101
|
Li X, Nie S, Chang C, Qiu T, Cao X. Smads oppose Hox transcriptional activities. Exp Cell Res 2006; 312:854-64. [PMID: 16405960 DOI: 10.1016/j.yexcr.2005.12.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 11/28/2005] [Accepted: 12/01/2005] [Indexed: 10/25/2022]
Abstract
BMPs and Hox proteins play crucial roles in developmental processes. Beyond their mutual regulation of gene expression, little is known about the relations between their mechanisms of actions. Previously, we have shown that Hoxc8 acts as a downstream repressor in the BMP signaling pathway. Smad1 and Smad6 interact with Hoxc8 and regulate its repression activities. The Hox family contains 39 genes divided into 13 paralogs. In this report, we systemically examined the potential functions of all the paralogous Hox proteins as BMP downstream transcription factors. Representative Hox proteins from each paralog were tested. In the gel-shift assay, we found that Smad1, Smad4, and Smad6 interacted with most of the Hox proteins in ways similar to their interactions with Hoxc8. The interactions were confirmed in mammalian cells. We also examined the effects of Smads on Hox-induced transactivation. Particularly, we determined that for Hoxd10 as a transcriptional activator, both Smad1 and Smad6 opposed its activity. In addition, Smad6 also inhibited Hoxc8- and Hoxb7-induced osteoprotegerin (OPG) transactivation. Furthermore, Smad1 inhibited Hoxb4-mediated target gene Irx5 expression during early Xenopus development. Our findings suggest that Hox proteins act as general downstream DNA-binding proteins in BMP signaling cascade and their transcriptional activities are regulated by Smads.
Collapse
Affiliation(s)
- Xuelin Li
- Department of Pathology, University of Alabama at Birmingham, 1670 University Blvd., VH G003, Birmingham, AL 35294-0019, USA
| | | | | | | | | |
Collapse
|
102
|
Abstract
The prevailing approach within the field of craniofacial development is focused on finding a balance between tissues (e.g., facial epithelia, neuroectoderm, and neural crest) and molecules (e.g., bone morphogenetic proteins, fibroblast growth factors, Wnts) that play a role in sculpting the face. We are rapidly learning that neither these tissues nor molecular signals are able to act in isolation; in fact, molecular cues are constantly reciprocating signals between the epithelia and the neural crest in order to pattern and mold facial structures. More recently, it has been proposed that this crosstalk is often mediated and organized by discrete organizing centers within the tissues that are able to act as a self-contained unit of developmental potential (e.g., the rhombomere and perhaps the ectomere). Whatever the molecules are and however they are interpreted by these tissues, it appears that there is a remarkably conserved mechanism for setting up the initial organization of the facial prominences between species. Regardless of species, all vertebrates appear to have the same basic bauplan. However, sometime during mid-gestation, the vertebrate face begins to exhibit species-specific variations, in large part due to differences in the rates of growth and differentiation of cells comprising the facial prominences. How do these differences arise? Are they due to late changes in molecular signaling within the facial prominences themselves? Or are these late changes a reflection of earlier, more subtle alterations in boundaries and fields that are established at the earliest stages of head formation? We do not have clear answers to these questions yet, but in this chapter we present new studies that shed light on this age-old question. This chapter aims to present the known signals, both on a molecular and cellular level, responsible for craniofacial development while bringing to light the events that may serve to create difference in facial morphology seen from species to species.
Collapse
Affiliation(s)
- Samantha A Brugmann
- Department of Plastic and Reconstructive Surgery, Stanford University, California 94305, USA
| | | | | |
Collapse
|
103
|
Sandell LL, Trainor PA. Neural crest cell plasticity. size matters. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 589:78-95. [PMID: 17076276 DOI: 10.1007/978-0-387-46954-6_5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Patterning and morphogenesis of neural crest-derived tissues within a developing vertebrate embryo rely on a complex balance between signals acquired by neural crest cells in the neuroepithelium during their formation and signals from the tissues that the neural crest cells contact during their migration. Axial identity of hindbrain neural crest is controlled by a combinatorial pattern of Hox gene expression. Cellular interactions that pattern neural crest involve signals from the same key molecular families that regulate other aspects of patterning and morphogenesis within a developing embryo, namely the BMP, SHH and FGF pathways. The developmental program that regulates neural crest cell fate is both plastic and fixed. As a cohort of interacting cells, neural crest cells carry information that directs the axial pattern and species-specific morphology of the head and face. As individual cells, neural crest cells are responsive to signals from each other as well as from non-neural crest tissues in the environment. General rules and fundamental mechanisms have been important for the conservation of basic patterning of neural crest, but exceptions are notable and relevant. The key to furthering our understanding of important processes such as craniofacial development will require a better characterization of the molecular determinants of the endoderm, ectoderm and mesoderm and the effects that these molecules have on neural crest cell development.
Collapse
Affiliation(s)
- Lisa L Sandell
- Stowers Institute of Medical Research, 901 Volker Blvd., Kansas City, Missouri 64110, USA
| | | |
Collapse
|
104
|
Creuzet S, Couly G, Le Douarin NM. Patterning the neural crest derivatives during development of the vertebrate head: insights from avian studies. J Anat 2005; 207:447-59. [PMID: 16313387 PMCID: PMC1571568 DOI: 10.1111/j.1469-7580.2005.00485.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2005] [Indexed: 11/29/2022] Open
Abstract
Studies carried out in the avian embryo and based on the construction of quail-chick chimeras have shown that most of the skull and all the facial and visceral skeleton are derived from the cephalic neural crest (NC). Contribution of the mesoderm is limited to its occipital and (partly) to its otic domains. NC cells (NCCs) participating in membrane bones and cartilages of the vertebrate head arise from the diencephalon (posterior half only), the mesencephalon and the rhombencephalon. They can be divided into an anterior domain (extending down to r2 included) in which genes of the Hox clusters are not expressed (Hox-negative skeletogenic NC) and a posterior domain including r4 to r8 in which Hox genes of the four first paraloguous groups are expressed. The NCCs that form the facial skeleton belong exclusively to the anterior Hox-negative domain and develop from the first branchial arch (BA1). This rostral domain of the crest is designated as FSNC for facial skeletogenic neural crest. Rhombomere 3 (r3) participates modestly to both BA1 and BA2. Forced expression of Hox genes (Hoxa2, Hoxa3 and Hoxb4) in the neural fold of the anterior domain inhibits facial skeleton development. Similarly, surgical excision of these anterior Hox-negative NCCs results in the absence of facial skeleton, showing that Hox-positive NCCs cannot replace the Hox-negative domain for facial skeletogenesis. We also show that excision of the FSNC results in dramatic down-regulation of Fgf8 expression in the head, namely in ventral forebrain and in BA1 ectoderm. We have further demonstrated that exogenous FGF8 applied to the presumptive BA1 territory at the 5-6-somite stage (5-6ss) restores to a large extent facial skeleton development. The source of the cells responsible for this regeneration was shown to be r3, which is at the limit between the Hox-positive and Hox-negative domain. NCCs that respond to FGF8 by survival and proliferation are in turn necessary for the expression/maintenance of Fgf8 expression in the ectoderm. These results strongly support the emerging picture according to which the processes underlying morphogenesis of the craniofacial skeleton are regulated by epithelial-mesenchymal bidirectional crosstalk.
Collapse
Affiliation(s)
- Sophie Creuzet
- Institut d'Embryologie Cellulaire et Moléculaire, Nogent-sur-Marne, France
| | | | | |
Collapse
|
105
|
Carapuço M, Nóvoa A, Bobola N, Mallo M. Hox genes specify vertebral types in the presomitic mesoderm. Genes Dev 2005; 19:2116-21. [PMID: 16166377 PMCID: PMC1221883 DOI: 10.1101/gad.338705] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We show here that expression of Hoxa10 in the presomitic mesoderm is sufficient to confer a Hox group 10 patterning program to the somite, producing vertebrae without ribs, an effect not achieved when Hoxa10 is expressed in the somites. In addition, Hox group 11-dependent vertebral sacralization requires Hoxa11 expression in the presomitic mesoderm, while their caudal differentiation requires that Hoxa11 is expressed in the somites. Therefore, Hox gene patterning activity is different in the somites and presomitic mesoderm, the latter being very prominent for Hox gene-mediated patterning of the axial skeleton. This is further supported by our finding that inactivation of Gbx2, a homeobox-containing gene expressed in the presomitic mesoderm but not in the somites, produced Hox-like phenotypes in the axial skeleton without affecting Hox gene expression.
Collapse
Affiliation(s)
- Marta Carapuço
- Instituto Gulbenkian de Ciencia, 2780-156 Oeiras, Portugal
| | | | | | | |
Collapse
|
106
|
Abstract
Previous studies have explored the link between bone regeneration and skeletogenesis. Although a great deal is known regarding tissue and cell based events, especially those involving ossification and chondrogenesis, much remains unknown about the molecular similarity of repair and development. Since the functional significance of Homeobox (Hox) genes in embryonic skeletogenesis has been well documented through knockout and deficiency studies, we chose to investigate whether members of this family are reactivated during fracture repair. Specifically, we examined the temporal and spatial expression of Msx-1, Msx-2, rHox, Hoxa-2 and Hoxd-9, because of their involvement in limb development. Utilizing quantitative reverse transcriptase RT-PCR (qPCR), mRNA levels from all five genes were shown to be upregulated during fracture repair at all times tested (post-fracture day 3-21), as compared to intact bone. Further, using in situ hybridization and immunohistochemistry, spatial expression of these genes was localized to osteoblasts, chondrocytes and periosteal osteoprogenitor cells found within the fracture callus, the foremost cells responsible for the reparative phase of the healing process. Given the contribution of Hox genes in skeletal development, our results suggest that these genes are involved in either the patterning or formation of the fracture callus, further supporting the notion that bone regeneration recapitulates skeletal development.
Collapse
Affiliation(s)
- Robert P Gersch
- Department of Biomedical Engineering, Stony Brook University, Psychology A Building, Stony Brook, NY 11794-2580, USA
| | | | | | | |
Collapse
|
107
|
Martinez-Ceballos E, Chambon P, Gudas LJ. Differences in gene expression between wild type and Hoxa1 knockout embryonic stem cells after retinoic acid treatment or leukemia inhibitory factor (LIF) removal. J Biol Chem 2005; 280:16484-98. [PMID: 15722554 DOI: 10.1074/jbc.m414397200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homeobox (Hox) genes encode a family of transcription factors that regulate embryonic patterning and organogenesis. In embryos, alterations of the normal pattern of Hox gene expression result in homeotic transformations and malformations. Disruption of the Hoxa1 gene, the most 3' member of the Hoxa cluster and a retinoic acid (RA) direct target gene, results in abnormal ossification of the skull, hindbrain, and inner ear deficiencies, and neonatal death. We have generated Hoxa1(-/-) embryonic stem (ES) cells (named Hoxa1-15) from Hoxa1(-/-) mutant blastocysts to study the Hoxa1 signaling pathway. We have characterized in detail these Hoxa1(-/-) ES cells by performing microarray analyses, and by this technique we have identified a number of putative Hoxa-1 target genes, including genes involved in bone development (e.g. Col1a1, Postn/Osf2, and the bone sialoprotein gene or BSP), genes that are expressed in the developing brain (e.g. Nnat, Wnt3a, BDNF, RhoB, and Gbx2), and genes involved in various cellular processes (e.g. M-RAS, Sox17, Cdkn2b, LamA1, Col4a1, Foxa2, Foxq1, Klf5, and Igf2). Cell proliferation assays and Northern blot analyses of a number of ES cell markers (e.g. Rex1, Oct3/4, Fgf4, and Bmp4) suggest that the Hoxa1 protein plays a role in the inhibition of cell proliferation by RA in ES cells. Additionally, Hoxa1(-/-) ES cells express high levels of various endodermal markers, including Gata4 and Dab2, and express much less Fgf5 after leukemia inhibitory factor (LIF) withdrawal. Finally, we propose a model in which the Hoxa1 protein mediates repression of endodermal differentiation while promoting expression of ectodermal and mesodermal characteristics.
Collapse
Affiliation(s)
- Eduardo Martinez-Ceballos
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | |
Collapse
|
108
|
Moraes F, Nóvoa A, Jerome-Majewska LA, Papaioannou VE, Mallo M. Tbx1 is required for proper neural crest migration and to stabilize spatial patterns during middle and inner ear development. Mech Dev 2005; 122:199-212. [PMID: 15652707 DOI: 10.1016/j.mod.2004.10.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 09/29/2004] [Accepted: 10/08/2004] [Indexed: 11/24/2022]
Abstract
Tbx1 belongs to the family of T-box containing transcription factors. In humans, TBX1 is implicated in the etiology of the DiGeorge syndrome. Inactivation of the Tbx1 gene in mice produces a variety of malformations including abnormal branching of the heart outflow tract, deficiencies in the branchial arch derivatives, agenesis of pharyngeal glands and abnormal development of the auditory system. We analyze here the middle and inner ear phenotypes of the Tbx1 null mice. The middle ear is strongly affected. Its skeletal components are malformed to varying degrees, some being slightly hypoplastic and others completely absent. However, a seemingly normal-looking tympanic membrane can still be recognized. Middle ear anomalies are associated with other skeletal deficiencies in the branchial arch-derived skeleton. These phenotypes derive from a combination of the failure of the posterior branchial arches to develop and the misrouting of neural crest cells. The inner ears of Tbx1(-/-) animals are hypoplastic. No vestibular or cochlear structures are detectable, but the endolymphatic duct, the cochleovestibular ganglia and residual sensory patches are still identifiable. Molecular analyses revealed a seemingly normal spatial distribution of a variety of patterning markers in the otic vesicles of Tbx1 null mutants at E9.0. However, 1 day later, several of these markers presented altered domains of expression in the otocysts of these mutant embryos, suggesting that Tbx1 is not required for the establishment of spatial patterns in the otocyst, but rather for their maintenance. The inability of the Tbx1(-/-) embryos to keep properly segregated functional domains in the otocyst is likely the cause of the strong inner ear phenotypes observed in these mutants.
Collapse
Affiliation(s)
- Filipa Moraes
- Instituto Gulbenkian de Ciência, UT, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | | | | | | | | |
Collapse
|
109
|
O'Gorman S. Second branchial arch lineages of the middle ear of wild-type andHoxa2 mutant mice. Dev Dyn 2005; 234:124-31. [PMID: 15861402 DOI: 10.1002/dvdy.20402] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Our current understanding of the evolution of the mammalian middle ear was first suggested by embryological studies from the 19th century. Here, site-specific recombinase-mediated lineage tracing was used to define the second branchial arch contribution to the middle ear of wild-type and Hoxa-2 mutant embryos. The processus brevis of the malleus was found to arise from second arch tissues, making it the likely homologue of the retroarticular process of nonmammalian tetrapods. The second arch also formed a portion of the otic capsule. In light of avian lineage studies, second arch cells were probably incorporated into the otic capsule before avian and mammalian lineages diverged. In Hoxa2 mutant embryos, middle ear skeletal duplications occurred at sites where first and second arch elements are normally apposed. The dorsoventral positions at which second arch skeletal elements formed and the early migration of second arch neural crest cells were not altered by the absence of Hoxa2 function.
Collapse
Affiliation(s)
- Stephen O'Gorman
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
110
|
Eames BF, Sharpe PT, Helms JA. Hierarchy revealed in the specification of three skeletal fates by Sox9 and Runx2. Dev Biol 2004; 274:188-200. [PMID: 15355797 DOI: 10.1016/j.ydbio.2004.07.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 06/02/2004] [Accepted: 07/05/2004] [Indexed: 12/31/2022]
Abstract
Across vertebrates, there are three principal skeletal tissues: bone, persistent cartilage, and replacement cartilage. Although each tissue has a different evolutionary history and functional morphology, they also share many features. For example, they function as structural supports, they are comprised of cells embedded in collagen-rich extracellular matrix, and they derive from a common embryonic stem cell, the osteochondroprogenitor. Occasionally, homologous skeletal elements can change tissue type through phylogeny. Together, these observations raise the possibility that skeletal tissue identity is determined by a shared set of genes. Here, we show that misexpression of either Sox9 or Runx2 can substitute bone with replacement cartilage or can convert persistent cartilage into replacement cartilage and vice versa. Our data also suggest that these transcription factors function in a molecular hierarchy in which chondrogenic factors dominate. We propose a binary molecular code that determines whether skeletal tissues form as bone, persistent cartilage, or replacement cartilage. Finally, these data provide insights into the roles that master regulatory genes play during evolutionary change of the vertebrate skeleton.
Collapse
Affiliation(s)
- B Frank Eames
- UCSF Orthopaedic Surgery, San Francisco, CA 94143-0514, USA
| | | | | |
Collapse
|
111
|
Abstract
The RUNX are key regulators of lineage-specific gene expression in major developmental pathways. The expression of RUNX genes is tightly regulated, leading to a highly specific spatio/temporal expression pattern and to distinct phenotypes of gene knockouts. This review highlights the extensive structural similarities between the three mammalian RUNX genes and delineates how regulation of their expression at the levels of transcription and translation are orchestrated into the unique RUNX expression pattern.
Collapse
Affiliation(s)
- Ditsa Levanon
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
112
|
Kulesa P, Ellies DL, Trainor PA. Comparative analysis of neural crest cell death, migration, and function during vertebrate embryogenesis. Dev Dyn 2004; 229:14-29. [PMID: 14699574 DOI: 10.1002/dvdy.10485] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cranial neural crest cells are a multipotent, migratory population that generates most of the cartilage, bone, connective tissue and peripheral nervous system in the vertebrate head. Proper neural crest cell patterning is essential for normal craniofacial morphogenesis and is highly conserved among vertebrates. Neural crest cell patterning is intimately connected to the early segmentation of the neural tube, such that neural crest cells migrate in discrete segregated streams. Recent advances in live embryo imaging have begun to reveal the complex behaviour of neural crest cells which involve intricate cell-cell and cell-environment interactions. Despite the overall similarity in neural crest cell migration between distinct vertebrates species there are important mechanistic differences. Apoptosis for example, is important for neural crest cell patterning in chick embryos but not in mouse, frog or fish embryos. In this paper we highlight the potential evolutionary significance of such interspecies differences in jaw development and evolution. Developmental Dynamics 229:14-29, 2004.
Collapse
Affiliation(s)
- Paul Kulesa
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | | | | |
Collapse
|
113
|
Affiliation(s)
- Ian Anglin
- University of Maryland at Baltimore, Greenebaum Cancer Center, USA
| | | |
Collapse
|
114
|
Santagati F, Rijli FM. Cranial neural crest and the building of the vertebrate head. Nat Rev Neurosci 2003; 4:806-18. [PMID: 14523380 DOI: 10.1038/nrn1221] [Citation(s) in RCA: 329] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Fabio Santagati
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Lousis Pasteur, BP 10142-67404 Illkirch Cedex, CU de Strasbourg, France
| | | |
Collapse
|
115
|
Hunt R, Hunt PN. The role of cell mixing in branchial arch development. Mech Dev 2003; 120:769-90. [PMID: 12915228 DOI: 10.1016/s0925-4773(03)00070-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Compartmental structures are the basis of a number of developing systems, including parts of the vertebrate head. One of the characteristics of a series of compartments is that mixing between cells in adjacent units is restricted. This is a consequence of differential chemoaffinity between neighbouring cells in adjacent compartments. We set out to determine whether mesenchymal cells in the branchial arches and their precursors show cell-mixing properties consistent with a compartmental organisation. In chimaeric avian embryos we found no evidence of preferential association or segregation of neural crest cells when surrounded by cells derived from a different axial level. In reassociation assays using mesenchymal cells isolated from chick branchial arches at stage 18, cells reformed into clusters without exhibiting a preferential affinity for cells derived from the same branchial arch. We find no evidence for differential chemoaffinity in vivo or in vitro between mesenchymal cells in different branchial arches. Our findings suggest that branchial arch mesenchyme is not organised into a series of compartments.
Collapse
Affiliation(s)
- Romita Hunt
- School of Biological and Biomedical Sciences, University of Durham, South Road, DH1 3LE Durham, UK
| | | |
Collapse
|
116
|
Abstract
Skeletal homeostasis is determined by systemic hormones and local factors. Bone morphogenetic proteins (BMP) are unique because they induce the differentiation of mesenchymal cells toward cells of the osteoblastic lineage and also enhance the differentiated function of the osteoblast. However, the activity of BMPs needs to be tempered by intracellular and extracellular antagonists. BMPs bind to specific receptors and signal by phosphorylating the cytoplasmic proteins mothers against decapentaplegic (Smad) 1 and 5, which form heterodimers with Smad 4, and after nuclear translocation regulate transcription. BMP antagonists can be categorized as pseudoreceptors that compete with signaling receptors, inhibitory Smads that block signaling, intracellular binding proteins that bind Smad 1 and 5, and factors that induce ubiquitination and proteolysis of signaling Smads. In addition, a large number of extracellular proteins that bind BMPs and prevent their binding to signaling receptors have emerged. They are the components of the Spemann organizer, noggin, chordin, and follistatin, members of the Dan/Cerberus family, and twisted gastrulation. The antagonists tend to be specific for BMPs and are regulated by BMPs, indicating the existence and need of local feedback mechanisms to temper BMP cellular activities.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105, USA.
| | | | | |
Collapse
|
117
|
Abstract
Gene-inactivation techniques in the mouse have become an essential tool for modern biomedical research. Both ubiquitous and tissue-specific inactivation are possible with current approaches, and recent developments facilitate a temporal control of the inactivation process. However, one of the limitations of current procedures is that inactivation is irreversible. We have produced complete and reversible inactivation of the Hoxa2 gene in the mouse using the control elements of the tetracycline-resistance operon. We show that a Hoxa2 allele containing tetracycline operator (tetO) sequences is susceptible to controlled regulation by tTS, a chimeric molecule containing the tetracycline repressor and a transcriptional repressing domain. This inhibition was specific to the tetO-modified allele, did not affect neighboring genes, and was reversible by administration of doxycycline to the pregnant female. This procedure allows the production of gene inactivation that is complete, is reversible, and can be controlled at the spatial and temporal levels.
Collapse
Affiliation(s)
- Moisés Mallo
- Department of Developmental Biology, Max-Planck Institute of Immunobiology, Freiburg, Germany.
| | | | | |
Collapse
|
118
|
Abstract
Twenty years ago now, Carl Gans and Glen Northcutt proposed that the main invention of vertebrates was a new head, with its full array of sensory organs involved in an active predatory lifestyle. Tracing back the embryological origin of these structures, they showed how all are primarily derived from the neural crest and the placodes, two transient ectodermal cell populations in the embryo. These cell types were then used for further innovations, such as a new mouth in jawed vertebrates. The interplay between patterning and plasticity of the neural crest is largely responsible for the endless variation of vertebrate craniofacial features in evolution.
Collapse
Affiliation(s)
- Miguel Manzanares
- Instituto de Investigaciones Biomédicas, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | | |
Collapse
|
119
|
Affiliation(s)
- Moisés Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| |
Collapse
|
120
|
Ohnemus S, Kanzler B, Jerome-Majewska LA, Papaioannou VE, Boehm T, Mallo M. Aortic arch and pharyngeal phenotype in the absence of BMP-dependent neural crest in the mouse. Mech Dev 2002; 119:127-35. [PMID: 12464426 DOI: 10.1016/s0925-4773(02)00345-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neural crest cells are essential for proper development of a variety of tissues and structures, including peripheral and autonomic nervous systems, facial skeleton, aortic arches and pharyngeal glands like the thymus and parathyroids. Previous work has shown that bone morphogenic protein (BMP) signalling is required for the production of migratory neural crest cells that contribute to the neurogenic and skeletogenic lineages. We show here that BMP-dependent neural crest cells are also required for development of the embryonic aortic arches and pharynx-derived glands. Blocking formation or migration of this crest cell population from the caudal hindbrain resulted in strong phenotypes in the cardiac outflow tract and the thymus. Thymic aplasia or hypoplasia occurs despite uncompromised gene induction in the pharyngeal endoderm. In addition, when hypoplastic thymic tissue is found, it is ectopically located, but functional in thymopoiesis. Our data indicate that thymic phenotypes produced by neural crest deficits result from aberrant formation of pharyngeal pouches and impaired migration of thymic primordia because the mesenchymal content in the branchial arches is below a threshold level.
Collapse
Affiliation(s)
- Sabine Ohnemus
- Department of Developmental Biology, Max-Planck Institute of Immunobiology, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
121
|
Ren SY, Angrand PO, Rijli FM. Targeted insertion results in a rhombomere 2-specific Hoxa2 knockdown and ectopic activation of Hoxa1 expression. Dev Dyn 2002; 225:305-15. [PMID: 12412013 DOI: 10.1002/dvdy.10171] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Recent studies indicated that retention of selectable marker cassettes in targeted Hox loci may cause unexpected phenotypes in mutant mice, due to neighborhood effects. However, the molecular mechanisms have been poorly investigated. Here, we analysed the effects of the targeted insertion of a PGK-neo cassette in the 3' untranslated region of Hoxa2. Even at this 3' position, the insertion resulted in homozygous mutants that unexpectedly did not survive beyond 3 weeks of age. Molecular analysis of the targeted allele revealed a selective "knockdown" of Hoxa2 expression in rhombomere 2 and associated patterning abnormalities. Moreover, Hoxa1 was ectopically expressed in the hindbrain and branchial arches of mutant embryos. Of interest, we demonstrated that the ectopic expression was due to the generation of neo-Hoxa1 fusion transcripts, resulting from aberrant alternative splicing. These defects could be rescued after removal of the PGK-neo cassette by Flp-mediated recombination. These results underscore the complexity of transcriptional regulation at Hox loci and provide insights into the in vivo regulation of Hoxa2 segmental expression. They also provide a molecular basis for the interpretation of unexpected Hox knockout phenotypes in which the targeted selectable marker is retained in the locus.
Collapse
Affiliation(s)
- Shu-Yue Ren
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Collège de France, Illkirch Cedex, CU de Strasbourg, France
| | | | | |
Collapse
|
122
|
Tümpel S, Maconochie M, Wiedemann LM, Krumlauf R. Conservation and diversity in the cis-regulatory networks that integrate information controlling expression of Hoxa2 in hindbrain and cranial neural crest cells in vertebrates. Dev Biol 2002; 246:45-56. [PMID: 12027433 DOI: 10.1006/dbio.2002.0665] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Hoxa2 and Hoxb2 genes are members of paralogy group II and display segmental patterns of expression in the developing vertebrate hindbrain and cranial neural crest cells. Functional analyses have demonstrated that these genes play critical roles in regulating morphogenetic pathways that direct the regional identity and anteroposterior character of hindbrain rhombomeres and neural crest-derived structures. Transgenic regulatory studies have also begun to characterize enhancers and cis-elements for those mouse and chicken genes that direct restricted patterns of expression in the hindbrain and neural crest. In light of the conserved role of Hoxa2 in neural crest patterning in vertebrates and the similarities between paralogs, it is important to understand the extent to which common regulatory networks and elements have been preserved between species and between paralogs. To investigate this problem, we have cloned and sequenced the intergenic region between Hoxa2 and Hoxa3 in the chick HoxA complex and used it for making comparative analyses with the respective human, mouse, and horn shark regions. We have also used transgenic assays in mouse and chick embryos to test the functional activity of Hoxa2 enhancers in heterologous species. Our analysis reveals that three of the critical individual components of the Hoxa2 enhancer region from mouse necessary for hindbrain expression (Krox20, BoxA, and TCT motifs) have been partially conserved. However, their number and organization are highly varied for the same gene in different species and between paralogs within a species. Other essential mouse elements appear to have diverged or are absent in chick and shark. We find the mouse r3/r5 enhancer fails to work in chick embryos and the chick enhancer works poorly in mice. This implies that new motifs have been recruited or utilized to mediate restricted activity of the enhancer in other species. With respect to neural crest regulation, cis-components are embedded among the hindbrain control elements and are highly diverged between species. Hence, there has been no widespread conservation of sequence identity over the entire enhancer domain from shark to humans, despite the common function of these genes in head patterning. This provides insight into how apparently equivalent regulatory regions from the same gene in different species have evolved different components to potentiate their activity in combination with a selection of core components.
Collapse
Affiliation(s)
- Stefan Tümpel
- Stowers Institute, 1000 East 50th, Kansas City, Missouri 64110, USA
| | | | | | | |
Collapse
|
123
|
Abstract
In the last ten years, we have made considerable progress in our genetic and molecular understanding of all aspects of skeletal development, chondrogenesis, joint formation, and osteogenesis. This review addresses the role of the principal growth factors and transcription factors affecting these different processes and presents, in several cases, the genetic cascade leading to cell differentiation.
Collapse
Affiliation(s)
- Gerard Karsenty
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
124
|
Gründer A, Ebel TT, Mallo M, Schwarzkopf G, Shimizu T, Sippel AE, Schrewe H. Nuclear factor I-B (Nfib) deficient mice have severe lung hypoplasia. Mech Dev 2002; 112:69-77. [PMID: 11850179 DOI: 10.1016/s0925-4773(01)00640-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Binding sites for transcription factor nuclear factor one (NFI) proteins, encoded by four genes in the mouse, have been characterized from many tissue-specific genes. NFI genes are expressed in unique but overlapping patterns in embryonic and in adult tissues. Nfib is highly expressed in the embryonic lung. Here we show that Nfib null mutants die early postnatally and display severe lung hypoplasia. Heterozygotes do survive, but exhibit delayed pulmonary differentiation. Expression of transforming growth factor beta 1 (TGF-beta1) and sonic hedgehog (Shh) is not down-regulated in mutant lung epithelium at late stages of morphogenesis, which may result in incomplete lung maturation. Our study demonstrates that Nfib is essential for normal lung development, and suggests that it could be involved in the pathogenesis of respiratory distress syndromes in humans.
Collapse
Affiliation(s)
- Albert Gründer
- Institut fur Biologie III, Albert-Ludwigs-Universitat, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
125
|
Trainor PA, Ariza-McNaughton L, Krumlauf R. Role of the isthmus and FGFs in resolving the paradox of neural crest plasticity and prepatterning. Science 2002; 295:1288-91. [PMID: 11847340 DOI: 10.1126/science.1064540] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cranial neural crest cells generate the distinctive bone and connective tissues in the vertebrate head. Classical models of craniofacial development argue that the neural crest is prepatterned or preprogrammed to make specific head structures before its migration from the neural tube. In contrast, recent studies in several vertebrates have provided evidence for plasticity in patterning neural crest populations. Using tissue transposition and molecular analyses in avian embryos, we reconcile these findings by demonstrating that classical manipulation experiments, which form the basis of the prepatterning model, involved transplantation of a local signaling center, the isthmic organizer. FGF8 signaling from the isthmus alters Hoxa2 expression and consequently branchial arch patterning, demonstrating that neural crest cells are patterned by environmental signals.
Collapse
Affiliation(s)
- Paul A Trainor
- The Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | | | | |
Collapse
|
126
|
Abstract
Proper craniofacial development requires the orchestrated integration of multiple specialized tissue interactions. Recent analyses suggest that craniofacial development is not dependent upon neural crest pre-programming as previously thought but is regulated by a more complex integration of cell and tissue interactions. In the absence of neural crest cells it is still possible to obtain normal arch patterning indicating that neural crest is not responsible for patterning all of arch development. The mesoderm, endoderm and surface ectoderm tissues play a role in the patterning of the branchial arches, and there is now strong evidence that Hoxa2 acts as a selector gene for the pathways that govern second arch structures.
Collapse
Affiliation(s)
- P A Trainor
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA.
| | | |
Collapse
|
127
|
Ohnemus S, Bobola N, Kanzler B, Mallo M. Different levels of Hoxa2 are required for particular developmental processes. Mech Dev 2001; 108:135-47. [PMID: 11578867 DOI: 10.1016/s0925-4773(01)00502-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hoxa2 is required for a variety of developmental processes in the branchial arches and in the hindbrain. We have created a Hoxa2 allele that is about 45% as active in transcription as its wild-type counterpart. This allele, together with the Hoxa2 null and wild-type alleles, allowed the generation of embryos developing in the presence of different levels of Hoxa2 activity. Analysis of these embryos indicates that in general the hindbrain is more resistant to Hoxa2 deficiencies than the second branchial arch. Also, within the second arch, proximo-caudal areas are more sensitive than the rostro-distal. In the hindbrain, basic segmentation and patterning processes seem to occur normally at Hoxa2 levels as low as 20% of the normal. In addition, specific neuronal markers along the dorso-ventral axis of the hindbrain seem differentially affected by reduced Hoxa2 levels. These results provide new clues to understand the role of Hoxa2 in the different embryonic areas where it is required.
Collapse
Affiliation(s)
- S Ohnemus
- Max-Planck Institute of Immunobiology, Stübeweg 51 79108 Freiburg, Germany
| | | | | | | |
Collapse
|
128
|
Mallo M. Formation of the middle ear: recent progress on the developmental and molecular mechanisms. Dev Biol 2001; 231:410-9. [PMID: 11237469 DOI: 10.1006/dbio.2001.0154] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The middle ear allows animals to hear while moving in an aerial medium. It is composed of a cavity harbouring a chain of three ossicles that transmit vibrations produced by airborne sound in the tympanic membrane into the inner ear, where they are converted into neural impulses. The middle ear develops in the branchial arches, and this requires sequential interactions between the epithelia and the underlying mesenchyme. Gene-inactivation experiments have identified genes required for the formation of different middle ear components. Some encode for signalling molecules, including Endothelin1 and Fgf8, probable mediators of epithelial-mesenchymal interactions. Other genes, including Eya1, Prx1, Hoxa1, Hoxa2, Dlx1, Dlx2, Dlx5, and Gsc, are most likely involved in patterning and morphogenetic processes in the neural crest-derived mesenchyme. Mechanisms controlling formation of a functional tympanic membrane are also discussed. Basically, the tympanic ring, which serves as support for the tympanic membrane, directs invagination of the first pharyngeal cleft ectoderm to form the external acoustic meatus (EAM), which provides the outer layer of the membrane. Gsc and Prx1 are essential for tympanic ring development. While invaginating, the EAM controls skeletogenesis in the underlying mesenchyme to form the manubrium of the malleus, the link between the membrane and the middle ear ossicles.
Collapse
Affiliation(s)
- M Mallo
- Department of Developmental Biology, Max-Planck Institute of Immunobiology, Stübeweg 51, Freiburg, D-79108, Germany.
| |
Collapse
|
129
|
Pasqualetti M, Ori M, Nardi I, Rijli FM. Ectopic Hoxa2 induction after neural crest migration results in homeosis of jaw elements in Xenopus. Development 2000; 127:5367-78. [PMID: 11076758 DOI: 10.1242/dev.127.24.5367] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hox genes are required to pattern neural crest (NC) derived craniofacial and visceral skeletal structures. However, the temporal requirement of Hox patterning activity is not known. Here, we use an inducible system to establish Hoxa2 activity at distinct NC migratory stages in Xenopus embryos. We uncover stage-specific effects of Hoxa2 gain-of-function suggesting a multistep patterning process for hindbrain NC. Most interestingly, we show that Hoxa2 induction at postmigratory stages results in mirror image homeotic transformation of a subset of jaw elements, normally devoid of Hox expression, towards hyoid morphology. This is the reverse phenotype to that observed in the Hoxa2 knockout. These data demonstrate that the skeletal pattern of rhombomeric mandibular crest is not committed before migration and further implicate Hoxa2 as a true selector of hyoid fate. Moreover, the demonstration that the expression of Hoxa2 alone is sufficient to transform the upper jaw and its joint selectively may have implications for the evolution of jaws.
Collapse
Affiliation(s)
- M Pasqualetti
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Collège de France, BP 163 - 67404 Illkirch Cedex, C.U. de Strasbourg, France
| | | | | | | |
Collapse
|
130
|
Grammatopoulos GA, Bell E, Toole L, Lumsden A, Tucker AS. Homeotic transformation of branchial arch identity after Hoxa2 overexpression. Development 2000; 127:5355-65. [PMID: 11076757 DOI: 10.1242/dev.127.24.5355] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Overexpression of Hoxa2 in the chick first branchial arch leads to a transformation of first arch cartilages, such as Meckel's and the quadrate, into second arch elements, such as the tongue skeleton. These duplicated elements are fused to the original in a similar manner to that seen in the Hoxa2 knockout, where the reverse transformation of second to first arch morphology is observed. This confirms the role of Hoxa2 as a selector gene specifying second arch fate. When first arch neural crest alone is targeted, first arch elements are lost, but the Hoxa2-expressing crest is unable to develop into second arch elements. This is not due to Hoxa2 preventing differentiation of cartilages. Upregulation of a second arch marker in the first arch, and homeotic transformation of cartilage elements is only produced after global Hoxa2 overexpression in the crest and the surrounding tissue. Thus, although the neural crest appears to contain some patterning information, it needs to read cues from the environment to form a coordinated pattern. Hoxa2 appears to exert its effect during differentiation of the cartilage elements in the branchial arches, rather than during crest migration, implying that pattern is determined quite late in development.
Collapse
Affiliation(s)
- G A Grammatopoulos
- MRC Centre for Developmental Neurobiology, King's College, Guy's Campus, London SE1 1UL, UK
| | | | | | | | | |
Collapse
|
131
|
|
132
|
Mallo M, Schrewe H, Martin JF, Olson EN, Ohnemus S. Assembling a functional tympanic membrane: signals from the external acoustic meatus coordinate development of the malleal manubrium. Development 2000; 127:4127-36. [PMID: 10976045 DOI: 10.1242/dev.127.19.4127] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In terrestrial mammals, hearing starts with the perception of acoustic pressure by the tympanic membrane. Vibrations in this membrane are then transduced into the inner ear by the ossicle chain of the middle ear, composed of the malleus, incus and stapes. The proper connection of the ossicle chain with the tympanic membrane, provided by the insertion of the manubrium of the malleus into the eardrum, is essential for the functionality of the hearing apparatus. We describe here the mechanisms regulating the development of the manubrium and its integration into the tympanic membrane. We show that the external acoustic meatus (EAM), which eventually forms the outer epithelium of the tympanic membrane, plays an essential role in this developmental process. Histological and expression analyses indicate that the manubrium develops close to the EAM with a similar temporal sequence. In addition, when the middle ear ossicles are allowed to develop in vitro under conditions that do not support further EAM development, the manubrium develops only up to the stage of its induction at the time of explantation. Moreover, genetically or teratogenically derived alterations in the EAM also have an effect on manubrial development. Finally, we show that the EAM is the source of two quite opposite activities, one that induces chondrogenesis and another that represses it. The combination of these two activities results in the proper positioning of the manubrium.
Collapse
Affiliation(s)
- M Mallo
- Department of Developmental Biology, Max-Planck Institute of Immunobiology, Stübeweg 51, D-79108 Freiburg, Germany.
| | | | | | | | | |
Collapse
|
133
|
Abstract
The study of the biology of osteoblasts, or bone-forming cells, illustrates how mammalian genetics has profoundly modified our understanding of cell differentiation and physiologic processes. Indeed, genetic-based studies over the past 5 years have revealed how osteoblast differentiation is controlled through growth and transcription factors. Likewise, the recent identification, using mutant mouse models, of a central component in the regulation of bone formation expands our understanding of the control of bone remodeling. This regulatory loop, which involves the hormone leptin, may help to explain the protective effect of obesity on bone mass in humans. In addition, it provides a novel physiologic concept that may shed light on the etiology of osteoporosis and help to identify new therapeutic targets.
Collapse
Affiliation(s)
- P Ducy
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
134
|
Plant MR, MacDonald ME, Grad LI, Ritchie SJ, Richman JM. Locally released retinoic acid repatterns the first branchial arch cartilages in vivo. Dev Biol 2000; 222:12-26. [PMID: 10885743 DOI: 10.1006/dbio.2000.9706] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The fates of cranial neural crest cells are unique compared to trunk neural crest. Cranial neural crest cells form bone and cartilage and ultimately these cells make up the entire facial skeleton. Previous studies had established that exogenous retinoic acid has effects on neurogenic derivatives of cranial neural crest cells and on segmentation of the hindbrain. In the present study we investigated the role of retinoic acid on the skeletal derivatives of migrating cranial neural crest cells. We wanted to test whether low doses of locally applied retinoic acid could respecify the neural crest-derived, skeletal components of the beak in a reproducible manner. Retinoic acid-soaked beads were positioned at the presumptive mid-hindbrain junction in stage 9 chicken embryos. Two ectopic cartilage elements were induced, the first a sheet of cartilage ventral and lateral to the quadrate and the second an accessory cartilage rod branching from Meckel's cartilage. The accessory rod resembled a retroarticular process that had formed within the first branchial arch domain. In addition the quadrate was often displaced laterally and fused to the retroarticular process. The next day following bead implantation, expression domains of Hoxa2 and Hoxb1 were shifted in an anterior direction up to the mesencephalon and Msx-2 was slightly down-regulated in the hindbrain. Despite down-regulation in neural crest cells, the onset of Msx-2 expression in the facial prominences at stage 18-20 was normal. This correlates with normal distal beak morphology. Focal labeling of neural crest with DiI showed that instead of migrating in a neat group toward the second branchial arch, a cohort of labeled cells from r4 spread anteriorly toward the proximal first arch region. AP-2 expression data confirmed the uninterrupted presence of AP-2-expressing cells from the anterior mesencephalon to r4. The morphological changes can be explained by mismigration of r4 neural crest into the first arch, but at the same time maintenance of their identity. Up-regulation of the Hoxa2 gene in the first branchial arch may have encouraged r4 cells to move in the anterior direction. This combination of events leads to the first branchial arch assuming some of the characteristics of the second branchial arch.
Collapse
Affiliation(s)
- M R Plant
- Department of Oral Health Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
135
|
Semba I, Nonaka K, Takahashi I, Takahashi K, Dashner R, Shum L, Nuckolls GH, Slavkin HC. Positionally-dependent chondrogenesis induced by BMP4 is co-regulated by Sox9 and Msx2. Dev Dyn 2000; 217:401-14. [PMID: 10767084 DOI: 10.1002/(sici)1097-0177(200004)217:4<401::aid-dvdy7>3.0.co;2-d] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cranial neural crest cells emigrate from the posterior midbrain and anterior hindbrain to populate the first branchial arch and eventually differentiate into multiple cell lineages in the maxilla and mandible during craniofacial morphogenesis. In the developing mouse mandibular process, the expression profiles of BMP4, Msx2, Sox9, and type II collagen demonstrate temporally and spatially restrictive localization patterns suggestive of their functions in the patterning and differentiation of cartilage. Under serumless culture conditions, beads soaked in BMP4 and implanted into embryonic day 10 (E10) mouse mandibular explants induced ectopic cartilage formation in the proximal position of the explant. However, BMP4-soaked beads implanted at the rostral position did not have an inductive effect. Ectopic chondrogenesis was associated with the up-regulation of Sox9 and Msx2 expression in the immediate vicinity of the BMP4 beads 24 hours after implantation. Control beads had no effect on cartilage induction or Msx2 and Sox9 expression. Sox9 was induced at all sites of BMP4 bead implantation. In contrast, Msx2 expression was induced more intensely at the rostral position when compared with the proximal position, and suggested that Msx2 expression was inhibitory to chondrogenesis. To test the hypothesis that over-expression of Msx2 inhibits chondrogenesis, we ectopically expressed Msx2 in the mandibular process organ culture system using adenovirus gene delivery strategy. Microinjection of the Msx2-adenovirus to the proximal position inhibited BMP4-induced chondrogenesis. Over-expression of Msx2 also resulted in the abrogation of endogenous cartilage and the down-regulation of type II collagen expression. Taken together, these results suggest that BMP4 induces chondrogenesis, the pattern of which is positively regulated by Sox9 and negatively by Msx2. Chondrogenesis only occurs at sites where Sox9 expression is high relative to that of Msx2. The combinatorial action of these transcription factors appear to establish a threshold for Sox9 function and thereby restricts the position of chondrogenesis.
Collapse
Affiliation(s)
- I Semba
- Craniofacial Development Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892-2745, USA
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Kanzler B, Foreman RK, Labosky PA, Mallo M. BMP signaling is essential for development of skeletogenic and neurogenic cranial neural crest. Development 2000; 127:1095-104. [PMID: 10662648 DOI: 10.1242/dev.127.5.1095] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BMP signaling is essential for a wide variety of developmental processes. To evaluate the role of Bmp2/4 in cranial neural crest (CNC) formation or differentiation after its migration into the branchial arches, we used Xnoggin to block their activities in specific areas of the CNC in transgenic mice. This resulted in depletion of CNC cells from the targeted areas. As a consequence, the branchial arches normally populated by the affected neural crest cells were hypomorphic and their skeletal and neural derivatives failed to develop. In further analyses, we have identified Bmp2 as the factor required for production of migratory cranial neural crest. Its spatial and temporal expression patterns mirror CNC emergence and Bmp2 mutant embryos lack both branchial arches and detectable migratory CNC cells. Our results provide functional evidence for an essential role of BMP signaling in CNC development.
Collapse
Affiliation(s)
- B Kanzler
- Max-Planck Institute of Immunobiology, Stübeweg 51, D-79108 Freiburg, Germany
| | | | | | | |
Collapse
|
137
|
Abstract
Condensation is the pivotal stage in the development of skeletal and other mesenchymal tissues. It occurs when a previously dispersed population of cells gathers together to differentiate into a single cell/tissue type such as cartilage, bone, muscle, tendon, kidney, and lung and is the earliest stage during organ formation when tissue-specific genes are upregulated. We present a synopsis of our current understanding of how condensations are initiated and grown, how their boundaries and sizes are set, how condensation ceases, and how overt differentiation begins. Extracellular matrix molecules, cell surface receptors and cell adhesion molecules, such as fibronectin, tenascin, syndecan, and N-CAM, initiate condensation formation and set condensation boundaries. Hox genes (Hoxd-11-13) and other transcription factors (CFKH-1, MFH-1, osf-2), modulate the proliferation of cells within condensations. Cell adhesion is ensured indirectly through Hox genes (Hoxa-2, Hoxd-13), and directly via cell adhesion molecules (N-CAM and N-cadherin). Subsequent growth of condensations is regulated by BMPs, which activate Pax-2, Hoxa-2 and Hoxd-11 among other genes. Growth of a condensation ceases when Noggin inhibits BMP signalling, setting the stage for transition to the next stage of skeletal development, namely overt cell differentiation. BioEssays 22:138-147, 2000.
Collapse
Affiliation(s)
- B K Hall
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J1.
| | | |
Collapse
|
138
|
Ferguson CA, Tucker AS, Sharpe PT. Temporospatial cell interactions regulating mandibular and maxillary arch patterning. Development 2000; 127:403-12. [PMID: 10603356 DOI: 10.1242/dev.127.2.403] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cellular origin of the instructive information for hard tissue patterning of the jaws has been the subject of a long-standing controversy. Are the cranial neural crest cells prepatterned or does the epithelium pattern a developmentally uncommitted population of ectomesenchymal cells? In order to understand more about how orofacial patterning is controlled we have investigated the temporal signalling interactions and responses between epithelium and mesenchymal cells in the mandibular and maxillary primordia. We show that within the mandibular arch, homeobox genes that are expressed in different proximodistal spatial domains corresponding to presumptive molar and incisor ectomesenchymal cells are induced by signals from the oral epithelium. In mouse, prior to E10, all ectomesenchyme cells in the mandibular arch are equally responsive to epithelial signals such as Fgf8, indicating that there is no pre-specification of these cells into different populations and suggesting that patterning of the hard tissues of the mandible is instructed by the epithelium. By E10.5, ectomesenchymal cell gene expression domains are still dependent on epithelial signals but have become fixed and ectopic expression cannot be induced. At E11 expression becomes independent of epithelial signals such that removal of the epithelium does not affect spatial ectomesenchymal expression. Significantly, however, the response of ectomesenchyme cells to epithelial regulatory signals was found to be different in the mandibular and maxillary primordium. Thus, whereas both mandibular and maxillary arch epithelia could induce Dlx2 and Dlx5 expression in the mandible and Dlx2 expression in the maxilla, neither could induce Dlx5 expression in the maxilla. Reciprocal cell transplantations between mandibular and maxillary arch ectomesenchymal cells revealed intrinsic differences between these populations of cranial neural crest-derived cells. Research in odontogenesis has shown that the oral epithelium of the mandibular and maxillary primordia has unique instructive signaling properties required to direct odontogenesis, which are not found in other branchial arch epithelia. As a consequence, development of jaw-specific skeletal structures may require some prespecification of maxillary ectomesenchyme to restrict the instructive influence of the epithelial signals and allow development of maxillary structures distinct from mandibular structures.
Collapse
Affiliation(s)
- C A Ferguson
- Department of Craniofacial Development, GKT Dental Institute, Kings College, Guy's Hospital, London SE1 9RT, UK
| | | | | |
Collapse
|
139
|
Folberg A, Kovács EN, Huang H, Houle M, Lohnes D, Featherstone MS. Hoxd4 and Rarg interact synergistically in the specification of the cervical vertebrae. Mech Dev 1999; 89:65-74. [PMID: 10559481 DOI: 10.1016/s0925-4773(99)00203-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We show that, relative to single null mutants, mice bearing mutations in both Hoxd4 and Rarg display malformations of the basioccipital bone, and first (C1) and second cervical vertebrae (C2) at increased penetrance and expressivity, demonstrating synergy between Hoxd4 and Rarg in the specification of the cervical skeleton. In contrast to Rarg mutants, retinoic acid (RA) treatment on embryonic day 10.5 of Hoxd4 single or Hoxd4;Rarg double mutants does not rescue normal development of C2. Somitic expression of Hoxd4 is not altered in wild-type or Rarg mutant animals before or after RA treatment on day 10.5, suggesting that Hoxd4 and Rarg act in parallel to regulate the expression of target genes directing skeletogenesis.
Collapse
Affiliation(s)
- A Folberg
- McGill Cancer Centre, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
140
|
Hao Z, Yeung J, Wolf L, Doucette R, Nazarali A. Differential expression of Hoxa-2 protein along the dorsal-ventral axis of the developing and adult mouse spinal cord. Dev Dyn 1999; 216:201-17. [PMID: 10536059 DOI: 10.1002/(sici)1097-0177(199910)216:2<201::aid-dvdy10>3.0.co;2-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We have used synthetic oligopeptides derived from the coding sequence of the murine Hoxa-2 protein to produce polyclonal antibodies that specifically recognize the Hoxa-2 recombinant protein. Immunohistochemical studies reveal a distinct pattern of spatial and temporal expression of Hoxa-2 protein within the mouse spinal cord which is concomitant with the cytoarchitectural changes occurring in the developing cord. Hoxa-2 protein is predominantly detected in the nuclei of cells in the ventral mantle region of 10-day-old mouse embryos. Islet-1, a marker for motor neurons was also shown to be co-localized with Hoxa-2 in nuclei of cells in this region. As development progresses from 10-days to 14-days of gestation, Hoxa-2 protein expression gradually extends to the dorsal regions of the mantle layer. The Hoxa-2 protein expression pattern changes at 16-days of embryonic development with strong expression visible throughout the dorsal mantle layer. In 18-day-old and adult mouse spinal cords, Hoxa-2 protein was expressed predominantly by cells of the dorsal horn and only by a few cells of the ventral horn. Double labeling studies with an antibody against glial fibrillary acidic protein (GFAP, an astrocyte-specific intermediate filament protein) showed that within the adult spinal cord, astrocytes rarely expressed the Hoxa-2 protein. However, Hoxa-2 and GFAP double-labeled astrocytes were found in the neopallial cultures, although not all astrocytes expressed Hoxa-2. Hoxa-2 expressing oligodendrocyte progenitor cells were also identified after double-labeling with O4 and Hoxa-2 antibodies; although cells in this lineage that have begun to develop a more extensive array of cytoplasmic processes were less likely to be Hoxa-2 positive. The early pattern of Hoxa-2 protein expression across transverse sections of the neural tube is temporally and spatially modified as each major class of neuron is generated. This congruence in the expression of the Hoxa-2 protein and the generation of neurons in the cord suggests that the Hoxa-2 protein may contribute to dorsal-ventral patterning and/or to the specification of neuronal phenotype. Dev Dyn 1999;216:201-217.
Collapse
Affiliation(s)
- Z Hao
- Laboratory of Molecular Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | |
Collapse
|
141
|
Maconochie M, Krishnamurthy R, Nonchev S, Meier P, Manzanares M, Mitchell PJ, Krumlauf R. Regulation of Hoxa2 in cranial neural crest cells involves members of the AP-2 family. Development 1999; 126:1483-94. [PMID: 10068641 DOI: 10.1242/dev.126.7.1483] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hoxa2 is expressed in cranial neural crest cells that migrate into the second branchial arch and is essential for proper patterning of neural-crest-derived structures in this region. We have used transgenic analysis to begin to address the regulatory mechanisms which underlie neural-crest-specific expression of Hoxa2. By performing a deletion analysis on an enhancer from the Hoxa2 gene that is capable of mediating expression in neural crest cells in a manner similar to the endogenous gene, we demonstrated that multiple cis-acting elements are required for neural-crest-specific activity. One of these elements consists of a sequence that binds to the three transcription factor AP-2 family members. Mutation or deletion of this site in the Hoxa2 enhancer abrogates reporter expression in cranial neural crest cells but not in the hindbrain. In both cell culture co-transfection assays and transgenic embryos AP-2 family members are able to trans-activate reporter expression, showing that this enhancer functions as an AP-2-responsive element in vivo. Reporter expression is not abolished in an AP-2(alpha) null mutant embryos, suggesting redundancy with other AP-2 family members for activation of the Hoxa2 enhancer. Other cis-elements identified in this study critical for neural-crest-specific expression include an element that influences levels of expression and a conserved sequence, which when multimerized directs expression in a broad subset of neural crest cells. These elements work together to co-ordinate and restrict neural crest expression to the second branchial arch and more posterior regions. Our findings have identified the cis-components that allow Hoxa2 to be regulated independently in rhombomeres and cranial neural crest cells.
Collapse
Affiliation(s)
- M Maconochie
- Laboratory of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | | | | | | | | | | | | |
Collapse
|