101
|
Wu Z, Guan KL. Hippo Signaling in Embryogenesis and Development. Trends Biochem Sci 2020; 46:51-63. [PMID: 32928629 DOI: 10.1016/j.tibs.2020.08.008] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/27/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022]
Abstract
Hippo pathway components are structurally and functionally conserved and are notable for their role in controlling organ size. More diverse functions of the Hippo pathway have been recognized, including development, tissue homeostasis, wound healing and regeneration, immunity, and tumorigenesis. During embryogenesis, different signaling pathways are repeatedly and cooperatively activated, leading to differential gene expression in specific developmental contexts. In this article, we present an overview on the regulation and function of the Hippo pathway in mammalian early development. We introduce the Hippo pathway components and major upstream signals that act through this pathway to influence embryogenesis. We also discuss the roles of Hippo pathway in tissue specification and organ development during organogenesis.
Collapse
Affiliation(s)
- Zhengming Wu
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
102
|
Hadden M, Mittal A, Samra J, Zreiqat H, Sahni S, Ramaswamy Y. Mechanically stressed cancer microenvironment: Role in pancreatic cancer progression. Biochim Biophys Acta Rev Cancer 2020; 1874:188418. [PMID: 32827581 DOI: 10.1016/j.bbcan.2020.188418] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/21/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid malignancies in the world due to its insensitivity to current therapies and its propensity to metastases from the primary tumor mass. This is largely attributed to its complex microenvironment composed of unique stromal cell populations and extracellular matrix (ECM). The recruitment and activation of these cell populations cause an increase in deposition of ECM components, which highly influences the behavior of malignant cells through disrupted forms of signaling. As PDAC progresses from premalignant lesion to invasive carcinoma, this dynamic landscape shields the mass from immune defenses and cytotoxic intervention. This microenvironment influences an invasive cell phenotype through altered forms of mechanical signaling, capable of enacting biochemical changes within cells through activated mechanotransduction pathways. The effects of altered mechanical cues on malignant cell mechanotransduction have long remained enigmatic, particularly in PDAC, whose microenvironment significantly changes over time. A more complete and thorough understanding of PDAC's physical surroundings (microenvironment), mechanosensing proteins, and mechanical properties may help in identifying novel mechanisms that influence disease progression, and thus, provide new potential therapeutic targets.
Collapse
Affiliation(s)
- Matthew Hadden
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW 2006, Australia
| | - Anubhav Mittal
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Kolling Institute of Medical Research, University of Sydney, Australia; Australian Pancreatic Centre, St Leonards, Sydney, Australia
| | - Jaswinder Samra
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Kolling Institute of Medical Research, University of Sydney, Australia; Australian Pancreatic Centre, St Leonards, Sydney, Australia
| | - Hala Zreiqat
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW 2006, Australia; ARC Training Centre for Innovative Bioengineering, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sumit Sahni
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Kolling Institute of Medical Research, University of Sydney, Australia; Australian Pancreatic Centre, St Leonards, Sydney, Australia.
| | - Yogambha Ramaswamy
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
103
|
Short KM, Smyth IM. Branching morphogenesis as a driver of renal development. Anat Rec (Hoboken) 2020; 303:2578-2587. [PMID: 32790143 DOI: 10.1002/ar.24486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/17/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022]
Abstract
Branching morphogenesis is an integral developmental mechanism central to the formation of a range of organs including the kidney, lung, pancreas and mammary gland. The ramified networks of epithelial tubules it establishes are critical for the processes of secretion, excretion and exchange mediated by these tissues. In the kidney, branching serves to establish the collecting duct system that transports urine from the nephrons into the renal pelvis, ureter and finally the bladder. Generally speaking, the formation of these networks in different organs begins with the specification and differentiation of simple bud-like organ anlage, which then undergo a process of elaboration, typically by bifurcation. This process is often governed by the interaction of progenitor cells at the tips of the epithelia with neighboring mesenchymal cell populations which direct the branching process and which often themselves differentiate to form part of the adult organ. In the kidney, the tips of ureteric bud elaborate through a dynamic cell signaling relationship with overlying nephron progenitor cell populations. These cells sequentially commit to differentiation and the resulting nephrons reintegrate with the ureteric epithelium as development progresses. This review will describe recent advances in understanding the how the elaboration of the ureteric bud is patterned and consider the extent to which this process is shared with other organs.
Collapse
Affiliation(s)
- Kieran M Short
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Ian M Smyth
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
104
|
Víšová I, Smolková B, Uzhytchak M, Vrabcová M, Chafai DE, Houska M, Pastucha M, Skládal P, Farka Z, Dejneka A, Vaisocherová-Lísalová H. Functionalizable Antifouling Coatings as Tunable Platforms for the Stress-Driven Manipulation of Living Cell Machinery. Biomolecules 2020; 10:biom10081146. [PMID: 32764330 PMCID: PMC7464033 DOI: 10.3390/biom10081146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Cells are continuously sensing their microenvironment and subsequently respond to different physicochemical cues by the activation or inhibition of different signaling pathways. To study a very complex cellular response, it is necessary to diminish background environmental influences and highlight the particular event. However, surface-driven nonspecific interactions of the abundant biomolecules from the environment influence the targeted cell response significantly. Yes-associated protein (YAP) translocation may serve as a marker of human hepatocellular carcinoma (Huh7) cell responses to the extracellular matrix and surface-mediated stresses. Here, we propose a platform of tunable functionable antifouling poly(carboxybetain) (pCB)-based brushes to achieve a molecularly clean background for studying arginine, glycine, and aspartic acid (RGD)-induced YAP-connected mechanotransduction. Using two different sets of RGD-functionalized zwitterionic antifouling coatings with varying compositions of the antifouling layer, a clear correlation of YAP distribution with RGD functionalization concentrations was observed. On the other hand, commonly used surface passivation by the oligo(ethylene glycol)-based self-assembled monolayer (SAM) shows no potential to induce dependency of the YAP distribution on RGD concentrations. The results indicate that the antifouling background is a crucial component of surface-based cellular response studies, and pCB-based zwitterionic antifouling brush architectures may serve as a potential next-generation easily functionable surface platform for the monitoring and quantification of cellular processes.
Collapse
Affiliation(s)
- Ivana Víšová
- Institute of Physics CAS, Na Slovance 1999/2, 182 21 Prague, Czech Republic; (I.V.); (B.S.); (M.U.); (M.V.); (D.E.C.); (M.H.); (A.D.)
| | - Barbora Smolková
- Institute of Physics CAS, Na Slovance 1999/2, 182 21 Prague, Czech Republic; (I.V.); (B.S.); (M.U.); (M.V.); (D.E.C.); (M.H.); (A.D.)
| | - Mariia Uzhytchak
- Institute of Physics CAS, Na Slovance 1999/2, 182 21 Prague, Czech Republic; (I.V.); (B.S.); (M.U.); (M.V.); (D.E.C.); (M.H.); (A.D.)
| | - Markéta Vrabcová
- Institute of Physics CAS, Na Slovance 1999/2, 182 21 Prague, Czech Republic; (I.V.); (B.S.); (M.U.); (M.V.); (D.E.C.); (M.H.); (A.D.)
| | - Djamel Eddine Chafai
- Institute of Physics CAS, Na Slovance 1999/2, 182 21 Prague, Czech Republic; (I.V.); (B.S.); (M.U.); (M.V.); (D.E.C.); (M.H.); (A.D.)
| | - Milan Houska
- Institute of Physics CAS, Na Slovance 1999/2, 182 21 Prague, Czech Republic; (I.V.); (B.S.); (M.U.); (M.V.); (D.E.C.); (M.H.); (A.D.)
| | - Matěj Pastucha
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (M.P.); (P.S.)
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (M.P.); (P.S.)
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (M.P.); (P.S.)
- Correspondence: (Z.F.); (H.V.-L.); Tel.: +420-549497674 (Z.F.); +420-266052993 (H.V.-L.)
| | - Alexandr Dejneka
- Institute of Physics CAS, Na Slovance 1999/2, 182 21 Prague, Czech Republic; (I.V.); (B.S.); (M.U.); (M.V.); (D.E.C.); (M.H.); (A.D.)
| | - Hana Vaisocherová-Lísalová
- Institute of Physics CAS, Na Slovance 1999/2, 182 21 Prague, Czech Republic; (I.V.); (B.S.); (M.U.); (M.V.); (D.E.C.); (M.H.); (A.D.)
- Correspondence: (Z.F.); (H.V.-L.); Tel.: +420-549497674 (Z.F.); +420-266052993 (H.V.-L.)
| |
Collapse
|
105
|
Heng BC, Zhang X, Aubel D, Bai Y, Li X, Wei Y, Fussenegger M, Deng X. Role of YAP/TAZ in Cell Lineage Fate Determination and Related Signaling Pathways. Front Cell Dev Biol 2020; 8:735. [PMID: 32850847 PMCID: PMC7406690 DOI: 10.3389/fcell.2020.00735] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
The penultimate effectors of the Hippo signaling pathways YAP and TAZ, are transcriptional co-activator proteins that play key roles in many diverse biological processes, ranging from cell proliferation, tumorigenesis, mechanosensing and cell lineage fate determination, to wound healing and regeneration. In this review, we discuss the regulatory mechanisms by which YAP/TAZ control stem/progenitor cell differentiation into the various major lineages that are of interest to tissue engineering and regenerative medicine applications. Of particular interest is the key role of YAP/TAZ in maintaining the delicate balance between quiescence, self-renewal, proliferation and differentiation of endogenous adult stem cells within various tissues/organs during early development, normal homeostasis and regeneration/healing. Finally, we will consider how increasing knowledge of YAP/TAZ signaling might influence the trajectory of future progress in regenerative medicine.
Collapse
Affiliation(s)
- Boon C. Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
- Faculty of Science and Technology, Sunway University, Subang Jaya, Malaysia
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China
| | - Dominique Aubel
- IUTA Department Genie Biologique, Universite Claude Bernard Lyon 1, Villeurbanne, France
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaochan Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH-Zürich, Basel, Switzerland
| | - Xuliang Deng
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
106
|
Block MR, Brunner M, Ziegelmeyer T, Lallemand D, Pezet M, Chevalier G, Rondé P, Gauthier-Rouviere C, Wehrle-Haller B, Bouvard D. The mechano-sensitive response of β1 integrin promotes SRC-positive late endosome recycling and activation of Yes-associated protein. J Biol Chem 2020; 295:13474-13487. [PMID: 32690605 DOI: 10.1074/jbc.ra120.013503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/02/2020] [Indexed: 11/06/2022] Open
Abstract
Yes-associated protein (YAP) signaling has emerged as a crucial pathway in several normal and pathological processes. Although the main upstream effectors that regulate its activity have been extensively studied, the role of the endosomal system has been far less characterized. Here, we identified the late endosomal/lysosomal adaptor MAPK and mTOR activator (LAMTOR) complex as an important regulator of YAP signaling in a preosteoblast cell line. We found that p18/LAMTOR1-mediated peripheral positioning of late endosomes allows delivery of SRC proto-oncogene, nonreceptor tyrosine kinase (SRC) to the plasma membrane and promotes activation of an SRC-dependent signaling cascade that controls YAP nuclear shuttling. Moreover, β1 integrin engagement and mechano-sensitive cues, such as external stiffness and related cell contractility, controlled LAMTOR targeting to the cell periphery and thereby late endosome recycling and had a major impact on YAP signaling. Our findings identify the late endosome recycling pathway as a key mechanism that controls YAP activity and explains YAP mechano-sensitivity.
Collapse
Affiliation(s)
- Marc R Block
- Institute for Advanced Bioscience, Université Grenoble Alpes, La Tronche, France; Institut National de la Santé et la Recherche Médicale-INSERM U1209, La Tronche, France; CNRS UMR 5309, La Tronche, France
| | - Molly Brunner
- Institute for Advanced Bioscience, Université Grenoble Alpes, La Tronche, France; Institut National de la Santé et la Recherche Médicale-INSERM U1209, La Tronche, France; CNRS UMR 5309, La Tronche, France
| | - Théo Ziegelmeyer
- Institute for Advanced Bioscience, Université Grenoble Alpes, La Tronche, France; Institut National de la Santé et la Recherche Médicale-INSERM U1209, La Tronche, France; CNRS UMR 5309, La Tronche, France
| | | | - Mylène Pezet
- Institute for Advanced Bioscience, Université Grenoble Alpes, La Tronche, France; Institut National de la Santé et la Recherche Médicale-INSERM U1209, La Tronche, France; CNRS UMR 5309, La Tronche, France
| | - Genevieve Chevalier
- Institute for Advanced Bioscience, Université Grenoble Alpes, La Tronche, France; Institut National de la Santé et la Recherche Médicale-INSERM U1209, La Tronche, France; CNRS UMR 5309, La Tronche, France
| | - Philippe Rondé
- Laboratoire de Bioimagerie et Pathologies, CNRS UMR 7021, Université de Strasbourg, Strasbourg, France
| | - Cécile Gauthier-Rouviere
- Montpellier Cell Biology Research Center (CRBM), University of Montpellier, CNRS, Montpellier, France
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Daniel Bouvard
- Institute for Advanced Bioscience, Université Grenoble Alpes, La Tronche, France; Institut National de la Santé et la Recherche Médicale-INSERM U1209, La Tronche, France; CNRS UMR 5309, La Tronche, France.
| |
Collapse
|
107
|
Elster D, von Eyss B. Hippo signaling in regeneration and aging. Mech Ageing Dev 2020; 189:111280. [DOI: 10.1016/j.mad.2020.111280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/21/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022]
|
108
|
Xue Y, Bhushan B, Mars WM, Bowen W, Tao J, Orr A, Stoops J, Yu Y, Luo J, Duncan AW, Michalopoulos GK. Phosphorylated Ezrin (Thr567) Regulates Hippo Pathway and Yes-Associated Protein (Yap) in Liver. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1427-1437. [PMID: 32289287 PMCID: PMC10069283 DOI: 10.1016/j.ajpath.2020.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/20/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022]
Abstract
The activation of CD81 [the portal of entry of hepatitis C virus (HCV)] by agonistic antibody results in phosphorylation of Ezrin via Syk kinase and is associated with inactivation of the Hippo pathway and increase in yes-associated protein (Yap1). The opposite occurs when glypican-3 or E2 protein of HCV binds to CD81. Hepatocyte-specific glypican-3 transgenic mice have decreased levels of phosphorylated (p)-Ezrin (Thr567) and Yap, increased Hippo activity, and suppressed liver regeneration. The role of Ezrin in these processes has been speculated, but not proved. We show that Ezrin has a direct role in the regulation of Hippo pathway and Yap. Forced expression of plasmids expressing mutant Ezrin (T567D) that mimics p-Ezrin (Thr567) suppressed Hippo activity and activated Yap signaling in hepatocytes in vivo and enhanced activation of pathways of β-catenin and leucine rich repeat containing G protein-coupled receptor 4 (LGR4) and LGR5 receptors. Hepatoma cell lines JM1 and JM2 have decreased CD81 expression and Hippo activity and up-regulated p-Ezrin (T567). NSC668394, a p-Ezrin (Thr567) antagonist, significantly decreased hepatoma cell proliferation. We additionally show that p-Ezrin (T567) is controlled by epidermal growth factor receptor and MET. Ezrin phosphorylation, mediated by CD81-associated Syk kinase, is directly involved in regulation of Hippo pathway, Yap levels, and growth of normal and neoplastic hepatocytes. The finding has mechanistic and potentially therapeutic applications in hepatocyte growth biology, hepatocellular carcinoma, and HCV pathogenesis.
Collapse
Affiliation(s)
- Yuhua Xue
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bharat Bhushan
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wendy M Mars
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William Bowen
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Junyan Tao
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anne Orr
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John Stoops
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yanping Yu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jianhua Luo
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew W Duncan
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | |
Collapse
|
109
|
Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nat Rev Drug Discov 2020; 19:480-494. [PMID: 32555376 DOI: 10.1038/s41573-020-0070-z] [Citation(s) in RCA: 536] [Impact Index Per Article: 107.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
The Hippo pathway is an evolutionarily conserved signalling pathway with key roles in organ development, epithelial homeostasis, tissue regeneration, wound healing and immune modulation. Many of these roles are mediated by the transcriptional effectors YAP and TAZ, which direct gene expression via control of the TEAD family of transcription factors. Dysregulated Hippo pathway and YAP/TAZ-TEAD activity is associated with various diseases, most notably cancer, making this pathway an attractive target for therapeutic intervention. This Review highlights the key findings from studies of Hippo pathway signalling across biological processes and diseases, and discusses new strategies and therapeutic implications of targeting this pathway.
Collapse
|
110
|
Xu H, Pumiglia K, LaFlamme SE. Laminin-511 and α6 integrins regulate the expression of CXCR4 to promote endothelial morphogenesis. J Cell Sci 2020; 133:jcs246595. [PMID: 32409567 DOI: 10.1242/jcs.246595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/11/2020] [Indexed: 12/25/2022] Open
Abstract
During angiogenesis, endothelial cells engage components of the extracellular matrix through integrin-mediated adhesion. Endothelial expression of laminin-411 and laminin-511 is known to promote vessel stability. However, little is known about the contribution of these laminins to endothelial morphogenesis. We used two organotypic cell culture angiogenesis assays, in conjunction with RNAi approaches, to demonstrate that depletion of either the α4 chain of laminin-411 (LAMA4) or the α5 chain of laminin-511 (LAMA5) from endothelial cells inhibits sprouting and tube formation. Depletion of α6 (ITGA6) integrins resulted in similar phenotypes. Gene expression analysis indicated that loss of either laminin-511 or α6 integrins inhibited the expression of CXCR4, a gene previously associated with angiogenic endothelial cells. Pharmacological or RNAi-dependent inhibition of CXCR4 suppressed endothelial sprouting and morphogenesis. Importantly, expression of recombinant CXCR4 rescued endothelial morphogenesis when α6 integrin expression was inhibited. Additionally, the depletion of α6 integrins from established tubes resulted in the loss of tube integrity and laminin-511. Taken together, our results indicate that α6 integrins and laminin-511 can promote endothelial morphogenesis by regulating the expression of CXCR4 and suggest that the α6-dependent deposition of laminin-511 protects the integrity of established endothelial tubes.
Collapse
Affiliation(s)
- Hao Xu
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany NY 12208, USA
| | - Kevin Pumiglia
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany NY 12208, USA
| | - Susan E LaFlamme
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany NY 12208, USA
| |
Collapse
|
111
|
Hsu PC, Yang CT, Jablons DM, You L. The Crosstalk between Src and Hippo/YAP Signaling Pathways in Non-Small Cell Lung Cancer (NSCLC). Cancers (Basel) 2020; 12:1361. [PMID: 32466572 PMCID: PMC7352956 DOI: 10.3390/cancers12061361] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/19/2020] [Accepted: 05/23/2020] [Indexed: 12/22/2022] Open
Abstract
The advancement of new therapies, including targeted therapies and immunotherapies, has improved the survival of non-small-cell lung cancer (NSCLC) patients in the last decade. Some NSCLC patients still do not benefit from therapies or encounter progressive disease during the course of treatment because they have intrinsic resistance, acquired resistance, or lack a targetable driver mutation. More investigations on the molecular biology of NSCLC are needed to find useful biomarkers for current therapies and to develop novel therapeutic strategies. Src is a non-receptor tyrosine kinase protein that interacts with cell surface growth factor receptors and the intracellular signaling pathway to maintain cell survival tumorigenesis in NSCLC. The Yes-associated protein (YAP) is one of the main effectors of the Hippo pathway and has been identified as a promoter of drug resistance, cancer progression, and metastasis in NSCLC. Here, we review studies that have investigated the activation of YAP as mediated by Src kinases and demonstrate that Src regulates YAP through three main mechanisms: (1) direct phosphorylation; (2) the activation of pathways repressing Hippo kinases; and (3) Hippo-independent mechanisms. Further work should focus on the efficacy of Src inhibitors in inhibiting YAP activity in NSCLC. In addition, future efforts toward developing potentially reasonable combinations of therapy targeting the Src-YAP axis using other therapies, including targeted therapies and/or immunotherapies, are warranted.
Collapse
Affiliation(s)
- Ping-Chih Hsu
- Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115, USA; (P.-C.H.); (D.M.J.)
- Division of Thoracic Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan;
| | - Cheng-Ta Yang
- Division of Thoracic Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan;
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - David M. Jablons
- Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115, USA; (P.-C.H.); (D.M.J.)
| | - Liang You
- Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115, USA; (P.-C.H.); (D.M.J.)
| |
Collapse
|
112
|
Cao X, Wang C, Liu J, Zhao B. Regulation and functions of the Hippo pathway in stemness and differentiation. Acta Biochim Biophys Sin (Shanghai) 2020; 52:736-748. [DOI: 10.1093/abbs/gmaa048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 12/20/2019] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
Abstract
The Hippo pathway plays important roles in organ development, tissue regeneration, and human diseases, such as cancer. In the canonical Hippo pathway, the MST1/2-LATS1/2 kinase cascade phosphorylates and inhibits transcription coactivators Yes-associated protein and transcription coactivator with PDZ-binding motif and thus regulates transcription of genes important for cell proliferation and apoptosis. However, recent studies have depicted a much more complicate picture of the Hippo pathway with many new components and regulatory stimuli involving both chemical and mechanical signals. Furthermore, accumulating evidence indicates that the Hippo pathway also plays important roles in the determination of cell fates, such as self-renewal and differentiation. Here, we review regulations of the Hippo pathway and its functions in stemness and differentiation emphasizing recent discoveries.
Collapse
Affiliation(s)
- Xiaolei Cao
- MOE key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China, and
| | - Chenliang Wang
- MOE key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China, and
| | - Jiyang Liu
- MOE key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China, and
| | - Bin Zhao
- MOE key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China, and
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
113
|
Eder N, Roncaroli F, Domart MC, Horswell S, Andreiuolo F, Flynn HR, Lopes AT, Claxton S, Kilday JP, Collinson L, Mao JH, Pietsch T, Thompson B, Snijders AP, Ultanir SK. YAP1/TAZ drives ependymoma-like tumour formation in mice. Nat Commun 2020; 11:2380. [PMID: 32404936 PMCID: PMC7220953 DOI: 10.1038/s41467-020-16167-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/17/2020] [Indexed: 11/09/2022] Open
Abstract
YAP1 gene fusions have been observed in a subset of paediatric ependymomas. Here we show that, ectopic expression of active nuclear YAP1 (nlsYAP5SA) in ventricular zone neural progenitor cells using conditionally-induced NEX/NeuroD6-Cre is sufficient to drive brain tumour formation in mice. Neuronal differentiation is inhibited in the hippocampus. Deletion of YAP1's negative regulators LATS1 and LATS2 kinases in NEX-Cre lineage in double conditional knockout mice also generates similar tumours, which are rescued by deletion of YAP1 and its paralog TAZ. YAP1/TAZ-induced mouse tumours display molecular and ultrastructural characteristics of human ependymoma. RNA sequencing and quantitative proteomics of mouse tumours demonstrate similarities to YAP1-fusion induced supratentorial ependymoma. Finally, we find that transcriptional cofactor HOPX is upregulated in mouse models and in human YAP1-fusion induced ependymoma, supporting their similarity. Our results show that uncontrolled YAP1/TAZ activity in neuronal precursor cells leads to ependymoma-like tumours in mice.
Collapse
Affiliation(s)
- Noreen Eder
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Federico Roncaroli
- Manchester Centre for Clinical Neuroscience, Salford Royal NHS Foundation Trust, Salford and Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biology, University of Manchester, Manchester, M13 9PT, UK
| | | | - Stuart Horswell
- Bioinformatics and Biostatistics Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Felipe Andreiuolo
- Institute of Neuropathology, DGNN Brain Tumour Reference Center, University of Bonn, Bonn, Germany
| | - Helen R Flynn
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Andre T Lopes
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Suzanne Claxton
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - John-Paul Kilday
- Centre for Paediatric, Teenage and Young Adult Cancer, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Lucy Collinson
- Electron Microscopy Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Jun-Hao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumour Reference Center, University of Bonn, Bonn, Germany
| | - Barry Thompson
- Epithelial Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
114
|
Kuehlmann B, Bonham CA, Zucal I, Prantl L, Gurtner GC. Mechanotransduction in Wound Healing and Fibrosis. J Clin Med 2020; 9:jcm9051423. [PMID: 32403382 PMCID: PMC7290354 DOI: 10.3390/jcm9051423] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Skin injury is a common occurrence and mechanical forces are known to significantly impact the biological processes of skin regeneration and wound healing. Immediately following the disruption of the skin, the process of wound healing begins, bringing together numerous cell types to collaborate in several sequential phases. These cells produce a multitude of molecules and initiate multiple signaling pathways that are associated with skin disorders and abnormal wound healing, including hypertrophic scars, keloids, and chronic wounds. Studies have shown that mechanical forces can alter the microenvironment of a healing wound, causing changes in cellular function, motility, and signaling. A better understanding of the mechanobiology of cells in the skin is essential in the development of efficacious therapeutics to reduce skin disorders, normalize abnormal wound healing, and minimize scar formation.
Collapse
Affiliation(s)
- Britta Kuehlmann
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA 94305, USA; (B.K.); (C.A.B.)
- University Center for Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Regensburg and Caritas Hospital St. Josef, 93053 Regensburg, Germany; (I.Z.); (L.P.)
| | - Clark A. Bonham
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA 94305, USA; (B.K.); (C.A.B.)
| | - Isabel Zucal
- University Center for Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Regensburg and Caritas Hospital St. Josef, 93053 Regensburg, Germany; (I.Z.); (L.P.)
| | - Lukas Prantl
- University Center for Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Regensburg and Caritas Hospital St. Josef, 93053 Regensburg, Germany; (I.Z.); (L.P.)
| | - Geoffrey C. Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA 94305, USA; (B.K.); (C.A.B.)
- Correspondence: ; Tel.: +1-650-736-2776
| |
Collapse
|
115
|
Guo Y, Redmond CJ, Leacock KA, Brovkina MV, Ji S, Jaskula-Ranga V, Coulombe PA. Keratin 14-dependent disulfides regulate epidermal homeostasis and barrier function via 14-3-3σ and YAP1. eLife 2020; 9:53165. [PMID: 32369015 PMCID: PMC7250575 DOI: 10.7554/elife.53165] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
The intermediate filament protein keratin 14 (K14) provides vital structural support in basal keratinocytes of epidermis. Recent studies evidenced a role for K14-dependent disulfide bonding in the organization and dynamics of keratin IFs in skin keratinocytes. Here we report that knock-in mice harboring a cysteine-to-alanine substitution at Krt14's codon 373 (C373A) exhibit alterations in disulfide-bonded K14 species and a barrier defect secondary to enhanced proliferation, faster transit time and altered differentiation in epidermis. A proteomics screen identified 14-3-3 as K14 interacting proteins. Follow-up studies showed that YAP1, a transcriptional effector of Hippo signaling regulated by 14-3-3sigma in skin keratinocytes, shows aberrant subcellular partitioning and function in differentiating Krt14 C373A keratinocytes. Residue C373 in K14, which is conserved in a subset of keratins, is revealed as a novel regulator of keratin organization and YAP function in early differentiating keratinocytes, with an impact on cell mechanics, homeostasis and barrier function in epidermis.
Collapse
Affiliation(s)
- Yajuan Guo
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Catherine J Redmond
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Krystynne A Leacock
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Margarita V Brovkina
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Suyun Ji
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Vinod Jaskula-Ranga
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, United States
| | - Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States.,Department of Dermatology, University of Michigan Medical School, Ann Arbor, United States.,Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, United States
| |
Collapse
|
116
|
Roy SR, Li G, Hu X, Zhang S, Yukawa S, Du E, Zhang Y. Integrin and Heparan Sulfate Dual-Targeting Peptide Assembly Suppresses Cancer Metastasis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19277-19284. [PMID: 32266811 DOI: 10.1021/acsami.0c02235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metastasis is one of the ongoing challenges in cancer therapy which most treatments failed to address. Inspired by the upregulated expression of both integrin β1 and heparan sulfate in metastatic tumors, we developed an integrin/HS dual-targeting peptide assembly that selectively inhibits cancer cell migration and invasion. Particularly, the dual-targeting peptide self-assembles into nanofibrous microdomains specifically on the cancer cell membrane, triggering spatial organization of integrins, which form clusters on the apical membrane. Via the actin cytoskeleton that physically connects to integrin clusters, the oncogene yes-associated protein, which regulates cancer metastasis, is deactivated. We showed that in multiple cancer cell lines, including the highly metastatic pancreatic cancer cells, the dual-targeting peptide exerts potent and dose-dependent antimetastatic effects. Our work illustrates how basic biochemical insights can be exploited as the basis for nano-biointerface fabrication, which is potentially a general design strategy for nanomedicine development.
Collapse
Affiliation(s)
- Sona Rani Roy
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Guanying Li
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Xunwu Hu
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Shijin Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Sachie Yukawa
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Enming Du
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Ye Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
117
|
Li X, Wang J. Mechanical tumor microenvironment and transduction: cytoskeleton mediates cancer cell invasion and metastasis. Int J Biol Sci 2020; 16:2014-2028. [PMID: 32549750 PMCID: PMC7294938 DOI: 10.7150/ijbs.44943] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
Metastasis is a complicated, multistep process that is responsible for over 90% of cancer-related death. Metastatic disease or the movement of cancer cells from one site to another requires dramatic remodeling of the cytoskeleton. The regulation of cancer cell migration is determined not only by biochemical factors in the microenvironment but also by the biomechanical contextual information provided by the extracellular matrix (ECM). The responses of the cytoskeleton to chemical signals are well characterized and understood. However, the mechanisms of response to mechanical signals in the form of externally applied force and forces generated by the ECM are still poorly understood. Furthermore, understanding the way cellular mechanosensors interact with the physical properties of the microenvironment and transmit the signals to activate the cytoskeletal movements may help identify an effective strategy for the treatment of cancer. Here, we will discuss the role of tumor microenvironment during cancer metastasis and how physical forces remodel the cytoskeleton through mechanosensing and transduction.
Collapse
Affiliation(s)
- Xingchen Li
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - Jianliu Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
- Beijing Key Laboratory of Female Pelvic Floor Disorders Diseases, Beijing, 100044, China
| |
Collapse
|
118
|
Src mediates β-adrenergic receptor induced YAP tyrosine phosphorylation. SCIENCE CHINA-LIFE SCIENCES 2020; 63:697-705. [PMID: 32246402 DOI: 10.1007/s11427-020-1652-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/07/2020] [Indexed: 12/12/2022]
Abstract
The Hippo pathway is a newly identified pathway and evolutionarily conserved from flies to humans mainly regulating cell proliferation. Transcriptional co-activator Yes-associated protein (YAP) functions as a major downstream effector and key node of the Hippo pathway. Phosphorylation of YAP is critical to regulate YAP activity and its corresponding functions. β-adrenergic receptor (β-AR), a typical G protein coupled receptor (GPCR), mediates proliferation in various cell types and regulates multiple physical and pathological processes. However, the role of β-AR in regulating YAP remains elusive. Here, we report that β-AR can obviously stimulate YAP tyrosine phosphorylation. The mechanism is that β-AR stimulation results in tyrosine kinase Src activation and Src phosphorylates YAP tyrosine at Y357. Further studies demonstrate that inhibition of Src kinase activity can obviously alleviate β-AR induced YAP tyrosine phosphorylation and cell proliferation. We conclude that β-AR can induce YAP tyrosine phosphorylation and also establish the Src/YAP pathway as a critical signaling branch downstream of GPCR.
Collapse
|
119
|
Lu Q, Scott PA, Vukmanic EV, Kaplan HJ, Dean DC, Li Q. Yap1 is required for maintenance of adult RPE differentiation. FASEB J 2020; 34:6757-6768. [PMID: 32223016 DOI: 10.1096/fj.201903234r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/21/2020] [Accepted: 03/14/2020] [Indexed: 12/22/2022]
Abstract
Nuclear YAP1 plays a critical role in regulation of stem cell proliferation, tissue regeneration, and organ size in many types of epithelia. Due to rapid turnover of most epithelial cell types, the cytoplasmic function of YAP1 in epithelial cells has not been well studied. The retinal pigment epithelium (RPE) is a highly polarized epithelial cell type maintained at a senescence state, and offers an ideal cell model to study the active role of YAP1 in maintenance of the adult epithelial phenotype. Here, we show that the cytoplasmic function of YAP1 is essential to maintain adult RPE differentiation. Knockout of Yap1 in the adult mouse RPE caused cell depolarization and tight junction breakdown, and led to inhibition of RPE65 expression, diminishment of RPE pigments, and retraction of microvilli and basal infoldings. These changes in RPE further prompted the loss of adjacent photoreceptor outer segments and photoreceptor death, which eventually led to decline of visual function in older mice between 6 and 12 months of age. Furthermore, nuclear β-catenin and its activity were significantly increased in mutant RPE. These results suggest that YAP1 plays an important role in active inhibition of Wnt/β-catenin signaling, and is essential for downregulation of β-catenin nuclear activity and prevention of dedifferentiation of adult RPE.
Collapse
Affiliation(s)
- Qingxian Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| | - Patrick A Scott
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| | - Eric V Vukmanic
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| | - Douglas C Dean
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| | - Qiutang Li
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
120
|
Yuan Y, Park J, Feng A, Awasthi P, Wang Z, Chen Q, Iglesias-Bartolome R. YAP1/TAZ-TEAD transcriptional networks maintain skin homeostasis by regulating cell proliferation and limiting KLF4 activity. Nat Commun 2020; 11:1472. [PMID: 32193376 PMCID: PMC7081327 DOI: 10.1038/s41467-020-15301-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 02/27/2020] [Indexed: 02/05/2023] Open
Abstract
The Hippo TEAD-transcriptional regulators YAP1 and TAZ are central for cell renewal and cancer growth; however, the specific downstream gene networks involved in their activity are not completely understood. Here we introduce TEADi, a genetically encoded inhibitor of the interaction of YAP1 and TAZ with TEAD, as a tool to characterize the transcriptional networks and biological effects regulated by TEAD transcription factors. Blockage of TEAD activity by TEADi in human keratinocytes and mouse skin leads to reduced proliferation and rapid activation of differentiation programs. Analysis of gene networks affected by TEADi and YAP1/TAZ knockdown identifies KLF4 as a central transcriptional node regulated by YAP1/TAZ-TEAD in keratinocyte differentiation. Moreover, we show that TEAD and KLF4 can regulate the activity of each other, indicating that these factors are part of a transcriptional regulatory loop. Our study establishes TEADi as a resource for studying YAP1/TAZ-TEAD dependent effects.
Collapse
Affiliation(s)
- Yao Yuan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jeannie Park
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amber Feng
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Parirokh Awasthi
- Laboratory of Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD, USA
| | - Zhiyong Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
121
|
Thompson BJ. YAP/TAZ: Drivers of Tumor Growth, Metastasis, and Resistance to Therapy. Bioessays 2020; 42:e1900162. [DOI: 10.1002/bies.201900162] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/11/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Barry J. Thompson
- EMBL AustraliaJohn Curtin School of Medical ResearchThe Australian National University 131 Garran Rd, Acton 2602 Canberra ACT Australia
| |
Collapse
|
122
|
Liu H, Duncan K, Helverson A, Kumari P, Mumm C, Xiao Y, Carlson JC, Darbellay F, Visel A, Leslie E, Breheny P, Erives AJ, Cornell RA. Analysis of zebrafish periderm enhancers facilitates identification of a regulatory variant near human KRT8/18. eLife 2020; 9:e51325. [PMID: 32031521 PMCID: PMC7039683 DOI: 10.7554/elife.51325] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 02/06/2020] [Indexed: 12/18/2022] Open
Abstract
Genome-wide association studies for non-syndromic orofacial clefting (OFC) have identified single nucleotide polymorphisms (SNPs) at loci where the presumed risk-relevant gene is expressed in oral periderm. The functional subsets of such SNPs are difficult to predict because the sequence underpinnings of periderm enhancers are unknown. We applied ATAC-seq to models of human palate periderm, including zebrafish periderm, mouse embryonic palate epithelia, and a human oral epithelium cell line, and to complementary mesenchymal cell types. We identified sets of enhancers specific to the epithelial cells and trained gapped-kmer support-vector-machine classifiers on these sets. We used the classifiers to predict the effects of 14 OFC-associated SNPs at 12q13 near KRT18. All the classifiers picked the same SNP as having the strongest effect, but the significance was highest with the classifier trained on zebrafish periderm. Reporter and deletion analyses support this SNP as lying within a periderm enhancer regulating KRT18/KRT8 expression.
Collapse
Affiliation(s)
- Huan Liu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan UniversityWuhanChina
- Department of Anatomy and Cell Biology, University of IowaIowa CityUnited States
- Department of Periodontology, School of Stomatology, Wuhan UniversityWuhanChina
| | - Kaylia Duncan
- Interdisciplinary Program in Molecular Medicine, University of IowaIowa CityUnited States
| | - Annika Helverson
- Department of Anatomy and Cell Biology, University of IowaIowa CityUnited States
| | - Priyanka Kumari
- Department of Anatomy and Cell Biology, University of IowaIowa CityUnited States
| | - Camille Mumm
- Department of Anatomy and Cell Biology, University of IowaIowa CityUnited States
| | - Yao Xiao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan UniversityWuhanChina
| | | | - Fabrice Darbellay
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley LaboratoriesBerkeleyUnited States
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley LaboratoriesBerkeleyUnited States
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley LaboratoriesBerkeleyUnited States
- University of California, MercedMercedUnited States
| | - Elizabeth Leslie
- Department of Human Genetics, Emory University School of MedicineAtlantaGeorgia
| | - Patrick Breheny
- Department of Biostatistics, University of IowaIowa CityUnited States
| | - Albert J Erives
- Department of Biology, University of IowaIowa CityUnited States
| | - Robert A Cornell
- Department of Anatomy and Cell Biology, University of IowaIowa CityUnited States
- Interdisciplinary Program in Molecular Medicine, University of IowaIowa CityUnited States
| |
Collapse
|
123
|
Biggs LC, Kim CS, Miroshnikova YA, Wickström SA. Mechanical Forces in the Skin: Roles in Tissue Architecture, Stability, and Function. J Invest Dermatol 2020; 140:284-290. [DOI: 10.1016/j.jid.2019.06.137] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/19/2019] [Accepted: 06/27/2019] [Indexed: 01/08/2023]
|
124
|
Barzegari A, Gueguen V, Omidi Y, Ostadrahimi A, Nouri M, Pavon‐Djavid G. The role of Hippo signaling pathway and mechanotransduction in tuning embryoid body formation and differentiation. J Cell Physiol 2020; 235:5072-5083. [DOI: 10.1002/jcp.29455] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Abolfazl Barzegari
- Department of Medical Biotechnology, Faculty of Advanced Medical SciencesTabriz University of Medical Sciences Tabriz Iran
| | - Virginie Gueguen
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular BioengineeringUniversité Paris 13 Paris France
| | - Yadollah Omidi
- Research Center for Pharmaceutical NanotechnologyTabriz University of Medical Sciences Tabriz Iran
- Department of Pharmaceutics, Faculty of PharmacyTabriz University of Medical Sciences Tabriz Iran
| | - Alireza Ostadrahimi
- Nutrition Research CenterTabriz University of Medical Sciences Tabriz Iran
- Department of Clinical Nutrition, Faculty of Nutrition and Food SciencesTabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Nouri
- Department of Medical Biotechnology, Faculty of Advanced Medical SciencesTabriz University of Medical Sciences Tabriz Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of MedicineTabriz University of Medical Sciences Tabriz Iran
| | - Graciela Pavon‐Djavid
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular BioengineeringUniversité Paris 13 Paris France
| |
Collapse
|
125
|
TAZ target gene ITGAV regulates invasion and feeds back positively on YAP and TAZ in liver cancer cells. Cancer Lett 2020; 473:164-175. [PMID: 31904487 DOI: 10.1016/j.canlet.2019.12.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/13/2019] [Accepted: 12/25/2019] [Indexed: 12/13/2022]
Abstract
The Hippo pathway effectors yes-associated protein (YAP) and WW domain containing transcription regulator 1 (TAZ/WWTR1) support tumor initiation and progression in various cancer entities including hepatocellular carcinoma (HCC). However, to which extent YAP and TAZ contribute to liver tumorigenesis via common and exclusive molecular mechanisms is poorly understood. RNAinterference (RNAi) experiments illustrate that YAP and TAZ individually support HCC cell viability and migration, while for invasion additive effects were observed. Comprehensive expression profiling revealed partly overlapping YAP/TAZ target genes as well as exclusively regulated genes. Integrin-αV (ITGAV) is a novel TAZ-specific target gene, whose overexpression in human HCC patients correlates with poor clinical outcome, TAZ expression in HCCs, and the abundance of YAP/TAZ target genes. Functionally, ITGAV contributes to actin stress fiber assembly, tumor cell migration and invasion. Perturbation of ITGAV diminishes actin fiber formation and nuclear YAP/TAZ protein levels. We describe a novel Hippo downstream mechanism in HCC cells, which is regulated by TAZ and ITGAV and that feedbacks on YAP/TAZ activity. This mechanism may represent a therapeutic target structure since it contributes to signal amplification of oncogenic YAP/TAZ in hepatocarcinogenesis.
Collapse
|
126
|
Pobbati AV, Mejuch T, Chakraborty S, Karatas H, Bharath SR, Guéret SM, Goy PA, Hahne G, Pahl A, Sievers S, Guccione E, Song H, Waldmann H, Hong W. Identification of Quinolinols as Activators of TEAD-Dependent Transcription. ACS Chem Biol 2019; 14:2909-2921. [PMID: 31742995 DOI: 10.1021/acschembio.9b00786] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The transcriptional co-regulators YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif) are the vertebrate downstream effectors of the Hippo signaling pathway that controls various physiological and pathological processes. YAP and TAZ pair with the TEAD (TEA domain) family of transcription factors to initiate transcription. We previously identified a tractable pocket in TEADs, which has been physiologically shown to bind palmitate. Herein, a TEAD-palmitate interaction screen was developed to select small molecules occupying the palmitate-binding pocket (PBP) of TEADs. We show that quinolinols were TEAD-binding compounds that augment YAP/TAZ-TEAD activity, which was verified using TEAD reporter assay, RT-qPCR, and RNA-Seq analyses. Structure-activity relationship investigations uncovered the quinolinol substituents that are necessary for TEAD activation. We reveal a novel mechanism where quinolinols stabilize YAP/TAZ protein levels by occupying the PBP. The enhancement of YAP activity by quinolinols accelerates the in vivo wound closure in a mouse wound-healing model. Although small molecules that occupy the PBP have been shown to inhibit YAP/TAZ-TEAD activity, leveraging PBP to activate TEADs is a novel approach.
Collapse
Affiliation(s)
- Ajaybabu V. Pobbati
- Department of Multi-Modal Molecular (M3) Biology, Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore
| | - Tom Mejuch
- Department of Chemical Biology, Max Planck Institute for Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Sayan Chakraborty
- Department of Multi-Modal Molecular (M3) Biology, Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore
| | - Hacer Karatas
- Department of Chemical Biology, Max Planck Institute for Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Sakshibeedu R. Bharath
- Department of Multi-Modal Molecular (M3) Biology, Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore
| | - Stéphanie M. Guéret
- AstraZeneca−Max Planck Institute Satellite Unit, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Pierre-Alexis Goy
- Department of Multi-Modal Molecular (M3) Biology, Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 119077 Singapore
| | - Gernot Hahne
- Department of Chemical Biology, Max Planck Institute for Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Axel Pahl
- Department of Chemical Biology, Max Planck Institute for Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Sonja Sievers
- Department of Chemical Biology, Max Planck Institute for Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Ernesto Guccione
- Department of Multi-Modal Molecular (M3) Biology, Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore
| | - Haiwei Song
- Department of Multi-Modal Molecular (M3) Biology, Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore
| | - Herbert Waldmann
- Department of Chemical Biology, Max Planck Institute for Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
- Technische Universität Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Wanjin Hong
- Department of Multi-Modal Molecular (M3) Biology, Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore
| |
Collapse
|
127
|
Abstract
The Hippo pathway was initially discovered in Drosophila melanogaster as a key regulator of tissue growth. It is an evolutionarily conserved signaling cascade regulating numerous biological processes, including cell growth and fate decision, organ size control, and regeneration. The core of the Hippo pathway in mammals consists of a kinase cascade, MST1/2 and LATS1/2, as well as downstream effectors, transcriptional coactivators YAP and TAZ. These core components of the Hippo pathway control transcriptional programs involved in cell proliferation, survival, mobility, stemness, and differentiation. The Hippo pathway is tightly regulated by both intrinsic and extrinsic signals, such as mechanical force, cell-cell contact, polarity, energy status, stress, and many diffusible hormonal factors, the majority of which act through G protein-coupled receptors. Here, we review the current understanding of molecular mechanisms by which signals regulate the Hippo pathway with an emphasis on mechanotransduction and the effects of this pathway on basic biology and human diseases.
Collapse
Affiliation(s)
- Shenghong Ma
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA; , , ,
| | - Zhipeng Meng
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA; , , ,
| | - Rui Chen
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA; , , ,
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA; , , ,
| |
Collapse
|
128
|
Abstract
The Hippo pathway and its downstream effectors, the transcriptional co-activators Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), regulate organ growth and cell plasticity during animal development and regeneration. Remarkably, experimental activation of YAP/TAZ in the mouse can promote regeneration in organs with poor or compromised regenerative capacity, such as the adult heart and the liver and intestine of old or diseased mice. However, therapeutic YAP/TAZ activation may cause serious side effects. Most notably, YAP/TAZ are hyperactivated in human cancers, and prolonged activation of YAP/TAZ triggers cancer development in mice. Thus, can the power of YAP/TAZ to promote regeneration be harnessed in a safe way? Here, we review the role of Hippo signalling in animal regeneration, examine the promises and risks of YAP/TAZ activation for regenerative medicine and discuss strategies to activate YAP/TAZ for regenerative therapy while minimizing adverse side effects.
Collapse
|
129
|
van Soldt BJ, Cardoso WV. Hippo-Yap/Taz signaling: Complex network interactions and impact in epithelial cell behavior. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e371. [PMID: 31828974 DOI: 10.1002/wdev.371] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/29/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022]
Abstract
The Hippo pathway has emerged as a crucial integrator of signals in biological events from development to adulthood and in diseases. Although extensively studied in Drosophila and in cell cultures, major gaps of knowledge still remain on how this pathway functions in mammalian systems. The pathway consists of a growing number of components, including core kinases and adaptor proteins, which control the subcellular localization of the transcriptional co-activators Yap and Taz through phosphorylation of serines at key sites. When localized to the nucleus, Yap/Taz interact with TEAD transcription factors to induce transcriptional programs of proliferation, stemness, and growth. In the cytoplasm, Yap/Taz interact with multiple pathways to regulate a variety of cellular functions or are targeted for degradation. The Hippo pathway receives cues from diverse intracellular and extracellular inputs, including growth factor and integrin signaling, polarity complexes, and cell-cell junctions. This review highlights the mechanisms of regulation of Yap/Taz nucleocytoplasmic shuttling and their implications for epithelial cell behavior using the lung as an intriguing example of this paradigm. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Signaling Pathways > Cell Fate Signaling Establishment of Spatial and Temporal Patterns > Cytoplasmic Localization.
Collapse
Affiliation(s)
- Benjamin J van Soldt
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care Medicine, Columbia University Irving Medical Center, New York, New York.,Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
| | - Wellington V Cardoso
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care Medicine, Columbia University Irving Medical Center, New York, New York.,Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
130
|
Bailey DD, Zhang Y, van Soldt BJ, Jiang M, Suresh S, Nakagawa H, Rustgi AK, Aceves SS, Cardoso WV, Que J. Use of hPSC-derived 3D organoids and mouse genetics to define the roles of YAP in the development of the esophagus. Development 2019; 146:dev.178855. [PMID: 31748205 PMCID: PMC6918786 DOI: 10.1242/dev.178855] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 11/11/2019] [Indexed: 01/12/2023]
Abstract
Balanced progenitor activities are crucial for the development and maintenance of high turn-over organs such as the esophagus. However, the molecular mechanisms regulating these progenitor activities in the esophagus remain to be elucidated. Here, we demonstrated that Yap is required for the proliferation of esophageal progenitor cells (EPCs) in the developing murine esophagus. We found that Yap deficiency reduces EPC proliferation and stratification whereas persistent Yap activation increases cell proliferation and causes aberrant stratification of the developing esophagus. We further demonstrated that the role of YAP signaling is conserved in the developing human esophagus by utilizing 3D human pluripotent stem cell (hPSC)-derived esophageal organoid culture. Taken together, our studies combining loss/gain-of-function murine models and hPSC differentiation support a key role for YAP in the self-renewal of EPCs and stratification of the esophageal epithelium.
Collapse
Affiliation(s)
- Dominique D. Bailey
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA,Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Yongchun Zhang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Benjamin J. van Soldt
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA,Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Ming Jiang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Supriya Suresh
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Anil K. Rustgi
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Seema S. Aceves
- Division of Allergy Immunology, Rady Children's Hospital San Diego, University of California, San Diego, CA 92093, USA
| | - Wellington V. Cardoso
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA,Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Jianwen Que
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA,Author for correspondence ()
| |
Collapse
|
131
|
Rausch V, Hansen CG. The Hippo Pathway, YAP/TAZ, and the Plasma Membrane. Trends Cell Biol 2019; 30:32-48. [PMID: 31806419 DOI: 10.1016/j.tcb.2019.10.005] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022]
Abstract
The plasma membrane allows the cell to sense and adapt to changes in the extracellular environment by relaying external inputs via intracellular signaling networks. One central cellular signaling pathway is the Hippo pathway, which regulates homeostasis and plays chief roles in carcinogenesis and regenerative processes. Recent studies have found that mechanical stimuli and diffusible chemical components can regulate the Hippo pathway primarily through receptors embedded in the plasma membrane. Morphologically defined structures within the plasma membrane, such as cellular junctions, focal adhesions, primary cilia, caveolae, clathrin-coated pits, and plaques play additional key roles. Here, we discuss recent evidence highlighting the importance of these specialized plasma membrane domains in cellular feedback via the Hippo pathway.
Collapse
Affiliation(s)
- Valentina Rausch
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Institute for Regeneration and Repair, University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Carsten G Hansen
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Institute for Regeneration and Repair, University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK.
| |
Collapse
|
132
|
Nakao M, Kim K, Nagase K, Grainger DW, Kanazawa H, Okano T. Phenotypic traits of mesenchymal stem cell sheets fabricated by temperature-responsive cell culture plate: structural characteristics of MSC sheets. Stem Cell Res Ther 2019; 10:353. [PMID: 31779694 PMCID: PMC6883536 DOI: 10.1186/s13287-019-1431-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/15/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022] Open
Abstract
Background In most stem cell therapy strategies reported to date, stem cells are introduced to damaged tissue sites to repair and regenerate the original tissue structure and function. MSC therapeutic efficacies are inconsistent, largely attributed to transplanted MSC difficulties both in engrafting at tissue sites and in retaining their therapeutic functions from suspension formulations. MSC functional components, including cell adhesion and cell–cell junction proteins, and ECM that contribute to essential cellular therapeutic effects, are damaged or removed by proteolytic enzymes used in stem cell harvesting strategies from culture. To overcome these limitations, methods to harvest and transplant cells without disrupting critical stem cell functions are required. Cell sheet technology, exploiting temperature-responsive cell culture surfaces, permits cell harvest without cell protein damage. This study is focused on phenotypic traits of MSC sheets structurally and functionally to understand therapeutic benefits of cell sheets. Methods/results This study verified cleaved cellular proteins (vinculin, fibronectin, laminin, integrin β-1, and connexin 43) and increased apoptotic cell death produced under standard trypsin harvesting treatment in a time-dependent manner. However, MSC sheets produced without trypsin using only temperature-controlled sheet harvest from culture plastic exhibited intact cellular structures. Also, MSCs harvested using enzymatic treatment (i.e., chemical disruption) showed higher pYAP expression compared to MSC sheets. Conclusion Retention of cellular structures such as ECM, cell–cell junctions, and cell–ECM junctions is correlated with human umbilical cord mesenchymal stem cell (hUC-MSC) survival after detachment from cell culture surfaces. Retaining these proteins intact in MSC cultures using cell sheet technology is proposed to enhance stem cell survival and their function in stem cell-based therapy.
Collapse
Affiliation(s)
- Mitsuyoshi Nakao
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Health Sciences, 30 South 2000 East, Salt Lake City, UT, 84112, USA.,Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kyungsook Kim
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Health Sciences, 30 South 2000 East, Salt Lake City, UT, 84112, USA.
| | - Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - David W Grainger
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Health Sciences, 30 South 2000 East, Salt Lake City, UT, 84112, USA
| | - Hideko Kanazawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Teruo Okano
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Health Sciences, 30 South 2000 East, Salt Lake City, UT, 84112, USA.,Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
133
|
Sidor C, Borreguero-Munoz N, Fletcher GC, Elbediwy A, Guillermin O, Thompson BJ. Mask family proteins ANKHD1 and ANKRD17 regulate YAP nuclear import and stability. eLife 2019; 8:e48601. [PMID: 31661072 PMCID: PMC6861002 DOI: 10.7554/elife.48601] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022] Open
Abstract
Mask family proteins were discovered in Drosophila to promote the activity of the transcriptional coactivator Yorkie (Yki), the sole fly homolog of mammalian YAP (YAP1) and TAZ (WWTR1). The molecular function of Mask, or its mammalian homologs Mask1 (ANKHD1) and Mask2 (ANKRD17), remains unclear. Mask family proteins contain two ankyrin repeat domains that bind Yki/YAP as well as a conserved nuclear localisation sequence (NLS) and nuclear export sequence (NES), suggesting a role in nucleo-cytoplasmic transport. Here we show that Mask acts to promote nuclear import of Yki, and that addition of an ectopic NLS to Yki is sufficient to bypass the requirement for Mask in Yki-driven tissue growth. Mammalian Mask1/2 proteins also promote nuclear import of YAP, as well as stabilising YAP and driving formation of liquid droplets. Mask1/2 and YAP normally colocalise in a granular fashion in both nucleus and cytoplasm, and are co-regulated during mechanotransduction.
Collapse
Affiliation(s)
- Clara Sidor
- Epithelial Biology LaboratoryFrancis Crick InstituteLondonUnited Kingdom
| | | | | | - Ahmed Elbediwy
- Epithelial Biology LaboratoryFrancis Crick InstituteLondonUnited Kingdom
| | - Oriane Guillermin
- Epithelial Biology LaboratoryFrancis Crick InstituteLondonUnited Kingdom
| | - Barry J Thompson
- Epithelial Biology LaboratoryFrancis Crick InstituteLondonUnited Kingdom
- EMBL Australia, ACRF Department of Cancer Biology and TherapeuticsJohn Curtin School of Medical Research, The Australian National UniversityCanberraAustralia
| |
Collapse
|
134
|
He S, Huang Q, Hu J, Li L, Xiao Y, Yu H, Han Z, Wang T, Zhou W, Wei H, Xiao J. EWS-FLI1-mediated tenascin-C expression promotes tumour progression by targeting MALAT1 through integrin α5β1-mediated YAP activation in Ewing sarcoma. Br J Cancer 2019; 121:922-933. [PMID: 31649319 PMCID: PMC6889507 DOI: 10.1038/s41416-019-0608-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The extracellular matrix has been critically associated with the tumorigenesis and progression of Ewing sarcoma (ES). However, the regulatory and prognostic roles of tenascin-C (TNC) in ES remain unclear. METHODS TNC expression was examined in specimens by immunohistochemistry, and the association of TNC expression with ES patient survival was also analysed. TNC-knockout cell lines were constructed using CRISPR/Cas9 methods. In vitro experiments and in vivo bioluminescent imaging using BALB/c nude mice were conducted to evaluate the effect of TNC on ES tumour progression. RNA sequencing was performed, and the underlying mechanism of TNC was further explored. RESULTS TNC was overexpressed in ES tissue and cell lines, and TNC overexpression was associated with poor survival in ES patients. TNC enhanced cell proliferation, migration and angiogenesis in vitro and promoted ES metastasis in vivo. The oncoprotein EWS-FLI1 profoundly increased TNC expression by directly binding to the TNC promoter region. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) upregulation induced by Yes-associated protein (YAP) activation was responsible for TNC-regulated ES tumour progression. Activated integrin α5β1 signalling might be correlated with YAP dephosphorylation and nuclear translocation. CONCLUSIONS TNC may promote ES tumour progression by targeting MALAT1 through integrin α5β1-mediated YAP activation.
Collapse
Affiliation(s)
- Shaohui He
- Spinal Tumor Center, Department of Orthopaedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, P. R. China
| | - Quan Huang
- Spinal Tumor Center, Department of Orthopaedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, P. R. China
| | - Jinbo Hu
- Spinal Tumor Center, Department of Orthopaedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, P. R. China
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Yanbin Xiao
- Department of Orthopaedics, Musculoskeletal Tumor Center of Yunnan Province, the Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650106, Yunnan, P. R. China
| | - Hongyu Yu
- Department of Pathology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, P. R. China
| | - Zhitao Han
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P. R. China
| | - Ting Wang
- Spinal Tumor Center, Department of Orthopaedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, P. R. China
| | - Wang Zhou
- Spinal Tumor Center, Department of Orthopaedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, P. R. China. .,School of Medicine, Tsinghua University, Beijing, 100084, P. R. China.
| | - Haifeng Wei
- Spinal Tumor Center, Department of Orthopaedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, P. R. China.
| | - Jianru Xiao
- Spinal Tumor Center, Department of Orthopaedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, P. R. China.
| |
Collapse
|
135
|
Borreguero-Muñoz N, Fletcher GC, Aguilar-Aragon M, Elbediwy A, Vincent-Mistiaen ZI, Thompson BJ. The Hippo pathway integrates PI3K-Akt signals with mechanical and polarity cues to control tissue growth. PLoS Biol 2019; 17:e3000509. [PMID: 31613895 PMCID: PMC6814241 DOI: 10.1371/journal.pbio.3000509] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 10/25/2019] [Accepted: 10/03/2019] [Indexed: 11/19/2022] Open
Abstract
The Hippo signalling pathway restricts cell proliferation in animal tissues by inhibiting Yes-associated protein (YAP or YAP1) and Transcriptional Activator with a PDZ domain (TAZ or WW-domain-containing transcriptional activator [WWTR1]), coactivators of the Scalloped (Sd or TEAD) DNA-binding transcription factor. Drosophila has a single YAP/TAZ homolog named Yorkie (Yki) that is regulated by Hippo pathway signalling in response to epithelial polarity and tissue mechanics during development. Here, we show that Yki translocates to the nucleus to drive Sd-mediated cell proliferation in the ovarian follicle cell epithelium in response to mechanical stretching caused by the growth of the germline. Importantly, mechanically induced Yki nuclear localisation also requires nutritionally induced insulin/insulin-like growth factor 1 (IGF-1) signalling (IIS) via phosphatidyl inositol-3-kinase (PI3K), phosphoinositide-dependent kinase 1 (PDK1 or PDPK1), and protein kinase B (Akt or PKB) in the follicular epithelium. We find similar results in the developing Drosophila wing, where Yki becomes nuclear in the mechanically stretched cells of the wing pouch during larval feeding, which induces IIS, but translocates to the cytoplasm upon cessation of feeding in the third instar stage. Inactivating Akt prevents nuclear Yki localisation in the wing disc, while ectopic activation of the insulin receptor, PI3K, or Akt/PKB is sufficient to maintain nuclear Yki in mechanically stimulated cells of the wing pouch even after feeding ceases. Finally, IIS also promotes YAP nuclear localisation in response to mechanical cues in mammalian skin epithelia. Thus, the Hippo pathway has a physiological function as an integrator of epithelial cell polarity, tissue mechanics, and nutritional cues to control cell proliferation and tissue growth in both Drosophila and mammals.
Collapse
Affiliation(s)
| | - Georgina C. Fletcher
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Mario Aguilar-Aragon
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ahmed Elbediwy
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Barry J. Thompson
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
- EMBL Australia, Department of Cancer Biology & Therapeutics, The John Curtin School of Medical Research, The Australian National University, Acton, Australia
- * E-mail:
| |
Collapse
|
136
|
YAP integrates the regulatory Snail/HNF4α circuitry controlling epithelial/hepatocyte differentiation. Cell Death Dis 2019; 10:768. [PMID: 31601778 PMCID: PMC6787001 DOI: 10.1038/s41419-019-2000-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/29/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022]
Abstract
Yes-associated protein (YAP) is a transcriptional co-factor involved in many cell processes, including development, proliferation, stemness, differentiation, and tumorigenesis. It has been described as a sensor of mechanical and biochemical stimuli that enables cells to integrate environmental signals. Although in the liver the correlation between extracellular matrix elasticity (greatly increased in the most of chronic hepatic diseases), differentiation/functional state of parenchymal cells and subcellular localization/activation of YAP has been previously reported, its role as regulator of the hepatocyte differentiation remains to be clarified. The aim of this study was to evaluate the role of YAP in the regulation of epithelial/hepatocyte differentiation and to clarify how a transducer of general stimuli can integrate tissue-specific molecular mechanisms determining specific cell outcomes. By means of YAP silencing and overexpression we demonstrated that YAP has a functional role in the repression of epithelial/hepatocyte differentiation by inversely modulating the expression of Snail (master regulator of the epithelial-to-mesenchymal transition and liver stemness) and HNF4α (master regulator of hepatocyte differentiation) at transcriptional level, through the direct occupancy of their promoters. Furthermore, we found that Snail, in turn, is able to positively control YAP expression influencing protein level and subcellular localization and that HNF4α stably represses YAP transcription in differentiated hepatocytes both in cell culture and in adult liver. Overall, our data indicate YAP as a new member of the HNF4/Snail epistatic molecular circuitry previously demonstrated to control liver cell state. In this model, the dynamic balance between three main transcriptional regulators, that are able to control reciprocally their expression/activity, is responsible for the induction/maintenance of different liver cell differentiation states and its modulation could be the aim of therapeutic protocols for several chronic liver diseases.
Collapse
|
137
|
Yang Z, Xiong H, Wei S, Liu Q, Gao Y, Liu L, Hu Z, Han K, Wang M, Chen P, Li Q, Zeng K. Yes-Associated Protein Promotes the Development of Condyloma Acuminatum through EGFR Pathway Activation. Dermatology 2019; 236:454-466. [PMID: 31522174 DOI: 10.1159/000500216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/02/2019] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Investigate the role of Yes-associated protein (YAP1) in the development of condyloma acuminatum (CA). METHODS We enrolled 30 male patients with CA and 20 healthy individuals as a control group, to compare the YAP1 expression in their tissue samples. Following this, we overexpressed and downregulated YAP1 expression in HaCaT cells to examine the migratory, proliferative, and apoptotic potential of HaCaT cells expressing different levels of YAP1. RESULTS In the CA patient tissue samples, an increase in YAP1 expression can be observed. In vitro,the overexpression of YAP1 was shown to promote the growth and migration of HaCaT cells and to activate epidermal growth factor receptor (EGFR) pathway-associated proteins, while the downregulation of YAP1 inhibited cell growth and migration of these cells. CONCLUSIONS YAP1 promotes the growth of keratinocytes in CA through the activation of the EGFR pathway, and it may mediate the development of human papilloma virus-associated diseases.
Collapse
Affiliation(s)
- Zhenghui Yang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Xiong
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shanshan Wei
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingxiu Liu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Gao
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lishi Liu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhili Hu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Han
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Menglei Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pingjiao Chen
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China,
| |
Collapse
|
138
|
Wu KZL, Jones RA, Tachie-Menson T, Macartney TJ, Wood NT, Varghese J, Gourlay R, Soares RF, Smith JC, Sapkota GP. Pathogenic FAM83G palmoplantar keratoderma mutations inhibit the PAWS1:CK1α association and attenuate Wnt signalling. Wellcome Open Res 2019. [PMID: 31656861 DOI: 10.12688/wellcomeopenres.15403.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background: Two recessive mutations in the FAM83G gene, causing A34E and R52P amino acid substitutions in the DUF1669 domain of the PAWS1 protein, are associated with palmoplantar keratoderma (PPK) in humans and dogs respectively. We have previously reported that PAWS1 associates with the Ser/Thr protein kinase CK1α through the DUF1669 domain to mediate canonical Wnt signalling. Methods: Co-immunoprecipitation was used to investigate possible changes to PAWS1 interactors caused by the mutations. We also compared the stability of wild-type and mutant PAWS1 in cycloheximide-treated cells. Effects on Wnt signalling were determined using the TOPflash luciferase reporter assay in U2OS cells expressing PAWS1 mutant proteins. The ability of PAWS1 to induce axis duplication in Xenopus embryos was also tested. Finally, we knocked-in the A34E mutation at the native gene locus and measured Wnt-induced AXIN2 gene expression by RT-qPCR. Results: We show that these PAWS1 A34E and PAWS1 R52P mutants fail to interact with CK1α but, like the wild-type protein, do interact with CD2AP and SMAD1. Like cells carrying a PAWS1 F296A mutation, which also abolishes CK1α binding, cells carrying the A34E and R52P mutants respond poorly to Wnt signalling to an extent resembling that observed in FAM83G gene knockout cells. Consistent with this observation, these mutants, in contrast to the wild-type protein, fail to induce axis duplication in Xenopus embryos. We also found that the A34E and R52P mutant proteins are less abundant than the native protein and appear to be less stable, both when overexpressed in FAM83G-knockout cells and when knocked-in at the native FAM83G locus. Ala 34 of PAWS1 is conserved in all FAM83 proteins and mutating the equivalent residue in FAM83H (A31E) also abolishes interaction with CK1 isoforms. Conclusions: We propose that mutations in PAWS1 cause PPK pathogenesis through disruption of the CK1α interaction and attenuation of Wnt signalling.
Collapse
Affiliation(s)
- Kevin Z L Wu
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | | | - Theresa Tachie-Menson
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Thomas J Macartney
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Nicola T Wood
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Joby Varghese
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Robert Gourlay
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Renata F Soares
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | | | - Gopal P Sapkota
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| |
Collapse
|
139
|
Mammoto T, Torisawa YS, Muyleart M, Hendee K, Anugwom C, Gutterman D, Mammoto A. Effects of age-dependent changes in cell size on endothelial cell proliferation and senescence through YAP1. Aging (Albany NY) 2019; 11:7051-7069. [PMID: 31487690 PMCID: PMC6756888 DOI: 10.18632/aging.102236] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/21/2019] [Indexed: 04/14/2023]
Abstract
Angiogenesis - the growth of new blood capillaries- is impaired in aging animals. Biophysical factors such as changes in cell size control endothelial cell (EC) proliferation and differentiation. However, the effects of aging on EC size and the mechanism by which changes in cell size control age-dependent decline in EC proliferation are largely unknown. Here, we have demonstrated that aged ECs are larger than young ECs and that age-dependent increases in EC size control EC proliferation and senescence through CDC42-Yes-associated protein (YAP1) signaling. Reduction of aged EC size by culturing on single-cell sized fibronectin-coated smaller islands decreases CDC42 activity, stimulates YAP1 nuclear translocation and attenuates EC senescence. Stimulation of YAP1 or inhibition of CDC42 activity in aged ECs also restores blood vessel formation. Age-dependent changes in EC size and/or CDC42 and YAP1 activity may be the key control point of age-related decline in angiogenesis.
Collapse
Affiliation(s)
- Tadanori Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yu-Suke Torisawa
- Hakubi Center for Advanced Research, Kyoto University, Kyoto 615-8540, Japan
- Department of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Megan Muyleart
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kathryn Hendee
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Charles Anugwom
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - David Gutterman
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Akiko Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
140
|
Finnegan A, Cho RJ, Luu A, Harirchian P, Lee J, Cheng JB, Song JS. Single-Cell Transcriptomics Reveals Spatial and Temporal Turnover of Keratinocyte Differentiation Regulators. Front Genet 2019; 10:775. [PMID: 31552090 PMCID: PMC6733986 DOI: 10.3389/fgene.2019.00775] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/23/2019] [Indexed: 01/07/2023] Open
Abstract
Keratinocyte differentiation requires intricately coordinated spatiotemporal expression changes that specify epidermis structure and function. This article utilizes single-cell RNA-seq data from 22,338 human foreskin keratinocytes to reconstruct the transcriptional regulation of skin development and homeostasis genes, organizing them by differentiation stage and also into transcription factor (TF)–associated modules. We identify groups of TFs characterized by coordinate expression changes during progression from the undifferentiated basal to the differentiated state and show that these TFs also have concordant differential predicted binding enrichment in the super-enhancers previously reported to turn over between the two states. The identified TFs form a core subset of the regulators controlling gene modules essential for basal and differentiated keratinocyte functions, supporting their nomination as master coordinators of keratinocyte differentiation. Experimental depletion of the TFs ZBED2 and ETV4, both predicted to promote the basal state, induces differentiation. Furthermore, our single-cell RNA expression analysis reveals preferential expression of antioxidant genes in the basal state, suggesting keratinocytes actively suppress reactive oxygen species to maintain the undifferentiated state. Overall, our work demonstrates diverse computational methods to advance our understanding of dynamic gene regulation in development.
Collapse
Affiliation(s)
- Alex Finnegan
- Department of Physics, Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Raymond J Cho
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, United States
| | - Alan Luu
- Department of Physics, Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Paymann Harirchian
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, United States.,Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Jerry Lee
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, United States.,Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Jeffrey B Cheng
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, United States.,Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Jun S Song
- Department of Physics, Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
141
|
Das D, Fletcher RB, Ngai J. Cellular mechanisms of epithelial stem cell self-renewal and differentiation during homeostasis and repair. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e361. [PMID: 31468728 DOI: 10.1002/wdev.361] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/14/2022]
Abstract
Epithelia in adult mammals exhibit remarkable regenerative capacities owing to the presence of adult stem cells, which self-renew and differentiate to replace cells lost to normal turnover or injury. The mechanisms supporting tissue homeostasis and injury-induced repair often differ from each other as well as from those used in embryonic development. Recent studies have also highlighted the phenomenon of cellular plasticity in adult tissues, in which differentiated cells can change fate and even give rise to new stem cell populations to complement the canonical stem cells in promoting repair following injury. Signaling pathways such as WNT, bone morphogenetic protein, and Sonic Hedgehog play critical roles in stem cell maintenance and cell fate decisions across diverse epithelia and conditions, suggesting that conserved mechanisms underlie the regenerative capacity of adult epithelial structures. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cell Differentiation and Reversion Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration.
Collapse
Affiliation(s)
- Diya Das
- Department of Molecular and Cell Biology, University of California, Berkeley, California.,Berkeley Institute for Data Science, University of California, Berkeley, California
| | - Russell B Fletcher
- Department of Molecular and Cell Biology, University of California, Berkeley, California
| | - John Ngai
- Department of Molecular and Cell Biology, University of California, Berkeley, California.,Helen Wills Neuroscience Institute, University of California, Berkeley, California.,QB3 Functional Genomics Laboratory, University of California, Berkeley, California
| |
Collapse
|
142
|
Dropwort-induced metabolic reprogramming restrains YAP/TAZ/TEAD oncogenic axis in mesothelioma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:349. [PMID: 31399037 PMCID: PMC6689183 DOI: 10.1186/s13046-019-1352-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/01/2019] [Indexed: 02/08/2023]
Abstract
Background Over the past decade, newly designed cancer therapies have not significantly improved the survival of patients diagnosed with Malignant Pleural Mesothelioma (MPM). Among a limited number of genes that are frequently mutated in MPM several of them encode proteins that belong to the HIPPO tumor suppressor pathway. Methods The anticancer effects of the top flower standardized extract of Filipendula vulgaris (Dropwort) were characterized in “in vitro” and “in vivo” models of MPM. At the molecular level, two “omic” approaches were used to investigate Dropwort anticancer mechanism of action: a metabolomic profiling and a phosphoarray analysis. Results We found that Dropwort significantly reduced cell proliferation, viability, migration and in vivo tumor growth of MPM cell lines. Notably, Dropwort affected viability of tumor-initiating MPM cells and synergized with Cisplatin and Pemetrexed in vitro. Metabolomic profiling revealed that Dropwort treatment affected both glycolysis/tricarboxylic acid cycle as for the decreased consumption of glucose, pyruvate, succinate and acetate, and the lipid metabolism. We also document that Dropwort exerted its anticancer effects, at least partially, promoting YAP and TAZ protein ubiquitination. Conclusions Our findings reveal that Dropwort is a promising source of natural compound(s) for targeting the HIPPO pathway with chemo-preventive and anticancer implications for MPM management. Electronic supplementary material The online version of this article (10.1186/s13046-019-1352-3) contains supplementary material, which is available to authorized users.
Collapse
|
143
|
Zheng Y, Pan D. The Hippo Signaling Pathway in Development and Disease. Dev Cell 2019; 50:264-282. [PMID: 31386861 PMCID: PMC6748048 DOI: 10.1016/j.devcel.2019.06.003] [Citation(s) in RCA: 598] [Impact Index Per Article: 99.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/23/2019] [Accepted: 06/09/2019] [Indexed: 12/13/2022]
Abstract
The Hippo signaling pathway regulates diverse physiological processes, and its dysfunction has been implicated in an increasing number of human diseases, including cancer. Here, we provide an updated review of the Hippo pathway; discuss its roles in development, homeostasis, regeneration, and diseases; and highlight outstanding questions for future investigation and opportunities for Hippo-targeted therapies.
Collapse
Affiliation(s)
- Yonggang Zheng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA.
| |
Collapse
|
144
|
Sophie B, Jacob H, Jordan VJS, Yungki P, Laura FM, Yannick P. YAP and TAZ Regulate Cc2d1b and Purβ in Schwann Cells. Front Mol Neurosci 2019; 12:177. [PMID: 31379499 PMCID: PMC6650784 DOI: 10.3389/fnmol.2019.00177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/04/2019] [Indexed: 12/31/2022] Open
Abstract
Schwann cells (SCs) are exquisitely sensitive to the elasticity of their environment and their differentiation and capacity to myelinate depend on the transduction of mechanical stimuli by YAP and TAZ. YAP/TAZ, in concert with other transcription factors, regulate several pathways including lipid and sterol biosynthesis as well as extracellular matrix receptor expressions such as integrins and G-proteins. Yet, the characterization of the signaling downstream YAP/TAZ in SCs is incomplete. Myelin sheath production by SC coincides with rapid up-regulation of numerous transcription factors. Here, we show that ablation of YAP/TAZ alters the expression of transcription regulators known to regulate SC myelin gene transcription and differentiation. Furthermore, we link YAP/TAZ to two DNA binding proteins, Cc2d1b and Purβ, which have no described roles in myelinating glial cells. We demonstrate that silencing of either Cc2d1b or Purβ limits the formation of myelin segments. These data provide a deeper insight into the myelin gene transcriptional network and the role of YAP/TAZ in myelinating glial cells.
Collapse
Affiliation(s)
- Belin Sophie
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Herron Jacob
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - VerPlank J S Jordan
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| | - Park Yungki
- Department of Biochemistry, Hunter James Kelly Research Institute, University at Buffalo, Buffalo, NY, United States
| | - Feltri M Laura
- Department of Biochemistry, Hunter James Kelly Research Institute, University at Buffalo, Buffalo, NY, United States.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Poitelon Yannick
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| |
Collapse
|
145
|
Dong X, Meng L, Liu P, Ji R, Su X, Xin Y, Jiang X. YAP/TAZ: a promising target for squamous cell carcinoma treatment. Cancer Manag Res 2019; 11:6245-6252. [PMID: 31360073 PMCID: PMC6625644 DOI: 10.2147/cmar.s197921] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/04/2019] [Indexed: 12/03/2022] Open
Abstract
Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are two homologous transcriptional coactivators and the final effectors of the Hippo signaling transduction pathway. The transcriptional activity of YAP/TAZ is dependent on their recruitment to the nucleus, which promotes binding to the transcription factor of TEA domain family members 1–4 (TEAD1-4). In Hippo-signaling pathway, YAP/TAZ is inactivated and its translocation to the nucleus is blocked via a core kinase cascade stimulated by a variety of upstream signals, such as G-protein-coupled receptor signaling, mechanical pressure, and adherens junction signaling. This pathway plays a very important role in regulating organ size, tissue homeostasis, and tumor development. In recent years, many studies have reported upregulation or nuclear localization of YAP/TAZ in a number of human malignancies, such as breast cancer, melanoma, lung cancer, especially squamous cell carcinoma in different organs. A large number of experiments demonstrate that YAP/TAZ activation promotes cancer formation, progression, and metastasis. Therefore, in this review, we summarize the evidence of regulation and function of YAP/TAZ and discuss its role in squamous cell carcinoma. Collectively, this summary strongly suggests that targeting aberrant YAP/TAZ activation is a promising strategy for the suppression of squamous cell carcinoma.
Collapse
Affiliation(s)
- Xiaoming Dong
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China.,Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China
| | - Lingbin Meng
- Department of Internal Medicine, Florida Hospital, Orlando, FL 32804, USA
| | - Pinyi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China
| | - Rui Ji
- Department of Biology, Valencia College, Orlando, FL 32804, USA
| | - Xuling Su
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| |
Collapse
|
146
|
Mayr U, Serra D, Liberali P. Exploring single cells in space and time during tissue development, homeostasis and regeneration. Development 2019; 146:146/12/dev176727. [DOI: 10.1242/dev.176727] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ABSTRACT
Complex 3D tissues arise during development following tightly organized events in space and time. In particular, gene regulatory networks and local interactions between single cells lead to emergent properties at the tissue and organism levels. To understand the design principles of tissue organization, we need to characterize individual cells at given times, but we also need to consider the collective behavior of multiple cells across different spatial and temporal scales. In recent years, powerful single cell methods have been developed to characterize cells in tissues and to address the challenging questions of how different tissues are formed throughout development, maintained in homeostasis, and repaired after injury and disease. These approaches have led to a massive increase in data pertaining to both mRNA and protein abundances in single cells. As we review here, these new technologies, in combination with in toto live imaging, now allow us to bridge spatial and temporal information quantitatively at the single cell level and generate a mechanistic understanding of tissue development.
Collapse
Affiliation(s)
- Urs Mayr
- Department of Quantitative Biology, Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Denise Serra
- Department of Quantitative Biology, Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Prisca Liberali
- Department of Quantitative Biology, Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| |
Collapse
|
147
|
Gutiérrez-Martínez A, Sew WQG, Molano-Fernández M, Carretero-Junquera M, Herranz H. Mechanisms of oncogenic cell competition-Paths of victory. Semin Cancer Biol 2019; 63:27-35. [PMID: 31128299 DOI: 10.1016/j.semcancer.2019.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/13/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022]
Abstract
Cancer is a multistep process. In the early phases of this disease, mutations in oncogenes and tumor suppressors are thought to promote clonal expansion. These mutations can increase cell competitiveness, allowing tumor cells to grow within the tissue by eliminating wild type host cells. Recent studies have shown that cell competition can also function in later phases of cancer. Here, we examine the existing evidence linking cell competition and tumorigenesis. We focus on the mechanisms underlying cell competition and their contribution to disease pathogenesis.
Collapse
Affiliation(s)
- Alejandro Gutiérrez-Martínez
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark
| | - Wei Qi Guinevere Sew
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark
| | - Maria Molano-Fernández
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark
| | - Maria Carretero-Junquera
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark
| | - Héctor Herranz
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark.
| |
Collapse
|
148
|
Rognoni E, Walko G. The Roles of YAP/TAZ and the Hippo Pathway in Healthy and Diseased Skin. Cells 2019; 8:cells8050411. [PMID: 31058846 PMCID: PMC6562585 DOI: 10.3390/cells8050411] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
Skin is the largest organ of the human body. Its architecture and physiological functions depend on diverse populations of epidermal cells and dermal fibroblasts. Reciprocal communication between the epidermis and dermis plays a key role in skin development, homeostasis and repair. While several stem cell populations have been identified in the epidermis with distinct locations and functions, there is additional heterogeneity within the mesenchymal cells of the dermis. Here, we discuss the current knowledge of how the Hippo pathway and its downstream effectors Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) contribute to the maintenance, activation and coordination of the epidermal and dermal cell populations during development, homeostasis, wound healing and cancer.
Collapse
Affiliation(s)
- Emanuel Rognoni
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Gernot Walko
- Department of Biology and Biochemistry & Centre for Therapeutic Innovation, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
149
|
Belokhvostova D, Berzanskyte I, Cujba AM, Jowett G, Marshall L, Prueller J, Watt FM. Homeostasis, regeneration and tumour formation in the mammalian epidermis. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2019; 62:571-582. [PMID: 29938768 DOI: 10.1387/ijdb.170341fw] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The epidermis is the outer covering of the skin and provides a protective interface between the body and the environment. It is well established that the epidermis is maintained by stem cells that self-renew and generate differentiated cells. In this review, we discuss how recent technological advances, including single cell transcriptomics and in vivo imaging, have provided new insights into the nature and plasticity of the stem cell compartment and the differing roles of stem cells in homeostasis, wound repair and cancer.
Collapse
Affiliation(s)
- Daria Belokhvostova
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, London, UK
| | | | | | | | | | | | | |
Collapse
|
150
|
Boopathy GTK, Hong W. Role of Hippo Pathway-YAP/TAZ Signaling in Angiogenesis. Front Cell Dev Biol 2019; 7:49. [PMID: 31024911 PMCID: PMC6468149 DOI: 10.3389/fcell.2019.00049] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis is a highly coordinated process of formation of new blood vessels from pre-existing blood vessels. The process of development of the proper vascular network is a complex process that is crucial for the vertebrate development. Several studies have defined essential roles of Hippo pathway-YAP/TAZ in organ size control, tissue regeneration, and self-renewal. Thus Hippo pathway is one of the central components in tissue homeostasis. There are mounting evidences on the eminence of Hippo pathway-YAP/TAZ in angiogenesis in multiple model organisms. Hippo pathway-YAP/TAZ is now demonstrated to regulate endothelial cell proliferation, migration and survival; subsequently regulating vascular sprouting, vascular barrier formation, and vascular remodeling. Major intracellular signaling programs that regulate angiogenesis concomitantly activate YAP/TAZ to regulate key events in angiogenesis. In this review, we provide a brief overview of the recent findings in the Hippo pathway and YAP/TAZ signaling in angiogenesis.
Collapse
Affiliation(s)
- Gandhi T K Boopathy
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|