating fetal glucose homeostasis depending on nutrient availability.
Collapse
Affiliation(s)
- Haruta Mogami
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Rojas A, Schachterle W, Xu SM, Black BL. An endoderm-specific transcriptional enhancer from the mouse Gata4 gene requires GATA and homeodomain protein-binding sites for function in vivo. Dev Dyn 2010; 238:2588-98. [PMID: 19777593 DOI: 10.1002/dvdy.22091] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Several transcription factors function in the specification and differentiation of the endoderm, including the zinc finger transcription factor GATA4. Despite its essential role in endoderm development, the transcriptional control of the Gata4 gene in the developing endoderm and its derivatives remains incompletely understood. Here, we identify a distal enhancer from the Gata4 gene, which directs expression exclusively to the visceral and definitive endoderm of transgenic mouse embryos. The activity of this enhancer is initially broad within the definitive endoderm but later restricts to developing endoderm-derived tissues, including pancreas, glandular stomach, and duodenum. The activity of this enhancer in vivo is dependent on evolutionarily-conserved HOX- and GATA-binding sites, which are bound by PDX-1 and GATA4, respectively. These studies establish Gata4 as a direct transcriptional target of homeodomain and GATA transcription factors in the endoderm and support a model in which GATA4 functions in the transcriptional network for pancreas formation.
Collapse
Affiliation(s)
- Anabel Rojas
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | | | | | | |
Collapse
|
122
|
Abstract
Type 1 diabetes (T1D) develops as a consequence of abnormal responses against several self-antigens, eventually leading to the autoimmune attack and destruction of the insulin-producing beta cells in the pancreas. In this issue of Laboratory Investigation, Li et al propose the transcription factor Pancreatic and duodenal homeobox 1 (PDX-1) as a T1D autoantigen by demonstrating autoreactivity to this pancreas-specific protein in both the NOD mouse model and patients with T1D. Because of the known roles of PDX-1 in pancreatic development as well as beta cell maintenance and function, targeting of PDX-1 expressing cells may result in the elimination of not only beta cells but also the progenitor cells required for regeneration of insulin-producing cells.
Collapse
|
123
|
Richmond CA, Breault DT. Regulation of gene expression in the intestinal epithelium. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 96:207-29. [PMID: 21075346 DOI: 10.1016/b978-0-12-381280-3.00009-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Regulation of gene expression within the intestinal epithelium is complex and controlled by various signaling pathways that regulate the balance between proliferation and differentiation. Proliferation is required both to grow and to replace cells lost through apoptosis and attrition, yet in all but a few cells, differentiation must take place to prevent uncontrolled growth (cancer) and to provide essential functions. In this chapter, we review the major signaling pathways underlying regulation of gene expression within the intestinal epithelium, based primarily on data from mouse models, as well as specific morphogens and transcription factor families that have a major role in regulating intestinal gene expression, including the Hedgehog family, Forkhead Box (FOX) factors, Homeobox (HOX) genes, ParaHox genes, GATA transcription factors, canonical Wnt/β-catenin signaling, EPH/Ephrins, Sox9, BMP signaling, PTEN/PI3K, LKB1, K-RAS, Notch pathway, HNF, and MATH1. We also briefly highlight important emerging areas of gene regulation, including microRNA (miRNA) and epigenetic regulation.
Collapse
Affiliation(s)
- Camilla A Richmond
- Division of Gastroenterology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
124
|
|
125
|
Anderson KR, White P, Kaestner KH, Sussel L. Identification of known and novel pancreas genes expressed downstream of Nkx2.2 during development. BMC DEVELOPMENTAL BIOLOGY 2009; 9:65. [PMID: 20003319 PMCID: PMC2799404 DOI: 10.1186/1471-213x-9-65] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 12/10/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND The homeodomain containing transcription factor Nkx2.2 is essential for the differentiation of pancreatic endocrine cells. Deletion of Nkx2.2 in mice leads to misspecification of islet cell types; insulin-expressing beta cells and glucagon-expressing alpha cells are replaced by ghrelin-expressing cells. Additional studies have suggested that Nkx2.2 functions both as a transcriptional repressor and activator to regulate islet cell formation and function. To identify genes that are potentially regulated by Nkx2.2 during the major wave of endocrine and exocrine cell differentiation, we assessed gene expression changes that occur in the absence of Nkx2.2 at the onset of the secondary transition in the developing pancreas. RESULTS Microarray analysis identified 80 genes that were differentially expressed in e12.5 and/or e13.5 Nkx2.2-/- embryos. Some of these genes encode transcription factors that have been previously identified in the pancreas, clarifying the position of Nkx2.2 within the islet transcriptional regulatory pathway. We also identified signaling factors and transmembrane proteins that function downstream of Nkx2.2, including several that have not previously been described in the pancreas. Interestingly, a number of known exocrine genes are also misexpressed in the Nkx2.2-/- pancreas. CONCLUSIONS Expression profiling of Nkx2.2-/- mice during embryogenesis has allowed us to identify known and novel pancreatic genes that function downstream of Nkx2.2 to regulate pancreas development. Several of the newly identified signaling factors and transmembrane proteins may function to influence islet cell fate decisions. These studies have also revealed a novel function for Nkx2.2 in maintaining appropriate exocrine gene expression. Most importantly, Nkx2.2 appears to function within a complex regulatory loop with Ngn3 at a key endocrine differentiation step.
Collapse
Affiliation(s)
- Keith R Anderson
- Department of Biochemistry and Program in Molecular Biology, University of Colorado Health Science Center, Denver, CO 80045, USA
| | | | | | | |
Collapse
|
126
|
Abstract
Diabetes is characterized by decreased function of insulin-producing beta cells and insufficient insulin output resulting from an absolute (Type 1) or relative (Type 2) inadequate functional beta cell mass. Both forms of the disease would greatly benefit from treatment strategies that could enhance beta cell regeneration and/or function. Successful and reliable methods of generating beta cells or whole islets from progenitor cells in vivo or in vitro could lead to restoration of beta cell mass in individuals with Type 1 diabetes and enhanced beta cell compensation in Type 2 patients. A thorough understanding of the normal developmental processes that occur during pancreatic organogenesis, for example, transcription factors, cell signaling molecules, and cell-cell interactions that regulate endocrine differentiation from the embryonic pancreatic epithelium, is required in order to successfully reach these goals. This review summarizes our current understanding of pancreas development, with particular emphasis on factors intrinsic or extrinsic to the pancreatic epithelium that are involved in regulating the development and differentiation of the various pancreatic cell types. We also discuss the recent progress in generating insulin-producing cells from progenitor sources.
Collapse
Affiliation(s)
- Michelle A Guney
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | |
Collapse
|
127
|
Chen C, Fang R, Davis C, Maravelias C, Sibley E. Pdx1 inactivation restricted to the intestinal epithelium in mice alters duodenal gene expression in enterocytes and enteroendocrine cells. Am J Physiol Gastrointest Liver Physiol 2009; 297:G1126-37. [PMID: 19808654 PMCID: PMC2850094 DOI: 10.1152/ajpgi.90586.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Null mutant mice lacking the transcription factor pancreatic and duodenal homeobox 1 (Pdx1) are apancreatic and survive only a few days after birth. The role of Pdx1 in regulating intestinal gene expression has therefore yet to be determined in viable mice with normal pancreatic development. We hypothesized that conditional inactivation of Pdx1 restricted to the intestinal epithelium would alter intestinal gene expression and cell differentiation. Pdx1(flox/flox);VilCre mice with intestine-specific Pdx1 inactivation were generated by crossing a transgenic mouse strain expressing Cre recombinase, driven by a mouse villin 1 gene promoter fragment, with a mutant mouse strain homozygous for loxP site-flanked Pdx1. Pdx1 protein is undetectable in all epithelial cells in the intestinal epithelium of Pdx1(flox/flox);VilCre mice. Goblet cell number and mRNA abundance for mucin 3 and mucin 13 genes in the proximal small intestine are comparable between Pdx1(flox/flox);VilCre and control mice. Similarly, Paneth cell number and expression of Paneth cell-related genes Defa1, Defcr-rs1, and Mmp7 in the proximal small intestine remain statistically unchanged by Pdx1 inactivation. Although the number of enteroendocrine cells expressing chromogranin A/B, gastric inhibitory polypeptide (Gip), or somatostatin (Sst) is unaffected in the Pdx1(flox/flox);VilCre mice, mRNA abundance for Gip and Sst is significantly reduced in the proximal small intestine. Conditional Pdx1 inactivation attenuates intestinal alkaline phosphatase (IAP) activity in the duodenal epithelium, consistent with an average 91% decrease in expression of the mouse enterocyte IAP gene, alkaline phosphatase 3 (a novel Pdx1 target candidate), in the proximal small intestine following Pdx1 inactivation. We conclude that Pdx1 is necessary for patterning appropriate gene expression in enterocytes and enteroendocrine cells of the proximal small intestine.
Collapse
Affiliation(s)
- Chin Chen
- Stanford Univ. School of Medicine, CA 94305-5208, USA.
| | - Rixun Fang
- 1Division of Pediatric Gastroenterology and
| | - Corrine Davis
- 2Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California
| | | | | |
Collapse
|
128
|
Uemura M, Hara K, Shitara H, Ishii R, Tsunekawa N, Miura Y, Kurohmaru M, Taya C, Yonekawa H, Kanai-Azuma M, Kanai Y. Expression and function of mouse Sox17 gene in the specification of gallbladder/bile-duct progenitors during early foregut morphogenesis. Biochem Biophys Res Commun 2009; 391:357-63. [PMID: 19913509 DOI: 10.1016/j.bbrc.2009.11.063] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 11/09/2009] [Indexed: 10/20/2022]
Abstract
In early-organogenesis-stage mouse embryos, the posteroventral foregut endoderm adjacent to the heart tube gives rise to liver, ventral pancreas and gallbladder. Hepatic and pancreatic primordia become specified in the posterior segment of the ventral foregut endoderm at early somite stages. The mechanisms for demarcating gallbladder and bile duct primordium, however, are poorly understood. Here, we demonstrate that the gallbladder and bile duct progenitors are specified in the paired lateral endoderm domains outside the heart field at almost the same timing as hepatic and pancreatic induction. In the anterior definitive endoderm, Sox17 reactivation occurs in a certain population within the most lateral domains posterolateral to the anterior intestinal portal (AIP) lip on both the left and right sides. During foregut formation, the paired Sox17-positive domains expand ventromedially to merge in the midline of the AIP lip and become localized between the liver and pancreatic primordia. In Sox17-null embryos, these lateral domains are missing, resulting in a complete loss of the gallbladder/bile-duct structure. Chimera analyses revealed that Sox17-null endoderm cells in the posteroventral foregut do not display any gallbladder/bile-duct molecular characters. Our findings show that Sox17 functions cell-autonomously to specify gallbladder/bile-duct in the mouse embryo.
Collapse
Affiliation(s)
- Mami Uemura
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Abstract
A progressive reduction in beta-cell mass occurs in the evolution of diabetes. Thus understanding the mechanisms responsible for this reduction in beta-cell mass is important for understanding the pathogenesis of diabetes and in developing novel approaches to prevention and treatment. Pancreatic duodenal homeobox 1 (Pdx1) is a transcription factor that plays a central role in pancreatic beta-cell function and survival. Complete deficiency of Pdx1 is associated with pancreatic agenesis, and partial deficiency leads to severe beta-cell dysfunction, and increases beta-cell death and diabetes both in rodent and human. Chronic hyperglycaemia and dyslipidaemia, which are major features of type 2 diabetes, cause beta-cell dysfunction via reduced Pdx1 expression. Inhibition of insulin/insulin-like growth factor (Igf) signalling followed by reduced Pdx1 expression is a common pathway induced by the majority of the mechanisms in apoptotic beta-cells. Although the report so far paid little attention to non-apoptotic beta-cell death (autophagy and necrosis), we expect these are also involved in the pathogenesis of diabetes. The potential role of Pdx1 in non-apoptotic beta-cell death should also be considered in future studies in diabetes, and in attempts to develop novel agents that target this process for prevention and treatment of the disorder.
Collapse
Affiliation(s)
| | - Kenneth S. Polonsky
- Correspondence: K.S. Polonsky, Department of Medicine, Washington University School of Medicine, Campus Box 8066, 660 S. Euclid Avenue, St. Louis, Missouri 63110, USA. Phone: (314) 362-8061; Fax: (314) 362-8015;
| |
Collapse
|
130
|
Kaneto H, Matsuoka TA, Kawashima S, Yamamoto K, Kato K, Miyatsuka T, Katakami N, Matsuhisa M. Role of MafA in pancreatic beta-cells. Adv Drug Deliv Rev 2009; 61:489-96. [PMID: 19393272 DOI: 10.1016/j.addr.2008.12.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 12/15/2008] [Indexed: 01/01/2023]
Abstract
Pancreatic beta-cell-specific insulin gene expression is regulated by a variety of pancreatic transcription factors and the conserved A3, C1 and E1 elements in the insulin gene enhancer region are very important for activation of insulin gene. Indeed, PDX-1 binding to the A3 element and NeuroD binding to the E1 element are crucial for insulin gene transcription. Recently, C1 element-binding transcription factor was identified as MafA, which is a basic-leucine zipper transcription factor and functions as a potent transactivator for the insulin gene. Under diabetic conditions, chronic hyperglycemia gradually deteriorates pancreatic beta-cell function, which is accompanied by decreased expression and/or DNA binding activities of MafA and PDX-1. Furthermore, MafA overexpression, together with PDX-1 and NeuroD, markedly induces insulin biosynthesis in various non-beta-cells and thereby is a useful tool to efficiently induce insulin-producing surrogate beta-cells. These results suggest that MafA plays a crucial role in pancreatic beta-cells and could be a novel therapeutic target for diabetes.
Collapse
|
131
|
Yoshida T, Murata K, Shiraki N, Kume K, Kume S. Analysis of gene expressions of embryonic stem-derived Pdx1-expressing cells: implications of genes involved in pancreas differentiation. Dev Growth Differ 2009; 51:463-72. [PMID: 19382941 DOI: 10.1111/j.1440-169x.2009.01109.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have recently reported the method by which embryonic stem (ES) cells were induced into Pdx1-expressing cells. To gain insights into the ES cell-derived Pdx1-expressing cells, we examined gene expression profiles of the cells by microarray experiments. Microarray analyses followed by a comparison with the data of the cells in developing pancreatic and adult islet suggested that the ES cell-derived Pdx1-positive cells were immature pancreatic progenitor cells with endodermal characteristics. The analyses of the genes upregulated in the ES cell-derived Pdx1-positive cells would give us knowledge on early pancreatic development. Here, we first listed the genes and found that these contained not only those known to be expressed in the endoderm or pancreatic progenitor cells, but also those known to be involved in left-right axis formation. Second, we examined the gene expression patterns and found that several genes were expressed in the ventral foregut lip at the anterior intestinal portal in E8.5 embryo. Given that the Pdx1/GFP-expressing cells are first observed in the same region at the anterior intestinal portal, these results suggest that the pancreatic progenitor cells first give rise at the ventral endoderm prior to the formation of dorsal and ventral pancreatic buds.
Collapse
Affiliation(s)
- Tetsu Yoshida
- Division of Stem Cell Biology, Department of Regeneration Medicine, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto, Japan
| | | | | | | | | |
Collapse
|
132
|
|
133
|
Neurogenin 3 and neurogenic differentiation 1 are retained in the cytoplasm of multiple endocrine neoplasia type 1 islet and pancreatic endocrine tumor cells. Pancreas 2009; 38:259-66. [PMID: 19307926 DOI: 10.1097/mpa.0b013e3181930818] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES To investigate if transcription factors involved in pancreatic differentiation and regeneration are present in pancreatic endocrine tumors and if they are differentially expressed in normal pancreas compared with multiple endocrine neoplasia type 1 (MEN1) nontumorous pancreas. METHODS The expression of neurogenin 3 (NEUROG3), neurogenic differentiation 1 (NEUROD1), POU class 3 homeobox 4 (POU3F4), pancreatic duodenal homeobox factor 1 (PDX1), ribosomal protein L10 (RPL10), delta-like 1 homolog (Drosophila; DLK1), and menin was analyzed by immunohistochemistry in normal pancreas and pancreatic endocrine tumors from 6 patients with MEN1 and 16 patients with sporadic tumors, as well as pancreatic specimens from Men1 heterozygous and wild type mice. Quantitative polymerase chain reaction was performed in a subset of human tumors. RESULTS Tumors and MEN1 nontumorous endocrine cells showed a prominent cytoplasmatic NEUROG3 and NEUROD1 expression. These factors were significantly more expressed in the cytoplasm of Men1 heterozygous mouse islet cells compared with wild type islets; the latter showed an exclusively nuclear reactivity. The degree of Pou3f4, Rpl10, and Dlk1 immunoreactivities differed significantly between islets of heterozygous and wild type mice. The expressions of RPL10 and NEUROD1 were prominent in the MEN1 human and heterozygous mouse exocrine pancreas. Insulinomas had significantly higher PDX1 and DLK1 messenger RNA levels compared with other tumor types. CONCLUSIONS Transcription factors involved in pancreatic development show altered expression and subcellular localization in MEN1 nontumorous pancreas and pancreatic endocrine tumors.
Collapse
|
134
|
Hou LQ, Wang YH, Liu LJ, Guo J, Teng LP, Cao LH, Shi H, Yuan L, De W. Expression and localization of mesothelin in developing rat pancreas. Dev Growth Differ 2009; 50:531-41. [PMID: 18505465 DOI: 10.1111/j.1440-169x.2008.01047.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
To define a genetic network that regulates development of the pancreas, we used high-density microarray (Affymetrix) to generate transcriptional profiles of rat pancreas from five biologically significant stages of development: embryonic day 12.5 (E12.5), E15.5, E18.5, postnatal day 0 (P0) and adult. Many genes were notably highly expressed in the later gestation when islet architecture and function are gradually forming. The expression and localization of mesothelin, one of these genes, was further examined. Reverse transcription-polymerase chain reaction and Western blot analysis revealed that mRNA and protein levels of mesothelin were high from later gestation to 2-3 weeks after birth, and with relatively low but detectable expression levels in adult rat pancreas. Immunolocalization indicated that mesothelin localized not only in islet beta-cells but also in the mesenchyme of developing rat pancreas. Transient mesothelin expression was concomitant with the development of islets architecture formation, remodeling and maturation. These findings indicate that mesothelin is dynamically expressed in the developing rat pancreas and that mesothelin might be involved in some developmental events during development of rat pancreas.
Collapse
Affiliation(s)
- Liang-Qin Hou
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Hanzhong Road 140, 210029, Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Villasenor A, Chong DC, Cleaver O. Biphasic Ngn3 expression in the developing pancreas. Dev Dyn 2009; 237:3270-9. [PMID: 18924236 DOI: 10.1002/dvdy.21740] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Ngn3 is a bHLH transcription factor critical for the specification of endocrine cells in the pancreatic Islets of Langerhans. Previous studies in mouse embryos have reported transient expression of Ngn3 in scattered cells within the developing pancreatic epithelium during midgestation (Schwitzgebel et al. [2000] Development 127:3533-3542). Specifically, these Ngn3-expressing cells have been shown to be progenitor cells fated to give rise to islet endocrine cells (Gradwohl et al. [2000] Proc Natl Acad Sci USA 97:1607-1611). Here, we characterize the expression of Ngn3 transcripts and protein throughout pancreatic development. Interestingly, we identify and define a dramatic and previously unnoticed gap in developmental Ngn3 expression. We show that both Ngn3 transcript and protein expression occur in two distinct temporal waves, the first occurring early from approximately E8.5 to E11.0, and the second initiating at approximately E12.0. Strikingly, this observed biphasic expression correlates with the "first" and "second" transitions, which encompass two distinct waves of embryonic endocrine differentiation. In addition, our studies demonstrate that Ngn3 transcripts are markedly more widespread in the pancreatic epithelium than NGN3 protein, indicating that post-transcriptional regulation is likely to play a critical role during endocrine differentiation.
Collapse
Affiliation(s)
- Alethia Villasenor
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA
| | | | | |
Collapse
|
136
|
Gao N, LeLay J, Vatamaniuk MZ, Rieck S, Friedman JR, Kaestner KH. Dynamic regulation of Pdx1 enhancers by Foxa1 and Foxa2 is essential for pancreas development. Genes Dev 2009; 22:3435-48. [PMID: 19141476 DOI: 10.1101/gad.1752608] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The onset of pancreas development in the foregut endoderm is marked by activation of the homeobox gene Pdx1 (IPF1). Pdx1 is essential for the expansion of the pancreatic primordium and the development of endocrine islets. The control of Pdx1 expression has been only partially elucidated. We demonstrate here that the winged-helix transcription factors Foxa1 and Foxa2 co-occupy multiple regulatory domains in the Pdx1 gene. Compound conditional ablation of both Foxa1 and Foxa2 in the pancreatic primordium results in complete loss of Pdx1 expression and severe pancreatic hypoplasia. Mutant mice exhibit hyperglycemia with severely disrupted acinar and islet development, and die shortly after birth. Assessment of developmental markers in the mutant pancreas revealed a failure in the expansion of the pancreatic anlage, a blockage of exocrine and endocrine cell differentiation, and an arrest at the primitive duct stage. Comparing their relative developmental activity, we find that Foxa2 is the major regulator in promoting pancreas development and cell differentiation. Using chromatin immunoprecipitations (ChIP) and ChIP sequencing (ChIPSeq) of fetal pancreas and islet chromatin, we demonstrate that Foxa1 and Foxa2 predominantly occupy a distal enhancer at -6.4 kb relative to the transcriptional start site in the Pdx1 gene. In addition, occupancy of the well-characterized proximal Pdx1 enhancer by Foxa1 and Foxa2 is developmental stage-dependent. Thus, the regulation of Pdx1 expression by Foxa1 and Foxa2 is a key early event controlling the expansion and differentiation of the pancreatic primordia.
Collapse
Affiliation(s)
- Nan Gao
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
137
|
Bonal C, Thorel F, Ait-Lounis A, Reith W, Trumpp A, Herrera PL. Pancreatic inactivation of c-Myc decreases acinar mass and transdifferentiates acinar cells into adipocytes in mice. Gastroenterology 2009; 136:309-319.e9. [PMID: 19022256 DOI: 10.1053/j.gastro.2008.10.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 09/29/2008] [Accepted: 10/02/2008] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS The pancreatic mass is determined by the coordinated expansion and differentiation of progenitor cells and is maintained via tight control of cell replacement rates. The basic helix-loop-helix transcription factor c-Myc is one of the main regulators of these processes in many organs. We studied the requirement of c-Myc in controlling the generation and maintenance of pancreatic mass. METHODS We conditionally inactivated c-Myc in Pdx1+ pancreatic progenitor cells. Pancreata of mice lacking c-Myc (c-Myc(P-/-) mice) were analyzed during development and ageing. RESULTS Pancreatic growth in c-Myc(P-/-) mice was impaired starting on E12.5, in early primordia, because of decreased proliferation and altered differentiation of exocrine progenitors; islet progenitors were spared. Acinar cell maturation was defective in the adult hypotrophic pancreas, which hampered exocrine mass maintenance in aged animals. From 2 to 10 months of age, the c-Myc(P-/-) pancreas was progressively remodeled without inflammatory injury. Loss of acinar cells increased with time, concomitantly with adipose tissue accumulation. Using a genetic cell lineage tracing analysis, we demonstrated that pancreatic adipose cells were derived directly from transdifferentiating acinar cells. This epithelial-to-mesenchyme transition was also observed in normal aged specimens and in pancreatitis. CONCLUSIONS These results provide evidence indicating that c-Myc activity is required for growth and maturation of the exocrine pancreas, and sheds new light on the ontogeny of pancreatic adipose cells in processes of organ degenerescence and tissue involution.
Collapse
Affiliation(s)
- Claire Bonal
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
138
|
|
139
|
Abstract
The making of functional pancreatic islets in renewable numbers has been a goal of stem cell biologists since early 2000. Since that time, many studies have reported successful creation of glucose-responsive pancreatic beta-cells. Not until the more recent systematic application of developmental principles to stem cell biology systems were breakthroughs achieved on directed specification of the required early developmental intermediates. The most important first step is the formation of the definitive endoderm (DE) lineage which is compulsory for production of the epithelium of the pancreas and the other important endoderm-derived organs such as the liver, intestine and lung. The formation of DE from embryonic stem cells made possible additional experimentation aimed at directing the endoderm to further specified foregut and pancreatic endoderm lineages. With these discoveries came the first production of immature pancreatic endocrine cells. Most recently, the production in vivo of glucose-responsive insulin-producing cells with the capacity to correct Steptozotocin-induced hyperglycaemia in mice has been achieved. The work leading up to this achievement, in relation to the other principle human stem cell studies conducted in this area, will be briefly described. The necessary steps and ideal characteristics of embryonic stem cell-based differentiation to pancreatic beta-cells capable of glucose stimulated insulin secretion will be underscored.
Collapse
Affiliation(s)
- E E Baetge
- Novocell Inc., San Diego, CA 92121, USA.
| |
Collapse
|
140
|
Gittes GK. Developmental biology of the pancreas: a comprehensive review. Dev Biol 2008; 326:4-35. [PMID: 19013144 DOI: 10.1016/j.ydbio.2008.10.024] [Citation(s) in RCA: 315] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 10/09/2008] [Accepted: 10/13/2008] [Indexed: 02/06/2023]
Abstract
Pancreatic development represents a fascinating process in which two morphologically distinct tissue types must derive from one simple epithelium. These two tissue types, exocrine (including acinar cells, centro-acinar cells, and ducts) and endocrine cells serve disparate functions, and have entirely different morphology. In addition, the endocrine tissue must become disconnected from the epithelial lining during its development. The pancreatic development field has exploded in recent years, and numerous published reviews have dealt specifically with only recent findings, or specifically with certain aspects of pancreatic development. Here I wish to present a more comprehensive review of all aspects of pancreatic development, though still there is not a room for discussion of stem cell differentiation to pancreas, nor for discussion of post-natal regeneration phenomena, two important fields closely related to pancreatic development.
Collapse
Affiliation(s)
- George K Gittes
- Children's Hospital of Pittsburgh and the University of Pittsburgh School of Medicine, Department of Pediatric Surgery, 3705 Fifth Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
141
|
Pdx-1-driven overexpression of aurora a kinase induces mild ductal dysplasia of pancreatic ducts near islets in transgenic mice. Pancreas 2008; 37:e39-44. [PMID: 18815537 PMCID: PMC2728596 DOI: 10.1097/mpa.0b013e318176b9ae] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To further explore the oncogenic activity of Aurora A kinase while attempting to develop a useful mouse model for pancreatic cancer, Aurora A kinase was targeted to pancreatic duodenal homeobox gene-1 (Pdx-1)-positive cells. METHODS Aurora A kinase overexpression was targeted to mouse pancreas tissues using the Pdx-1 promoter in a transgenic model. The pancreas tissues of 7- to 11-month-old transgenic animals were evaluated for metastatic adenocarcinomas, preinvasive ductal neoplasia, or other histological anomalies. RESULTS Examination of pancreatic tissue from Pdx-1-Aurora A transgenic mice revealed abnormalities, such as mild islet cell hyperplasia, lymphocytic infiltration, and general dysplasia between ductal/islet cell interfaces. However, most tissues from these transgenic mice were normal. CONCLUSIONS The overexpression of Aurora A can potentially initiate the development of mild abnormalities in pancreatic tissue; however, neither preinvasive ductal neoplasia nor fully metastatic adenocarcinomas were observed. Combining the Pdx-1-Aurora A transgenic model with other genetic alterations may provide additional insight.
Collapse
|
142
|
Abstract
Past studies of pancreatic progenitor cell biology relied mostly on histological analyses. Recent studies, using genetic labeling and tracing of progenitors, direct single cell analyses, colony assays, and enrichment of the minor population of progenitor cells through the use of cell surface markers, have strongly suggested that pancreatic progenitor cells with various frequency and lineage potentials, including the multipotent progenitors that give rise to endocrine, exocrine, and duct cells, exist in the developing and adult pancreas. In this review, it is therefore proposed that pancreatic progenitor cells may be organized in a hierarchy, in which the most primitive pan-pancreatic multipotent progenitors are at the top and rare, and the monopotent progenitors are at the bottom and abundant. This model may explain why only drastic injuries lead to effective activation of the progenitor cell compartment of the higher hierarchy, whereas under steady state, pregnancy, and milder injuries, recruitment of preexisting mature cells or their immediate monopotent progenitors could be sufficient to restore metabolic homeostasis. It is also proposed that the morphologically defined ductal cells are likely to be functionally heterogeneous and that endocrine progenitor cell activity should be determined based on functional analyses rather than histological locations.
Collapse
Affiliation(s)
- Hsun Teresa Ku
- Department of Diabetes, Endocrinology, and Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010, USA.
| |
Collapse
|
143
|
A dosage-dependent requirement for Sox9 in pancreatic endocrine cell formation. Dev Biol 2008; 323:19-30. [PMID: 18723011 DOI: 10.1016/j.ydbio.2008.07.034] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 06/28/2008] [Accepted: 07/16/2008] [Indexed: 11/21/2022]
Abstract
We have previously shown the transcription factor SOX9 to be required for the maintenance of multipotential pancreatic progenitor cells in the early embryonic pancreas. However, the association of pancreatic endocrine defects with the Sox9-haploinsufficiency syndrome campomelic dysplasia (CD) implies additional later roles for Sox9 in endocrine development. Using short-term lineage tracing in mice, we demonstrate here that SOX9 marks a pool of multipotential pancreatic progenitors throughout the window of major cell differentiation. During mid-pancreogenesis, both endocrine and exocrine cells simultaneously arise from the SOX9(+) epithelial cords. Our analysis of mice with 50%-reduced Sox9 gene dosage in pancreatic progenitors reveals endocrine-specific defects phenocopying CD. By birth, these mice display a specific reduction in endocrine cell mass, while their exocrine compartment and total organ size is normal. The decrease in endocrine cells is caused by reduced generation of endocrine progenitors from the SOX9(+) epithelium. Conversely, formation of exocrine progenitors is insensitive to reduced Sox9 gene dosage, thus explaining the normal organ size at birth. Our results show that not only is SOX9 required for the maintenance of early pancreatic progenitors, but also governs their adoption of an endocrine fate. Our findings therefore suggest that defective endocrine specification might underlie the pancreatic phenotype of individuals with CD.
Collapse
|
144
|
Abstract
The major forms of diabetes are characterized by pancreatic islet beta-cell dysfunction and decreased beta-cell numbers, raising hope for cell replacement therapy. Although human islet transplantation is a cell-based therapy under clinical investigation for the treatment of type 1 diabetes, the limited availability of human cadaveric islets for transplantation will preclude its widespread therapeutic application. The result has been an intense focus on the development of alternate sources of beta cells, such as through the guided differentiation of stem or precursor cell populations or the transdifferentiation of more plentiful mature cell populations. Realizing the potential for cell-based therapies, however, requires a thorough understanding of pancreas development and beta-cell formation. Pancreas development is coordinated by a complex interplay of signaling pathways and transcription factors that determine early pancreatic specification as well as the later differentiation of exocrine and endocrine lineages. This review describes the current knowledge of these factors as they relate specifically to the emergence of endocrine beta cells from pancreatic endoderm. Current therapeutic efforts to generate insulin-producing beta-like cells from embryonic stem cells have already capitalized on recent advances in our understanding of the embryonic signals and transcription factors that dictate lineage specification and will most certainly be further enhanced by a continuing emphasis on the identification of novel factors and regulatory relationships.
Collapse
Affiliation(s)
- Jennifer M. Oliver-Krasinski
- Institute for Diabetes, Obesity and Metabolism and the Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Doris A. Stoffers
- Institute for Diabetes, Obesity and Metabolism and the Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
145
|
Ma J, Chen M, Wang J, Xia HHX, Zhu S, Liang Y, Gu Q, Qiao L, Dai Y, Zou B, Li Z, Zhang Y, Lan H, Wong BCY. Pancreatic duodenal homeobox-1 (PDX1) functions as a tumor suppressor in gastric cancer. Carcinogenesis 2008; 29:1327-1333. [PMID: 18477649 DOI: 10.1093/carcin/bgn112] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM Pancreatic duodenal homeobox-1 (PDX1) is a transcription factor of homeobox genes family important in differentiation and development of the pancreas, duodenum and antrum. This study aims to clarify the putative role of PDX1 in gastric carcinogenesis. METHODS PDX1 expression was detected in gastric tissues with chronic gastritis and cancer as well as gastric cancer cell lines by immunohistochemistry, western blot, reverse transcription-polymerase chain reaction (RT-PCR) or quantitative real-time RT-PCR assays. The effects of PDX1 on cell proliferation, apoptosis, clone formation and migration were evaluated using cancer cell lines after transient or stable transfection with PDX1-expressing vector. The ability of PDX1 stable transfectant in tumor formation in xenograft mice was assessed. RESULTS PDX1 was strongly expressed in normal gastric glands, but was absent in 29 of 39 of human gastric cancer and most gastric cancer cell lines. Negative correlation between PDX1 and Ki-67 expression was found in both gastric tissues and cell lines. Ectopic overexpression of PDX1 significantly inhibited cell proliferation and induced apoptosis, accompanied by the activation of caspases 3, 8, 9 and 10. Overexpression of PDX1 also impaired the ability of cancer cells in clonal formation and migration in vitro. Furthermore, stable transfection with PDX1 reduced the ability of cancer cells in tumor formation in nude mice. CONCLUSIONS PDX1 expression is lost in gastric cancers. Its effect on cell proliferation/apoptosis, migration and tumor formation in vitro and in vivo suggested that this protein functions as a putative tumor suppressor in gastric cancer.
Collapse
Affiliation(s)
- Juan Ma
- Division of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Remodeling the exocrine pancreas at metamorphosis in Xenopus laevis. Proc Natl Acad Sci U S A 2008; 105:8962-7. [PMID: 18574144 DOI: 10.1073/pnas.0803569105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
At metamorphosis the Xenopus laevis tadpole exocrine pancreas remodels in two stages. At the climax of metamorphosis thyroid hormone (TH) induces dedifferentiation of the entire exocrine pancreas to a progenitor state. The organ shrinks to 20% of its size, and approximately 40% of its cells die. The acinar cells lose their zymogen granules and approximately 75% of their RNA. The mRNAs that encode exocrine-specific proteins (including the transcription factor Ptf1a) undergo almost complete extinction at climax, whereas PDX-1, Notch-1, and Hes-1, genes implicated in differentiation of the progenitor cells, are activated. At the end of spontaneous metamorphosis when the endogenous TH has reached a low level, the pancreas begins to redifferentiate. Exogenous TH induces the dedifferentiation phase but not the redifferentation phase. The tadpole pancreas lacks the mature ductal system that is found in adult vertebrate pancreases, including the frog. Exocrine pancreases of transgenic tadpoles expressing a dominant negative form of the TH receptor controlled by the elastase promoter are resistant to TH. They do not shrink when subjected to TH. Their acinar cells do not dedifferentiate at climax, nor do they down-regulate exocrine-specific genes or activate Notch-1 and Hes-1. Even 2 months after metamorphosis these frogs have not developed a mature ductal system and the acinar cells are abnormally arranged. The TH-dependent dedifferentiation of the tadpole acinar cells at climax is a necessary step in the formation of a mature frog pancreas.
Collapse
|
147
|
Wang Q, Elghazi L, Martin S, Martins I, Srinivasan RS, Geng X, Sleeman M, Collombat P, Houghton J, Sosa-Pineda B. Ghrelin is a novel target of Pax4 in endocrine progenitors of the pancreas and duodenum. Dev Dyn 2008; 237:51-61. [PMID: 18058910 DOI: 10.1002/dvdy.21379] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pax4-deficient mice have a severe gastrointestinal endocrine deficiency: they lack most pancreatic cells that produce insulin or somatostatin and various duodenal endocrine cell types. Remarkably, Pax4-deficient mice also have an overabundance of ghrelin-expressing cells in the pancreas and duodenum. Detailed analysis of the Pax4 nullizygous pancreas determined that the mutant islets are largely composed of a distinctive endocrine cell type that expresses ghrelin, glucagon, islet amyloid polypeptide (IAPP), and low levels of Pdx1. Lineage-tracing analysis revealed that most of these unique endocrine cells directly arose from Pax4-deficient progenitors. Previous in vitro work reported that Pax4 is a transcriptional repressor of islet amyloid polypeptide (IAPP) and glucagon. In this study, we expanded those results by showing that Pax4 is also a repressor of gherlin. Together, our data further support the notion that Pax4 activity is necessary to establish appropriate patterns of gene expression in endocrine progenitors of the digestive tract.
Collapse
Affiliation(s)
- Qian Wang
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Vanhoose AM, Samaras S, Artner I, Henderson E, Hang Y, Stein R. MafA and MafB regulate Pdx1 transcription through the Area II control region in pancreatic beta cells. J Biol Chem 2008; 283:22612-9. [PMID: 18522939 PMCID: PMC2504898 DOI: 10.1074/jbc.m802902200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pancreatic-duodenal homeobox factor-1 (Pdx1) is highly enriched in islet β cells and integral to proper cell development and adult function. Of the four conserved 5′-flanking sequence blocks that contribute to transcription in vivo, Area II (mouse base pairs -2153/-1923) represents the only mammalian specific control domain. Here we demonstrate that regulation of β-cell-enriched Pdx1 expression by the MafA and MafB transcription factors is exclusively through Area II. Thus, these factors were found to specifically activate through Area II in cell line transfection-based assays, and MafA, which is uniquely expressed in adult islet β cells was only bound to this region in quantitative chromatin immunoprecipitation studies. MafA and MafB are produced in β cells during development and were both bound to Area II at embryonic day 18.5. Expression of a transgene driven by Pdx1 Areas I and II was also severely compromised during insulin+ cell formation in MafB-/- mice, consistent with the importance of this large Maf in β-cell production and Pdx1 expression. These findings illustrate the significance of large Maf proteins to Pdx1 expression in β cells, and in particular MafB during pancreatic development.
Collapse
Affiliation(s)
- Amanda M Vanhoose
- Department of Molecular Physiology and Biophysics, Vanderbilt Medical School, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
149
|
Kaneto H, Miyatsuka T, Kawamori D, Yamamoto K, Kato K, Shiraiwa T, Katakami N, Yamasaki Y, Matsuhisa M, Matsuoka TA. PDX-1 and MafA play a crucial role in pancreatic beta-cell differentiation and maintenance of mature beta-cell function. Endocr J 2008; 55:235-52. [PMID: 17938503 DOI: 10.1507/endocrj.k07e-041] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Pancreatic and duodenal homeobox factor-1 (PDX-1) plays a crucial role in pancreas development, beta-cell differentiation, and maintenance of mature beta-cell function. PDX-1 expression is maintained in pancreatic precursor cells during pancreas development but becomes restricted to beta-cells in mature pancreas. In mature beta-cells, PDX-1 transactivates the insulin and other genes involved in glucose sensing and metabolism such as GLUT2 and glucokinase. MafA is a recently isolated beta-cell-specific transcription factor which functions as a potent activator of insulin gene transcription. Furthermore, these transcription factors play an important role in induction of insulin-producing cells in various non-beta-cells and thus could be therapeutic targets for diabetes. On the other hand, under diabetic conditions, expression and/or activities of PDX-1 and MafA in beta-cells are reduced, which leads to suppression of insulin biosynthesis and secretion. It is likely that alteration of such transcription factors explains, at least in part, the molecular mechanism for beta-cell glucose toxicity found in diabetes.
Collapse
Affiliation(s)
- Hideaki Kaneto
- Department of Internal Medicine and Therapeutics (A8), Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J, Agulnick AD, D'Amour KA, Carpenter MK, Baetge EE. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 2008; 26:443-52. [PMID: 18288110 DOI: 10.1038/nbt1393] [Citation(s) in RCA: 1289] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 02/12/2008] [Indexed: 02/06/2023]
Abstract
Development of a cell therapy for diabetes would be greatly aided by a renewable supply of human beta-cells. Here we show that pancreatic endoderm derived from human embryonic stem (hES) cells efficiently generates glucose-responsive endocrine cells after implantation into mice. Upon glucose stimulation of the implanted mice, human insulin and C-peptide are detected in sera at levels similar to those of mice transplanted with approximately 3,000 human islets. Moreover, the insulin-expressing cells generated after engraftment exhibit many properties of functional beta-cells, including expression of critical beta-cell transcription factors, appropriate processing of proinsulin and the presence of mature endocrine secretory granules. Finally, in a test of therapeutic potential, we demonstrate that implantation of hES cell-derived pancreatic endoderm protects against streptozotocin-induced hyperglycemia. Together, these data provide definitive evidence that hES cells are competent to generate glucose-responsive, insulin-secreting cells.
Collapse
Affiliation(s)
- Evert Kroon
- Novocell, Inc., 3550 General Atomics Ct., San Diego, California 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|