101
|
Shi J, Zhang T, Zhou C, Chohan MO, Gu X, Wegiel J, Zhou J, Hwang YW, Iqbal K, Grundke-Iqbal I, Gong CX, Liu F. Increased dosage of Dyrk1A alters alternative splicing factor (ASF)-regulated alternative splicing of tau in Down syndrome. J Biol Chem 2008; 283:28660-9. [PMID: 18658135 PMCID: PMC2568927 DOI: 10.1074/jbc.m802645200] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 07/14/2008] [Indexed: 12/15/2022] Open
Abstract
Two groups of tau, 3R- and 4R-tau, are generated by alternative splicing of tau exon 10. Normal adult human brain expresses equal levels of them. Disruption of the physiological balance is a common feature of several tauopathies. Very early in their life, individuals with Down syndrome (DS) develop Alzheimer-type tau pathology, the molecular basis for which is not fully understood. Here, we demonstrate that Dyrk1A, a kinase encoded by a gene in the DS critical region, phosphorylates alternative splicing factor (ASF) at Ser-227, Ser-234, and Ser-238, driving it into nuclear speckles and preventing it from facilitating tau exon 10 inclusion. The increased dosage of Dyrk1A in DS brain due to trisomy of chromosome 21 correlates to an increase in 3R-tau level, which on abnormal hyperphosphorylation and aggregation of tau results in neurofibrillary degeneration. Imbalance of 3R- and 4R-tau in DS brain by Dyrk1A-induced dysregulation of alternative splicing factor-mediated alternative splicing of tau exon 10 represents a novel mechanism of neurofibrillary degeneration and may help explain early onset tauopathy in individuals with DS.
Collapse
Affiliation(s)
- Jianhua Shi
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, P. R. China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Aranda S, Alvarez M, Turró S, Laguna A, de la Luna S. Sprouty2-mediated inhibition of fibroblast growth factor signaling is modulated by the protein kinase DYRK1A. Mol Cell Biol 2008; 28:5899-911. [PMID: 18678649 PMCID: PMC2547015 DOI: 10.1128/mcb.00394-08] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 04/15/2008] [Accepted: 07/23/2008] [Indexed: 12/15/2022] Open
Abstract
Raf-MEK-extracellular signal-regulated kinase (Erk) signaling initiated by growth factor-engaged receptor tyrosine kinases (RTKs) is modulated by an intricate network of positive and negative feedback loops which determine the specificity and spatiotemporal characteristics of the intracellular signal. Well-known antagonists of RTK signaling are the Sprouty proteins. The activity of Sprouty proteins is modulated by phosphorylation. However, little is known about the kinases responsible for these posttranslational modifications. We identify DYRK1A as one of the protein kinases of Sprouty2. We show that DYRK1A interacts with and regulates the phosphorylation status of Sprouty2. Moreover, we identify Thr75 on Sprouty2 as a DYRK1A phosphorylation site in vitro and in vivo. This site is functional, since its mutation enhanced the repressive function of Sprouty2 on fibroblast growth factor (FGF)-induced Erk signaling. Further supporting the idea of a functional interaction, DYRK1A and Sprouty2 are present in protein complexes in mouse brain, where their expression overlaps in several structures. Moreover, both proteins copurify with the synaptic plasma membrane fraction of a crude synaptosomal preparation and colocalize in growth cones, pointing to a role in nerve terminals. Our results suggest, therefore, that DYRK1A positively regulates FGF-mitogen-activated protein kinase signaling by phosphorylation-dependent impairment of the inhibitory activity of Sprouty2.
Collapse
Affiliation(s)
- Sergi Aranda
- Genes and Disease Program, Center for Genomic Regulation, UPF, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Barcelona, Spain
| | | | | | | | | |
Collapse
|
103
|
Mental retardation and associated neurological dysfunctions in Down syndrome: a consequence of dysregulation in critical chromosome 21 genes and associated molecular pathways. Eur J Paediatr Neurol 2008; 12:168-82. [PMID: 17933568 DOI: 10.1016/j.ejpn.2007.08.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 08/19/2007] [Accepted: 08/21/2007] [Indexed: 12/11/2022]
Abstract
Down syndrome (DS), affecting 1/700 live births, is the major genetic cause of mental retardation (MR), a cognitive disorder with hard impact on public health. DS brain is characterized by a reduced cerebellar volume and number of granular cells, defective cortical lamination and reduced cortical neurons, malformed dendritic trees and spines, and abnormal synapses. These neurological alterations, also found in trisomic mouse models, result from gene-dosage effects of Human Chromosome 21 (HC21) on the expression of critical developmental genes. HC21 sequencing, mouse ortholog gene identification and DS mouse model generation lead to determine HC21 gene functions and the effects of protein-dosage alterations in neurodevelopmental and metabolic pathways in DS individuals. Trisomic brain transcriptome of DS patients and trisomic mouse models identified some molecular changes determined by gene-overdosage and associated dysregulation of some disomic gene expression in DS brains. These transcriptional variations cause developmental alterations in neural patterning and signal transduction pathways that may lead to defective neuronal circuits responsible for the pathogenesis of MR in DS. Recently, the first altered molecular pathway responsible of some DS phenotypes, including neurological and cognitive disorders has been identified. In this pathway, two critical HC21 genes (DYRK1A and DSCR1) act synergistically to control the phosphorylation levels of NFATc and NFATc-regulated gene expression. Interestingly, the NFATc mice show neurological dysfunctions similar to those seen in DS patients and trisomic mouse models. Treatment of DS mouse model Ts65Dn with GABA(A) antagonists allowed post-drug rescue of cognitive defects, indicating a hopeful direction in clinical therapies for MR in children with DS.
Collapse
|
104
|
Ryoo SR, Cho HJ, Lee HW, Jeong HK, Radnaabazar C, Kim YS, Kim MJ, Son MY, Seo H, Chung SH, Song WJ. Dual-specificity tyrosine(Y)-phosphorylation regulated kinase 1A-mediated phosphorylation of amyloid precursor protein: evidence for a functional link between Down syndrome and Alzheimer's disease. J Neurochem 2008; 104:1333-44. [PMID: 18005339 DOI: 10.1111/j.1471-4159.2007.05075.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Most individuals with Down Syndrome (DS) show an early-onset of Alzheimer's disease (AD), which potentially results from the presence of an extra copy of a segment of chromosome 21. Located on chromosome 21 are the genes that encode beta-amyloid (Abeta) precursor protein (APP ), a key protein involved in the pathogenesis of AD, and dual-specificity tyrosine(Y)-phosphorylation regulated kinase 1A (DYRK1A ), a proline-directed protein kinase that plays a critical role in neurodevelopment. Here, we describe a potential mechanism for the regulation of AD pathology in DS brains by DYRK1A-mediated phosphorylation of APP. We show that APP is phosphorylated at Thr668 by DYRK1A in vitro and in mammalian cells. The amounts of phospho-APP and Abeta are increased in the brains of transgenic mice that over-express the human DYRK1A protein. Furthermore, we show that the amounts of phospho-APP as well as those of APP and DYRK1A are elevated in human DS brains. Taken together, these results reveal a potential regulatory link between APP and DYRK1A in DS brains, and suggest that the over-expression of DYRK1A in DS may play a role in accelerating AD pathogenesis through phosphorylation of APP.
Collapse
Affiliation(s)
- Soo-Ryoon Ryoo
- Graduate Program in Neuroscience, Institute for Brain Science and Technology, Inje University, Busan, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Hämmerle B, Elizalde C, Tejedor FJ. The spatio-temporal and subcellular expression of the candidate Down syndrome gene Mnb/Dyrk1A in the developing mouse brain suggests distinct sequential roles in neuronal development. Eur J Neurosci 2008; 27:1061-74. [PMID: 18364031 DOI: 10.1111/j.1460-9568.2008.06092.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It is widely accepted that the neurological alterations in Down syndrome (DS) are principally due to modifications in developmental processes. Accordingly, a large part of the research on DS in recent years has focused on chromosome 21 genes that influence brain development. MNB/DYRK1A is one of the genes on human chromosome 21 that has raised most interest, due to its relationship with the brain functions that are altered in DS. Although a number of interesting experimental mouse models for DS are being developed, we still know little about the expression of Mnb/Dyrk1A during mouse brain development. Here, we report that Mnb/Dyrk1A displays a rather dynamic spatio-temporal expression pattern during mouse central nervous system development. Our data indicate that Mnb/Dyrk1A is specifically expressed in four sequential developmental phases: transient expression in preneurogenic progenitors, cell cycle-regulated expression in neurogenic progenitors, transient expression in recently born neurones, and persistent expression in late differentiating neurones. Our results also suggest that the subcellular localization of MNB/DYRK1A, including its translocation to the nucleus, is finely regulated. Thus, the MNB/DYRK1A protein kinase could be a key element in the molecular machinery that couples sequential events in neuronal development. This rich repertoire of potential functions in the developing central nervous system is suitable to be linked to the neurological alterations in DS through the use of mouse experimental models.
Collapse
Affiliation(s)
- Barbara Hämmerle
- Instituto de Neurociencias CSIC-UMH, Universidad Miguel Hernandez-Campus de San Juan, 03550 San Juan, Alicante, Spain
| | | | | |
Collapse
|
106
|
Yomoda JI, Muraki M, Kataoka N, Hosoya T, Suzuki M, Hagiwara M, Kimura H. Combination of Clk family kinase and SRp75 modulates alternative splicing of Adenovirus E1A. Genes Cells 2008; 13:233-44. [DOI: 10.1111/j.1365-2443.2008.01163.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
107
|
Abstract
Par 6 acts as a scaffold protein to facilitate atypical protein kinase C-mediated phosphorylation of cytoplasmic protein complexes, leading to epithelial and neuronal cell polarization. In addition to its location in the cytoplasm, Par 6 is localized to the nucleus. However, its organization and potential functions in the nucleus have not been examined. Using an affinity-purified Par 6 antibody and a chimera of Par 6 and green fluorescent protein, we show that Par 6 localizes precisely to nuclear speckles, but not to other nuclear structures, and displays characteristics of speckle proteins. We show that Par 6 colocalizes in the nucleus with Tax, a transcriptional activator of the human T-cell leukemia virus type 1 long terminal repeat, but multiple lines of evidence show that Par 6 is not directly involved in known functions of speckle proteins, including general transcription, splicing, or mRNA transport. Significantly, however, the structure of nuclear speckles is lost when Par 6 levels are reduced by Par 6-specific small interfering RNA. Therefore, we hypothesize that Par 6 in the nucleus acts as a scaffolding protein in nuclear speckle complexes, similar to its role in the cytoplasm.
Collapse
Affiliation(s)
- Erin G Cline
- Department of Biological Sciences, The James A Clark Center, Stanford University, Stanford, CA 94305-5430, USA
| | | |
Collapse
|
108
|
Alvarez M, Altafaj X, Aranda S, de la Luna S. DYRK1A autophosphorylation on serine residue 520 modulates its kinase activity via 14-3-3 binding. Mol Biol Cell 2007; 18:1167-78. [PMID: 17229891 PMCID: PMC1838983 DOI: 10.1091/mbc.e06-08-0668] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 12/05/2006] [Accepted: 01/05/2007] [Indexed: 02/06/2023] Open
Abstract
Dual-specificity tyrosine-phosphorylated and regulated kinase (DYRK) proteins are an evolutionarily conserved family of protein kinases, with members identified from yeast to humans, that participate in a variety of cellular processes. DYRKs are serine/threonine protein kinases that are activated by autophosphorylation on a tyrosine residue in the activation loop. The family member DYRK1A has been shown to phosphorylate several cytosolic proteins and a number of splicing and transcription factors, including members of the nuclear factor of activated T cells family. In the present study, we show that DYRK1A autophosphorylates, via an intramolecular mechanism, on Ser-520, in the PEST domain of the protein. We also show that phosphorylation of this residue, which we show is subjected to dynamic changes in vivo, mediates the interaction of DYRK1A with 14-3-3beta. A second 14-3-3 binding site is present within the N-terminal of the protein. In the context of the DYRK1A molecule, neither site can act independently of the other. Bacterially produced DYRK1A and the mutant DYRK1A/S520A have similar kinase activities, suggesting that Ser-520 phosphorylation does not affect the intrinsic kinase activity on its own. Instead, we demonstrate that this phosphorylation allows the binding of 14-3-3beta, which in turn stimulates the catalytic activity of DYRK1A. These findings provide evidence for a novel mechanism for the regulation of DYRK1A kinase activity.
Collapse
Affiliation(s)
- Mónica Alvarez
- *Genes and Disease Program, Centre de Regulació Genómica, Parc de Recerca Biomèdica de Barcelona, 08003 Barcelona, Spain; and
| | - Xavier Altafaj
- *Genes and Disease Program, Centre de Regulació Genómica, Parc de Recerca Biomèdica de Barcelona, 08003 Barcelona, Spain; and
| | - Sergi Aranda
- *Genes and Disease Program, Centre de Regulació Genómica, Parc de Recerca Biomèdica de Barcelona, 08003 Barcelona, Spain; and
| | - Susana de la Luna
- *Genes and Disease Program, Centre de Regulació Genómica, Parc de Recerca Biomèdica de Barcelona, 08003 Barcelona, Spain; and
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
109
|
Morita K, Lo Celso C, Spencer-Dene B, Zouboulis CC, Watt FM. HAN11 binds mDia1 and controls GLI1 transcriptional activity. J Dermatol Sci 2006; 44:11-20. [PMID: 16887337 DOI: 10.1016/j.jdermsci.2006.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 06/01/2006] [Accepted: 06/09/2006] [Indexed: 11/25/2022]
Abstract
BACKGROUND The Hedgehog pathway is important in normal and diseased skin. One of the key transcription factors in the pathway is GLI1. GLI1-dependent transcription is positively regulated by DYRK1A, which is reported to bind HAN11. HAN11 is the human homologue of AN11, which controls flavonoid synthesis in plants. OBJECTIVE We wanted to identify other binding partners of HAN11 and investigate whether HAN11 regulates GLI1-dependent transcription. METHODS We used TAP-tag purification and GST pull down to identify protein-protein interactions and performed luciferase assays of transcriptional activity. We used immunofluorescence microscopy to examine the subcellular distribution of HAN11, mDia1 and GLI1. We performed in situ hybridisation to compare expression of HAN11 with GLI1 and patched in mouse embryos. RESULTS We identified the cytoskeletal regulator mDia1 as a binding partner of HAN11. We showed that HAN11 binds the FH2 actin binding domain of mDia1 and confirmed that HAN11 also interacts with DYRK1A. Overexpression of mDia1 or active RhoA caused translocation of HAN11 from nucleus to cytoplasm. HAN11 and mDia1 repressed DYRK1A-dependent GLI1 transcriptional activity. HAN11 overexpression decreased SZ95 sebocyte proliferation and increased cytoplasmic GLI1. AN11 was highly expressed in E10.5 mouse embryo limb buds, in an overlapping pattern with Ptc and GLI1. CONCLUSION These results suggest that AN11 may be a physiological regulator of GLI1 transcriptional activity.
Collapse
Affiliation(s)
- Kazumasa Morita
- Keratinocyte Laboratory, Cancer Research UK London Research Institute, London WC2A 3PX, England, UK
| | | | | | | | | |
Collapse
|
110
|
Kinstrie R, Lochhead P, Sibbet G, Morrice N, Cleghon V. dDYRK2 and Minibrain interact with the chromatin remodelling factors SNR1 and TRX. Biochem J 2006; 398:45-54. [PMID: 16671894 PMCID: PMC1525014 DOI: 10.1042/bj20060159] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The DYRKs (dual specificity tyrosine phosphorylation-regulated kinases) are a conserved family of protein kinases that autophosphorylate a tyrosine residue in their activation loop by an intra-molecular mechanism and phosphorylate exogenous substrates on serine/threonine residues. Little is known about the identity of true substrates for DYRK family members and their binding partners. To address this question, we used full-length dDYRK2 (Drosophila DYRK2) as bait in a yeast two-hybrid screen of a Drosophila embryo cDNA library. Of 14 independent dDYRK2 interacting clones identified, three were derived from the chromatin remodelling factor, SNR1 (Snf5-related 1), and three from the essential chromatin component, TRX (trithorax). The association of dDYRK2 with SNR1 and TRX was confirmed by co-immunoprecipitation studies. Deletion analysis showed that the C-terminus of dDYRK2 modulated the interaction with SNR1 and TRX. DYRK family member MNB (Minibrain) was also found to co-precipitate with SNR1 and TRX, associations that did not require the C-terminus of the molecule. dDYRK2 and MNB were also found to phosphorylate SNR1 at Thr102 in vitro and in vivo. This phosphorylation required the highly conserved DH-box (DYRK homology box) of dDYRK2, whereas the DH-box was not essential for phosphorylation by MNB. This is the first instance of phosphorylation of SNR1 or any of its homologues and implicates the DYRK family of kinases with a role in chromatin remodelling.
Collapse
Affiliation(s)
- Ross Kinstrie
- *The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland, U.K
| | - Pamela A. Lochhead
- *The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland, U.K
| | - Gary Sibbet
- *The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland, U.K
| | - Nick Morrice
- †MRC Protein Phosphorylation Unit, School of Life Sciences, MSI/WTB Complex, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - Vaughn Cleghon
- *The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
111
|
de Graaf K, Czajkowska H, Rottmann S, Packman LC, Lilischkis R, Lüscher B, Becker W. The protein kinase DYRK1A phosphorylates the splicing factor SF3b1/SAP155 at Thr434, a novel in vivo phosphorylation site. BMC BIOCHEMISTRY 2006; 7:7. [PMID: 16512921 PMCID: PMC1420302 DOI: 10.1186/1471-2091-7-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 03/02/2006] [Indexed: 11/10/2022]
Abstract
BACKGROUND The U2 small nuclear ribonucleoprotein particle (snRNP) component SF3b1/SAP155 is the only spliceosomal protein known to be phosphorylated concomitant with splicing catalysis. DYRK1A is a nuclear protein kinase that has been localized to the splicing factor compartment. Here we describe the identification of DYRK1A as a protein kinase that phosphorylates SF3b1 in vitro and in cultivated cells. RESULTS Overexpression of DYRK1A caused a markedly increased phosphorylation of SF3b1 in COS-7 cells as assessed by Western blotting with an antibody specific for phosphorylated Thr-Pro dipeptide motifs. Phosphopeptide mapping of metabolically labelled SF3b1 showed that the majority of the in vivo-phosphopeptides corresponded to sites also phosphorylated by DYRK1A in vitro. Phosphorylation with cyclin E/CDK2, a kinase previously reported to phosphorylate SF3b1, generated a completely different pattern of phosphopeptides. By mass spectrometry and mutational analysis of SF3b1, Thr434 was identified as the major phosphorylation site for DYRK1A. Overexpression of DYRK1A or the related kinase, DYRK1B, resulted in an enhanced phosphorylation of Thr434 in endogenous SF3b1 in COS-7 cells. Downregulation of DYRK1A in HEK293 cells or in HepG2 cells by RNA interference reduced the phosphorylation of Thr434 in SF3b1. CONCLUSION The present data show that the splicing factor SF3b1 is a substrate of the protein kinase DYRK1A and suggest that DYRK1A may be involved in the regulation of pre mRNA-splicing.
Collapse
Affiliation(s)
- Katrin de Graaf
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Hanna Czajkowska
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Sabine Rottmann
- Division of Biochemistry and Molecular Biology, Medical Faculty of the RWTH Aachen University, Pauwelstr. 30, 52074 Aachen, Germany
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Dr., San Diego, CA 92121, USA
| | - Len C Packman
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Richard Lilischkis
- Division of Biochemistry and Molecular Biology, Medical Faculty of the RWTH Aachen University, Pauwelstr. 30, 52074 Aachen, Germany
| | - Bernhard Lüscher
- Division of Biochemistry and Molecular Biology, Medical Faculty of the RWTH Aachen University, Pauwelstr. 30, 52074 Aachen, Germany
| | - Walter Becker
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| |
Collapse
|
112
|
Popovici C, Fallet M, Marguet D, Birnbaum D, Roubin R. Intracellular trafficking of LET-756, a fibroblast growth factor of C. elegans, is controlled by a balance of export and nuclear signals. Exp Cell Res 2006; 312:1484-95. [PMID: 16487967 DOI: 10.1016/j.yexcr.2006.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 01/10/2006] [Accepted: 01/10/2006] [Indexed: 12/24/2022]
Abstract
The superfamily of fibroblast growth factors (FGF), which counts 22 members in humans, exerts many functions during animal development and adult life. LET-756 is one of the two FGFs of the nematode C. elegans. Re-introduction of LET-756 in a null mutant strain restores viability, allowing the study of structural requirements for LET-756 trafficking and function. LET-756 protein has several regions and motifs, including a non-classical internal motif required for secretion. We show here that a main difference in the wild-type LET-756 molecule and a truncated molecule that mimics a partial loss-of-function mutant lies on subnuclear expression. Using Cos-1 cells and rescue activity we show that: (i) nuclear localization is due to various redundant NLS, one of them acting as a nucleolar localization signal; (ii) nuclear LET-756 is addressed to the speckles by a stretch of glutamine residues; (iii) nuclear LET-756 is trafficking between speckles and nucleoli; (iv) in the nucleolus, LET-756 is associated with proteins of the rRNA splicing compartment; (v) changing LET-756 secretion signal prevents its nuclear localization. We propose that LET-756 exerts its functions through a balance between secreted and nuclear forms due to two opposite addressing signals, (i) synergy of several NLS and (ii) attenuated secretion signal.
Collapse
Affiliation(s)
- Cornel Popovici
- Institut de Cancérologie de Marseille, Laboratoire d'Oncologie Moléculaire, Institut Paoli-Calmettes et UMR599 INSERM, 27 Bd. Leï Roure, 13009 Marseille, France
| | | | | | | | | |
Collapse
|
113
|
Fu Z, Schroeder MJ, Shabanowitz J, Kaldis P, Togawa K, Rustgi AK, Hunt DF, Sturgill TW. Activation of a nuclear Cdc2-related kinase within a mitogen-activated protein kinase-like TDY motif by autophosphorylation and cyclin-dependent protein kinase-activating kinase. Mol Cell Biol 2005; 25:6047-64. [PMID: 15988018 PMCID: PMC1168834 DOI: 10.1128/mcb.25.14.6047-6064.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Male germ cell-associated kinase (MAK) and intestinal cell kinase (ICK) are nuclear Cdc2-related kinases with nearly identical N-terminal catalytic domains and more divergent C-terminal noncatalytic domains. The catalytic domain is also related to mitogen-activated protein kinases (MAPKs) and contains a corresponding TDY motif. Nuclear localization of ICK requires subdomain XI and interactions of the conserved Arg-272, but not kinase activity or, surprisingly, any of the noncatalytic domain. Further, nuclear localization of ICK is required for its activation. ICK is activated by dual phosphorylation of the TDY motif. Phosphorylation of Tyr-159 in the TDY motif requires ICK autokinase activity but confers only basal kinase activity. Full activation requires additional phosphorylation of Thr-157 in the TDY motif. Coexpression of ICK with constitutively active MEK1 or MEK5 fails to increase ICK phosphorylation or activity, suggesting that MEKs are not involved. ICK and MAK are related to Ime2p in budding yeast, and cyclin-dependent protein kinase-activating kinase Cak1p has been placed genetically upstream of Ime2p. Recombinant Cak1p phosphorylates Thr-157 in the TDY motif of recombinant ICK and activates its activity in vitro. Coexpression of ICK with wild-type CAK1 but not kinase-inactive CAK1 in cells also increases ICK phosphorylation and activity. Our studies establish ICK as the prototype for a new group of MAPK-like kinases requiring dual phosphorylation at TDY motifs.
Collapse
Affiliation(s)
- Zheng Fu
- Department of Pharmacology and Internal Medicine, University of Virginia School, 1300 Jefferson Park Avenue, Charlottesville, Virginia 22908-0735, USA
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Bescond M, Rahmani Z. Dual-specificity tyrosine-phosphorylated and regulated kinase 1A (DYRK1A) interacts with the phytanoyl-CoA alpha-hydroxylase associated protein 1 (PAHX-AP1), a brain specific protein. Int J Biochem Cell Biol 2005; 37:775-83. [PMID: 15694837 DOI: 10.1016/j.biocel.2004.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 12/08/2004] [Accepted: 12/14/2004] [Indexed: 11/18/2022]
Abstract
Down syndrome (DS) is the most common genetic defect correlated with mental retardation and delayed development. The specific genes responsible for these phenotypic alterations have not yet been defined. Dyrk1A (dual-specificity tyrosine-phosphorylated and regulated kinase 1A), the human ortholog of the Drosophila minibrain gene (mnb), maps to the Down syndrome critical region of human chromosome 21 and is overexpressed in Down syndrome fetal brain. In Drosophila, minibrain is involved in postembryonic neurogenesis. In human, DYRK1A encodes a serine-threonine kinase but despite its potential involvement in the neurobiological alterations associated with Down syndrome, its physiological function has not yet been defined. To gain some insight into its biological function, we used the yeast two-hybrid approach to identify binding partners of DYRK1A. We found that the C-terminal region of DYRK1A interacts with a brain specific protein, phytanoyl-CoA alpha-hydroxylase-associated protein 1 (PAHX-AP1, also named PHYHIP) which was previously shown to interact with phytanoyl-CoA alpha-hydroxylase (PAHX, also named PHYH), a Refsum disease gene product. This interaction was confirmed by co-immunoprecipitation of PC12 cells co-transfected with DYRK1A and PAHX-AP1. Furthermore, immunofluorescence analysis of PC12 cells co-transfected with both plasmids showed a re-distribution of DYRK1A from the nucleus to the cytoplasm where it co-localized with PAHX-AP1. Finally, in PC12 cells co-transfected with both plasmids, DYRK1A was no longer able to interact with the nuclear transcription factor CREB, thereby confirming that the intracellular localization of DYRK1A was changed from the nucleus to the cytoplasm in the presence of PAHX-AP1. Therefore, these data indicate that by inducing a re-localization of DYRK1A into the cytoplasm, PAHX-AP1 may contribute to new cellular functions of DYRK1A and suggest that PAHX-AP1 may be involved in the development of neurological abnormalities observed in Down syndrome patients.
Collapse
Affiliation(s)
- Marilyne Bescond
- CNRS UMR 8602, Faculté de Médecine Necker-Enfants Malades, 75730 Paris Cedex 15, France
| | | |
Collapse
|
115
|
Kim D, Won J, Shin DW, Kang J, Kim YJ, Choi SY, Hwang MK, Jeong BW, Kim GS, Joe CO, Chung SH, Song WJ. Regulation of Dyrk1A kinase activity by 14-3-3. Biochem Biophys Res Commun 2004; 323:499-504. [PMID: 15369779 DOI: 10.1016/j.bbrc.2004.08.102] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Indexed: 11/16/2022]
Abstract
Dual-specificity tyrosine(Y) regulated kinase 1A (DYRK1A) is a serine/threonine protein kinase implicated in mental retardation resulting from Down syndrome. In this study, we carried out yeast two-hybrid screening to find proteins regulating DYRK1A kinase activity. We identified 14-3-3 as a Dyrk1A interacting protein, which is consistent with the previous finding of the interaction between the yeast orthologues Yak1p and Bmh1/2p. We showed the interaction between Dyrk1A and 14-3-3 in vitro and in vivo. The binding required the N-terminus of Dyrk1A and was independent of the Dyrk1A phosphorylation status. Functionally, 14-3-3 binding increased Dyrk1A kinase activity in a dose dependent manner in vitro. In vivo, a small peptide inhibiting 14-3-3 binding, sc138, decreased Dyrk1A kinase activity in COS7. In summary, these results suggest that DYRK1A kinase activity could be regulated by the interaction of 14-3-3.
Collapse
Affiliation(s)
- Doyeun Kim
- Division of CNS, Hanwha Chemical R&D Center, Daejon 305-345, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Golding M, Ruhrberg C, Sandle J, Gullick WJ. Mapping nucleolar and spliceosome localization sequences of neuregulin1-β3. Exp Cell Res 2004; 299:110-8. [PMID: 15302578 DOI: 10.1016/j.yexcr.2004.05.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Revised: 05/25/2004] [Indexed: 01/09/2023]
Abstract
Mitogenic growth factors are generally cell surface associated or secreted proteins, which produce effects by binding to cell surface receptor tyrosine kinases. More recently, it has become clear that some of these proteins can accumulate in the nucleus, where they are proposed to have transcriptional activity. We show here that neuregulin1 (NRG1-beta), an EGF-like growth factor, localizes to the cell nuclei of a human breast cancer. We also show that a nonsecreted isoform of this family of ligands, neuregulin1-beta3, localizes to two distinct compartments within the nucleus, nucleoli, and SC35-positive speckles. Importantly, localization of NRG-beta3 to either structure is receptor-independent, as it occurs in cells lacking its cognate receptors, erbB-3 and erbB-4, and is unaffected by removal of the receptor-binding domain. A panel of deletion mutants was used to demonstrate that the first 21 amino acids of the N-terminus are essential for nucleolar localization, while targeting to nuclear speckles requires residues 49-79 of the 241 amino acid protein. These observations support the idea that secretion and subsequent cell surface receptor binding of mitogenic growth factors are not a prerequisite for nuclear localization and that nonsecreted ligands may have highly specific functions in defined nuclear compartments.
Collapse
Affiliation(s)
- Matthew Golding
- Receptor Biology Laboratory, Imperial Cancer Research Fund Laboratories, Hammersmith Hospital, London, UK
| | | | | | | |
Collapse
|
117
|
Fotaki V, Martínez De Lagrán M, Estivill X, Arbonés M, Dierssen M. Haploinsufficiency of Dyrk1A in mice leads to specific alterations in the development and regulation of motor activity. Behav Neurosci 2004; 118:815-21. [PMID: 15301607 DOI: 10.1037/0735-7044.118.4.815] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
DYRK1A is a protein kinase proposed to be involved in neurogenesis. Gene-targeting disruption of Dyrk1A in mice leads to decreased body and brain size, with no severe disturbance of behavior. In this study, the authors focused on the motor profile of Dyrk1A(+/-) mice. These mice presented impairment of neuromotor development with decreased activity, suggesting a physiological role of Dyrk1A in the maturation of the neuromotor system. In the adult, a marked hypoactivity and alteration of specific motor parameters were detected. These results are in agreement with the significant expression of Dyrk1A in structures related to motor function and support a role of Dyrk1A in the control of motor function.
Collapse
Affiliation(s)
- V Fotaki
- Genetics and Disease Program, Genomic Regulation Center, Barcelona, Spain
| | | | | | | | | |
Collapse
|
118
|
Sitz JH, Tigges M, Baumgärtel K, Khaspekov LG, Lutz B. Dyrk1A potentiates steroid hormone-induced transcription via the chromatin remodeling factor Arip4. Mol Cell Biol 2004; 24:5821-34. [PMID: 15199138 PMCID: PMC480880 DOI: 10.1128/mcb.24.13.5821-5834.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Accepted: 03/26/2004] [Indexed: 11/20/2022] Open
Abstract
Dyrk1A, a mammalian homolog of the Drosophila minibrain gene, encodes a dual-specificity kinase, involved in neuronal development and in adult brain physiology. In humans, a third copy of DYRK1A is present in Down syndrome (trisomy 21) and has been implicated in the etiology of mental retardation. To further understand this pathology, we searched for Dyrk1A-interacting proteins and identified Arip4 (androgen receptor-interacting protein 4), a SNF2-like steroid hormone receptor cofactor. Mouse hippocampal and cerebellar neurons coexpress Dyrk1A and Arip4. In HEK293 cells and hippocampal neurons, both proteins are colocalized in a speckle-like nuclear subcompartment. The functional interaction of Dyrk1A with Arip4 was analyzed in a series of transactivation assays. Either Dyrk1A or Arip4 alone displays an activating effect on androgen receptor- and glucocorticoid receptor-mediated transactivation, and Dyrk1A and Arip4 together act synergistically. These effects are independent of the kinase activity of Dyrk1A. Inhibition of endogenous Dyrk1A and Arip4 expression by RNA interference showed that both proteins are necessary for the efficient activation of androgen receptor- and glucocorticoid receptor-dependent transcription. As Dyrk1A is an activator of steroid hormone-regulated transcription, the overexpression of DYRK1A in persons with Down syndrome may cause rather broad changes in the homeostasis of steroid hormone-controlled cellular events.
Collapse
Affiliation(s)
- Jan Hendrik Sitz
- Molecular Genetics of Behavior, Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | | | | |
Collapse
|
119
|
Wegiel J, Kuchna I, Nowicki K, Frackowiak J, Dowjat K, Silverman WP, Reisberg B, DeLeon M, Wisniewski T, Adayev T, Chen-Hwang MC, Hwang YW. Cell type- and brain structure-specific patterns of distribution of minibrain kinase in human brain. Brain Res 2004; 1010:69-80. [PMID: 15126119 DOI: 10.1016/j.brainres.2004.03.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2004] [Indexed: 01/12/2023]
Abstract
The minibrain kinase (Mnb/Dyrk1A) gene is localized in the Down syndrome (DS) critical region of chromosome 21. This gene encodes a proline-directed serine/threonine protein kinase (minibrain kinase-Mnb/Dyrk1A), which is required for the proliferation of distinct neuronal cell types during postembryonic neurogenesis. To study the distribution of Mnb/Dyrk1A during human brain development and aging, we raised Mnb/Dyrk1A-specific antibody (mAb 7F3) and examined 22 brains of normal subjects from 8 months to 90 years of age. We found that neurons were the only cells showing the presence of 7F3-positive product in both cell nucleus and cytoplasm. Nuclear localization supports the concept that Mnb/Dyrk1A may be involved in control of gene expression. Synaptic localization of Mnb/Dyrk1A also supports our previous studies suggesting that Mnb/Dyrk1A is a regulator of assembly of endocytic apparatus and appears to be involved in synaptic vesicle recycling and synaptic signal transmission. Accumulation of numerous 7F3-positive corpora amylacea in the memory and motor system subdivisions in subjects older than 33 years of age indicates that Mnb/Dyrk1A is colocalized with markers of astrocyte and neuron degeneration. Differences in the topography and the amount of Mnb/Dyrk1A in neurons, astrocytes, and ependymal and endothelial cells appear to reflect cell type- and brain structure-specific patterns in trafficking and utilization of Mnb/Dyrk1A.
Collapse
Affiliation(s)
- Jerzy Wegiel
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
de Graaf K, Hekerman P, Spelten O, Herrmann A, Packman LC, Büssow K, Müller-Newen G, Becker W. Characterization of cyclin L2, a novel cyclin with an arginine/serine-rich domain: phosphorylation by DYRK1A and colocalization with splicing factors. J Biol Chem 2004; 279:4612-24. [PMID: 14623875 DOI: 10.1074/jbc.m310794200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A novel method employing filter arrays of a cDNA expression library for the identification of substrates for protein kinases was developed. With this technique, we identified a new member of the cyclin family, cyclin L2, as a substrate of the nuclear protein kinase DYRK1A. Cyclin L2 contains an N-terminal cyclin domain and a C-terminal arginine/serine-rich domain (RS domain), which is a hallmark of many proteins involved in pre-mRNA processing. The gene for cyclin L2 encodes the full-length cyclin L2, which is predominantly expressed in testis, as well as a truncated splicing variant (cyclin L2S) that lacks the RS domain and is ubiquitously expressed in human tissues. Full-length cyclin L2, but not cyclin L2S, was associated with the cyclin-dependent kinase PITSLRE. Cyclin L2 interacted with splicing factor 2 in vitro and was co-localized with the splicing factor SC35 in the nuclear speckle compartment. Photobleaching experiments showed that a fusion protein of green fluorescent protein and cyclin L2 in nuclear speckles rapidly exchanged with unbleached molecules in the nucleus, similar to other RS domain-containing proteins. In striking contrast, the closely related green fluorescent protein-cyclin L1 was immobile in the speckle compartment. DYRK1A interacted with cyclin L2 in pull-down assays, and overexpression of DYRK1A stimulated phosphorylation of cyclin L2 in COS-7 cells. These data characterize cyclin L2 as a highly mobile component of nuclear speckles and suggest that DYRK1A may regulate splicing by phosphorylation of cyclin L2.
Collapse
Affiliation(s)
- Katrin de Graaf
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät der RWTH Aachen, Wendlingweg 2, 52074 Aachen, Germany, Institut für Biochemie, Medizinische Fakultät der RWTH Aachen, Pauwelstrasse 30, 52074 Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|