101
|
Felinski EA, Cox AE, Phillips BE, Antonetti DA. Glucocorticoids induce transactivation of tight junction genes occludin and claudin-5 in retinal endothelial cells via a novel cis-element. Exp Eye Res 2008; 86:867-78. [PMID: 18501346 PMCID: PMC2613867 DOI: 10.1016/j.exer.2008.01.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 11/28/2007] [Accepted: 01/06/2008] [Indexed: 01/13/2023]
Abstract
Tight junctions between vascular endothelial cells help to create the blood-brain and blood-retinal barriers. Breakdown of the retinal tight junction complex is problematic in several disease states including diabetic retinopathy. Glucocorticoids can restore and/or preserve the endothelial barrier to paracellular permeability, although the mechanism remains unclear. We show that glucocorticoid treatment of primary retinal endothelial cells increases content of the tight junction proteins occludin and claudin-5, co-incident with an increase in barrier properties of endothelial monolayers. The glucocorticoid receptor antagonist RU486 reverses both the glucocorticoid-stimulated increase in occludin content and the increase in barrier properties. Transcriptional activity from the human occludin and claudin-5 promoters increases in retinal endothelial cells upon glucocorticoid treatment, and is dependent on the glucocorticoid receptor (GR) as demonstrated by siRNA. Deletion analysis of the occludin promoter reveals a 205bp sequence responsible for the glucocorticoid response. However, this region does not possess a canonical glucocorticoid response element and does not bind to the GR in a chromatin immunoprecipitation (ChIP) assay. Mutational analysis of this region revealed a novel 40bp occludin enhancer element (OEE), containing two highly conserved regions of 10 and 13 base pairs, that is both necessary and sufficient for glucocorticoid-induced gene expression in retinal endothelial cells. These data suggest a novel mechanism for glucocorticoid induction of vascular endothelial barrier properties through increased occludin and claudin-5 gene expression.
Collapse
Affiliation(s)
- Edward A Felinski
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | | | | | | |
Collapse
|
102
|
Sepúlveda DE, Andrews BA, Asenjo JA, Papoutsakis ET. Comparative Transcriptional Analysis of Embryoid Body Versus Two-Dimensional Differentiation of Murine Embryonic Stem Cells. Tissue Eng Part A 2008. [DOI: 10.1089/tea.2007.0331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
103
|
Ohnemus U, Kohrmeyer K, Houdek P, Rohde H, Wladykowski E, Vidal S, Horstkotte MA, Aepfelbacher M, Kirschner N, Behne MJ, Moll I, Brandner JM. Regulation of Epidermal Tight-Junctions (TJ) during Infection with Exfoliative Toxin-Negative Staphylococcus Strains. J Invest Dermatol 2008; 128:906-16. [PMID: 17914452 DOI: 10.1038/sj.jid.5701070] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Tight Junction (TJ) proteins have been shown to exert a barrier function within the skin. Here, we study the fate of TJ proteins during the challenge of the skin by bacterial colonization and infection. We investigated the influence of various exfoliative toxin-negative Staphylococcus strains on TJ, adherens junction (AJ), desmosomal proteins, and actin in a human keratinocyte infection culture and in a porcine skin infection model. We found that the pathogen Staphylococcus aureus downregulates TJ and subsequently AJ and desmosomal proteins, including atypical protein kinase C, an essential player in TJ formation, at the cell-cell borders of keratinocytes in a time and concentration dependent manner. Little changes in protein and RNA levels were seen, indicating redistribution of proteins. In cultured keratinocytes, a reduction of transepithelial resistance was observed. Staphylococcus epidermidis shows only minor effects. All strains induced enhanced expression of occludin and ZO-1 at the beginning of colonization/infection. Thus, we demonstrate that TJ are likely to be involved in skin infection of exfoliative toxin-negative S. aureus. As we did not find a change in actin, and as changes of TJ preceded alterations of AJs and desmosomes, we suggest that S. aureus targets TJ.
Collapse
Affiliation(s)
- Ulrich Ohnemus
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
|
105
|
Ip YC, Cheung ST, Lee YT, Ho JC, Fan ST. Inhibition of hepatocellular carcinoma invasion by suppression of claudin-10 in HLE cells. Mol Cancer Ther 2008; 6:2858-67. [PMID: 18025272 DOI: 10.1158/1535-7163.mct-07-0453] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previously, we showed that down-regulation of claudin-10 (CLDN-10) in hepatocellular carcinoma is associated with prolonged disease-free survival after curative surgery. Claudins are important tight junction components. Increasing evidence shows that claudins are involved in cancer progression but each member of claudins is specifically expressed in a variety of malignancies. The biological role of CLDN-10 in hepatocellular carcinoma is unexplored. In the current study, we investigated the CLDN-10 function in two different hepatocellular carcinoma cell lines by in vitro assays with the CLDN-10 overexpression and small interfering RNA-mediated knockdown transfectants. We observed that overexpression of CLDN-10 conferred malignant phenotypes to hepatocellular carcinoma cells, Hep3B, which lack CLDN-10 expression, by promoting cancer cell survival, motility, and invasiveness. More importantly, matrix metalloproteinase 2 (MMP2) was up-regulated. Increase in mRNA transcription and protein expression of membrane type 1-MMP (MT1-MMP) was also observed in the CLDN-10 transfectants, where MT1-MMP was a protease shown to promote intrahepatic metastasis in hepatocellular carcinoma in our earlier study. In addition, CLDN-1, CLDN-2, and CLDN-4 was up-regulated in CLDN-10 overexpression transfectants, indicating that the expression of CLDN-10 in cancer cells might affect the expression levels of its family members. On the contrary, small interfering RNA-based knockdown of CLDN-10 in HLE, an invasive cell line with high level of CLDN-10 expression, abolished invasion and strongly decreased activation of MMPs and claudin members expression. These findings showed that CLDN-10 is functionally involved in hepatocellular carcinoma invasion and is a potential target for hepatocellular carcinoma therapy.
Collapse
Affiliation(s)
- Ying Chi Ip
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
106
|
Tichelaar JW, Wesselkamper SC, Chowdhury S, Yin H, Berclaz PY, Sartor MA, Leikauf GD, Whitsett JA. Duration-dependent cytoprotective versus inflammatory effects of lung epithelial fibroblast growth factor-7 expression. Exp Lung Res 2008; 33:385-417. [PMID: 17994369 DOI: 10.1080/01902140701703226] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Fibroblast growth factor-7 (FGF7) is a lung epithelial cell mitogen that is cytoprotective during injury. Transgenic mice that conditionally expressed FGF7 were used to dissect the mechanisms of FGF7 protection during lung injury. FGF7 improved survival when induced 3 days prior to acute lung injury. In contrast, FGF7 caused pulmonary inflammation and lung injury after 7 days or longer. Gene expression analysis of mouse lung mRNA identified mRNAs that contribute to the protective effects of FGF7. FGF7 improved survival during acute lung injury in adult mouse lung after short-term expression, but paradoxically induced inflammation and injury after persistent expression.
Collapse
Affiliation(s)
- Jay W Tichelaar
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA.
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Yamamoto T, Kurasawa M, Hattori T, Maeda T, Nakano H, Sasaki H. Relationship between expression of tight junction-related molecules and perturbed epidermal barrier function in UVB-irradiated hairless mice. Arch Dermatol Res 2007; 300:61-8. [PMID: 18064478 DOI: 10.1007/s00403-007-0817-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 11/07/2007] [Accepted: 11/19/2007] [Indexed: 01/11/2023]
Abstract
In epithelia, tight junctions (TJs) create a primary barrier to the diffusion of solutes through the paracellular pathway. Although TJ-related molecules are present in the epidermis, the precise mechanisms underlying TJ functions in this tissue remain unclear. In this study, we use an ultraviolet (UV) B-irradiated murine skin model, in which the epidermal barrier function has been perturbed, to demonstrate a correlation between the expression patterns of TJ-related molecules and the epidermal permeability of TJs. Occludin remained localized in the upper epidermis, regardless of UVB irradiation (0.15 J per cm(2)). ZO-1 was localized in the upper portion of normal epidermis, and within 3-4 days of UVB irradiation, it was expressed throughout the upper epidermis and their expression coincided with epidermal thickening. Protein expression of claudin-1 and occludin did not alter until 3 and 4 days after UVB irradiation, respectively and thereafter expression remained elevated above pre-irradiation levels. An in vivo epidermal permeability assay revealed that tight junction-barrier function was perturbed by UVB irradiation, whereby biotinylated markers clearly permeated the stratum granulosum 3-5 days after irradiation. These results suggest that TJ-related molecules play important roles in epidermal barrier function in murine skin and show that changes in their expression patterns are associated with epidermal barrier perturbation after UVB irradiation. Specifically, it appears that epidermal barrier recovery is accelerated by the increased production and dense localization of occludin in the cell-cell contact region of the stratum granulosum.
Collapse
|
108
|
|
109
|
Abstract
Adherens and tight junctions are intercellular junctions crucial for epithelial adhesion and barrier function in a wide variety of tissues and organisms. In stratifying epithelia, such as the epidermis, the role of adherens and tight junctions was considered less important owing to the abundance of desmosomes, mediating firm mechanical stability between the cells, and to the barrier function of the stratum corneum, respectively. This view has changed in recent years because of different studies that showed the importance of these structures for proper skin physiology and barrier function. The current review provides an overview of the crucial molecular constituents of these structures and highlights some recent results on their regulation. In particular, I will discuss their importance in skin biology.
Collapse
Affiliation(s)
- Carien M Niessen
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
110
|
Krause G, Winkler L, Mueller SL, Haseloff RF, Piontek J, Blasig IE. Structure and function of claudins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:631-45. [PMID: 18036336 DOI: 10.1016/j.bbamem.2007.10.018] [Citation(s) in RCA: 610] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 10/18/2007] [Accepted: 10/19/2007] [Indexed: 01/09/2023]
Abstract
Claudins are tetraspan transmembrane proteins of tight junctions. They determine the barrier properties of this type of cell-cell contact existing between the plasma membranes of two neighbouring cells, such as occurring in endothelia or epithelia. Claudins can completely tighten the paracellular cleft for solutes, and they can form paracellular ion pores. It is assumed that the extracellular loops specify these claudin functions. It is hypothesised that the larger first extracellular loop is critical for determining the paracellular tightness and the selective ion permeability. The shorter second extracellular loop may cause narrowing of the paracellular cleft and have a holding function between the opposing cell membranes. Sequence analysis of claudins has led to differentiation into two groups, designated as classic claudins (1-10, 14, 15, 17, 19) and non-classic claudins (11-13, 16, 18, 20-24), according to their degree of sequence similarity. This is also reflected in the derived sequence-structure function relationships for extracellular loops 1 and 2. The concepts evolved from these findings and first tentative molecular models for homophilic interactions may explain the different functional contribution of the two extracellular loops at tight junctions.
Collapse
Affiliation(s)
- Gerd Krause
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
111
|
Arabzadeh A, Troy TC, Turksen K. Changes in the distribution pattern of Claudin tight junction proteins during the progression of mouse skin tumorigenesis. BMC Cancer 2007; 7:196. [PMID: 17945025 PMCID: PMC2217561 DOI: 10.1186/1471-2407-7-196] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 10/18/2007] [Indexed: 11/24/2022] Open
Abstract
Background Despite the fact that morphological and physiological observations suggest that the tight junction (TJ)-based permeability barrier is modified/disrupted in tumorigenesis, the role of members of the Claudin (Cldn) family of TJ proteins is not well-understood. Using a well-established two-stage chemical carcinogenesis model, we investigated the temporal and spatial changes in expression of those Cldns that we have previously demonstrated to be important in epidermal differentiation and the formation of the epidermal permeability barrier, i.e., Cldn1, Cldn6, Cldn11, Cldn12 and Cldn18. Methods The lower dorsal backskin of mice was treated topically with 7,12-dimethylbenz(a)anthracene (DMBA; 0.25 mg/ml in acetone) and following a 10-day incubation period, 12-O-tetradecanoyl-phorbol-13-acetate (TPA; 25 μg/ml in acetone) was applied three times a week to the same area. Backskin samples were dissected 2, 4, 6, 8 and 12 weeks after the initiation of the experimental protocol and immunohistochemistry was performed on sections using antibodies against the following: Cldn1, Cldn6, Cldn11, Cldn12, Cldn18, Ki67 and CD3. Results Our data indicate that along with the changes in epidermal cell morphology and differentiation that occur during tumor formation, there is a dramatic change in Cldn distribution consistent with cell polarity and barrier selectivity changes. Specifically, in the early stages of DMBA/TPA treatment, the suprabasal-specific Cldns occupy an expanded zone of expression corresponding to an increased number of suprabasal epidermal cell layers. As tumorigenesis progressed, the number of suprabasal epidermal layers positive for Cldn6, Cldn11, Cldn12 and Cldn18 was reduced, especially in the lower strata of the expanded suprabasal zone. In addition, a variably reduced cell membrane association of those differentiation-specific Cldns was observed, especially within the infiltrating epidermal structures. In contrast, Cldn1 (which is normally expressed in all the living layers of the epidermis) remained restricted to the cell membrane throughout the tumorigenesis protocol. However commencing 2 weeks after treatment there was a marked decrease in the number of Cldn1-positive basal cells, and the zone of Cldn1-null epidermal cells was expanded up into the lower stratified epidermis throughout the progression of DMBA/TPA treatment. In addition, there was no Cldn1 localization in the infiltrating epidermal structures of the tumorigenic epidermis. Conclusion This is the first demonstration of the changes in Cldn expression in the progression of DMBA/TPA-induced skin tumors; however further investigation into the molecular mechanisms regulating the observed changes in barrier selectivity during tumorigenesis is required.
Collapse
Affiliation(s)
- Azadeh Arabzadeh
- Ottawa Health Research Institute, Ottawa, Ontario, K1Y 4E9 Canada.
| | | | | |
Collapse
|
112
|
Daugherty BL, Ward C, Smith T, Ritzenthaler JD, Koval M. Regulation of heterotypic claudin compatibility. J Biol Chem 2007; 282:30005-13. [PMID: 17699514 DOI: 10.1074/jbc.m703547200] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tissue barrier function is directly mediated by tight junction transmembrane proteins known as claudins. Cells that form tight junctions typically express multiple claudin isoforms which suggests that heterotypic (head-to-head) binding between different claudin isoforms may play a role in regulating paracellular permeability. However, little is known about motifs that control heterotypic claudin compatibility. We found that although claudin-3 and claudin-4 were heteromerically compatible when expressed in the same cell, they did not heterotypically interact despite having extracellular loop (EL) domains that are highly conserved at the amino acid level. Claudin-1 and -5, which were heterotypically compatible with claudin-3, did not heterotypically bind to claudin-4. In contrast, claudin-4 chimeras containing either the first EL domain or the second EL domain of claudin-3 were able to heterotypically bind to claudin-1, claudin-3, and claudin-5. Moreover, a single point mutation in the first extracellular loop domain of claudin-3 to convert Asn(44) to the corresponding amino acid in claudin-4 (Thr) produced a claudin capable of heterotypic binding to claudin-4 while still retaining the ability to bind to claudin-1 and -5. Thus, control of heterotypic claudin-claudin interactions is sensitive to small changes in the EL domains.
Collapse
Affiliation(s)
- Brandy L Daugherty
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
113
|
Troy TC, Arabzadeh A, Yerlikaya S, Turksen K. Claudin immunolocalization in neonatal mouse epithelial tissues. Cell Tissue Res 2007; 330:381-8. [PMID: 17828607 DOI: 10.1007/s00441-007-0487-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 07/25/2007] [Indexed: 12/14/2022]
Abstract
Emerging evidence supports the notion that claudins (Cldns) are dynamically regulated under normal conditions to respond to the selective permeability requirements of various tissues, and that their expression is developmentally controlled. We describe the localization of those Cldns that we have previously demonstrated to be functionally important in epidermal differentiation and the formation of the epidermal permeability barrier, e.g., Cldn1, Cldn6, Cldn11, and Cldn18, and the presence of Cldn3 and Cldn5 in various neonatal mouse epithelia including the epidermis, nail, oral mucosa, tongue, and stomach. Cldn1 is localized in the differentiated and/or undifferentiated compartments of the epidermis and nail and in the dorsal surface of the tongue and glandular compartment of the stomach but is absent from the oral mucosa and the keratinized compartment of the stomach. Cldn3 is present in the basal cells of the nail matrix and both compartments of the murine stomach but not in the epidermis, oral mucosa, or tongue. Cldn5 is found in the glandular compartment of the stomach but not in the epidermis, nail unit, oral mucosa, forestomach, and tongue. Cldn6, Cldn11, and Cldn18 occur in the differentiating suprabasal compartment of the epidermis, nail, and oral mucosa and in the dorsal and ventral surfaces of the tongue and the keratinized squamous epithelium of the stomach. The simple columnar epithelium of the glandular stomach stains for Cldn18 and reveals a non-membranous pattern for Cldn6 and Cldn11 expression. Our results demonstrate differential Cldn protein profiles in various epithelial tissues and their differentiation stages. Although the molecular mechanisms regulating Cldn expression are unknown, elucidation of their differential localization patterns in tissues with diverse permeability requirements should provide a better understanding of the role of tight junctions in tissue function.
Collapse
Affiliation(s)
- Tammy-Claire Troy
- Ottawa Health Research Institute, 725 Parkdale Avenue, Ottawa, ON, K1Y 4E9, Canada
| | | | | | | |
Collapse
|
114
|
Cyr DG, Gregory M, Dubé E, Dufresne J, Chan PTK, Hermo L. Orchestration of occludins, claudins, catenins and cadherins as players involved in maintenance of the blood-epididymal barrier in animals and humans. Asian J Androl 2007; 9:463-75. [PMID: 17589783 DOI: 10.1111/j.1745-7262.2007.00308.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Although spermatozoa are formed during spermatogenesis in the testis, testicular spermatozoa are immature and cannot swim or fertilize. These critical spermatozoal functions are acquired in the epididymis where a specific luminal environment is created by the blood-epididymal barrier; proteins secreted by epididymal principal cells bind to maturing spermatozoa and regulate the maturational process of the spermatozoa. In the epididymis, epithelial cell-cell interactions are mediated by adhering junctions, necessary for cell adhesion, and by tight junctions, which form the blood-epididymal barrier. The regulation of these cellular junctions is thought to represent a key determinant in the process of sperm maturation within the epididymis. Tight junctions between adjacent principal cells permit the formation of a specific microenvironment in the lumen of the epididymis that is essential for sperm maturation. Although we have made significant progress in understanding epididymal function and the blood-epididymal barrier, using animal models, there is limited information on the human epididymis. If we are to understand the normal and pathological conditions attributable to human epididymal function, we must clearly establish the physiological, cellular and molecular regulation of the human epididymis, develop tools to characterize these functions and develop clinical strategies that will use epididymal functions to improve treatment of infertility.
Collapse
Affiliation(s)
- Daniel G Cyr
- INRS-Institut Armand Frappier, Université du Québec, 245 Hymus Boulevard, Pointe Claire, Quebec H9R 1G6, Canada.
| | | | | | | | | | | |
Collapse
|
115
|
Chiba H, Osanai M, Murata M, Kojima T, Sawada N. Transmembrane proteins of tight junctions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:588-600. [PMID: 17916321 DOI: 10.1016/j.bbamem.2007.08.017] [Citation(s) in RCA: 342] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 08/09/2007] [Accepted: 08/16/2007] [Indexed: 12/13/2022]
Abstract
Tight junctions contribute to the paracellular barrier, the fence dividing plasma membranes, and signal transduction, acting as a multifunctional complex in vertebrate epithelial and endothelial cells. The identification and characterization of the transmembrane proteins of tight junctions, claudins, junctional adhesion molecules (JAMs), occludin and tricellulin, have led to insights into the molecular nature of tight junctions. We provide an overview of recent progress in studies on these proteins and highlight their roles and regulation, as well as their functional significance in human diseases.
Collapse
Affiliation(s)
- Hideki Chiba
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan.
| | | | | | | | | |
Collapse
|
116
|
Arabzadeh A, Troy TC, Turksen K. Claudin expression modulations reflect an injury response in the murine epidermis. J Invest Dermatol 2007; 128:237-40. [PMID: 17625592 DOI: 10.1038/sj.jid.5700966] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
117
|
Mankertz J, Schulzke JD. Altered permeability in inflammatory bowel disease: pathophysiology and clinical implications. Curr Opin Gastroenterol 2007; 23:379-83. [PMID: 17545772 DOI: 10.1097/mog.0b013e32816aa392] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW To present the mechanisms behind barrier disturbance in inflammatory bowel disease and their functional consequences. RECENT FINDINGS A reduction in tight junction strands, strand breaks and alteration of tight junction protein content and composition characterize Crohn's disease. In ulcerative colitis, epithelial leaks appear early as a result of microerosions, upregulated epithelial apoptosis and tight junction protein changes with pronounced increases in claudin-2. T-helper type 1 cytokine effects by interferon-gamma and tumour necrosis factor alpha are important for epithelial damage in Crohn's disease. Interleukin-13 is the key effector cytokine in ulcerative colitis, stimulating epithelial cell apoptosis, and can upregulate claudin-2 expression. Together with interleukin-13-induced epithelial restitution arrest, this may explain why ulcer lesions occur in early stages of ulcerative colitis but are only observed in advanced inflammatory stages in Crohn's disease. SUMMARY Barrier dysfunction in inflammatory bowel disease contributes to diarrhea by a leak flux mechanism and can cause mucosal inflammation secondary to luminal antigen uptake. Barrier abnormalities, such as epithelial tight junction changes and apoptotic leaks, gross mucosal lesions, and epithelial restitution arrest are responsible for these abnormalities and are the result of immune dysregulation. Studying the underlying mechanisms is important in understanding the pathophysiology of inflammatory bowel disease and developing therapeutic strategies.
Collapse
Affiliation(s)
- Joachim Mankertz
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Campus Benjamin Franklin, Berlin, Germany
| | | |
Collapse
|
118
|
Abstract
Tight junctions operate as semipermeable barriers in epithelial tissue, separating the apical from the basolateral sides of the cells. Membrane proteins of the claudin family represent the major tight junction constituents, and some reinforce permeability barriers, whereas others create pores based on solute size and ion selectivity. To outline paracellular permeability pathways in gustatory tissue, all claudins expressed in mouse taste buds and in human fungiform papillae have been characterized. Twelve claudins are expressed in murine taste-papillae-enriched tissue, and five of those are expressed in human fungiform papillae. A subset of the claudins expressed in mouse papillae is uniquely found in taste buds. By immunohistochemistry, claudin 4 has been found in mouse taste epithelium, with high abundance around the taste pore. Claudin 6 is explicitly detected inside the pore, claudin 7 was found at the basolateral side of taste cells, and claudin 8 was found around the pore. With the ion permeability features of the different claudins, a highly specific permeability pattern for paracellular diffusion is apparent, which indicates a peripheral mechanism for taste coding.
Collapse
Affiliation(s)
- Stéphanie Michlig
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne 1000, Switzerland
| | | | | |
Collapse
|
119
|
Peltonen S, Riehokainen J, Pummi K, Peltonen J. Tight junction components occludin, ZO-1, and claudin-1, -4 and -5 in active and healing psoriasis. Br J Dermatol 2007; 156:466-72. [PMID: 17300235 DOI: 10.1111/j.1365-2133.2006.07642.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Cells of the granular layer are interconnected by tight junctions (TJs) in normal epidermis. The structural proteins of epidermal TJs include occludin, ZO-1, and claudin-1 and -4. OBJECTIVES Our aim was to correlate the expression of TJ components with keratinocyte differentiation using psoriasis as a model of premature keratinization. METHODS The distribution of TJ proteins was evaluated in the skin of nine patients with psoriasis. Punch biopsies were taken from perilesional skin, from active psoriasis plaques, and from healed, previously lesional locations. The punch biopsies were analysed using indirect immunolabelling for ZO-1, occludin and claudin-1, -4 and -5. In addition, epidermal samples were analysed by reverse transcription-polymerase chain reaction for claudin-1, -4 and -5 mRNAs. RESULTS Claudin-5 was localized to the granular cell layers of normal control skin as well as perilesional and lesional psoriatic epidermis. This was unexpected, as previous studies have not detected claudin-5 in the epidermis. Occludin and ZO-1 were expressed in the granular cell layer in psoriatic perilesional epidermis. In the psoriasis plaques, ZO-1 and occludin were detected in a wider zone extending from the granular layer to the middle spinous cell layers. In healed psoriasis plaques, the expression of occludin and ZO-1 resumed a normal-looking profile, being restricted to the upper epidermis only. Claudin-1 and -4 did not show marked changes in psoriasis compared with normal skin. CONCLUSIONS The results demonstrate claudin-5 in normal epidermis and psoriatic skin, and abnormal distribution of occludin and ZO-1 in psoriasis plaques. Clinical healing of aberrant keratinization is associated with restoration of the normal distribution of occludin, ZO-1 and also involucrin.
Collapse
Affiliation(s)
- S Peltonen
- Department of Dermatology, University of Turku, PL 52, Turku, Finland.
| | | | | | | |
Collapse
|
120
|
Troy TC, Turksen K. The targeted overexpression of a Claudin mutant in the epidermis of transgenic mice elicits striking epidermal and hair follicle abnormalities. Mol Biotechnol 2007; 36:166-74. [PMID: 17914196 DOI: 10.1007/s12033-007-0027-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 03/30/2007] [Indexed: 11/30/2022]
Abstract
Skin is one of the largest organs of the body, and is formed during development through a highly orchestrated process involving mesenchymal-epithelial interactions, cell commitment, and terminal differentiation. It protects against microorganism invasion and UV irradiation, inhibits water loss, regulates body temperature, and is an important part of the immune system. Using transgenic mouse technology, we have demonstrated that Claudin (Cldn)-containing tight junctions (TJs) are intricately involved in cell signaling during epidermal differentiation and that an epidermal suprabasal overexpression of Cldn6 results in a perturbed epidermal terminal differentiation program with distinct phenotypic abnormalities. To delineate the role of the Cldn cytoplasmic tail domain in epidermal differentiation, we engineered transgenic mice targeting the overexpression of a Cldn6 cytoplasmic tail-truncation mutant in the epidermis. Transgenic mice were characterized by a lethal barrier dysfunction in addition to the existence of hyperproliferative squamous invaginations/cysts replacing hair follicles. Immunohistochemical analysis revealed an epidermal cytoplasmic accumulation of Cldn6, Cldn11, Cldn12, and Cldn18, downregulation of Cldn1 and aberrant expression of various classical markers of epidermal differentiation; namely the basal keratins as well as K1, involucrin, loricrin, and filaggrin. Collectively these studies suggest an important role for Cldns in epidermal/hair follicle differentiation programs likely involving cross talk to signaling pathways (e.g., Notch) directing cell fate selection and differentiation.
Collapse
Affiliation(s)
- Tammy-Claire Troy
- Ottawa Health Research Institute, 725 Parkdale Avenue, Ottawa, ON, Canada K1Y 4E9
| | | |
Collapse
|
121
|
Timmons BC, Mitchell SM, Gilpin C, Mahendroo MS. Dynamic changes in the cervical epithelial tight junction complex and differentiation occur during cervical ripening and parturition. Endocrinology 2007; 148:1278-87. [PMID: 17138657 DOI: 10.1210/en.2006-0851] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cervical epithelia have numerous functions that include proliferation, differentiation, maintenance of fluid balance, protection from environmental hazards, and paracellular transport of solutes via tight junctions (TJs). Epithelial functions must be tightly regulated during pregnancy and parturition as the cervix undergoes extensive growth and remodeling. This study evaluated TJ proteins, as well as markers of epithelial cell differentiation in normal and cervical ripening defective mice to gain insights into how the permeability barrier is regulated during pregnancy and parturition. Although numerous TJ proteins are expressed in the nonpregnant cervix, claudins 1 and 2 are temporally regulated in pregnancy. Claudin 1 mRNA expression is increased, whereas claudin 2 expression declines. The cellular localization of claudin 1 shifts at the end of pregnancy (gestation d 18.75) to the plasma membrane in a lattice pattern, consistent with TJs in the apical cells. The timing of claudin 1-enriched TJs coincides with initiation of terminal differentiation of cervical squamous epithelia as evidenced by the increased expression of genes by differentiated epithelia late on gestation d 18. The cervical ripening defective steroid 5alpha-reductase type 1 deficient mouse, which has an elevated local progesterone concentration, also has aberrant claudin 1 and 2 expressions, fails to form claudin 1-enriched TJs, and lacks normal expression of genes involved in epithelial terminal differentiation. These data suggest that changes in permeability barrier properties during cervical ripening are, in part, negatively regulated by progesterone, and that dynamic changes in barrier properties of the cervix occur during pregnancy and parturition.
Collapse
Affiliation(s)
- Brenda C Timmons
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9032, USA
| | | | | | | |
Collapse
|
122
|
Abstract
Claudins belong to a family of transmembrane proteins that were identified as components of tight junction strands. We carried out comparative in situ hybridization analysis of 11 claudin genes (claudin1 - claudin11) during murine odontogenesis from the formation of the epithelial thickening to the cytodifferentiation stage. We identify dynamic spatiotemporal expression of 9 of the 11 claudins. At the early bell stage, two claudins (claudin1 and 4) are specifically expressed in stratum intemedium, whereas only one claudin is expressed in each of the preameloblasts (claudin2) and preodontoblasts (claudin10). At the bud stage, when the first epithelial differentiation pathways are being established, localized expression of six claudins (claudin1, 3, 4, 6, 7, and 10) identify spatial specific interactions, suggesting a hitherto unobserved complexity of epithelial organization, within the early tooth primordium.
Collapse
Affiliation(s)
- Atsushi Ohazama
- Department of Craniofacial Development, Dental Institute, King's College, Guy's Hospital, London Bridge, London, UK
| | | |
Collapse
|
123
|
Barthelemy J, Adeeko A, Robaire B, Cyr DG. In utero exposure to tributyltin alters the expression of e-cadherin and localization of claudin-1 in intercellular junctions of the rat ventral prostate. Mol Reprod Dev 2007; 74:455-67. [PMID: 17120308 DOI: 10.1002/mrd.20537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Tributyltin (TBT) is an environmental contaminant, exhibiting well-established toxicity to reproductive systems in aquatic organisms. Little information exists regarding the effects of TBT on mammalian reproduction. Cellular junctions are crucial for sperm development and maturation. Intercellular tight junctions are formed by transmembrane proteins such as claudins (Cldns), while the formation of tight junctions involves signaling components of adhering junctions, comprised of cadherins. The objectives of this study were to determine the effects of in utero exposure to TBT on the rat ventral prostate. Pregnant Sprague-Dawley rats were given doses of TBT (2.5, 10, or 20 mg/kg) throughout gestation and sacrificed at Day 91. Ventral prostate weights of TBT-treated rats were decreased in all treatment groups. Results of gene expression macro-array analysis indicated that numerous genes related to cellular adhesion and cell polarity were affected. Cldn-1 mRNA levels decreased after exposure to TBT. Cldn-1 was immunolocalized to the apical lateral margins of adjacent prostatic epithelial cells in controls, but was increasingly dispersed along the lateral plasma membrane with increasing TBT dose, suggesting that the targeting of Cldn-1 or its localization to tight junctions was altered as a result of fetal TBT exposure. E-cadherin mRNA levels and immunolocalization were decreased in a dose-dependent manner. These data indicate that in utero TBT exposure results in permanent alterations in ventral prostate and that these are associated with alterations in the expression and distribution of cell adhesion and tight junctional proteins.
Collapse
Affiliation(s)
- Johanna Barthelemy
- INRS-Institut Armand-Frappier, Université du Québec, Pointe Claire, Quebec, Canada
| | | | | | | |
Collapse
|
124
|
Abuazza G, Becker A, Williams SS, Chakravarty S, Truong HT, Lin F, Baum M. Claudins 6, 9, and 13 are developmentally expressed renal tight junction proteins. Am J Physiol Renal Physiol 2006; 291:F1132-41. [PMID: 16774906 PMCID: PMC4131871 DOI: 10.1152/ajprenal.00063.2006] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The adult proximal tubule is a low-resistance epithelium where there are high rates of both active transcellular and passive paracellular NaCl transport. We have previously demonstrated that the neonatal rabbit and rat proximal tubule have substantively different passive paracellular transport properties than the adult proximal tubule, which results in a maturational change in the paracellular passive flux of ions. Neonatal proximal tubules have a higher P(Na)/P(Cl) ratio and lower chloride and bicarbonate permeabilities than adult proximal tubules. Claudins are a large family of proteins which are the gate keepers of the paracellular pathway, and claudin isoform expression determines the permeability characteristics of the paracellular pathway. Previous studies have shown that claudins 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 15, and 16 are expressed in the adult mouse kidney. To determine whether there are developmental claudin isoforms, we compared the claudin isoforms present in the neonatal and adult kidney using RT-PCR to detect mRNA of claudin isoforms. Claudin 6, claudin 9, and claudin 13 were either not expressed or barely detectable in the adult mouse kidney using traditional PCR, but were expressed in the neonatal mouse kidney. Using real-time RT-PCR, we were able to detect a low level of claudin 6 mRNA expression in the adult kidney compared with the neonate, but claudin 9 and claudin 13 were only detected in the neonatal kidney. There was the same maturational decrease in these claudin proteins with Western blot analysis. Immunohistochemistry showed high levels of expression of claudin 6 in neonatal proximal tubules, thick ascending limb, distal convoluted tubules, and collecting ducts in a paracellular distribution but there was no expression of claudin 6 in the adult kidney. Using real-time RT-PCR claudin 6 and 9 mRNA were present in 1-day-old proximal convoluted tubules and were virtually undetectable in proximal convoluted tubules from adults. Claudin 13 was not detectable in neonatal or adult proximal convoluted tubules. In summary, we have identified developmentally expressed claudin isoforms, claudin 6, claudin 9, and claudin 13. These paracellular proteins may play a role in the maturational changes in paracellular permeability.
Collapse
Affiliation(s)
- Ghazala Abuazza
- Deptartment of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9063, USA
| | | | | | | | | | | | | |
Collapse
|
125
|
Troy TC, Li Y, O'Malley L, Turksen K. The temporal and spatial expression of Claudins in epidermal development and the accelerated program of epidermal differentiation in K14-CaSR transgenic mice. Gene Expr Patterns 2006; 7:423-30. [PMID: 17182288 DOI: 10.1016/j.modgep.2006.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 11/03/2006] [Accepted: 11/11/2006] [Indexed: 11/27/2022]
Abstract
The importance of the epidermal permeability barrier (EPB) in protecting the mammalian species against harmful UV irradiation, microorganism invasion and water loss is well recognized, as is the role of calcium (Ca(2+)) in keratinocyte differentiation, cell-cell contact and the EPB. In a previous study, we reported that the overexpression of the Ca(2+)-sensing receptor (CaSR) in the undifferentiated basal cells of the epidermis induced a modified epidermal differentiation program including an accelerated EPB formation in transgenic mice, suggesting a role for CaSR signaling in the differentiation of embryonic epidermal cells during development. We now describe the expression profile of claudins (Cldns) and keratin markers in the accelerated EPB formation of K14-CaSR transgenic mice during development as compared to the wild type from E12.5 to newborn stages. Our data show that the transgenic epidermis undergoes an advanced epidermal differentiation program as compared to the wild type as evidenced morphologically as well as by the expression of K14, K1, loricrin, Cldn6, Cldn18 and Cldn11. In addition, we report for the first time the sequential expression of Cldns in epidermal development and describe that the localization of some Cldns change within the epidermis as it matures. Furthermore, we demonstrate that Cldn6 is expressed very early in epidermal morphogenesis, followed by Cldn18, Cldn11 and Cldn1.
Collapse
Affiliation(s)
- Tammy-Claire Troy
- Ottawa Health Research Institute, University of Ottawa, Ottawa, Ont., Canada
| | | | | | | |
Collapse
|
126
|
Arabzadeh A, Troy TC, Turksen K. Role of the Cldn6 cytoplasmic tail domain in membrane targeting and epidermal differentiation in vivo. Mol Cell Biol 2006; 26:5876-87. [PMID: 16847338 PMCID: PMC1592757 DOI: 10.1128/mcb.02342-05] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
It is widely recognized that the claudin (Cldn) family of four tetraspan transmembrane proteins is crucial for tight junction assembly and permeability barrier function; however, the precise role of the tail and loop domains in Cldn function is not understood. We hypothesized that the cytoplasmic tail domain of Cldn6 is crucial for membrane targeting and hence epidermal permeability barrier (EPB) formation. To test this hypothesis via a structure-function approach, we generated a tail deletion of Cldn6 (CDelta187) and evaluated its role in epidermal differentiation and EPB formation through its forced expression via the involucrin (Inv) promoter in the suprabasal compartment of the transgenic mouse epidermis. Even though a functional barrier formed, Inv-CDelta187 mice displayed histological and biochemical abnormalities in the epidermal differentiation program and stimulation of epidermal cell proliferation in both the basal and suprabasal compartments of the interfolliclar epidermis, leading to a thickening of the epidermis after 1 week of age that persisted throughout life. Although some membrane localization was evident, our studies also revealed a significant amount of not only Cldn6 but also Cldn10, Cldn11, and Cldn18 in the cytoplasm of transgenic epidermal cells as well as the activation of a protein-unfolding pathway. These findings demonstrate that the overexpression of a tail truncation mutant of Cldn6 mislocalizes Cldn6 and other Cldn proteins to the cytoplasm and triggers a postnatal increase in proliferation and aberrant differentiation of the epidermis, emphasizing the importance of the Cldn tail domain in membrane targeting and function in vivo.
Collapse
Affiliation(s)
- Azadeh Arabzadeh
- Ottawa Health Research Institute, 725 Parkdale Avenue, Ottawa, Ontario K1Y 4E9, Canada
| | | | | |
Collapse
|
127
|
Kuraguchi M, Wang XP, Bronson RT, Rothenberg R, Ohene-Baah NY, Lund JJ, Kucherlapati M, Maas RL, Kucherlapati R. Adenomatous polyposis coli (APC) is required for normal development of skin and thymus. PLoS Genet 2006; 2:e146. [PMID: 17002498 PMCID: PMC1564426 DOI: 10.1371/journal.pgen.0020146] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 07/28/2006] [Indexed: 11/19/2022] Open
Abstract
The tumor suppressor gene Apc (adenomatous polyposis coli) is a member of the Wnt signaling pathway that is involved in development and tumorigenesis. Heterozygous knockout mice for Apc have a tumor predisposition phenotype and homozygosity leads to embryonic lethality. To understand the role of Apc in development we generated a floxed allele. These mice were mated with a strain carrying Cre recombinase under the control of the human Keratin 14 (K14) promoter, which is active in basal cells of epidermis and other stratified epithelia. Mice homozygous for the floxed allele that also carry the K14-cre transgene were viable but had stunted growth and died before weaning. Histological and immunochemical examinations revealed that K14-cre-mediated Apc loss resulted in aberrant growth in many ectodermally derived squamous epithelia, including hair follicles, teeth, and oral and corneal epithelia. In addition, squamous metaplasia was observed in various epithelial-derived tissues, including the thymus. The aberrant growth of hair follicles and other appendages as well as the thymic abnormalities in K14-cre; Apc(CKO/CKO) mice suggest the Apc gene is crucial in embryonic cells to specify epithelial cell fates in organs that require epithelial-mesenchymal interactions for their development.
Collapse
Affiliation(s)
- Mari Kuraguchi
- Harvard-Partners Center for Genetics and Genomics, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiu-Ping Wang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Roderick T Bronson
- Rodent Histopathology Core, Dana-Farber Harvard Cancer Center, Boston, Massachusetts, United States of America
| | - Rebecca Rothenberg
- Harvard-Partners Center for Genetics and Genomics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nana Yaw Ohene-Baah
- Harvard-Partners Center for Genetics and Genomics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jennifer J Lund
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Melanie Kucherlapati
- Harvard-Partners Center for Genetics and Genomics, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Richard L Maas
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Raju Kucherlapati
- Harvard-Partners Center for Genetics and Genomics, Harvard Medical School, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
128
|
Abstract
Tight junctions form continuous intercellular contacts controlling solute movement through the paracellular pathway across epithelia. Paracellular barriers vary among epithelia in electrical resistance and behave as if they are lined with pores that have charge and size selectivity. Recent evidence shows that claudins, a large family (at least 24 members) of intercellular adhesion molecules, form the seal and its variable pore-like properties. This evidence comes from the study of claudins expressed in cultured epithelial cell models, genetically altered mice, and human mutants. We review information on the structure, function, and transcriptional and posttranslational regulation of the claudin family as well as of their evolutionarily distant relatives called the PMP22/EMP/MP20/claudin, or pfam00822, superfamily.
Collapse
Affiliation(s)
- Christina M Van Itallie
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, North Carolina 27599-7545, USA.
| | | |
Collapse
|
129
|
Brandner JM, Kief S, Wladykowski E, Houdek P, Moll I. Tight Junction Proteins in the Skin. Skin Pharmacol Physiol 2006; 19:71-7. [PMID: 16685145 DOI: 10.1159/000091973] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 01/27/2006] [Indexed: 01/14/2023]
Abstract
It has long been accepted that tight junctions (TJ) are crucial for the formation and maintenance of the paracellular barrier and for cell polarity in simple epithelia and endothelia. Moreover, it is long known that they play a role in barrier function of amphibian skin. However, only in recent years were TJ and TJ proteins identified in the epidermis of men and mice. Their involvement in the barrier function of mammalian skin has been shown. This review summarizes our current knowledge about TJ and TJ proteins in mammalian skin.
Collapse
Affiliation(s)
- J M Brandner
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Germany.
| | | | | | | | | |
Collapse
|
130
|
Abstract
Tight junctions restrict the flow of ions and aqueous molecules between cells by forming a selective barrier to the paracellular pathway. Permeability of the tight junction barrier is determined by a class of transmembrane proteins known as claudins. The relationship between claudins and paracellular permeability is complex and determined not only by the profile of claudin expression but also by the arrangement of claudins and other proteins into tight junction strands. This review summarizes progress in understanding how claudins are assembled into tight junctions and how they interact with other tight junction proteins.
Collapse
Affiliation(s)
- Michael Koval
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| |
Collapse
|
131
|
Furuse M, Tsukita S. Claudins in occluding junctions of humans and flies. Trends Cell Biol 2006; 16:181-8. [PMID: 16537104 DOI: 10.1016/j.tcb.2006.02.006] [Citation(s) in RCA: 423] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 11/03/2005] [Accepted: 02/21/2006] [Indexed: 12/15/2022]
Abstract
The epithelial barrier is fundamental to the physiology of most metazoan organ systems. Occluding junctions, including vertebrate tight junctions and invertebrate septate junctions, contribute to the epithelial barrier function by restricting free diffusion of solutes through the paracellular route. The recent identification and characterization of claudins, which are tight junction-associated adhesion molecules, gives insight into the molecular architecture of tight junctions and their barrier-forming mechanism in vertebrates. Mice lacking the expression of various claudins, and human hereditary diseases with claudin mutations, have revealed that the claudin-based barrier function of tight junctions is indispensable in vivo. Interestingly, claudin-like molecules have recently been identified in septate junctions of Drosophila. Here, we present an overview of recent progress in claudin studies conducted in mammals and flies.
Collapse
Affiliation(s)
- Mikio Furuse
- Department of Cell Biology, Kyoto University Faculty of Medicine, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Japan.
| | | |
Collapse
|
132
|
Hong YH, Hishikawa D, Miyahara H, Nishimura Y, Tsuzuki H, Gotoh C, Iga T, Suzuki Y, Song SH, Choi KC, Lee HG, Sasaki S, Roh SG. Up-regulation of the claudin-6 gene in adipogenesis. Biosci Biotechnol Biochem 2006; 69:2117-21. [PMID: 16306693 DOI: 10.1271/bbb.69.2117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To investigate the role of claudin-6 in adipogenesis, claudin-6 mRNA was examined in adipose tissues and adipocyte differentiation. Claudin-6 mRNA was found to be differentially expressed in four different adipose tissues, and up-regulated in each fat depot of mice fed a high-fat diet as compared to a normal-fat diet. Levels of claudin-6 transcripts were increased during differentiation of 3T3-L1 cells in vitro. Moreover, small interfering RNA (siRNA)-mediated reduction of claudin-6 mRNA inhibited differentiation of 3T3-L1 cells. These results suggest that claudin-6 is another important regulator in adipogenesis and fat deposition.
Collapse
Affiliation(s)
- Yeon-Hee Hong
- Department of Food Production Science, Faculty of Agriculture, Shinshu University, Nagano, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Aijaz S, Balda MS, Matter K. Tight junctions: molecular architecture and function. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 248:261-98. [PMID: 16487793 DOI: 10.1016/s0074-7696(06)48005-0] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tight junctions are the most apical component of the epithelial junctional complex and are crucial for the formation and functioning of epithelial and endothelial barriers. They regulate selective diffusion of ions and solutes along the paracellular pathway and restrict apical/basolateral intramembrane diffusion of lipids. Research over the past years provided much insight into the molecular composition of tight junctions, and we are starting to understand the mechanisms that permit selective paracellular diffusion. Moreover, a complex network of proteins has been identified at tight junctions that is based on cytoskeleton-linked adaptors that recruit and thereby often regulate different types of signaling components that regulate epithelial proliferation, differentiation, and polarization.
Collapse
Affiliation(s)
- Saima Aijaz
- Division of Cell Biology, Institute of Ophthalmology, University College London, London, United Kingdom
| | | | | |
Collapse
|
134
|
Abstract
The luminal environment of the epididymis is highly specialized with specific proteins, ions, pH, etc. required for sperm maturation. Tight junctions between epididymal principal cells are responsible for the formation of the blood-epididymal barrier, which regulates this luminal environment. Claudins (Cldns) are a recently discovered family of transmembrane proteins and are essential components of tight junctions. Previous work from our laboratory has demonstrated the presence and localization of Cldn-1 in all regions of the rat epididymis. The objective of this study was to determine the presence and localization of other Cldns in the epididymis. Using RT-PCR we have identified mRNA transcripts for Cldn-3 through -9 in each region of the adult rat epididymis. Immunolocalization of Cldn-3, Cldn-4, and Cldn-5 were done in adult as well as in 42- and 14-day-old rats. Cldn-5 in adult rats was localized exclusively in blood vessels of the interstitium. Cldn-3 was localized apically in the epididymal epithelium between adjacent principal cells throughout the epididymis, where tight junctions have been reported histologically. There were no differences in the localization of Cldn-3 in epididymides of rats at the different ages. In 14-day-old rats, Cldn-4 was localized all along the lateral plasma membrane between adjacent principal cells. The immunostaining was more pronounced in the proximal regions of the epididymis. In both 42-day-old rats and adults, Cldn-4 was localized primarily to apical tight junctions between principal cells and staining was more pronounced in the proximal region of the epididymis. Cldn-16 transcripts were also identified by RT-PCR. These transcripts were present in both proximal and distal regions of the epididymis of young (Day 14 and 21) animals, but only in the proximal (initial segment) region of the adult epididymis. These data indicate that epididymal tight junctions are composed of several Cldns, suggestive of a complex regulation of the blood-epididymal barrier.
Collapse
Affiliation(s)
- Mary Gregory
- INRS-Institut Armand-Frappier, Université du Québec, Pointe Claire, Quebec, Canada
| | | |
Collapse
|
135
|
Hashizume A, Ueno T, Furuse M, Tsukita S, Nakanishi Y, Hieda Y. Expression patterns of claudin family of tight junction membrane proteins in developing mouse submandibular gland. Dev Dyn 2005; 231:425-31. [PMID: 15366020 DOI: 10.1002/dvdy.20142] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Here, we investigated the expression of the claudin family of tight junction transmembrane proteins in the developing mouse submandibular gland. Data obtained by reverse transcriptase-polymerase chain reaction, Western blot, and immunofluorescence microscopy showed the expression and localization of claudin-3 to -8, -10, and -11 at epithelial tight junctions. Examination of the glands taken from embryonic day (E) 14, E16, and newborn mice revealed differential expression patterns of these claudins in the developing epithelium. Claudin-3, -5, and -7 were expressed in all of the luminal epithelial cells of the ducts at all of the developmental stages examined and in those of terminal tubules at E16 and later. Claudin-4 was expressed mainly in the ducts at all the developmental stages. The expression of claudin-6 and -8 was also restricted to the ducts at E14 and E16; but after birth, the former was undetectable, whereas the latter was expressed in both the ducts and terminal tubules. Claudin-10 and -11 were detectable mainly in the terminal tubules at E16 and later. In addition to being found in the epithelium, claudin-5 was also expressed in certain mesenchymal cells, probably endothelial cells. These results will provide a valuable resource for further investigation of tubulogenesis and physiological regulation of claudin-based tight junctions.
Collapse
Affiliation(s)
- Atsushi Hashizume
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
136
|
González-Mariscal L, Nava P, Hernández S. Critical Role of Tight Junctions in Drug Delivery across Epithelial and Endothelial Cell Layers. J Membr Biol 2005; 207:55-68. [PMID: 16477528 DOI: 10.1007/s00232-005-0807-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 10/19/2005] [Indexed: 11/28/2022]
Abstract
Epithelia in multicellular organisms constitute the frontier that separates the individual from the environment. Epithelia are sites of exchange as well as barriers, for the transit of ions and molecules from and into the organism. Therapeutic agents, in order to reach their target, frequently need to cross epithelial and endothelial sheets. Two routes are available for such purpose: the transcellular and the paracellular pathways. The former is employed by lipophilic drugs and by molecules selectively transported by channels, pumps and carriers present in the plasma membrane. Hydrophilic molecules cannot cross biological membranes, therefore their transepithelial transport could be significantly enhanced if they moved through the paracellular pathway. Transit through this route is regulated by tight junctions (TJs). The discovery in recent years of the molecular mechanisms of the TJ has allowed the design of different procedures to open the paracellular route in a reversible manner. These strategies could be used to enhance drug delivery across epithelial and endothelial barriers. The procedures employed include the use of peptides homologous to external loops of integral TJ proteins, silencing the expression of TJ proteins with antisense oligonucleotides and siRNAs as well as the use of toxins and proteins derived from microorganisms that target TJ proteins.
Collapse
Affiliation(s)
- L González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Ave. Politécnico Nacional 2508, Mexico D.F., 07360, Mexico.
| | | | | |
Collapse
|
137
|
Troy TC, Rahbar R, Arabzadeh A, Cheung RMK, Turksen K. Delayed epidermal permeability barrier formation and hair follicle aberrations in Inv-Cldn6 mice. Mech Dev 2005; 122:805-19. [PMID: 15908185 DOI: 10.1016/j.mod.2005.03.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 03/01/2005] [Accepted: 03/18/2005] [Indexed: 11/22/2022]
Abstract
Homozygous mice overexpressing Claudin-6 (Cldn6) exhibit a perturbation in the epidermal differentiation program leading to a defective epidermal permeability barrier (EPB) and dehydration induced death ensuing within 48 h of birth [Turksen, K., Troy, T.C., 2002. Permeability barrier dysfunction in transgenic mice overexpressing claudin 6. Development 129, 1775-1784]. Their heterozygous counterparts are also born with an incomplete EPB; however, barrier formation continues after birth and normal hydration levels are achieved by postnatal day 12 allowing survival into adulthood. Heterozygous Inv-Cldn6 mice exhibit a distinct coat phenotype and histological analysis shows mild epidermal hyperkeratosis. Expression of K5 and K14 is aberrant, extending beyond the basal layer into the suprabasal layer where they are not co-localized suggesting that their expression is uncoupled. There is also atypical K17 and patchy K15 expression in the basal layer with no K6 expression in the interfollicular epidermis; together with marked changes in late differentiation markers (e.g. profilaggrin/filaggrin, loricrin, transglutaminase 3) indicating that the normal epidermal differentiation program is modified. The expression compartment of various Cldns is also perturbed although overall protein levels remained comparable. Most notably induction of Cldn5 and Cldn8 was observed in the Inv-Cldn6 epidermis. Heterozygous Inv-Cldn6 animals also exhibit subtle alterations in the differentiation program of the hair follicle including a shorter anagen phase, and altered hair type distribution and length compared to the wild type; the approximately 20% increase in zig-zag hair fibers at the expense of guard hairs and the approximately 30% shorter guard hairs contribute to coat abnormalities in the heterozygous mice. In addition, the transgenic hair follicles exhibit a decreased expression of K15 as well as some hair-specific keratins and express Cldn5 and Cldn18, which are not detectable in the wild type. These data indicate that Cldn6 plays a role in the differentiation processes of the epidermis and hair follicle and supports the notion of a link between Cldn regulation and EPB assembly/maintenance as well as the hair cycle.
Collapse
Affiliation(s)
- Tammy-Claire Troy
- Development Program, Ottawa Health Research Institute, 725 Parkdale Ave., Ottawa, Ont., Canada K1Y 4E9
| | | | | | | | | |
Collapse
|
138
|
Huber M, Siegenthaler G, Mirancea N, Marenholz I, Nizetic D, Breitkreutz D, Mischke D, Hohl D. Isolation and Characterization of Human Repetin, a Member of the Fused Gene Family of the Epidermal Differentiation Complex. J Invest Dermatol 2005; 124:998-1007. [PMID: 15854042 DOI: 10.1111/j.0022-202x.2005.23675.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The human repetin gene is a member of the "fused" gene family and localized in the epidermal differentiation complex on chromosome 1q21. The "fused" gene family comprises profilaggrin, trichohyalin, repetin, hornerin, the profilaggrin-related protein and a protein encoded by c1orf10. Functionally, these proteins are associated with keratin intermediate filaments and partially crosslinked to the cell envelope (CE). Here, we report the isolation and characterization of the human repetin gene and of its protein product. The repetin protein of 784 amino acids contains EF (a structure resembling the E helix-calcium-binding loop-F helix domain of parvalbumin) hands of the S100 type and internal tandem repeats typical for CE precursor proteins, a combination which is characteristic for "fused" proteins. Repetin expression is scattered in the normal epidermis but strong in the acrosyringium, the inner hair root sheat and in the filiform papilli of the tongue. Ultrastructurally, repetin is a component of cytoplasmic non-membrane "keratohyalin" F-granules in the stratum granulosum of normal epidermis, similar to profilaggrin. Finally, we show that EF hands are functional and reversibly bind Ca(2+). Our results indicate that repetin is indeed a member of the fused gene family similar to the prototypical members profilaggrin and trichohyalin.
Collapse
Affiliation(s)
- Marcel Huber
- Department of Dermatology, University Hospital of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Tunggal JA, Helfrich I, Schmitz A, Schwarz H, Günzel D, Fromm M, Kemler R, Krieg T, Niessen CM. E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions. EMBO J 2005; 24:1146-56. [PMID: 15775979 PMCID: PMC556407 DOI: 10.1038/sj.emboj.7600605] [Citation(s) in RCA: 363] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Accepted: 02/08/2005] [Indexed: 12/18/2022] Open
Abstract
Cadherin adhesion molecules are key determinants of morphogenesis and tissue architecture. Nevertheless, the molecular mechanisms responsible for the morphogenetic contributions of cadherins remain poorly understood in vivo. Besides supporting cell-cell adhesion, cadherins can affect a wide range of cellular functions that include activation of cell signalling pathways, regulation of the cytoskeleton and control of cell polarity. To determine the role of E-cadherin in stratified epithelium of the epidermis, we have conditionally inactivated its gene in mice. Here we show that loss of E-cadherin in the epidermis in vivo results in perinatal death of mice due to the inability to retain a functional epidermal water barrier. Absence of E-cadherin leads to improper localization of key tight junctional proteins, resulting in permeable tight junctions and thus altered epidermal resistance. In addition, both Rac and activated atypical PKC, crucial for tight junction formation, are mislocalized. Surprisingly, our results indicate that E-cadherin is specifically required for tight junction, but not desmosome, formation and this appears to involve signalling rather than cell contact formation.
Collapse
Affiliation(s)
- Judith A Tunggal
- Center for Molecular Medicine, University of Cologne (CMMC), Cologne, Germany
| | - Iris Helfrich
- Center for Molecular Medicine, University of Cologne (CMMC), Cologne, Germany
| | - Annika Schmitz
- Center for Molecular Medicine, University of Cologne (CMMC), Cologne, Germany
| | - Heinz Schwarz
- Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Dorothee Günzel
- Department of Clinical Physiology, Charité, Campus Benjamin Franklin, Berlin, Germany
| | - Michael Fromm
- Department of Clinical Physiology, Charité, Campus Benjamin Franklin, Berlin, Germany
| | - Rolf Kemler
- Department of Molecular Embryology, Max Planck Institute for Immunobiology, Freiburg, Germany
| | - Thomas Krieg
- Center for Molecular Medicine, University of Cologne (CMMC), Cologne, Germany
- Department of Dermatology, University of Cologne, Cologne, Germany
| | - Carien M Niessen
- Center for Molecular Medicine, University of Cologne (CMMC), Cologne, Germany
- Center for Molecular Medicine (ZMMK), University of Cologne, LFI, 05, room 59, Joseph Stelzmannstrasse 9, 50931 Cologne, Germany. Tel.: +221 4787738; Fax: +221 4784836; E-mail:
| |
Collapse
|
140
|
Abstract
Tight junctions form selective barriers that regulate paracellular transport across epithelia. A large family of tetraspanning cell-cell adhesion proteins called claudins create the barrier and regulate electrical resistance, size, and ionic charge selectivity. Study of inherited human claudin diseases and the outcome of the genetic manupulation of claudins in mice, Drosophila, and Caenorhabditis elegans are furthering our understanding of paracellular physiology.
Collapse
Affiliation(s)
- Christina M Van Itallie
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
141
|
Troy TC, Turksen K. Commitment of embryonic stem cells to an epidermal cell fate and differentiation in vitro. Dev Dyn 2005; 232:293-300. [PMID: 15614782 DOI: 10.1002/dvdy.20223] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The epidermis develops from a stem cell population in the surface ectoderm that feeds a single vertical terminal differentiation pathway. To date, however, the limited capacity for the isolation or purification of epidermal stem or precursor cells has hampered studies on early commitment and differentiation events. We have developed a two-step culture scheme in which pluripotent mouse embryonic stem (ES) cells are induced first to a surface ectoderm phenotype and then are positively selected for putative epidermal stem cells. We show that the earliest stages of epidermal development follow an ordered sequence that is similar to that observed in vivo (expression of keratin 8, keratin 19, keratin 17, and keratin 14), suggesting that ES cell-derived surface ectoderm-like cells can be induced to follow the epidermal developmental pathway. At a low frequency, keratin 14-positive early epidermal cells progressed to keratin 1-positive and terminally differentiated cells producing a cornified envelope. This culturing protocol provides an invaluable system in which to study both the mechanisms that direct stem cells along the epidermal pathway as well as those that influence their subsequent epidermal differentiation.
Collapse
Affiliation(s)
- Tammy-Claire Troy
- Development Program, Ottawa Health Research Institute, 725 Parkdale Avenue, Ottawa, Ontario, K1Y 4E9, Canada
| | | |
Collapse
|
142
|
Guan X, Inai T, Shibata Y. Segment-specific expression of tight junction proteins, claudin-2 and -10, in the rat epididymal epithelium. ACTA ACUST UNITED AC 2005; 68:213-25. [PMID: 16276027 DOI: 10.1679/aohc.68.213] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tight junctions are known to be related to the variance by segment of the luminal fluid microenvironment of the epididymis. We examined the expression of claudins that regulate the paracellular permeability of ions, solutes, and water through tight junctions in the rat epididymis. RT-PCR analysis showed that claudin-2 and -10 were expressed in a segment-specific manner among fifteen claudins examined. Immunofluorescence microscopy demonstrated that both claudins showed developmental stage- and segment-specific subcellular localizations in the epididymal epithelium. Claudin-2 was detected principally in the apical junctional region in the initial segment at postnatal day 7 and week 10 but lost its expression in all the distal segments including the caput, corpus, and cauda. Claudin-10 was detected principally in the apical junctional region in all segments on postnatal day 7 but only in the initial segment--especially along the entire lateral membrane--at 10 weeks. In freeze fracture electron microscopy, well-developed intramembranous particle strands were observed on the P face and complementary grooves with a few particles on the E face at 10 weeks. Many particles were occasionally observed on the grooves in the E face in the initial segment and distal caput. Tight junction strands were continuous and impermeable to lanthanum nitrate on postnatal day 7, suggesting the establishment of functional tight junctions. These segment-specific expressions of claudin-2 and -10 may contribute to creating the specific luminal fluid microenvironment which is necessary for the transport, maturation, and storage of spermatozoa.
Collapse
Affiliation(s)
- Xin Guan
- Department of Developmental Molecular Anatomy, Graduate School of Medical Sciences, Kyushu University, Fakuoka, Japan
| | | | | |
Collapse
|
143
|
Huang WW, Yin Y, Bi Q, Chiang TC, Garner N, Vuoristo J, McLachlan JA, Ma L. Developmental diethylstilbestrol exposure alters genetic pathways of uterine cytodifferentiation. Mol Endocrinol 2004; 19:669-82. [PMID: 15591538 DOI: 10.1210/me.2004-0155] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The formation of a simple columnar epithelium in the uterus is essential for implantation. Perturbation of this developmental process by exogenous estrogen, such as diethylstilbestrol (DES), results in uterine metaplasia that contributes to infertility. The cellular and molecular mechanism underlying this transformation event is not well understood. Here we use a combination of global gene expression analysis and a knockout mouse model to delineate genetic pathways affected by DES. Global gene expression profiling experiment revealed that neonatal DES treatment alters uterine cell fate, particularly in the luminal epithelium by inducing abnormal differentiation, characterized by the induction of stratified epithelial markers including members of the small proline-rich protein family and epidermal keratins. We show that Msx2, a homeodomain transcription factor, functions downstream of DES and is required for the proper expression of several genes in the uterine epithelium including Wnt7a, PLAP, and K2.16. Finally, Msx2-/- uteri were found to exhibit abnormal water trafficking upon DES exposure, demonstrating the importance of Msx2 in tissue responsiveness to estrogen exposure. Together, these results indicate that developmental exposure to DES can perturb normal uterine development by affecting genetic pathways governing uterine differentiation.
Collapse
Affiliation(s)
- Wei-Wei Huang
- Tulane/Xavier Center for Bioenvironmental Research, Tulane University Medical Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Hewett DR, Simons AL, Mangan NE, Jolin HE, Green SM, Fallon PG, McKenzie ANJ. Lethal, neonatal ichthyosis with increased proteolytic processing of filaggrin in a mouse model of Netherton syndrome. Hum Mol Genet 2004; 14:335-46. [PMID: 15590704 DOI: 10.1093/hmg/ddi030] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Netherton syndrome is an autosomal recessive multisystemic disorder characterized by congenital ichthyosiform erythroderma, hair shaft defects and atopy, caused by mutations within the human SPINK5 gene. To investigate the development of this disease, we have cloned mouse spink5 and created mice with a mutated premature stop codon at amino acid R820X, to produce an allele that closely mimics a point mutation (E827X) in human SPINK5. Newborn spink5(R820X/R820X) mice develop a lethal, severe ichthyosis with a loss of skin barrier function and dehydration, resulting in death within a few hours of birth, similar to that observed in patients with severe Netherton syndrome. Epidermal barrier function is compromised because of the stratum corneum becoming spontaneously detached in the newborn mice, and this is probably compounded by the reduced mechanical strength detected in the cornified envelopes. Biochemical analysis of skin from newborn wild-type and spink5(R820X/R820X) mice revealed a substantial increase in the proteolytic processing of profilaggrin into its constituent filaggrin monomers. Filaggrin functions to organize keratin filaments into highly ordered macrofibrils that crisscross the cornified cells of the stratum corneum imparting structural integrity, and defects in filaggrin processing occur in a number of forms of congenital ichthyosis. These data suggest that in the absence of the serine protease inhibitor spink5, there is an abnormal increase in the processing of profilaggrin, resulting in an overabundance of filaggrin monomers, and that this may play a direct role in the observed deficit in the adhesion of the stratum corneum and the severely compromised epidermal barrier function.
Collapse
|
145
|
Harhaj NS, Antonetti DA. Regulation of tight junctions and loss of barrier function in pathophysiology. Int J Biochem Cell Biol 2004; 36:1206-37. [PMID: 15109567 DOI: 10.1016/j.biocel.2003.08.007] [Citation(s) in RCA: 407] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2003] [Accepted: 08/21/2003] [Indexed: 12/16/2022]
Abstract
The mechanism by which epithelial and endothelial cells interact to form polarized tissue is of fundamental importance to multicellular organisms. Dysregulation of these barriers occurs in a variety of diseases, destroying the normal cellular environments and leading to organ failure. Increased levels of growth factors are a common characteristic of diseases exhibiting tissue permeability, suggesting that growth factors play a direct role in elevating permeability. Of particular concern for this laboratory, increased expression of vascular endothelial growth factor may enhance vascular permeability in diabetic retinopathy, leading to vision impairment and blindness. However, the mechanism by which growth factors increase permeability is unclear. Polarized cells form strong barriers through the development of tight junctions, which are specialized regions of the junctional complex. Tight junctions are composed of three types of transmembrane proteins, a number of peripheral membrane structural proteins, and are associated with a variety of regulatory proteins. Recent data suggest that growth factor-stimulated alterations in tight junctions contribute to permeability in a variety of disease states. The goal of this review was to elucidate potential mechanisms by which elevated growth factors elicit deregulated paracellular permeability via altered regulation of tight junctions, with particular emphasis on the tight junction proteins occludin and ZO-1, protein kinase C signaling, and endocytosis of junctional proteins. Understanding the molecular mechanisms underlying growth factor-mediated regulation of tight junctions will facilitate the development of novel treatments for diseases such as brain tumors, diabetic retinopathy and other diseases with compromised tight junction barriers.
Collapse
Affiliation(s)
- Nicole S Harhaj
- Penn State Retina Research Group, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | |
Collapse
|
146
|
Knight PA, Pemberton AD, Robertson KA, Roy DJ, Wright SH, Miller HRP. Expression profiling reveals novel innate and inflammatory responses in the jejunal epithelial compartment during infection with Trichinella spiralis. Infect Immun 2004; 72:6076-86. [PMID: 15385512 PMCID: PMC517597 DOI: 10.1128/iai.72.10.6076-6086.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Infection with intestinal nematodes induces profound pathological changes to the gut that are associated with eventual parasite expulsion. We have applied expression profiling as an initial screening process with oligonucleotide microarrays (Affymetrix MG-U74AV2 gene chips) and time course kinetics to investigate gene transcription triggered by the intraepithelial nematode Trichinella spiralis in jejunal epithelium from BALB/c mice. Of the 4,114 genes detected, 2,617 were present in all uninfected and T. spiralis-infected replicates, 8% of which were notably upregulated, whereas 12% were downregulated at the time of worm expulsion (day 14 postinfection). Upregulation of goblet cell mucin gene transcripts intestinal mucin gene 3 (MUC3), calcium chloride channel 5 (CLCA5), and goblet cell gene 4 (GOB4) is consistent with enhanced production and alteration of mucus, whereas a 60- to 70-fold upregulation of transcripts for mast cell proteases 1 and 2 (MCPT-1 and -2) is consistent with intraepithelial mucosal mast cell recruitment. Importantly, there was novel expression of sialyltransferase 4C (SIAT4C), small proline-rich protein 2A (SPRR2A), and resistin-like molecule beta (RELMbeta) on day 14 postinfection. In contrast, DNase I and regenerating protein 3 (REG3) transcripts were substantially downregulated. Time course analyses revealed early (within 48 h of infection) induction of Siat4c, Sprr2A, and Relmbeta and later (within 120 h) induction of Mcpt-1 and -2. The findings demonstrate early innate responses and later inflammatory changes within the epithelium. The early epithelial responses may be associated both with repair (Sprr2A) and with the development of innate immunity (Siat4c and Relmbeta).
Collapse
Affiliation(s)
- Pamela A Knight
- Division of Veterinary Clinical Studies, University of Edinburgh, Roslin, Midlothian, United Kingdom.
| | | | | | | | | | | |
Collapse
|
147
|
Abstract
To survive the transition from an aqueous in utero to a terrestrial ex utero environment, mice and humans must construct an epidermal permeability barrier in utero. Terminally differentiated epidermal cells, lipids and tight junctions are all essential to achieve this barrier. Recent analyses of mouse mutants with defects in structural components of the terminally differentiated epidermal cell, catalyzing enzymes, lipid processing, transcriptional regulators and the intercellular junctions have highlighted their essential function in establishing the epidermal permeability barrier. Particularly interesting examples include modulation of the expression of transglutaminase 1 enzyme, the transcription factor Klf4 and the claudin tight junction proteins. However, careful analysis of the various mutant phenotypes during embryonic development, as neonates and either as adults or transplanted skin, has revealed much more about the redundancy and compensatory mechanisms of the system. Molecular analysis of the various mouse mutants has demonstrated common pathways to compensate for loss of the epidermal barrier.
Collapse
Affiliation(s)
- Julie Segre
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, 49 Convent Drive, Building 49, Room 4A26, MSC 4442, Bethesda, MD 20892-4442, USA.
| |
Collapse
|
148
|
Bazzoni G, Dejana E. Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 2004; 84:869-901. [PMID: 15269339 DOI: 10.1152/physrev.00035.2003] [Citation(s) in RCA: 978] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Intercellular junctions mediate adhesion and communication between adjoining endothelial and epithelial cells. In the endothelium, junctional complexes comprise tight junctions, adherens junctions, and gap junctions. The expression and organization of these complexes depend on the type of vessels and the permeability requirements of perfused organs. Gap junctions are communication structures, which allow the passage of small molecular weight solutes between neighboring cells. Tight junctions serve the major functional purpose of providing a "barrier" and a "fence" within the membrane, by regulating paracellular permeability and maintaining cell polarity. Adherens junctions play an important role in contact inhibition of endothelial cell growth, paracellular permeability to circulating leukocytes and solutes. In addition, they are required for a correct organization of new vessels in angiogenesis. Extensive research in the past decade has identified several molecular components of the tight and adherens junctions, including integral membrane and intracellular proteins. These proteins interact both among themselves and with other molecules. Here, we review the individual molecules of junctions and their complex network of interactions. We also emphasize how the molecular architectures and interactions may represent a mechanistic basis for the function and regulation of junctions, focusing on junction assembly and permeability regulation. Finally, we analyze in vivo studies and highlight information that specifically relates to the role of junctions in vascular endothelial cells.
Collapse
Affiliation(s)
- Gianfranco Bazzoni
- Istituto di Ricerche Farmacologiche "Mario Negri," Via Eritrea 62, I-20157 Milan, Italy.
| | | |
Collapse
|
149
|
Maass K, Ghanem A, Kim JS, Saathoff M, Urschel S, Kirfel G, Grümmer R, Kretz M, Lewalter T, Tiemann K, Winterhager E, Herzog V, Willecke K. Defective epidermal barrier in neonatal mice lacking the C-terminal region of connexin43. Mol Biol Cell 2004; 15:4597-608. [PMID: 15282340 PMCID: PMC519152 DOI: 10.1091/mbc.e04-04-0324] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
More than 97% of mice in which the C-terminal region of connexin43 (Cx43) was removed (designated as Cx43K258stop) die shortly after birth due to a defect of the epidermal barrier. The abnormal expression of Cx43K258stop protein in the uppermost layers of the epidermis seems to perturb terminal differentiation of keratinocytes. In contrast to Cx43-deficient mice, neonatal Cx43K258stop hearts show no lethal obstruction of the right ventricular outflow tract, but signs of dilatation. Electrocardiographies of neonatal hearts reveal repolarization abnormalities in 20% of homozygous Cx43K258stop animals. The very rare adult Cx43K258stop mice show a compensation of the epidermal barrier defect but persisting impairment of cardiac function in echocardiography. Female Cx43K258stop mice are infertile due to impaired folliculogenesis. Our results indicate that the C-terminally truncated Cx43K258stop mice lack essential functions of Cx43, although the truncated Cx43 protein can form open gap junctional channels.
Collapse
Affiliation(s)
- Karen Maass
- Institut für Genetik, Universitat Bonn, D-53117 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Abstract
Multicellular organisms are separated from the external environment by a layer of epithelial cells whose integrity is maintained by intercellular junctional complexes composed of tight junctions, adherens junctions, and desmosomes, whereas gap junctions provide for intercellular communication. The aim of this review is to present an updated overview of recent developments in the area of tight junction biology. In a relatively short time, our knowledge of the tight junction has evolved from a relatively simple view of it being a permeability barrier in the paracellular space and a fence in the plane of the plasma membrane to one of it acting as a multicomponent, multifunctional complex that is involved in regulating numerous and diverse cell functions. A group of integral membrane proteins-occludin, claudins, and junction adhesion molecules-interact with an increasingly complex array of tight junction plaque proteins not only to regulate paracellular solute and water flux but also to integrate such diverse processes as gene transcription, tumor suppression, cell proliferation, and cell polarity.
Collapse
Affiliation(s)
- Eveline E Schneeberger
- Molecular Pathology Unit, Massachusetts General Hospital East, Charlestown, MA 02129, USA.
| | | |
Collapse
|