101
|
Harwood KR, Hanover JA. Nutrient-driven O-GlcNAc cycling - think globally but act locally. J Cell Sci 2014; 127:1857-67. [PMID: 24762810 DOI: 10.1242/jcs.113233] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Proper cellular functioning requires that cellular machinery behave in a spatiotemporally regulated manner in response to global changes in nutrient availability. Mounting evidence suggests that one way this is achieved is through the establishment of physically defined gradients of O-GlcNAcylation (O-linked addition of N-acetylglucosamine to serine and threonine residues) and O-GlcNAc turnover. Because O-GlcNAcylation levels are dependent on the nutrient-responsive hexosamine signaling pathway, this modification is uniquely poised to inform upon the nutritive state of an organism. The enzymes responsible for O-GlcNAc addition and removal are encoded by a single pair of genes: both the O-GlcNAc transferase (OGT) and the O-GlcNAcase (OGA, also known as MGEA5) genes are alternatively spliced, producing protein variants that are targeted to discrete cellular locations where they must selectively recognize hundreds of protein substrates. Recent reports suggest that in addition to their catalytic functions, OGT and OGA use their multifunctional domains to anchor O-GlcNAc cycling to discrete intracellular sites, thus allowing them to establish gradients of deacetylase, kinase and phosphatase signaling activities. The localized signaling gradients established by targeted O-GlcNAc cycling influence many important cellular processes, including lipid droplet remodeling, mitochondrial functioning, epigenetic control of gene expression and proteostasis. As such, the tethering of the enzymes of O-GlcNAc cycling appears to play a role in ensuring proper spatiotemporal responses to global alterations in nutrient supply.
Collapse
Affiliation(s)
- Katryn R Harwood
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda MD 20892-0851, USA
| | | |
Collapse
|
102
|
Yuzwa SA, Vocadlo DJ. O-GlcNAc and neurodegeneration: biochemical mechanisms and potential roles in Alzheimer's disease and beyond. Chem Soc Rev 2014; 43:6839-58. [PMID: 24759912 DOI: 10.1039/c4cs00038b] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alzheimer disease (AD) is a growing problem for aging populations worldwide. Despite significant efforts, no therapeutics are available that stop or slow progression of AD, which has driven interest in the basic causes of AD and the search for new therapeutic strategies. Longitudinal studies have clarified that defects in glucose metabolism occur in patients exhibiting Mild Cognitive Impairment (MCI) and glucose hypometabolism is an early pathological change within AD brain. Further, type 2 diabetes mellitus (T2DM) is a strong risk factor for the development of AD. These findings have stimulated interest in the possibility that disrupted glucose regulated signaling within the brain could contribute to the progression of AD. One such process of interest is the addition of O-linked N-acetylglucosamine (O-GlcNAc) residues onto nuclear and cytoplasmic proteins within mammals. O-GlcNAc is notably abundant within brain and is present on hundreds of proteins including several, such as tau and the amyloid precursor protein, which are involved in the pathophysiology AD. The cellular levels of O-GlcNAc are coupled to nutrient availability through the action of just two enzymes. O-GlcNAc transferase (OGT) is the glycosyltransferase that acts to install O-GlcNAc onto proteins and O-GlcNAcase (OGA) is the glycoside hydrolase that acts to remove O-GlcNAc from proteins. Uridine 5'-diphosphate-N-acetylglucosamine (UDP-GlcNAc) is the donor sugar substrate for OGT and its levels vary with cellular glucose availability because it is generated from glucose through the hexosamine biosynthetic pathway (HBSP). Within the brains of AD patients O-GlcNAc levels have been found to be decreased and aggregates of tau appear to lack O-GlcNAc entirely. Accordingly, glucose hypometabolism within the brain may result in disruption of the normal functions of O-GlcNAc within the brain and thereby contribute to downstream neurodegeneration. While this hypothesis remains largely speculative, recent studies using different mouse models of AD have demonstrated the protective benefit of pharmacologically increased brain O-GlcNAc levels. In this review we summarize the state of knowledge in the area of O-GlcNAc as it pertains to AD while also addressing some of the basic biochemical roles of O-GlcNAc and how these might contribute to protecting against AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Scott A Yuzwa
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada
| | | |
Collapse
|
103
|
Liu X, Li L, Wang Y, Yan H, Ma X, Wang PG, Zhang L. A peptide panel investigation reveals the acceptor specificity of O-GlcNAc transferase. FASEB J 2014; 28:3362-72. [PMID: 24760753 DOI: 10.1096/fj.13-246850] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) is widely distributed on nucleocytoplasmic proteins and participates in various physiological processes. But O-GlcNAc status on numerous proteins remains unknown. To better understand this modification, computational analysis combined with experimental study was performed in this work. Structural analysis of many O-GlcNAcylation sites indicated that the modification occurred predominantly in a random coil region. Frequency analysis on many O-GlcNAcylated peptides revealed a signature sequence, PPVS/TSATT, around the modification site (underlined, position 0). Based on the sequence, a peptide panel was designed to investigate key positions affecting O-GlcNAcylation of peptides and their amino acid preference. It was indicated that 3 positions (-2, -1, and +2) had an important role for this modification, where the presence of uncharged amino acids with small side chains could confer high reactivity. The amino acid preference at key positions was further investigated on bovine crystalline α via site-directed mutagenesis. The preferred amino acids were Pro > Ala > Gly at position -2, Ala > Thr > Val > Lys > Pro at position -1, and Ala > Gly > Arg > Glu at position +2. Altogether, these findings suggested that a substrate (peptide or protein) with Pro, Ala at position -2, and/or Val, Ala, Thr, Ser at position -1, and/or Ala, Ser, Pro, Thr, Gly at position +2 would have more chances for O-GlcNAcylation. To test the rule, 2 O-GlcNAcylation sites on sOGT (S52 and T449) were predicted and confirmed by Western blot. The present work systematically investigated the sequence signature for O-GlcNAcylation. The result will contribute to predicting the O-GlcNAc status of a protein and further functional studies.
Collapse
Affiliation(s)
- Xiaoyan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Ling Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Yuqiu Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Hui Yan
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Xiaofeng Ma
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Peng George Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Lianwen Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| |
Collapse
|
104
|
Tan EP, Villar MT, E L, Lu J, Selfridge JE, Artigues A, Swerdlow RH, Slawson C. Altering O-linked β-N-acetylglucosamine cycling disrupts mitochondrial function. J Biol Chem 2014; 289:14719-30. [PMID: 24713701 DOI: 10.1074/jbc.m113.525790] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mitochondrial impairment is commonly found in many diseases such as diabetes, cancer, and Alzheimer disease. We demonstrate that the enzymes responsible for the addition or removal of the O-GlcNAc modification, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively, are critical regulators of mitochondrial function. Using a SILAC (stable isotope labeling of amino acids in cell culture)-based proteomics screen, we quantified the changes in mitochondrial protein expression in OGT- and OGA-overexpressing cells. Strikingly, overexpression of OGT or OGA showed significant decreases in mitochondria-localized proteins involved in the respiratory chain and the tricarboxylic acid cycle. Furthermore, mitochondrial morphology was altered in these cells. Both cellular respiration and glycolysis were reduced in OGT/OGA-overexpressing cells. These data demonstrate that alterations in O-GlcNAc cycling profoundly affect energy and metabolite production.
Collapse
Affiliation(s)
- Ee Phie Tan
- From the Department of Biochemistry and Molecular Biology
| | - Maria T Villar
- From the Department of Biochemistry and Molecular Biology
| | - Lezi E
- Department of Neurology, and
| | | | | | | | - Russell H Swerdlow
- From the Department of Biochemistry and Molecular Biology, Department of Neurology, and University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, Kansas 64108
| | - Chad Slawson
- From the Department of Biochemistry and Molecular Biology, University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, Kansas 64108 University of Kansas Cancer Center,
| |
Collapse
|
105
|
Vaidyanathan K, Durning S, Wells L. Functional O-GlcNAc modifications: implications in molecular regulation and pathophysiology. Crit Rev Biochem Mol Biol 2014; 49:140-163. [PMID: 24524620 PMCID: PMC4912837 DOI: 10.3109/10409238.2014.884535] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) is a regulatory post-translational modification of intracellular proteins. The dynamic and inducible cycling of the modification is governed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) in response to UDP-GlcNAc levels in the hexosamine biosynthetic pathway (HBP). Due to its reliance on glucose flux and substrate availability, a major focus in the field has been on how O-GlcNAc contributes to metabolic disease. For years this post-translational modification has been known to modify thousands of proteins implicated in various disorders, but direct functional connections have until recently remained elusive. New research is beginning to reveal the specific mechanisms through which O-GlcNAc influences cell dynamics and disease pathology including clear examples of O-GlcNAc modification at a specific site on a given protein altering its biological functions. The following review intends to focus primarily on studies in the last half decade linking O-GlcNAc modification of proteins with chromatin-directed gene regulation, developmental processes, and several metabolically related disorders including Alzheimer's, heart disease and cancer. These studies illustrate the emerging importance of this post-translational modification in biological processes and multiple pathophysiologies.
Collapse
Affiliation(s)
| | - Sean Durning
- Complex Carbohydrate Research Center, University of Georgia, Athens, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, USA
| |
Collapse
|
106
|
Zhang Z, Tan EP, VandenHull NJ, Peterson KR, Slawson C. O-GlcNAcase Expression is Sensitive to Changes in O-GlcNAc Homeostasis. Front Endocrinol (Lausanne) 2014; 5:206. [PMID: 25520704 PMCID: PMC4249489 DOI: 10.3389/fendo.2014.00206] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/17/2014] [Indexed: 12/31/2022] Open
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) is a post-translational modification involving an attachment of a single β-N-acetylglucosamine moiety to serine or threonine residues in nuclear and cytoplasmic proteins. Cellular O-GlcNAc levels are regulated by two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which add and remove the modification, respectively. The levels of O-GlcNAc can rapidly change in response to fluctuations in the extracellular environment; however, O-GlcNAcylation returns to a baseline level quickly after stimulus removal. This process termed O-GlcNAc homeostasis appears to be critical to the regulation of many cellular functions including cell cycle progress, stress response, and gene transcription. Disruptions in O-GlcNAc homeostasis are proposed to lead to the development of diseases, such as cancer, diabetes, and Alzheimer's disease. O-GlcNAc homeostasis is correlated with the expression of OGT and OGA. We reason that alterations in O-GlcNAc levels affect OGA and OGT transcription. We treated several human cell lines with Thiamet-G (TMG, an OGA inhibitor) to increase overall O-GlcNAc levels resulting in decreased OGT protein expression and increased OGA protein expression. OGT transcript levels slightly declined with TMG treatment, but OGA transcript levels were significantly increased. Pretreating cells with protein translation inhibitor cycloheximide did not stabilize OGT or OGA protein expression in the presence of TMG; nor did TMG stabilize OGT and OGA mRNA levels when cells were treated with RNA transcription inhibitor actinomycin D. Finally, we performed RNA Polymerase II chromatin immunoprecipitation at the OGA promoter and found that RNA Pol II occupancy at the transcription start site was lower after prolonged TMG treatment. Together, these data suggest that OGA transcription was sensitive to changes in O-GlcNAc homeostasis and was potentially regulated by O-GlcNAc.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ee Phie Tan
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Nicole J. VandenHull
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kenneth R. Peterson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
- KUMC Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
- KUMC Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- KU Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, KS, USA
- *Correspondence: Chad Slawson, Laboratory of Slawson, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, MS3030, 3901 Rainbow Blvd, Kansas City, KS 66160, USA e-mail:
| |
Collapse
|
107
|
Discovery and confirmation of O-GlcNAcylated proteins in rat liver mitochondria by combination of mass spectrometry and immunological methods. PLoS One 2013; 8:e76399. [PMID: 24098488 PMCID: PMC3788734 DOI: 10.1371/journal.pone.0076399] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 08/30/2013] [Indexed: 01/08/2023] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) is an important post-translational modification (PTM) consisting of a single N-acetylglucosamine moiety attached via an O-β-glycosidic linkage to serine and threonine residues. Glycosylation with O-GlcNAc occurs on myriad nuclear and cytosolic proteins from almost all functional classes. However, with respect to O-GlcNAcylated proteins special in mitochondria, little attention has been paid. In this study, we combined mass spectrometry and immunological methods to perform global exploration of O-GlcNAcylated proteins specific in mitochondria of rat liver. First, highly purified mitochondrial proteins were obviously shown to be O-GlcNAcylated by immunoblot profiling. Then, β-elimination followed by Michael Addition with Dithiothreitol (BEMAD) treatment and LC-MS/MS were performed to enrich and identify O-GlcNAcylated mitochondrial proteins, resulting in an unambiguous assignment of 14 O-GlcNAcylation sites, mapping to 11 O-GlcNAcylated proteins. Furthermore, the identified O-GlcNAcylated mitochondrial proteins were fully validated by both electron transfer dissociation tandem mass spectrometry (ETD/MS/MS) and western blot. Thus, for the first time, our study definitely not only identified but also validated that some mitochondrial proteins in rat liver are O-GlcNAcylated. Interestingly, all of these O-GlcNAcylated mitochondrial proteins are enzymes, the majority of which are involved in a wide variety of biological processes, such as urea cycle, tricarboxylic acid cycle and lipid metabolism, indicating a role for protein O-GlcNAcylation in mitochondrial function.
Collapse
|
108
|
Groves JA, Lee A, Yildirir G, Zachara NE. Dynamic O-GlcNAcylation and its roles in the cellular stress response and homeostasis. Cell Stress Chaperones 2013; 18:535-58. [PMID: 23620203 PMCID: PMC3745259 DOI: 10.1007/s12192-013-0426-y] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 03/29/2013] [Accepted: 04/01/2013] [Indexed: 12/15/2022] Open
Abstract
O-linked N-acetyl-β-D-glucosamine (O-GlcNAc) is a ubiquitous and dynamic post-translational modification known to modify over 3,000 nuclear, cytoplasmic, and mitochondrial eukaryotic proteins. Addition of O-GlcNAc to proteins is catalyzed by the O-GlcNAc transferase and is removed by a neutral-N-acetyl-β-glucosaminidase (O-GlcNAcase). O-GlcNAc is thought to regulate proteins in a manner analogous to protein phosphorylation, and the cycling of this carbohydrate modification regulates many cellular functions such as the cellular stress response. Diverse forms of cellular stress and tissue injury result in enhanced O-GlcNAc modification, or O-GlcNAcylation, of numerous intracellular proteins. Stress-induced O-GlcNAcylation appears to promote cell/tissue survival by regulating a multitude of biological processes including: the phosphoinositide 3-kinase/Akt pathway, heat shock protein expression, calcium homeostasis, levels of reactive oxygen species, ER stress, protein stability, mitochondrial dynamics, and inflammation. Here, we will discuss the regulation of these processes by O-GlcNAc and the impact of such regulation on survival in models of ischemia reperfusion injury and trauma hemorrhage. We will also discuss the misregulation of O-GlcNAc in diseases commonly associated with the stress response, namely Alzheimer's and Parkinson's diseases. Finally, we will highlight recent advancements in the tools and technologies used to study the O-GlcNAc modification.
Collapse
Affiliation(s)
- Jennifer A. Groves
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205-2185 USA
| | - Albert Lee
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205-2185 USA
| | - Gokben Yildirir
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205-2185 USA
| | - Natasha E. Zachara
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205-2185 USA
| |
Collapse
|
109
|
Ruan HB, Singh JP, Li MD, Wu J, Yang X. Cracking the O-GlcNAc code in metabolism. Trends Endocrinol Metab 2013; 24:301-9. [PMID: 23647930 PMCID: PMC3783028 DOI: 10.1016/j.tem.2013.02.002] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/16/2013] [Accepted: 02/17/2013] [Indexed: 12/15/2022]
Abstract
Nuclear, cytoplasmic, and mitochondrial proteins are extensively modified by O-linked β-N-acetylglucosamine (O-GlcNAc) moieties. This sugar modification regulates fundamental cellular processes in response to diverse nutritional and hormonal cues. The enzymes O-GlcNAc transferase (OGT) and O-linked β-N-acetylglucosaminase (O-GlcNAcase) mediate the addition and removal of O-GlcNAc, respectively. Aberrant O-GlcNAcylation has been implicated in a plethora of human diseases, including diabetes, cancer, aging, cardiovascular disease, and neurodegenerative disease. Because metabolic dysregulation is a vital component of these diseases, unraveling the roles of O-GlcNAc in metabolism is of emerging importance. Here, we review the current understanding of the functions of O-GlcNAc in cell signaling and gene transcription involved in metabolism, and focus on its relevance to diabetes, cancer, circadian rhythm, and mitochondrial function.
Collapse
Affiliation(s)
- Hai-Bin Ruan
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
- Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
| | - Jay Prakash Singh
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
- Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
| | - Min-Dian Li
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
- Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
| | - Jing Wu
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
- Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
- School of Life Science and Technology, Xi'an Jiaotong University Xi'an, Shaanxi 710049, China
| | - Xiaoyong Yang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
- Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
| |
Collapse
|
110
|
Hicks S, Labinskyy N, Piteo B, Laurent D, Mathew JE, Gupte SA, Edwards JG. Type II diabetes increases mitochondrial DNA mutations in the left ventricle of the Goto-Kakizaki diabetic rat. Am J Physiol Heart Circ Physiol 2013; 304:H903-15. [PMID: 23376826 DOI: 10.1152/ajpheart.00567.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mitochondrial dysfunction has a significant role in the development of diabetic cardiomyopathy. Mitochondrial oxidant stress has been accepted as the singular cause of mitochondrial DNA (mtDNA) damage as an underlying cause of mitochondrial dysfunction. However, separate from a direct effect on mtDNA integrity, diabetic-induced increases in oxidant stress alter mitochondrial topoisomerase function to propagate mtDNA mutations as a contributor to mitochondrial dysfunction. Both glucose-challenged neonatal cardiomyocytes and the diabetic Goto-Kakizaki (GK) rat were studied. In both the GK left ventricle (LV) and in cardiomyocytes, chronically elevated glucose presentation induced a significant increase in mtDNA damage that was accompanied by decreased mitochondrial function. TTGE analysis revealed a number of base pair substitutions in the 3' end of COX3 from GK LV mtDNA that significantly altered the protein sequence. Mitochondrial topoisomerase DNA cleavage activity in isolated mitochondria was significantly increased in the GK LV compared with Wistar controls. Both hydroxycamptothecin, a topoisomerase type 1 inhibitor, and doxorubicin, a topoisomerase type 2 inhibitor, significantly exacerbated the DNA cleavage activity of isolated mitochondrial extracts indicating the presence of multiple functional topoisomerases in the mitochondria. Mitochondrial topoisomerase function was significantly altered in the presence of H2O2 suggesting that separate from a direct effect on mtDNA, oxidant stress mediated type II diabetes-induced alterations of mitochondrial topoisomerase function. These findings are significant in that the activation/inhibition state of the mitochondrial topoisomerases will have important consequences for mtDNA integrity and the well being of the diabetic myocardium.
Collapse
Affiliation(s)
- S Hicks
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | | | | | | | | | | | | |
Collapse
|
111
|
Gawlowski T, Suarez J, Scott B, Torres-Gonzalez M, Wang H, Schwappacher R, Han X, Yates JR, Hoshijima M, Dillmann W. Modulation of dynamin-related protein 1 (DRP1) function by increased O-linked-β-N-acetylglucosamine modification (O-GlcNAc) in cardiac myocytes. J Biol Chem 2012; 287:30024-34. [PMID: 22745122 DOI: 10.1074/jbc.m112.390682] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
O-linked-N-acetyl-glucosamine glycosylation (O-GlcNAcylation) of the serine and threonine residues of cellular proteins is a dynamic process and affects phosphorylation. Prolonged O-GlcNAcylation has been linked to diabetes-related complications, including mitochondrial dysfunction. Mitochondria are dynamically remodeling organelles, that constantly fuse (fusion) and divide (fission). An imbalance of this process affects mitochondrial function. In this study, we found that dynamin-related protein 1 (DRP1) is O-GlcNAcylated in cardiomyocytes at threonine 585 and 586. O-GlcNAcylation was significantly enhanced by the chemical inhibition of N-acetyl-glucosaminidase. Increased O-GlcNAcylation decreases the phosphorylation of DRP1 at serine 637, which is known to regulate DRP1 function. In fact, increased O-GlcNAcylation augments the level of the GTP-bound active form of DRP1 and induces translocation of DRP1 from the cytoplasm to mitochondria. Mitochondrial fragmentation and decreased mitochondrial membrane potential also accompany the increased O-GlcNAcylation. In conclusion, this report shows, for the first time, that O-GlcNAcylation modulates DRP1 functionality in cardiac muscle cells.
Collapse
Affiliation(s)
- Thomas Gawlowski
- Department of Medicine, University of California, San Diego, La Jolla, CA 92039, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Multiple proteins with essential mitochondrial functions have glycosylated isoforms. Mitochondrion 2012; 12:423-7. [PMID: 22564751 DOI: 10.1016/j.mito.2012.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 01/03/2012] [Accepted: 04/26/2012] [Indexed: 01/06/2023]
Abstract
Nucleocytosolic and secreted proteins are commonly glycosylated. However, reports of glycosylated mitochondrial proteins are rare. Using lectin chromatography on bovine heart, we detected low-abundance glycoforms of nuclear-encoded proteins with well-established mitochondrial function: pyruvate dehydrogenase E1α, NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, ADP/ATP translocase, ATP synthase d and oligomycin sensitivity-conferring protein. Notably, the latter two have been previously detected at the plasma membrane. Our findings indicate that glycosylation of classic mitochondrial proteins may be more common than previously appreciated. We discuss the implication that glycosylation could represent an unexplored mechanism for regulating these proteins' functions within mitochondria or at extra-mitochondrial locations.
Collapse
|
113
|
Hanover JA, Krause MW, Love DC. linking metabolism to epigenetics through O-GlcNAcylation. Nat Rev Mol Cell Biol 2012; 13:312-21. [DOI: 10.1038/nrm3334] [Citation(s) in RCA: 319] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
114
|
Darley-Usmar VM, Ball LE, Chatham JC. Protein O-linked β-N-acetylglucosamine: a novel effector of cardiomyocyte metabolism and function. J Mol Cell Cardiol 2012; 52:538-49. [PMID: 21878340 PMCID: PMC3928598 DOI: 10.1016/j.yjmcc.2011.08.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/11/2011] [Accepted: 08/12/2011] [Indexed: 01/10/2023]
Abstract
The post-translational modification of serine and threonine residues of nuclear and cytoplasmic proteins by the O-linked attachment of the monosaccharide β-N-acetyl-glucosamine (O-GlcNAc) is emerging as an important mechanism for the regulation of numerous biological processes critical for normal cell function. Active synthesis of O-GlcNAc is essential for cell viability and acute activation of pathways resulting in increased protein O-GlcNAc levels improves the tolerance of cells to a wide range of stress stimuli. Conversely sustained increases in O-GlcNAc levels have been implicated in numerous chronic disease states, especially as a pathogenic contributor to diabetic complications. There has been increasing interest in the role of O-GlcNAc in the heart and vascular system and acute activation of O-GlcNAc levels have been shown to reduce ischemia/reperfusion injury, attenuate vascular injury responses as well mediate some of the detrimental effects of diabetes and hypertension on cardiac and vascular function. Here we provide an overview of our current understanding of pathways regulating protein O-GlcNAcylation, summarize the different methodologies for identifying and characterizing O-GlcNAcylated proteins and subsequently focus on two emerging areas: 1) the role of O-GlcNAc as a potential regulator of cardiac metabolism and 2) the cross talk between O-GlcNAc and reactive oxygen species. This article is part of a Special Section entitled "Post-translational Modification."
Collapse
Affiliation(s)
- Victor M. Darley-Usmar
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Lauren E. Ball
- Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC
| | - John C. Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
115
|
Zachara NE. The roles of O-linked β-N-acetylglucosamine in cardiovascular physiology and disease. Am J Physiol Heart Circ Physiol 2012; 302:H1905-18. [PMID: 22287582 DOI: 10.1152/ajpheart.00445.2011] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
More than 1,000 proteins of the nucleus, cytoplasm, and mitochondria are dynamically modified by O-linked β-N-acetylglucosamine (O-GlcNAc), an essential post-translational modification of metazoans. O-GlcNAc, which modifies Ser/Thr residues, is thought to regulate protein function in a manner analogous to protein phosphorylation and, on a subset of proteins, appears to have a reciprocal relationship with phosphorylation. Like phosphorylation, O-GlcNAc levels change dynamically in response to numerous signals including hyperglycemia and cellular injury. Recent data suggests that O-GlcNAc appears to be a key regulator of the cellular stress response, the augmentation of which is protective in models of acute vascular injury, trauma hemorrhage, and ischemia-reperfusion injury. In contrast to these studies, O-GlcNAc has also been implicated in the development of hypertension and type II diabetes, leading to vascular and cardiac dysfunction. Here we summarize the current understanding of the roles of O-GlcNAc in the heart and vasculature.
Collapse
Affiliation(s)
- Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
116
|
Keembiyehetty CN, Krzeslak A, Love DC, Hanover JA. A lipid-droplet-targeted O-GlcNAcase isoform is a key regulator of the proteasome. J Cell Sci 2011; 124:2851-60. [PMID: 21807949 DOI: 10.1242/jcs.083287] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein-O-linked N-Acetyl-β-D-glucosaminidase (O-GlcNAcase, OGA; also known as hexosaminidase C) participates in a nutrient-sensing, hexosamine signaling pathway by removing O-linked N-acetylglucosamine (O-GlcNAc) from key target proteins. Perturbations in O-GlcNAc signaling have been linked to Alzheimer's disease, diabetes and cancer. Mammalian O-GlcNAcase exists as two major spliced isoforms differing only by the presence (OGA-L) or absence (OGA-S) of a histone-acetyltransferase domain. Here we demonstrate that OGA-S accumulates on the surface of nascent lipid droplets with perilipin-2; both of these proteins are stabilized by proteasome inhibition. We show that selective downregulation of OGA-S results in global proteasome inhibition and the striking accumulation of ubiquitinylated proteins. OGA-S knockdown increased levels of perilipin-2 and perilipin-3 suggesting that O-GlcNAc-dependent regulation of proteasomes might occur on the surface of lipid droplets. By locally activating proteasomes during maturation of the nascent lipid droplet, OGA-S could participate in an O-GlcNAc-dependent feedback loop regulating lipid droplet surface remodeling. Our findings therefore suggest a mechanistic link between hexosamine signaling and lipid droplet assembly and mobilization.
Collapse
Affiliation(s)
- Chithra N Keembiyehetty
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Kidney Diseases, National Institute of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
117
|
Role of transcription factor modifications in the pathogenesis of insulin resistance. EXPERIMENTAL DIABETES RESEARCH 2011; 2012:716425. [PMID: 22110478 PMCID: PMC3205681 DOI: 10.1155/2012/716425] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/25/2011] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by fat accumulation in the liver not due to alcohol abuse. NAFLD is accompanied by variety of symptoms related to metabolic syndrome. Although the metabolic link between NAFLD and insulin resistance is not fully understood, it is clear that NAFLD is one of the main cause of insulin resistance. NAFLD is shown to affect the functions of other organs, including pancreas, adipose tissue, muscle and inflammatory systems. Currently efforts are being made to understand molecular mechanism of interrelationship between NAFLD and insulin resistance at the transcriptional level with specific focus on post-translational modification (PTM) of transcription factors. PTM of transcription factors plays a key role in controlling numerous biological events, including cellular energy metabolism, cell-cycle progression, and organ development. Cell type- and tissue-specific reversible modifications include lysine acetylation, methylation, ubiquitination, and SUMOylation. Moreover, phosphorylation and O-GlcNAcylation on serine and threonine residues have been shown to affect protein stability, subcellular distribution, DNA-binding affinity, and transcriptional activity. PTMs of transcription factors involved in insulin-sensitive tissues confer specific adaptive mechanisms in response to internal or external stimuli. Our understanding of the interplay between these modifications and their effects on transcriptional regulation is growing. Here, we summarize the diverse roles of PTMs in insulin-sensitive tissues and their involvement in the pathogenesis of insulin resistance.
Collapse
|
118
|
Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem 2011; 80:825-58. [PMID: 21391816 DOI: 10.1146/annurev-biochem-060608-102511] [Citation(s) in RCA: 1028] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
O-GlcNAcylation is the addition of β-D-N-acetylglucosamine to serine or threonine residues of nuclear and cytoplasmic proteins. O-linked N-acetylglucosamine (O-GlcNAc) was not discovered until the early 1980s and still remains difficult to detect and quantify. Nonetheless, O-GlcNAc is highly abundant and cycles on proteins with a timescale similar to protein phosphorylation. O-GlcNAc occurs in organisms ranging from some bacteria to protozoans and metazoans, including plants and nematodes up the evolutionary tree to man. O-GlcNAcylation is mostly on nuclear proteins, but it occurs in all intracellular compartments, including mitochondria. Recent glycomic analyses have shown that O-GlcNAcylation has surprisingly extensive cross talk with phosphorylation, where it serves as a nutrient/stress sensor to modulate signaling, transcription, and cytoskeletal functions. Abnormal amounts of O-GlcNAcylation underlie the etiology of insulin resistance and glucose toxicity in diabetes, and this type of modification plays a direct role in neurodegenerative disease. Many oncogenic proteins and tumor suppressor proteins are also regulated by O-GlcNAcylation. Current data justify extensive efforts toward a better understanding of this invisible, yet abundant, modification. As tools for the study of O-GlcNAc become more facile and available, exponential growth in this area of research will eventually take place.
Collapse
Affiliation(s)
- Gerald W Hart
- Departments of Biological Chemistry and Pediatrics, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205
| | | | | | | |
Collapse
|
119
|
Wang J, Torii M, Liu H, Hart GW, Hu ZZ. dbOGAP - an integrated bioinformatics resource for protein O-GlcNAcylation. BMC Bioinformatics 2011; 12:91. [PMID: 21466708 PMCID: PMC3083348 DOI: 10.1186/1471-2105-12-91] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 04/06/2011] [Indexed: 12/31/2022] Open
Abstract
Background Protein O-GlcNAcylation (or O-GlcNAc-ylation) is an O-linked glycosylation involving the transfer of β-N-acetylglucosamine to the hydroxyl group of serine or threonine residues of proteins. Growing evidences suggest that protein O-GlcNAcylation is common and is analogous to phosphorylation in modulating broad ranges of biological processes. However, compared to phosphorylation, the amount of protein O-GlcNAcylation data is relatively limited and its annotation in databases is scarce. Furthermore, a bioinformatics resource for O-GlcNAcylation is lacking, and an O-GlcNAcylation site prediction tool is much needed. Description We developed a database of O-GlcNAcylated proteins and sites, dbOGAP, primarily based on literature published since O-GlcNAcylation was first described in 1984. The database currently contains ~800 proteins with experimental O-GlcNAcylation information, of which ~61% are of humans, and 172 proteins have a total of ~400 O-GlcNAcylation sites identified. The O-GlcNAcylated proteins are primarily nucleocytoplasmic, including membrane- and non-membrane bounded organelle-associated proteins. The known O-GlcNAcylated proteins exert a broad range of functions including transcriptional regulation, macromolecular complex assembly, intracellular transport, translation, and regulation of cell growth or death. The database also contains ~365 potential O-GlcNAcylated proteins inferred from known O-GlcNAcylated orthologs. Additional annotations, including other protein posttranslational modifications, biological pathways and disease information are integrated into the database. We developed an O-GlcNAcylation site prediction system, OGlcNAcScan, based on Support Vector Machine and trained using protein sequences with known O-GlcNAcylation sites from dbOGAP. The site prediction system achieved an area under ROC curve of 74.3% in five-fold cross-validation. The dbOGAP website was developed to allow for performing search and query on O-GlcNAcylated proteins and associated literature, as well as for browsing by gene names, organisms or pathways, and downloading of the database. Also available from the website, the OGlcNAcScan tool presents a list of predicted O-GlcNAcylation sites for given protein sequences. Conclusions dbOGAP is the first public bioinformatics resource to allow systematic access to the O-GlcNAcylated proteins, and related functional information and bibliography, as well as to an O-GlcNAcylation site prediction tool. The resource will facilitate research on O-GlcNAcylation and its proteomic identification.
Collapse
Affiliation(s)
- Jinlian Wang
- Department of Oncology, Georgetown University Medical Center, NW, Washington, DC 20007, USA
| | | | | | | | | |
Collapse
|
120
|
Kim EJ. Chemical arsenal for the study of O-GlcNAc. Molecules 2011; 16:1987-2022. [PMID: 21358590 PMCID: PMC6259741 DOI: 10.3390/molecules16031987] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 02/03/2011] [Accepted: 02/15/2011] [Indexed: 12/24/2022] Open
Abstract
The concepts of both protein glycosylation and cellular signaling have been influenced by O-linked-β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) on the hydroxyl group of serine or threonine residues. Unlike conventional protein glycosylation, O-GlcNAcylation is localized in the nucleocytoplasm and its cycling is a dynamic process that operates in a highly regulated manner in response to various cellular stimuli. These characteristics render O-GlcNAcylation similar to phosphorylation, which has long been considered a major regulatory mechanism in cellular processes. Various efficient chemical approaches and novel mass spectrometric (MS) techniques have uncovered numerous O-GlcNAcylated proteins that are involved in the regulation of many important cellular events. These discoveries imply that O-GlcNAcylation is another major regulator of cellular signaling. However, in contrast to phosphorylation, which is regulated by hundreds of kinases and phosphatases, dynamic O-GlcNAc cycling is catalyzed by only two enzymes: uridine diphospho-N-acetyl-glucosamine:polypeptide β-N-acetylglucosaminyl transferase (OGT) and β-D-N-acetylglucosaminidase (OGA). Many useful chemical tools have recently been used to greatly expand our understanding of the extensive crosstalk between O-GlcNAcylation and phosphorylation and hence of cellular signaling. This review article describes the various useful chemical tools that have been developed and discusses the considerable advances made in the O-GlcNAc field.
Collapse
Affiliation(s)
- Eun J Kim
- Department of Science Education-Chemistry Major, Daegu University, Gyeongbuk 712-714, Korea.
| |
Collapse
|
121
|
GlaxoSmithKline Award Lecture. The O-GlcNAc modification: three-dimensional structure, enzymology and the development of selective inhibitors to probe disease. Biochem Soc Trans 2011; 38:1179-88. [PMID: 20863281 DOI: 10.1042/bst0381179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Carbohydrates, their structures and the enzymes responsible for their synthesis and degradation, offer numerous possibilities for the design and application of probes with which to study and treat disease. The intracellular dynamic O-GlcNAc (O-linked β-N-acetylglucosamine) modification is one such glycosylation with considerable medical interest, reflecting its implication in diseases such as Type 2 diabetes and neurodegeneration. In the present paper, we review recent structural and mechanistic studies into the enzymes responsible for this modification, highlighting how mechanism-inspired small-molecule probes may be applied to study potential disease processes. Such studies have questioned a causal link between O-GlcNAc and Type 2 diabetes, but do offer potential for the study, and perhaps the treatment, of tauopathies.
Collapse
|
122
|
Carrillo LD, Froemming JA, Mahal LK. Targeted in vivo O-GlcNAc sensors reveal discrete compartment-specific dynamics during signal transduction. J Biol Chem 2010; 286:6650-8. [PMID: 21138847 DOI: 10.1074/jbc.m110.191627] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
β-O-N-acetyl-D-glucosamine (O-GlcNAc) is a post-translational modification involved in a plethora of biological systems ranging from cellular stress to insulin signaling. This modification shares many hallmarks with phosphorylation, including its dynamic cycling onto a host of proteins such as transcription factors, kinases, and phosphatases, and regulation of cellular functions, including cell signaling. Herein, we report the development of an improved genetically based O-GlcNAc FRET sensor and compartmentalized targeted variants for the characterization of the spatiotemporal dynamics of O-GlcNAc. During serum-stimulated signal transduction, rapid increases in O-GlcNAc activity were observed at both the plasma membrane and the nucleus, with a concomitant decrease detected in the cytoplasm. These findings suggest the existence of compartment specific dynamics for O-GlcNAc in response to signal-inducing stimuli, pointing to complex regulation of this modification. In addition, inhibition of the PI3K pathway by wortmannin abolished the O-GlcNAc response, suggesting that the activity observed is modulated downstream of the PI3K pathway. Taken together, our data argues that O-GlcNAc is a rapidly induced component of signaling and that the interplay between O-GlcNAc and kinase signaling may be more akin to the complex relationship between kinase pathways.
Collapse
Affiliation(s)
- Luz D Carrillo
- Department of Chemistry and Biochemistry, University of Texas, Austin, Texas 78712, USA
| | | | | |
Collapse
|
123
|
Brickley K, Pozo K, Stephenson FA. N-acetylglucosamine transferase is an integral component of a kinesin-directed mitochondrial trafficking complex. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:269-81. [PMID: 21034780 DOI: 10.1016/j.bbamcr.2010.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 10/12/2010] [Accepted: 10/13/2010] [Indexed: 10/18/2022]
Abstract
Trafficking kinesin proteins (TRAKs) 1 and 2 are kinesin-associated proteins proposed to function in excitable tissues as adaptors in anterograde trafficking of cargoes including mitochondria. They are known to associate with N-acetylglucosamine transferase and the mitochondrial rho GTPase, Miro. We used confocal imaging, Förster resonance energy transfer and immunoprecipitations to investigate association between TRAKs1/2, N-acetylglucosamine transferase, the prototypic kinesin-1, KIF5C, and Miro. We demonstrate that in COS-7 cells, N-acetylglucosamine transferase, KIF5C and TRAKs1/2 co-distribute. Förster resonance energy transfer was observed between N-acetylglucosamine transferase and TRAKs1/2. Despite co-distributing with KIF5C and immunoprecipitations demonstrating a TRAK1/2, N-acetylglucosamine transferase and KIF5C ternary complex, no Förster resonance energy transfer was detected between N-acetylglucosamine transferase and KIF5C. KIF5C, N-acetylglucosamine transferase, TRAKs1/2 and Miro formed a quaternary complex. The presence of N-acteylglucosamine transferase partially prevented redistribution of mitochondria induced by trafficking proteins 1/2 and KIF5C. TRAK2 was a substrate for N-acetylglucosamine transferase with TRAK2 (S562) identified as a site of O-N-acetylglucosamine modification. These findings substantiate trafficking kinesin proteins as scaffolds for the formation of a multi-component complex involved in anterograde trafficking of mitochondria. They further suggest that O-glycosylation may regulate complex formation.
Collapse
Affiliation(s)
- Kieran Brickley
- School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, UK
| | | | | |
Collapse
|
124
|
Kazemi Z, Chang H, Haserodt S, McKen C, Zachara NE. O-linked beta-N-acetylglucosamine (O-GlcNAc) regulates stress-induced heat shock protein expression in a GSK-3beta-dependent manner. J Biol Chem 2010; 285:39096-107. [PMID: 20926391 DOI: 10.1074/jbc.m110.131102] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To investigate the mechanisms by which O-linked β-N-acetylglucosamine modification of nucleocytoplasmic proteins (O-GlcNAc) confers stress tolerance to multiple forms of cellular injury, we explored the role(s) of O-GlcNAc in the regulation of heat shock protein (HSP) expression. Using a cell line in which deletion of the O-GlcNAc transferase (OGT; the enzyme that adds O-GlcNAc) can be induced by 4-hydroxytamoxifen, we screened the expression of 84 HSPs using quantitative reverse transcriptase PCR. In OGT null cells the stress-induced expression of 18 molecular chaperones, including HSP72, were reduced. GSK-3β promotes apoptosis through numerous pathways, including phosphorylation of heat shock factor 1 (HSF1) at Ser(303) (Ser(P)(303) HSF1), which inactivates HSF1 and inhibits HSP expression. In OGT null cells we observed increased Ser(P)(303) HSF1; conversely, in cells in which O-GlcNAc levels had been elevated, reduced Ser(P)(303) HSF1 was detected. These data, combined with those showing that inhibition of GSK-3β in OGT null cells recovers HSP72 expression, suggests that O-GlcNAc regulates the activity of GSK-3β. In OGT null cells, stress-induced inactivation of GSK-3β by phosphorylation at Ser(9) was ablated providing a molecular basis for these findings. Together, these data suggest that stress-induced GlcNAcylation increases HSP expression through inhibition of GSK-3β.
Collapse
Affiliation(s)
- Zahra Kazemi
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
125
|
Elevated O-GlcNAc-dependent signaling through inducible mOGT expression selectively triggers apoptosis. Amino Acids 2010; 40:885-93. [PMID: 20824293 PMCID: PMC3040817 DOI: 10.1007/s00726-010-0719-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 08/03/2010] [Indexed: 01/03/2023]
Abstract
O-linked N-acetylglucosamine transferase (OGT) catalyzes O-GlcNAc addition to numerous cellular proteins including transcription and nuclear pore complexes and plays a key role in cellular signaling. One differentially spliced isoform of OGT is normally targeted to mitochondria (mOGT) but is quite cytotoxic when expressed in cells compared with the ncOGT isoform. To understand the basis of this selective cytotoxicity, we constructed a fully functional ecdysone-inducible GFP–OGT. Elevated GFP–OGT expression induced a dramatic increase in intracellular O-GlcNAcylated proteins. Furthermore, enhanced OGT expression efficiently triggered programmed cell death. Apoptosis was dependent upon the unique N-terminus of mOGT, and its catalytic activity. Induction of mOGT expression triggered programmed cell death in every cell type tested including INS-1, an insulin-secreting cell line. These studies suggest that deregulated activity of the mitochondrially targeted mOGT may play a role in triggering the programmed cell death observed with diseases such as diabetes mellitus and neurodegeneration.
Collapse
|
126
|
Abstract
Cardiovascular function is regulated at multiple levels. Some of the most important aspects of such regulation involve alterations in an ever-growing list of posttranslational modifications. One such modification orchestrates input from numerous metabolic cues to modify proteins and alter their localization and/or function. Known as the beta-O-linkage of N-acetylglucosamine (ie, O-GlcNAc) to cellular proteins, this unique monosaccharide is involved in a diverse array of physiological and pathological functions. This review introduces readers to the general concepts related to O-GlcNAc, the regulation of this modification, and its role in primary pathophysiology. Much of the existing literature regarding the role of O-GlcNAcylation in disease addresses the protracted elevations in O-GlcNAcylation observed during diabetes. In this review, we focus on the emerging evidence of its involvement in the cardiovascular system. In particular, we highlight evidence of protein O-GlcNAcylation as an autoprotective alarm or stress response. We discuss recent literature supporting the idea that promoting O-GlcNAcylation improves cell survival during acute stress (eg, hypoxia, ischemia, oxidative stress), whereas limiting O-GlcNAcylation exacerbates cell damage in similar models. In addition to addressing the potential mechanisms of O-GlcNAc-mediated cardioprotection, we discuss technical issues related to studying protein O-GlcNAcylation in biological systems. The reader should gain an understanding of what protein O-GlcNAcylation is and that its roles in the acute and chronic disease settings appear distinct.
Collapse
Affiliation(s)
- Gladys A Ngoh
- Institute of Molecular Cardiology, University of Louisville, 580 South Preston St, 404C, Baxter II-404C, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
127
|
Characteristic increase in nucleocytoplasmic protein glycosylation by O-GlcNAc in 3T3-L1 adipocyte differentiation. Biochem Biophys Res Commun 2010; 398:489-94. [DOI: 10.1016/j.bbrc.2010.06.105] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 06/28/2010] [Indexed: 11/20/2022]
|
128
|
Love DC, Krause MW, Hanover JA. O-GlcNAc cycling: emerging roles in development and epigenetics. Semin Cell Dev Biol 2010; 21:646-54. [PMID: 20488252 DOI: 10.1016/j.semcdb.2010.05.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 04/30/2010] [Accepted: 05/10/2010] [Indexed: 10/19/2022]
Abstract
The nutrient-sensing hexosamine signaling pathway modulates the levels of O-linked N-acetylglucosamine (O-GlcNAc) on key targets impacting cellular signaling, protein turnover and gene expression. O-GlcNAc cycling may be deregulated in neurodegenerative disease, cancer, and diabetes. Studies in model organisms demonstrate that the O-GlcNAc transferase (OGT/Sxc) is essential for Polycomb group (PcG) repression of the homeotic genes, clusters of genes responsible for the adult body plan. Surprisingly, from flies to man, the O-GlcNAcase (OGA, MGEA5) gene is embedded within the NK cluster, the most evolutionarily ancient of three homeobox gene clusters regulated by PcG repression. PcG repression also plays a key role in maintaining stem cell identity, recruiting the DNA methyltransferase machinery for imprinting, and in X-chromosome inactivation. Intriguingly, the Ogt gene resides near the Xist locus in vertebrates and is subject to regulation by PcG-dependent X-inactivation. OGT is also an enzymatic component of the human dosage compensation complex. These 'evo-devo' relationships linking O-GlcNAc cycling to higher order chromatin structure provide insights into how nutrient availability may influence the epigenetic regulation of gene expression. O-GlcNAc cycling at promoters and PcG repression represent concrete mechanisms by which nutritional information may be transmitted across generations in the intra-uterine environment. Thus, the nutrient-sensing hexosamine signaling pathway may be a key contributor to the metabolic deregulation resulting from prenatal exposure to famine, or the 'vicious cycle' observed in children of mothers with type-2 diabetes and metabolic disease.
Collapse
Affiliation(s)
- Dona C Love
- Laboratory of Cell Biochemistry and Biology, NIDDK, National Institutes of Health, NIH, Bethesda, MD 20892-0850, USA
| | | | | |
Collapse
|
129
|
Ozcan S, Andrali SS, Cantrell JEL. Modulation of transcription factor function by O-GlcNAc modification. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:353-64. [PMID: 20202486 DOI: 10.1016/j.bbagrm.2010.02.005] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 02/19/2010] [Accepted: 02/25/2010] [Indexed: 12/22/2022]
Abstract
O-linked beta-N-acetylglucosamine (O-GlcNAc) modification of nuclear and cytoplasmic proteins is important for many cellular processes, and the number of proteins that contain this modification is steadily increasing. This modification is dynamic and reversible, and in some cases competes for phosphorylation of the same residues. O-GlcNAc modification of proteins is regulated by cell cycle, nutrient metabolism, and other extracellular signals. Compared to protein phosphorylation, which is mediated by a large number of kinases, O-GlcNAc modification is catalyzed only by one enzyme called O-linked N-acetylglucosaminyl transferase or OGT. Removal of O-GlcNAc from proteins is catalyzed by the enzyme beta-N-acetylglucosaminidase (O-GlcNAcase or OGA). Altered O-linked GlcNAc modification levels contribute to the establishment of many diseases, such as cancer, diabetes, cardiovascular disease, and neurodegeneration. Many transcription factors have been shown to be modified by O-linked GlcNAc modification, which can influence their transcriptional activity, DNA binding, localization, stability, and interaction with other co-factors. This review focuses on modulation of transcription factor function by O-linked GlcNAc modification.
Collapse
Affiliation(s)
- Sabire Ozcan
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA.
| | | | | |
Collapse
|
130
|
Butkinaree C, Park K, Hart GW. O-linked beta-N-acetylglucosamine (O-GlcNAc): Extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1800:96-106. [PMID: 19647786 PMCID: PMC2815129 DOI: 10.1016/j.bbagen.2009.07.018] [Citation(s) in RCA: 347] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/14/2009] [Accepted: 07/18/2009] [Indexed: 02/03/2023]
Abstract
BACKGROUND Since its discovery in the early 1980s, O-linked-beta-N-acetylglucosamine (O-GlcNAc), a single sugar modification on the hydroxyl group of serine or threonine residues, has changed our views of protein glycosylation. While other forms of protein glycosylation modify proteins on the cell surface or within luminal compartments of the secretory machinery, O-GlcNAc modifies myriad nucleocytoplasmic proteins. GlcNAcylated proteins are involved in transcription, ubiquitination, cell cycle, and stress responses. GlcNAcylation is similar to protein phosphorylation in terms of stoichiometry, localization and cycling. To date, only two enzymes are known to regulate GlcNAcylation in mammals: O-GlcNAc transferase (OGT), which catalyzes the addition of O-GlcNAc, and beta-N-acetylglucosaminidase (O-GlcNAcase), a neutral hexosaminidase responsible for O-GlcNAc removal. OGT and O-GlcNAcase are regulated by RNA splicing, by nutrients, and by post-translational modifications. Their specificities are controlled by many transiently associated targeting subunits. As methods for detecting O-GlcNAc have improved our understanding of O-GlcNAc's functions has grown rapidly. SCOPE OF REVIEW In this review, the functions of GlcNAcylation in regulating cellular processes, its extensive crosstalk with protein phosphorylation, and regulation of OGT and O-GlcNAcase will be explored. MAJOR CONCLUSIONS GlcNAcylation rivals phosphorylation in terms of its abundance, protein distribution and its cycling on and off of proteins. GlcNAcylation has extensive crosstalk with phosphorylation to regulate signaling, transcription and the cytoskeleton in response to nutrients and stress. GENERAL SIGNIFICANCE Abnormal crosstalk between GlcNAcylation and phosphorylation underlies dysregulation in diabetes, including glucose toxicity, and defective GlcNAcylation is involved in neurodegenerative disease and cancer and most recently in AIDS.
Collapse
Affiliation(s)
- Chutikarn Butkinaree
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
131
|
A Modified Coupled Enzyme Method for O-linked GlcNAc Transferase Activity Assay. Biol Proced Online 2009; 11:170-83. [PMID: 19957065 PMCID: PMC3056017 DOI: 10.1007/s12575-009-9016-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Accepted: 08/13/2009] [Indexed: 11/21/2022] Open
Abstract
In order to determine the activity of O-linked GlcNAc transferase (OGT), a modified coupled enzyme method was proposed. This method was based on the measurement of uridine 5'-(trihydrogen diphosphate) (UDP), a product generated in transglycosylation reaction. In the assay, UDP was coupled to the conversion of phosphoenolpyruvate to pyruvate using pyruvate kinase. Using a commercial pyruvate assay kit, the pyruvate was converted to a red terminal product, which could be photometrically measured at 570 nm or fluorometrically measured at 587 nm (Em = 535 nm) on a microplate reader. Kinetic study of a truncated recombinant mOGT and quantitative analysis of OGT in two biological samples indicated that this method was practical and competitive for quantitative analysis of OGT.
Collapse
|
132
|
Olszewski NE, West CM, Sassi SO, Hartweck LM. O-GlcNAc protein modification in plants: Evolution and function. Biochim Biophys Acta Gen Subj 2009; 1800:49-56. [PMID: 19961900 DOI: 10.1016/j.bbagen.2009.11.016] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 11/19/2009] [Accepted: 11/25/2009] [Indexed: 11/30/2022]
Abstract
The role in plants of posttranslational modification of proteins with O-linked N-acetylglucosamine and the evolution and function of O-GlcNAc transferases responsible for this modification are reviewed. Phylogenetic analysis of eukaryotic O-GlcNAc transferases (OGTs) leads us to propose that plants have two distinct OGTs, SEC- and SPY-like, that originated in prokaryotes. Animals and some fungi have a SEC-like enzyme while plants have both. Green algae and some members of the Apicomplexa and amoebozoa have the SPY-like enzyme. Interestingly the progenitor of the Apicomplexa lineage likely had a photosynthetic plastid that persists in a degenerated form in some species, raising the possibility that plant SPY-like OGTs are derived from a photosynthetic endosymbiont. OGTs have multiple tetratricopeptide repeats (TPRs) that within the SEC- and SPY-like classes exhibit evidence of strong selective pressure on specific repeats, suggesting that the function of these repeats is conserved. SPY-like and SEC-like OGTs have both unique and overlapping roles in the plant. The phenotypes of sec and spy single and double mutants indicate that O-GlcNAc modification is essential and that it affects diverse plant processes including response to hormones and environmental signals, circadian rhythms, development, intercellular transport and virus infection. The mechanistic details of how O-GlcNAc modification affects these processes are largely unknown. A major impediment to understanding this is the lack of knowledge of the identities of the modified proteins.
Collapse
Affiliation(s)
- Neil E Olszewski
- Department of Plant Biology, Microbial and Plant Genomics Institute, 250 Biological Sciences Center, 1445 Gortner Ave., St. Paul, MN 55108, USA.
| | | | | | | |
Collapse
|
133
|
Hanover JA, Krause MW, Love DC. The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine. Biochim Biophys Acta Gen Subj 2009; 1800:80-95. [PMID: 19647043 DOI: 10.1016/j.bbagen.2009.07.017] [Citation(s) in RCA: 262] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 07/10/2009] [Accepted: 07/18/2009] [Indexed: 12/14/2022]
Abstract
The enzymes of O-GlcNAc cycling couple the nutrient-dependent synthesis of UDP-GlcNAc to O-GlcNAc modification of Ser/Thr residues of key nuclear and cytoplasmic targets. This series of reactions culminating in O-GlcNAcylation of targets has been termed the hexosamine signaling pathway (HSP). The evolutionarily ancient enzymes of O-GlcNAc cycling have co-evolved with other signaling effecter molecules; they are recruited to their targets by many of the same mechanisms used to organize canonic kinase-dependent signaling pathways. This co-recruitment of the enzymes of O-GlcNAc cycling drives a binary switch impacting pathways of anabolism and growth (nutrient uptake) and catabolic pathways (nutrient sparing and salvage). The hexosamine signaling pathway (HSP) has thus emerged as a versatile cellular regulator modulating numerous cellular signaling cascades influencing growth, metabolism, cellular stress, circadian rhythm, and host-pathogen interactions. In mammals, the nutrient-sensing HSP has been harnessed to regulate such cell-specific functions as neutrophil migration, and activation of B-cells and T-cells. This review summarizes the diverse approaches being used to examine O-GlcNAc cycling. It will emphasize the impact O-GlcNAcylation has upon signaling pathways that may be become deregulated in diseases of the immune system, diabetes mellitus, cancer, cardiovascular disease, and neurodegenerative diseases.
Collapse
Affiliation(s)
- John A Hanover
- Laboratory of Cell Biochemistry and Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
134
|
Maymon I, Greenboim-Wainberg Y, Sagiv S, Kieber JJ, Moshelion M, Olszewski N, Weiss D. Cytosolic activity of SPINDLY implies the existence of a DELLA-independent gibberellin-response pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:979-88. [PMID: 19228341 DOI: 10.1111/j.1365-313x.2009.03840.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Specific plant developmental processes are modulated by cross-talk between gibberellin (GA)- and cytokinin-response pathways. Coordination of the two pathways involves the O-linked N-acetylglucosamine transferase SPINDLY (SPY) that suppresses GA signaling and promotes cytokinin responses in Arabidopsis. Although SPY is a nucleocytoplasmic protein, its site of action and targets are unknown. Several studies have suggested that SPY acts in the nucleus, where it modifies nuclear components such as the DELLA proteins to regulate signaling networks. Using chimeric GFP-SPY fused to a nuclear-export signal or to a glucocorticoid receptor, we show that cytosolic SPY promotes cytokinin responses and suppresses GA signaling. In contrast, nuclear-localized GFP-SPY failed to complement the spy mutation. To examine whether modulation of cytokinin activity by GA and spy is mediated by the nuclear DELLA proteins, cytokinin responses were studied in double and quadruple della mutants lacking the activities of REPRESSOR OF GA1-3 (RGA) and GA-INSENSITIVE (GAI) or RGA, GAI, RGA Like1 (RGL1) and RGL2. Unlike spy, the della mutants were cytokinin-sensitive. Moreover, when GA was applied to a cytokinin-treated quadruple della mutant it was able to suppress various cytokinin responses. These results suggest that cytosolic SPY and GA regulate cytokinin responses via a DELLA-independent pathway(s).
Collapse
Affiliation(s)
- Inbar Maymon
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
135
|
O-GlcNAc modifications regulate cell survival and epiboly during zebrafish development. BMC DEVELOPMENTAL BIOLOGY 2009; 9:28. [PMID: 19383152 PMCID: PMC2680843 DOI: 10.1186/1471-213x-9-28] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Accepted: 04/21/2009] [Indexed: 12/27/2022]
Abstract
Background The post-translational addition of the monosaccharide O-linked β-N-acetylglucosamine (O-GlcNAc) regulates the activity of a wide variety of nuclear and cytoplasmic proteins. The enzymes O-GlcNAc Transferase (Ogt) and O-GlcNAcase (Oga) catalyze, respectively, the attachment and removal of O-GlcNAc to target proteins. In adult mice, Ogt and Oga attenuate the response to insulin by modifying several components of the signal transduction pathway. Complete loss of ogt function, however, is lethal to mouse embryonic stem cells, suggesting that the enzyme has additional, unstudied roles in development. We have utilized zebrafish as a model to determine role of O-GlcNAc modifications in development. Zebrafish has two ogt genes, encoding six different enzymatic isoforms that are expressed maternally and zygotically. Results We manipulated O-GlcNAc levels in zebrafish embryos by overexpressing zebrafish ogt, human oga or by injecting morpholinos against ogt transcripts. Each of these treatments results in embryos with shortened body axes and reduced brains at 24 hpf. The embryos had 23% fewer cells than controls, and displayed increased rates of cell death as early as the mid-gastrula stages. An extensive marker analysis indicates that derivatives of three germ layers are reduced to variable extents, and the embryos are severely disorganized after gastrulation. Overexpression of Ogt and Oga delayed epiboly and caused a severe disorganization of the microtubule and actin based cytoskeleton in the extra-embryonic yolk syncytial layer (YSL). The cytoskeletal defects resemble those previously reported for embryos lacking function of the Pou5f1/Oct4 transcription factor spiel ohne grenzen. Consistent with this, Pou5f1/Oct4 is modified by O-GlcNAc in human embryonic stem cells. Conclusion We conclude that O-GlcNAc modifications control the activity of proteins that regulate apoptosis and epiboly movements, but do not seem to regulate germ layer specification. O-GlcNAc modifies the transcription factor Spiel ohne grenzen/Pou5f1 and may regulate its activity.
Collapse
|
136
|
Macauley MS, Vocadlo DJ. Enzymatic characterization and inhibition of the nuclear variant of human O-GlcNAcase. Carbohydr Res 2009; 344:1079-84. [PMID: 19423084 DOI: 10.1016/j.carres.2009.04.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Revised: 04/15/2009] [Accepted: 04/15/2009] [Indexed: 10/20/2022]
Abstract
Increasing cellular O-GlcNAc levels through pharmacological inhibition of O-GlcNAcase, the enzyme responsible for removal of the O-GlcNAc post-translational modification, is being increasingly used to aid in discerning the roles played by this form of intracellular glycosylation. Interestingly, two forms of O-GlcNAcase have been studied; a full-length isoform that is better characterized, and a shorter nuclear-localized variant, arising from failure to splice out one intron, which has not been as well characterized. Given the increasing use of O-GlcNAcase inhibitors as research tools, we felt that a clear understanding of how these inhibitors affect both isoforms of O-GlcNAcase is important for proper interpretation of studies making use of these inhibitors in cell culture and in vivo. Here we describe an enzymatic characterization of the nuclear variant of human O-GlcNAcase. We find that this short nuclear variant of O-GlcNAcase, which has the identical catalytic domain as the full-length enzyme, has similar trends in a pH-rate profile and Taft linear free energy analysis as the full-length enzyme. These findings strongly suggest that both enzymes use broadly similar transition states. Consistent with this interpretation, the short isoform is potently inhibited by several previously described inhibitors of full-length O-GlcNAcase including PUGNAc, NAG-thiazoline, and the selective O-GlcNAcase inhibitor NButGT. These findings contrast with earlier studies and suggest that studies using O-GlcNAcase inhibitors in cultured cells or in vivo can be interpreted with the knowledge that both these forms of O-GlcNAcase are inhibited when present.
Collapse
Affiliation(s)
- Matthew S Macauley
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada
| | | |
Collapse
|
137
|
O-GlcNAc cycling: implications for neurodegenerative disorders. Int J Biochem Cell Biol 2009; 41:2134-46. [PMID: 19782947 DOI: 10.1016/j.biocel.2009.03.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Revised: 03/13/2009] [Accepted: 03/18/2009] [Indexed: 12/20/2022]
Abstract
The dynamic post-translational modification of proteins by O-linked N-acetylglucosamine (O-GlcNAc), termed O-GlcNAcylation, is an important mechanism for modulating cellular signaling pathways. O-GlcNAcylation impacts transcription, translation, organelle trafficking, proteasomal degradation and apoptosis. O-GlcNAcylation has been implicated in the etiology of several human diseases including type-2 diabetes and neurodegeneration. This review describes the pair of enzymes responsible for the cycling of this post-translational modification: O-GlcNAc transferase (OGT) and beta-N-acetylglucosaminidase (OGA), with a focus on the function of their structural domains. We will also highlight the important processes and substrates regulated by these enzymes, with an emphasis on the role of O-GlcNAc as a nutrient sensor impacting insulin signaling and the cellular stress response. Finally, we will focus attention on the many ways by which O-GlcNAc cycling may affect the cellular machinery in the neuroendocrine and central nervous systems.
Collapse
|
138
|
Laczy B, Hill BG, Wang K, Paterson AJ, White CR, Xing D, Chen YF, Darley-Usmar V, Oparil S, Chatham JC. Protein O-GlcNAcylation: a new signaling paradigm for the cardiovascular system. Am J Physiol Heart Circ Physiol 2009; 296:H13-28. [PMID: 19028792 PMCID: PMC2637779 DOI: 10.1152/ajpheart.01056.2008] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 11/11/2008] [Indexed: 02/07/2023]
Abstract
The posttranslational modification of serine and threonine residues of nuclear and cytoplasmic proteins by the O-linked attachment of the monosaccharide beta-N-acetylglucosamine (O-GlcNAc) is a highly dynamic and ubiquitous protein modification. Protein O-GlcNAcylation is rapidly emerging as a key regulator of critical biological processes including nuclear transport, translation and transcription, signal transduction, cytoskeletal reorganization, proteasomal degradation, and apoptosis. Increased levels of O-GlcNAc have been implicated as a pathogenic contributor to glucose toxicity and insulin resistance, which are both major hallmarks of diabetes mellitus and diabetes-related cardiovascular complications. Conversely, there is a growing body of data demonstrating that the acute activation of O-GlcNAc levels is an endogenous stress response designed to enhance cell survival. Reports on the effect of altered O-GlcNAc levels on the heart and cardiovascular system have been growing rapidly over the past few years and have implicated a role for O-GlcNAc in contributing to the adverse effects of diabetes on cardiovascular function as well as mediating the response to ischemic injury. Here, we summarize our present understanding of protein O-GlcNAcylation and its effect on the regulation of cardiovascular function. We examine the pathways regulating protein O-GlcNAcylation and discuss, in more detail, our understanding of the role of O-GlcNAc in both mediating the adverse effects of diabetes as well as its role in mediating cellular protective mechanisms in the cardiovascular system. In addition, we also explore the parallels between O-GlcNAc signaling and redox signaling, as an alternative paradigm for understanding the role of O-GlcNAcylation in regulating cell function.
Collapse
Affiliation(s)
- Boglarka Laczy
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-0007, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Ngoh GA, Jones SP. New insights into metabolic signaling and cell survival: the role of beta-O-linkage of N-acetylglucosamine. J Pharmacol Exp Ther 2008; 327:602-9. [PMID: 18768779 PMCID: PMC6545568 DOI: 10.1124/jpet.108.143263] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The involvement of glucose in fundamental metabolic pathways represents a core element of biology. Late in the 20th century, a unique glucose-derived signal was discovered, which appeared to be involved in a variety of cellular processes, including mitosis, transcription, insulin signaling, stress responses, and potentially, Alzheimer's disease, and diabetes. By definition, this glucose-fed signaling system was a post-translational modification to proteins. However, unlike classical cotranslational N-glycosylation occurring in the endoplasmic reticulum and Golgi apparatus, this process occurs elsewhere throughout the cell in a highly dynamic fashion, similar to the quintessential post-translational modification, phosphorylation. This more recently described post-translational modification, the beta-O-linkage of N-acetylglucosamine (i.e., O-GlcNAc) to nucleocytoplasmic proteins, represents an under-investigated area of biology. This signaling system operates in all of the tissues examined and seems to have persisted throughout all multicellular eukaryotes. Thus, it comes with little surprise that O-GlcNAc signaling is an integral system and viable target for biomedical investigation. This system may be a boundless source for insight into a variety of diseases and yield numerous opportunities for drug design. This Perspective will address recent insights into O-GlcNAc signaling in the cardiovascular system as a paradigm for its involvement in other biological systems.
Collapse
Affiliation(s)
- Gladys A Ngoh
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | |
Collapse
|
140
|
Hu Y, Suarez J, Fricovsky E, Wang H, Scott BT, Trauger SA, Han W, Hu Y, Oyeleye MO, Dillmann WH. Increased enzymatic O-GlcNAcylation of mitochondrial proteins impairs mitochondrial function in cardiac myocytes exposed to high glucose. J Biol Chem 2008; 284:547-555. [PMID: 19004814 DOI: 10.1074/jbc.m808518200] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increased nuclear protein O-linked beta-N-acetylglucosamine glycosylation (O-GlcNAcylation) mediated by high glucose treatment or the hyperglycemia of diabetes mellitus contributes to cardiac myocyte dysfunction. However, whether mitochondrial proteins in cardiac myocytes are also submitted to O-GlcNAcylation or excessive O-GlcNAcylation alters mitochondrial function is unknown. In this study, we determined if mitochondrial proteins are O-GlcNAcylated and explored if increased O-GlcNAcylation is linked to high glucose-induced mitochondrial dysfunction in neonatal rat cardiomyocytes. By immunoprecipitation, we found that several mitochondrial proteins, which are members of complexes of the respiratory chain, like subunit NDUFA9 of complex I, subunits core 1 and core 2 of complex III, and the mitochondrial DNA-encoded subunit I of complex IV (COX I) are O-GlcNAcylated. By mass spectrometry, we identified that serine 156 on NDUFA9 is O-GlcNAcylated. High glucose treatment (30 mm glucose) increases mitochondrial protein O-GlcNAcylation, including those of COX I and NDUFA9 which are reduced by expression of O-GlcNAcase (GCA). Increased mitochondrial O-GlcNAcylation is associated with impaired activity of complex I, III, and IV in addition to lower mitochondrial calcium and cellular ATP content. When the excessive O-GlcNAc modification is reduced by GCA expression, mitochondrial function improves; the activity of complex I, III, and IV increases to normal and mitochondrial calcium and cellular ATP content are returned to control levels. From these results we conclude that specific mitochondrial proteins of cardiac myocytes are O-GlcNAcylated and that exposure to high glucose increases mitochondrial protein O-GlcNAcylation, which in turn contributes to impaired mitochondrial function.
Collapse
Affiliation(s)
- Yong Hu
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093 and the Scripps Research Institute, La Jolla, California 92037
| | - Jorge Suarez
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093 and the Scripps Research Institute, La Jolla, California 92037
| | - Eduardo Fricovsky
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093 and the Scripps Research Institute, La Jolla, California 92037
| | - Hong Wang
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093 and the Scripps Research Institute, La Jolla, California 92037
| | - Brian T Scott
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093 and the Scripps Research Institute, La Jolla, California 92037
| | - Sunia A Trauger
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093 and the Scripps Research Institute, La Jolla, California 92037
| | - Wenlong Han
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093 and the Scripps Research Institute, La Jolla, California 92037
| | - Ying Hu
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093 and the Scripps Research Institute, La Jolla, California 92037
| | - Mary O Oyeleye
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093 and the Scripps Research Institute, La Jolla, California 92037
| | - Wolfgang H Dillmann
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093 and the Scripps Research Institute, La Jolla, California 92037.
| |
Collapse
|
141
|
Golks A, Guerini D. The O-linked N-acetylglucosamine modification in cellular signalling and the immune system. 'Protein modifications: beyond the usual suspects' review series. EMBO Rep 2008; 9:748-53. [PMID: 18617890 DOI: 10.1038/embor.2008.129] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 06/10/2008] [Indexed: 11/09/2022] Open
Abstract
The intracellular modification of proteins by the addition of a single O-linked N-acetylglucosamine (O-GlcNAc) molecule is a ubiquitous post-translational modification in eukaryotic cells. It is catalysed by O-linked N-acetylglucosaminyltransferase, which attaches O-GlcNAc to serine/threonine residues, and it is counter-regulated by beta-N-acetylglucosaminidase, which is the antagonistic glycosidase that removes the O-GlcNAc group. O-GlcNAc modification competes with phosphorylation by protein kinases at similar sites, thereby affecting important signalling nodes. Accumulating evidence supports a central role for O-GlcNAc modifications and the corresponding enzymes in the regulation of immune cells, particularly in the activation processes of T and B lymphocytes. Here, we discuss recent advances in the field of O-GlcNAc modifications, focusing on the cells of the immune system.
Collapse
Affiliation(s)
- Alexander Golks
- Autoimmunity, Transplantation and Inflammation, Novartis Pharma AG, Forum 1, Novartis Campus, Basel CH-4056, Switzerland
| | | |
Collapse
|
142
|
Whelan SA, Lane MD, Hart GW. Regulation of the O-linked beta-N-acetylglucosamine transferase by insulin signaling. J Biol Chem 2008; 283:21411-7. [PMID: 18519567 DOI: 10.1074/jbc.m800677200] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
O-Linked beta-N-acetylglucosamine (O-GlcNAc) transferase (OGT) catalyzes the addition of O-linked beta-N-acetylglucosamine (O-GlcNAc) onto serine and threonine residues in response to stimuli or stress analogous to phosphorylation by Ser/Thr-kinases. Like protein phosphatases, OGT appears to be targeted to myriad specific substrates by transiently interacting with specific targeting subunits. Here, we show that OGT is activated by insulin signaling. Insulin treatment of 3T3-L1 adipocytes stimulates both tyrosine phosphorylation and catalytic activity of OGT. A subset of OGT co-immunoprecipitates with the insulin receptor. Insulin stimulates purified insulin receptor to phosphorylate OGT in vitro. OGT is a competitive substrate with reduced and carboxyamidomethylated lysozyme (RCAM-lysozyme), a well characterized insulin receptor substrate. Insulin stimulation of 3T3-L1 adipocytes results in a partial translocation of OGT from the nucleus to the cytoplasm. The insulin activation of OGT results in increased O-GlcNAc modification of OGT and other proteins including, signal transducer and activator of transcription 3 (STAT3). We conclude that insulin stimulates the tyrosine phosphorylation and activity of OGT.
Collapse
Affiliation(s)
- Stephen A Whelan
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185, USA
| | | | | |
Collapse
|
143
|
Riu IH, Shin IS, Do SI. Sp1 modulates ncOGT activity to alter target recognition and enhanced thermotolerance in E. coli. Biochem Biophys Res Commun 2008; 372:203-9. [PMID: 18486602 DOI: 10.1016/j.bbrc.2008.05.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 05/05/2008] [Indexed: 10/22/2022]
Abstract
cDNAs encoding three isoforms of OGT (ncOGT, mOGT, and sOGT) were expressed in Escherichia coli in which the coexpression system of OGT with target substrates was established in vivo. No endogenous bacterial proteins were significantly O-GlcNAcylated by any type of OGT isoform while co-expressed p62 and Sp1 were strongly O-GlcNAcylated by ncOGT. These results suggest that most of bacterial proteins appear not to be recognized as right substrates by mammalian OGT whereas cytosolic environments may supply UDP-GlcNAc enough to proceed to O-GlcNAcylation in E. coli. Under these conditions, sOGT was auto-O-GlcNAcylated whereas ncOGT and mOGT were not. Importantly, we found that when Sp1 was coexpressed, ncOGT can O-GlcNAcylate not only Sp1 but also many bacterial proteins. Our findings suggest that Sp1 may modulate the capability of target recognition of ncOGT by which ncOGT can be led to newly recognize bacterial proteins as target substrates, finally generating the O-glyco-bacteria. Our results demonstrate that the O-glyco-bacteria showed enhanced thermal resistance to allow cell survival at a temperature as high as 52 degrees C.
Collapse
Affiliation(s)
- In-Hyun Riu
- Department of Life Science, Laboratory of Functional Glycomics, Ajou University, San 5, Wonchon-dong, Youngtong-gu, Suwon City 443-749, Republic of Korea
| | | | | |
Collapse
|
144
|
Taylor RP, Parker GJ, Hazel MW, Soesanto Y, Fuller W, Yazzie MJ, McClain DA. Glucose deprivation stimulates O-GlcNAc modification of proteins through up-regulation of O-linked N-acetylglucosaminyltransferase. J Biol Chem 2008; 283:6050-7. [PMID: 18174169 DOI: 10.1074/jbc.m707328200] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
O-Linked N-acetylglucosamine (O-GlcNAc) is a post-translational modification of proteins that functions as a nutrient sensing mechanism. Here we report on regulation of O-GlcNAcylation over a broad range of glucose concentrations. We have discovered a significant induction of O-GlcNAc modification of a limited number of proteins under conditions of glucose deprivation. Beginning 12 h after treatment, glucose-deprived human hepatocellular carcinoma (HepG2) cells demonstrate a 7.8-fold increase in total O-GlcNAc modification compared with cells cultured in normal glucose (5 mm; p = 0.008). Some of the targets of glucose deprivation-induced O-GlcNAcylation are distinct from those modified in response to high glucose (20 mm) or glucosamine (10 mm) treatment, suggesting differential targeting with glucose deprivation and glucose excess. O-GlcNAcylation of glycogen synthase is significantly increased with glucose deprivation, and this O-GlcNAc increase contributes to a 60% decrease (p = 0.004) in glycogen synthase activity. Increased O-GlcNAc modification is not mediated by increased UDP-GlcNAc, the rate-limiting substrate for O-GlcNAcylation. Rather, the mRNA for nucleocytoplasmic O-linked N-acetylglucosaminyltransferase (OGT) increases 3.4-fold within 6 h of glucose deprivation (p = 0.006). Within 12 h, OGT protein increases 1.7-fold (p = 0.01) compared with normal glucose-treated cells. In addition, 12-h glucose deprivation leads to a 49% decrease in O-GlcNAcase protein levels (p = 0.03). We conclude that increased O-GlcNAc modification stimulated by glucose deprivation results from increased OGT and decreased O-GlcNAcase levels and that these changes affect cell metabolism, thus inactivating glycogen synthase.
Collapse
Affiliation(s)
- Rodrick P Taylor
- Departments of Biochemistry and Medicine, University of Utah School of Medicine, 30 N. 2030 East, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | |
Collapse
|
145
|
Forsythe ME, Love DC, Lazarus BD, Kim EJ, Prinz WA, Ashwell G, Krause MW, Hanover JA. Caenorhabditis elegans ortholog of a diabetes susceptibility locus: oga-1 (O-GlcNAcase) knockout impacts O-GlcNAc cycling, metabolism, and dauer. Proc Natl Acad Sci U S A 2006; 103:11952-7. [PMID: 16882729 PMCID: PMC1567679 DOI: 10.1073/pnas.0601931103] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A dynamic cycle of O-linked N-acetylglucosamine (O-GlcNAc) addition and removal acts on nuclear pore proteins, transcription factors, and kinases to modulate cellular signaling cascades. Two highly conserved enzymes (O-GlcNAc transferase and O-GlcNAcase) catalyze the final steps in this nutrient-driven "hexosamine-signaling pathway." A single nucleotide polymorphism in the human O-GlcNAcase gene is linked to type 2 diabetes. Here, we show that Caenorhabditis elegans oga-1 encodes an active O-GlcNAcase. We also describe a knockout allele, oga-1(ok1207), that is viable and fertile yet accumulates O-GlcNAc on nuclear pores and other cellular proteins. Interfering with O-GlcNAc cycling with either oga-1(ok1207) or the O-GlcNAc transferase-null ogt-1(ok430) altered Ser- and Thr-phosphoprotein profiles and increased glycogen synthase kinase 3beta (GSK-3beta) levels. Both the oga-1(ok1207) and ogt-1(ok430) strains showed elevated stores of glycogen and trehalose, and decreased lipid storage. These striking metabolic changes prompted us to examine the insulin-like signaling pathway controlling nutrient storage, longevity, and dauer formation in the C. elegans O-GlcNAc cycling mutants. Indeed, we found that the oga-1(ok1207) knockout augmented dauer formation induced by a temperature sensitive insulin-like receptor (daf-2) mutant under conditions in which the ogt-1(ok430)-null diminished dauer formation. Our findings suggest that the enzymes of O-GlcNAc cycling "fine-tune" insulin-like signaling in response to nutrient flux. The knockout of O-GlcNAcase (oga-1) in C. elegans mimics many of the metabolic and signaling changes associated with human insulin resistance and provides a genetically amenable model of non-insulin-dependent diabetes.
Collapse
Affiliation(s)
- Michele E. Forsythe
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0850
| | - Dona C. Love
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0850
| | - Brooke D. Lazarus
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0850
| | - Eun Ju Kim
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0850
| | - William A. Prinz
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0850
| | - Gilbert Ashwell
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0850
- *To whom correspondence may be addressed. E-mail:
or
| | - Michael W. Krause
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0850
| | - John A. Hanover
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0850
- *To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
146
|
Smith MJ, Pozo K, Brickley K, Stephenson FA. Mapping the GRIF-1 binding domain of the kinesin, KIF5C, substantiates a role for GRIF-1 as an adaptor protein in the anterograde trafficking of cargoes. J Biol Chem 2006; 281:27216-28. [PMID: 16835241 DOI: 10.1074/jbc.m600522200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Gamma-aminobutyric acid, type A (GABAA) receptor interacting factor-1 (GRIF-1) and N-acetylglucosamine transferase interacting protein (OIP) 106 are both members of a newly identified coiled-coil family of proteins. They are kinesin-associated proteins proposed to function as adaptors in the anterograde trafficking of organelles to synapses. Here we have studied in more detail the interaction between the prototypic kinesin heavy chain, KIF5C, kinesin light chain, and GRIF-1. The GRIF-1 binding site of KIF5C was mapped using truncation constructs in yeast two-hybrid interaction assays, co-immunoprecipitations, and co-localization studies following expression in mammalian cells. Using these approaches, it was shown that GRIF-1 and the KIF5C binding domain of GRIF-1, GRIF-1-(124-283), associated with the KIF5C non-motor domain. Refined studies using yeast two-hybrid interactions and co-immunoprecipitations showed that GRIF-1 and GRIF-1-(124-283) associated with the cargo binding region within the KIF5C non-motor domain. Substantiation that the GRIF-1-KIF5C interaction was direct was shown by fluorescence resonance energy transfer analyses using fluorescently tagged GRIF-1 and KIF5C constructs. A significant fluorescence resonance energy transfer value was found between the C-terminal EYFP-tagged KIF5C and ECFP-GRIF-1, the C-terminal EYFP-tagged KIF5C non-motor domain and ECFP-GRIF-1, but not between the N-terminal EYFP-tagged KIF5C nor the EYFP-KIF5C motor domain and ECFP-GRIF-1, thus confirming direct association between the two proteins at the KIF5C C-terminal and GRIF-1 N-terminal regions. Co-immunoprecipitation and confocal imaging strategies further showed that GRIF-1 can bind to the tetrameric kinesin light-chain/kinesin heavy-chain complex. These findings support a role for GRIF-1 as a kinesin adaptor molecule requisite for the anterograde delivery of defined cargoes such as mitochondria and/or vesicles incorporating beta2 subunit-containing GABAA receptors, in the brain.
Collapse
Affiliation(s)
- Miriam J Smith
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, United Kingdom
| | | | | | | |
Collapse
|
147
|
März P, Stetefeld J, Bendfeldt K, Nitsch C, Reinstein J, Shoeman RL, Dimitriades-Schmutz B, Schwager M, Leiser D, Ozcan S, Otten U, Ozbek S. Ataxin-10 interacts with O-linked beta-N-acetylglucosamine transferase in the brain. J Biol Chem 2006; 281:20263-70. [PMID: 16714295 DOI: 10.1074/jbc.m601563200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Modification by O-GlcNAc involves a growing number of eucaryotic nuclear and cytosolic proteins. Glycosylation of intracellular proteins is a dynamic process that in several cases competes with and acts as a reciprocal modification system to phosphorylation. O-Linked beta-N-acetylglucosamine transferase (OGT) levels are highest in the brain, and neurodegenerative disorders such as Alzheimer disease have been shown to involve abnormally phosphorylated key proteins, probably as a result of hypoglycosylation. Here, we show that the neurodegenerative disease protein ataxin-10 (Atx-10) is associated with cytoplasmic OGT p110 in the brain. In PC12 cells and pancreas, this association is competed by the shorter OGT p78 splice form, which is down-regulated in brain. Overexpression of Atx-10 in PC12 cells resulted in the reconstitution of the Atx-10-OGT p110 complex and enhanced intracellular glycosylation activity. Moreover, in an in vitro enzyme assay using PC12 cell extracts, Atx-10 increased OGT activity 2-fold. These data indicate that Atx-10 might be essential for the maintenance of a critical intracellular glycosylation level and homeostasis in the brain.
Collapse
Affiliation(s)
- Pia März
- Institute of Physiology, Pestalozzistr. 20, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Zachara NE, Hart GW. Cell signaling, the essential role of O-GlcNAc! Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:599-617. [PMID: 16781888 DOI: 10.1016/j.bbalip.2006.04.007] [Citation(s) in RCA: 295] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2005] [Revised: 04/20/2006] [Accepted: 04/24/2006] [Indexed: 11/28/2022]
Abstract
An increasing body of evidence points to a central regulatory role for glucose in mediating cellular processes and expands the role of glucose well beyond its traditional role(s) in energy metabolism. Recently, it has been recognized that one downstream effector produced from glucose is UDP-GlcNAc. Levels of UDP-GlcNAc, and the subsequent addition of O-linked beta-N-acetylglucosamine (O-GlcNAc) to Ser/Thr residues, is involved in regulating nuclear and cytoplasmic proteins in a manner analogous to protein phosphorylation. O-GlcNAc protein modification is essential for life in mammalian cells, highlighting the importance of this simple post-translational modification in basic cellular regulation. Recent research has highlighted key roles for O-GlcNAc serving as a nutrient sensor in regulating insulin signaling, the cell cycle, and calcium handling, as well as the cellular stress response.
Collapse
Affiliation(s)
- Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins Singapore, 31 Biopolis Way, #02-01 The Nanos, 138669 Singapore
| | | |
Collapse
|
149
|
Whisenhunt TR, Yang X, Bowe DB, Paterson AJ, Van Tine BA, Kudlow JE. Disrupting the enzyme complex regulating O-GlcNAcylation blocks signaling and development. Glycobiology 2006; 16:551-63. [PMID: 16505006 DOI: 10.1093/glycob/cwj096] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although the knowledge that nuclear and cytoplasmic proteins are modified with N-acetylglucosamine has existed for decades, little has been shown as to its function until recently. There are now substantial data highlighting the significance of proper regulation of this modification in multiple cellular processes. Currently, only two enzymes are known that regulate this modification. O-GlcNAc transferase (OGT) modifies protein substrates posttranslationally by adding the N-acetylglucosamine. Bifunctional nuclear/cytoplasmic O-GlcNAcase and acetyl transferase (NCOAT) is responsible for cleaving the modification from target proteins. Here, we demonstrate for the first time an unusual association of these two opposing enzymes into a single O-GlcNAczyme complex. NCOAT and OGT associate strongly through specific domains such that NCOAT accompanies OGT, with histone deacetylases (HDACs), into transcription corepression complexes. Exclusion of NCOAT activities from OGT association blocks proper estrogen-dependent cell signaling as well as mammary development in transgenic mice. This demonstrates that NCOAT is in a strategic position to rapidly counteract OGT and HDAC without requiring its recruitment.
Collapse
Affiliation(s)
- Thomas R Whisenhunt
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
150
|
Wopereis S, Lefeber DJ, Morava E, Wevers RA. Mechanisms in protein O-glycan biosynthesis and clinical and molecular aspects of protein O-glycan biosynthesis defects: a review. Clin Chem 2006; 52:574-600. [PMID: 16497938 DOI: 10.1373/clinchem.2005.063040] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Genetic diseases that affect the biosynthesis of protein O-glycans are a rapidly growing group of disorders. Because this group of disorders does not have a collective name, it is difficult to get an overview of O-glycosylation in relation to human health and disease. Many patients with an unsolved defect in N-glycosylation are found to have an abnormal O-glycosylation as well. It is becoming increasingly evident that the primary defect of these disorders is not necessarily localized in one of the glycan-specific transferases, but can likewise be found in the biosynthesis of nucleotide sugars, their transport to the endoplasmic reticulum (ER)/Golgi, and in Golgi trafficking. Already, disorders in O-glycan biosynthesis form a substantial group of genetic diseases. In view of the number of genes involved in O-glycosylation processes and the increasing scientific interest in congenital disorders of glycosylation, it is expected that the number of identified diseases in this group will grow rapidly over the coming years. CONTENT We first discuss the biosynthesis of protein O-glycans from their building blocks to their secretion from the Golgi. Subsequently, we review 24 different genetic disorders in O-glycosylation and 10 different genetic disorders that affect both N- and O-glycosylation. The key clinical, metabolic, chemical, diagnostic, and genetic features are described. Additionally, we describe methods that can be used in clinical laboratory screening for protein O-glycosylation biosynthesis defects and their pitfalls. Finally, we introduce existing methods that might be useful for unraveling O-glycosylation defects in the future.
Collapse
Affiliation(s)
- Suzan Wopereis
- Laboratory of Pediatrics and Neurology and Department of Pediatrics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|