101
|
Miluzio A, Beugnet A, Volta V, Biffo S. Eukaryotic initiation factor 6 mediates a continuum between 60S ribosome biogenesis and translation. EMBO Rep 2009; 10:459-65. [PMID: 19373251 PMCID: PMC2680881 DOI: 10.1038/embor.2009.70] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 03/24/2009] [Indexed: 12/11/2022] Open
Abstract
Eukaryotic ribosome biogenesis and translation are linked processes that limit the rate of cell growth. Although ribosome biogenesis and translation are mainly controlled by distinct factors, eukaryotic initiation factor 6 (eIF6) has been found to regulate both processes. eIF6 is a necessary protein with a unique anti-association activity, which prevents the interaction of 40S ribosomal subunits with 60S subunits through its binding to 60S ribosomes. In the nucleolus, eIF6 is a component of the pre-ribosomal particles and is required for the biogenesis of 60S subunits, whereas in the cytoplasm it mediates translation downstream from growth factors. The translational activity of eIF6 could be due to its anti-association properties, which are regulated by post-translational modifications; whether this anti-association activity is required for the biogenesis and nuclear export of ribosomes is unknown. eIF6 is necessary for tissue-specific growth and oncogene-driven transformation, and could be a new rate-limiting step for the initiation of translation.
Collapse
Affiliation(s)
- Annarita Miluzio
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Anne Beugnet
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Viviana Volta
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
- Environmental and Life Science Department (DISAV), University of Eastern Piedmont, Via Bellini 15G, 15100 Alessandria, Italy
| | - Stefano Biffo
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
- Environmental and Life Science Department (DISAV), University of Eastern Piedmont, Via Bellini 15G, 15100 Alessandria, Italy
| |
Collapse
|
102
|
Bensaid M, Melko M, Bechara EG, Davidovic L, Berretta A, Catania MV, Gecz J, Lalli E, Bardoni B. FRAXE-associated mental retardation protein (FMR2) is an RNA-binding protein with high affinity for G-quartet RNA forming structure. Nucleic Acids Res 2009; 37:1269-1279. [PMID: 19136466 PMCID: PMC2651778 DOI: 10.1093/nar/gkn1058] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Revised: 12/14/2008] [Accepted: 12/17/2008] [Indexed: 11/23/2022] Open
Abstract
FRAXE is a form of mild to moderate mental retardation due to the silencing of the FMR2 gene. The cellular function of FMR2 protein is presently unknown. By analogy with its homologue AF4, FMR2 was supposed to have a role in transcriptional regulation, but robust evidences supporting this hypothesis are lacking. We observed that FMR2 co-localizes with the splicing factor SC35 in nuclear speckles, the nuclear regions where splicing factors are concentrated, assembled and modified. Similarly to what was reported for splicing factors, blocking splicing or transcription leads to the accumulation of FMR2 in enlarged, rounded speckles. FMR2 is also localized in the nucleolus when splicing is blocked. We show here that FMR2 is able to specifically bind the G-quartet-forming RNA structure with high affinity. Remarkably, in vivo, in the presence of FMR2, the ESE action of the G-quartet situated in mRNA of an alternatively spliced exon of a minigene or of the putative target FMR1 appears reduced. Interestingly, FMR1 is silenced in the fragile X syndrome, another form of mental retardation. All together, our findings strongly suggest that FMR2 is an RNA-binding protein, which might be involved in alternative splicing regulation through an interaction with G-quartet RNA structure.
Collapse
Affiliation(s)
- Mounia Bensaid
- CNRS UMR 6097-Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, Université de Nice Sophia-Antipolis, Nice, France, Institute of Neurological Sciences National Research Council (CNR), Catania, Department of Chemical Sciences, Section of Biochemistry and Molecular Biology, University of Catania, Oasi Maria SS Institute for Research on Mental Retardation and Brain Aging, Troina, Italy and Department of Genetic Medicine Women's and Children's Hospital and School of Pediatric and Reproductive Health, University of Adelaide, Adelaide, Australia
| | - Mireille Melko
- CNRS UMR 6097-Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, Université de Nice Sophia-Antipolis, Nice, France, Institute of Neurological Sciences National Research Council (CNR), Catania, Department of Chemical Sciences, Section of Biochemistry and Molecular Biology, University of Catania, Oasi Maria SS Institute for Research on Mental Retardation and Brain Aging, Troina, Italy and Department of Genetic Medicine Women's and Children's Hospital and School of Pediatric and Reproductive Health, University of Adelaide, Adelaide, Australia
| | - Elias G. Bechara
- CNRS UMR 6097-Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, Université de Nice Sophia-Antipolis, Nice, France, Institute of Neurological Sciences National Research Council (CNR), Catania, Department of Chemical Sciences, Section of Biochemistry and Molecular Biology, University of Catania, Oasi Maria SS Institute for Research on Mental Retardation and Brain Aging, Troina, Italy and Department of Genetic Medicine Women's and Children's Hospital and School of Pediatric and Reproductive Health, University of Adelaide, Adelaide, Australia
| | - Laetitia Davidovic
- CNRS UMR 6097-Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, Université de Nice Sophia-Antipolis, Nice, France, Institute of Neurological Sciences National Research Council (CNR), Catania, Department of Chemical Sciences, Section of Biochemistry and Molecular Biology, University of Catania, Oasi Maria SS Institute for Research on Mental Retardation and Brain Aging, Troina, Italy and Department of Genetic Medicine Women's and Children's Hospital and School of Pediatric and Reproductive Health, University of Adelaide, Adelaide, Australia
| | - Antonio Berretta
- CNRS UMR 6097-Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, Université de Nice Sophia-Antipolis, Nice, France, Institute of Neurological Sciences National Research Council (CNR), Catania, Department of Chemical Sciences, Section of Biochemistry and Molecular Biology, University of Catania, Oasi Maria SS Institute for Research on Mental Retardation and Brain Aging, Troina, Italy and Department of Genetic Medicine Women's and Children's Hospital and School of Pediatric and Reproductive Health, University of Adelaide, Adelaide, Australia
| | - Maria Vincenza Catania
- CNRS UMR 6097-Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, Université de Nice Sophia-Antipolis, Nice, France, Institute of Neurological Sciences National Research Council (CNR), Catania, Department of Chemical Sciences, Section of Biochemistry and Molecular Biology, University of Catania, Oasi Maria SS Institute for Research on Mental Retardation and Brain Aging, Troina, Italy and Department of Genetic Medicine Women's and Children's Hospital and School of Pediatric and Reproductive Health, University of Adelaide, Adelaide, Australia
| | - Jozef Gecz
- CNRS UMR 6097-Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, Université de Nice Sophia-Antipolis, Nice, France, Institute of Neurological Sciences National Research Council (CNR), Catania, Department of Chemical Sciences, Section of Biochemistry and Molecular Biology, University of Catania, Oasi Maria SS Institute for Research on Mental Retardation and Brain Aging, Troina, Italy and Department of Genetic Medicine Women's and Children's Hospital and School of Pediatric and Reproductive Health, University of Adelaide, Adelaide, Australia
| | - Enzo Lalli
- CNRS UMR 6097-Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, Université de Nice Sophia-Antipolis, Nice, France, Institute of Neurological Sciences National Research Council (CNR), Catania, Department of Chemical Sciences, Section of Biochemistry and Molecular Biology, University of Catania, Oasi Maria SS Institute for Research on Mental Retardation and Brain Aging, Troina, Italy and Department of Genetic Medicine Women's and Children's Hospital and School of Pediatric and Reproductive Health, University of Adelaide, Adelaide, Australia
| | - Barbara Bardoni
- CNRS UMR 6097-Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, Université de Nice Sophia-Antipolis, Nice, France, Institute of Neurological Sciences National Research Council (CNR), Catania, Department of Chemical Sciences, Section of Biochemistry and Molecular Biology, University of Catania, Oasi Maria SS Institute for Research on Mental Retardation and Brain Aging, Troina, Italy and Department of Genetic Medicine Women's and Children's Hospital and School of Pediatric and Reproductive Health, University of Adelaide, Adelaide, Australia
| |
Collapse
|
103
|
Karni-Schmidt O, Zupnick A, Castillo M, Ahmed A, Matos T, Bouvet P, Cordon-Cardo C, Prives C. p53 is localized to a sub-nucleolar compartment after proteasomal inhibition in an energy-dependent manner. J Cell Sci 2008; 121:4098-105. [PMID: 19033390 DOI: 10.1242/jcs.030098] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tumor suppressor p53 is activated in response to many forms of cellular stress leading to cell cycle arrest, senescence or apoptosis. Appropriate sub-cellular localization is essential for modulating p53 function. We recently showed that p53 localizes to the nucleolus after proteasome inhibition with MG132 and this localization requires sequences within its carboxyl terminus. In the present study, we found that after treatment with MG132, p53 associates with a discrete sub-nucleolar component, the fibrillar center (FC), a region mainly enriched with RNA polymerase I. Moreover, we now demonstrate that this localization is an energy-dependent process as reduction of ATP levels prevents nucleolar localization. In addition, p53 sub-nucleolar accumulation is abolished when cells are subjected to various types of genotoxic stress. Furthermore, we show that monoubiquitination of p53, which causes it to localize to the cytoplasm and nucleoplasm, does not prevent the association of p53 with the nucleolus after MG132 treatment. Importantly, we demonstrate that p53 nucleolar association occurs in lung and bladder carcinomas.
Collapse
Affiliation(s)
- Orit Karni-Schmidt
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Cheng J, Fernando KAS, Veca LM, Sun YP, Lamond AI, Lam YW, Cheng SH. Reversible accumulation of PEGylated single-walled carbon nanotubes in the mammalian nucleus. ACS NANO 2008; 2:2085-2094. [PMID: 19206455 DOI: 10.1021/nn800461u] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Carbon nanotubes (CNTs) have been shown to cross cell membranes and can mediate the internalization of macromolecules. These characteristics have constituted CNTs as an exciting new tool for drug delivery and biological sensing. While CNTs exhibit great potential in biomedical and pharmaceutical applications, neither the cell penetration mechanism of CNTs nor the intracellular fate of the internalized CNTs are fully understood. In this study, time-lapse fluorescence microscopy was used to investigate the intracellular distribution of FITC labeled PEGylated single-walled CNTs (FITC-PEG-SWCNTs) in living cells and shown that PEGylated SWCNTs entered the nucleus of several mammalian cell lines in an energy-dependent process. The presence of FITC-PEG-SWCNTs in the cell nucleus did not cause discernible changes in the nuclear organization and had no effect on the growth kinetics and cell cycle distribution for up to 5 days. Remarkably, upon removal of the FITC-PEG-SWCNTs from the culture medium, the internalized FITC-PEG-SWCNTs rapidly moved out of the nucleus and were released from the cells. Thus, the intracellular PEGylated SWCNTs were highly dynamic and the cell penetration of PEGylated SWCNTs appeared as bidirectional. These observations suggest SWCNTs may be used as an ideal nanovector in biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Jinping Cheng
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
105
|
Emmott E, Dove BK, Howell G, Chappell LA, Reed ML, Boyne JR, You JH, Brooks G, Whitehouse A, Hiscox JA. Viral nucleolar localisation signals determine dynamic trafficking within the nucleolus. Virology 2008; 380:191-202. [PMID: 18775548 PMCID: PMC7103397 DOI: 10.1016/j.virol.2008.05.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 05/22/2008] [Accepted: 05/30/2008] [Indexed: 02/08/2023]
Abstract
Localisation of both viral and cellular proteins to the nucleolus is determined by a variety of factors including nucleolar localisation signals (NoLSs), but how these signals operate is not clearly understood. The nucleolar trafficking of wild type viral proteins and chimeric proteins, which contain altered NoLSs, were compared to investigate the role of NoLSs in dynamic nucleolar trafficking. Three viral proteins from diverse viruses were selected which localised to the nucleolus; the coronavirus infectious bronchitis virus nucleocapsid (N) protein, the herpesvirus saimiri ORF57 protein and the HIV-1 Rev protein. The chimeric proteins were N protein and ORF57 protein which had their own NoLS replaced with those from ORF57 and Rev proteins, respectively. By analysing the sub-cellular localisation and trafficking of these viral proteins and their chimeras within and between nucleoli using confocal microscopy and photo-bleaching we show that NoLSs are responsible for different nucleolar localisations and trafficking rates.
Collapse
Affiliation(s)
- Edward Emmott
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, University of Leeds, LS2 9JT, Leeds, England, UK
| | - Brian K. Dove
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, University of Leeds, LS2 9JT, Leeds, England, UK
| | - Gareth Howell
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, University of Leeds, LS2 9JT, Leeds, England, UK
| | - Lucy A. Chappell
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, University of Leeds, LS2 9JT, Leeds, England, UK
| | - Mark L. Reed
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, University of Leeds, LS2 9JT, Leeds, England, UK
| | - James R. Boyne
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, University of Leeds, LS2 9JT, Leeds, England, UK
| | - Jae-Hwan You
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, University of Leeds, LS2 9JT, Leeds, England, UK
| | - Gavin Brooks
- School of Pharmacy, University of Reading, Reading, UK
| | - Adrian Whitehouse
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, University of Leeds, LS2 9JT, Leeds, England, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Julian A. Hiscox
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, University of Leeds, LS2 9JT, Leeds, England, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
106
|
Escobar ML, Echeverría OM, Ortíz R, Vázquez-Nin GH. Combined apoptosis and autophagy, the process that eliminates the oocytes of atretic follicles in immature rats. Apoptosis 2008; 13:1253-66. [PMID: 18690537 DOI: 10.1007/s10495-008-0248-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We studied the alterations of dying oocytes in 1-28 days old rats using TUNEL method, immunolocalizations of active caspase 3, lamp1, localization of acid phosphatase, and DAPI staining. All procedures were performed in adjacent sections of each oocyte. In most dying oocytes exist simultaneously features of apoptosis as active caspase 3 and DNA breaks, and a large increase of lamp1 and acid phosphatase characteristic of autophagy. Large clumps of compact chromatin and membrane blebbing were absent. Electron microscope observations demonstrated the presence of small clear vesicles and autophagolysosomes. All these features indicate that a large number of oocytes are eliminated by a process sharing features of apoptosis and autophagy. In dying oocytes of new born rats the markers of apoptosis predominate over those of autophagy. However, fragmentation and apoptotic bodies were not found. These features suggest that in different cytophysiological conditions the processes of cell death may be differently modulated.
Collapse
Affiliation(s)
- M L Escobar
- Department of Cell Biology, Faculty of Sciences, National Autonomous University of Mexico UNAM, Mexico, DF, 04510, Mexico
| | | | | | | |
Collapse
|
107
|
Mialon A, Thastrup J, Kallunki T, Mannermaa L, Westermarck J, Holmström TH. Identification of nucleolar effects in JNK-deficient cells. FEBS Lett 2008; 582:3145-51. [PMID: 18703060 DOI: 10.1016/j.febslet.2008.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 08/02/2008] [Accepted: 08/04/2008] [Indexed: 10/21/2022]
Abstract
The c-Jun N-terminal kinase (JNK) signalling pathway has an established role in cellular stress signalling, cell survival and tumorigenesis. Here, we demonstrate that inhibition of JNK signalling results in partial delocalization of the RNA helicase DDX21 from the nucleolus to the nucleoplasm, increased nucleolar mobility of DDX21 and inhibition of rRNA processing. Furthermore, our results show that JNK signalling regulates DDX21 phosphorylation and protein expression. In conclusion, the results presented in this study reveal a previously unidentified cellular role for JNK signalling in the regulation of nucleolar functions. Based on these results, we propose that JNK-mediated effects on nucleolar homeostasis and rRNA processing should be considered when interpreting cellular phenotypes observed in JNK-deficient cell and animal models.
Collapse
Affiliation(s)
- Antoine Mialon
- Center for Biotechnology, University of Turku and Abo Akademi University, Artillerigatan 6, 20520 Turku, Finland
| | | | | | | | | | | |
Collapse
|
108
|
Ushijima R, Matsuyama T, Nagata I, Yamamoto K. Nucleolar targeting of proteins by the tandem array of basic amino acid stretches identified in the RNA polymerase I-associated factor PAF49. Biochem Biophys Res Commun 2008; 369:1017-21. [DOI: 10.1016/j.bbrc.2008.02.138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Accepted: 02/26/2008] [Indexed: 10/22/2022]
|
109
|
A novel protein, Luman/CREB3 recruitment factor, inhibits Luman activation of the unfolded protein response. Mol Cell Biol 2008; 28:3952-66. [PMID: 18391022 DOI: 10.1128/mcb.01439-07] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Luman/CREB3 (also called LZIP) is an endoplasmic reticulum (ER)-bound cellular transcription factor. It has been implicated in the mammalian unfolded protein response (UPR), as well as herpes simplex virus reactivation from latency in sensory neurons. Here, we report the identification of a novel Luman recruitment factor (LRF). Like Luman, LRF is a UPR-responsive basic-region leucine zipper protein that is prone to proteasomal degradation. Being a highly unstable protein, LRF interacts with Luman through the leucine zipper region and promotes Luman degradation. LRF was found to recruit the nuclear form of Luman to discrete nuclear foci, which overlap with the nuclear receptor coactivator GRIP1 bodies, and repress the transactivation activity of Luman. Compared to LRF+/+ mouse embryonic fibroblast (MEF) cells, the levels of CHOP, EDEM, and Herp were elevated in LRF-/- MEF cells. We propose that LRF is a negative regulator of the UPR. For Luman, it may represent another level of regulation following Luman proteolytic cleavage on the ER and nuclear translocation. In addition to inducing rapid Luman turnover, LRF may repress the transactivation potential of Luman by sequestering it in the LRF nuclear bodies away from key cofactors (such as HCF-1) that are required for transcriptional activation.
Collapse
|
110
|
Butt AJ, Sergio CM, Inman CK, Anderson LR, McNeil CM, Russell AJ, Nousch M, Preiss T, Biankin AV, Sutherland RL, Musgrove EA. The estrogen and c-Myc target gene HSPC111 is over-expressed in breast cancer and associated with poor patient outcome. Breast Cancer Res 2008; 10:R28. [PMID: 18373870 PMCID: PMC2397527 DOI: 10.1186/bcr1985] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 03/09/2008] [Accepted: 03/29/2008] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Estrogens play a pivotal role in the initiation and progression of breast cancer. The genes that mediate these processes are not fully defined, but potentially include the known mammary oncogene MYC. Characterization of estrogen-target genes may help to elucidate further the mechanisms of estrogen-induced mitogenesis and endocrine resistance. METHODS We used a transcript profiling approach to identify targets of estrogen and c-Myc in breast cancer cells. One previously uncharacterized gene, namely HBV pre-S2 trans-regulated protein 3 (HSPC111), was acutely upregulated after estrogen treatment or inducible expression of c-Myc, and was selected for further functional analysis using over-expression and knock-down strategies. HSPC111 expression was also analyzed in relation to MYC expression and outcome in primary breast carcinomas and published gene expression datasets. RESULTS Pretreatment of cells with c-Myc small interfering RNA abrogated estrogen induction of HSPC111, identifying HSPC111 as a potential c-Myc target gene. This was confirmed by the demonstration of two functional E-box motifs upstream of the transcription start site. HSPC111 mRNA and protein were over-expressed in breast cancer cell lines and primary breast carcinomas, and this was positively correlated with MYC mRNA levels. HSPC111 is present in a large, RNA-dependent nucleolar complex, suggesting a possible role in ribosomal biosynthesis. Neither over-expression or small interfering RNA knock-down of HSPC111 affected cell proliferation rates or sensitivity to estrogen/antiestrogen treatment. However, high expression of HSPC111 mRNA was associated with adverse patient outcome in published gene expression datasets. CONCLUSION These data identify HSPC111 as an estrogen and c-Myc target gene that is over-expressed in breast cancer and is associated with an adverse patient outcome.
Collapse
Affiliation(s)
- Alison J Butt
- Cancer Research Program, Garvan Institute of Medical Research, St, Vincent's Hospital, Victoria Street, Darlinghurst, New South Wales 2010, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Tsai YT, Lin CI, Chen HK, Lee KM, Hsu CY, Yang SJ, Yeh NH. Chromatin tethering effects of hNopp140 are involved in the spatial organization of nucleolus and the rRNA gene transcription. J Biomed Sci 2008; 15:471-86. [PMID: 18253863 PMCID: PMC2440943 DOI: 10.1007/s11373-007-9226-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 11/23/2007] [Indexed: 11/29/2022] Open
Abstract
The short arms of five human acrocentric chromosomes contain ribosomal gene (rDNA) clusters where numerous mini-nucleoli arise at the exit of mitosis. These small nucleoli tend to coalesce into one or a few large nucleoli during interphase by unknown mechanisms. Here, we demonstrate that the N- and C-terminal domains of a nucleolar protein, hNopp140, bound respectively to alpha-satellite arrays and rDNA clusters of acrocentric chromosomes for nucleolar formation. The central acidic-and-basic repeated domain of hNopp140, possessing a weak self-self interacting ability, was indispensable for hNopp140 to build up a nucleolar round-shaped structure. The N- or the C-terminally truncated hNopp140 caused nucleolar segregation and was able to alter locations of the rDNA transcription, as mediated by detaching the rDNA repeats from the acrocentric alpha-satellite arrays. Interestingly, an hNopp140 mutant, made by joining the N- and C-terminal domains but excluding the entire central repeated region, induced nucleolar disruption and global chromatin condensation. Furthermore, RNAi knockdown of hNopp140 resulted in dispersion of the rDNA and acrocentric alpha-satellite sequences away from nucleolus that was accompanied by rDNA transcriptional silence. Our findings indicate that hNopp140, a scaffold protein, is involved in the nucleolar assembly, fusion, and maintenance.
Collapse
Affiliation(s)
- Yi-Tzang Tsai
- School of Life Science, Institute of Microbiology and Immunology, National Yang-Ming University, 155 Li-Nong Street Sec. 2, Taipei, 112, Taiwan
| | | | | | | | | | | | | |
Collapse
|
112
|
Donoghue P, Byrne J, Pennington K. BSPR/EBI 2007 meeting report – Integrative Proteomics: From Molecules to Systems July 25–27, 2007 Wellcome Trust Conference Centre, Hinxton, UK. Proteomics 2008; 8:225-9. [DOI: 10.1002/pmic.200700932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
113
|
Lazarczyk M, Pons C, Mendoza JA, Cassonnet P, Jacob Y, Favre M. Regulation of cellular zinc balance as a potential mechanism of EVER-mediated protection against pathogenesis by cutaneous oncogenic human papillomaviruses. ACTA ACUST UNITED AC 2007; 205:35-42. [PMID: 18158319 PMCID: PMC2234378 DOI: 10.1084/jem.20071311] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Epidermodysplasia verruciformis (EV) is a genodermatosis associated with skin cancers that results from a selective susceptibility to related human papillomaviruses (EV HPV). Invalidating mutations in either of two genes (EVER1 and EVER2) with unknown functions cause most EV cases. We report that EVER1 and EVER2 proteins form a complex and interact with the zinc transporter 1 (ZnT-1), as shown by yeast two-hybrid screening, GST pull-down, and immunoprecipitation experiments. In keratinocytes, EVER and ZnT-1 proteins do not influence intracellular zinc concentration, but do affect intracellular zinc distribution. EVER2 was found to inhibit free zinc influx to nucleoli. Keratinocytes with a mutated EVER2 grew faster than wild-type keratinocytes. In transiently and stably transfected HaCaT cells, EVER and ZnT-1 down-regulated transcription factors stimulated by zinc (MTF-1) or cytokines (c-Jun and Elk), as detected with luciferase assays. To get some insight into the control of EV HPV infection, we searched for interaction between EVER and ZnT-1 and oncoproteins of cutaneous (HPV5) and genital (HPV16) genotypes. HPV16 E5 protein binds to EVER and ZnT-1 and blocks their negative regulation. The lack of a functional E5 protein encoded by EV HPV genome may account for host restriction of these viruses.
Collapse
Affiliation(s)
- Maciej Lazarczyk
- Unité de Génétique, Papillomavirus et Cancer Humain, Institut Pasteur, 75015 Paris, France
| | | | | | | | | | | |
Collapse
|
114
|
Mekhail K, Rivero-Lopez L, Al-Masri A, Brandon C, Khacho M, Lee S. Identification of a common subnuclear localization signal. Mol Biol Cell 2007; 18:3966-77. [PMID: 17652456 PMCID: PMC1995723 DOI: 10.1091/mbc.e07-03-0295] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Proteins share peptidic sequences, such as a nuclear localization signal (NLS), which guide them to particular membrane-bound compartments. Similarities have also been observed within different classes of signals that target proteins to membrane-less subnuclear compartments. Common localization signals affect spatial and temporal subcellular organization and are thought to allow the coordinated response of different molecular networks to a given signaling cue. Here we identify a higher-order and predictive code, {[RR(I/L)X(3)r]((n, n > or = 1))+[L(phi/N)(V/L)]((n,n>1))}, that establishes high-affinity interactions between a group of proteins and the nucleolus in response to a specific signal. This position-independent code is referred to as a nucleolar detention signal regulated by H(+) (NoDS(H+)) and the class of proteins includes the cIAP2 apoptotic regulator, VHL ubiquitylation factor, HSC70 heat shock protein and RNF8 transcription regulator. By identifying a common subnuclear targeting consensus sequence, our work reveals rules governing the dynamics of subnuclear organization and ascribes new modes of regulation to several proteins with diverse steady-state distributions and dynamic properties.
Collapse
Affiliation(s)
- Karim Mekhail
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ONT, Canada, K1H 8M5
| | - Luis Rivero-Lopez
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ONT, Canada, K1H 8M5
| | - Ahmad Al-Masri
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ONT, Canada, K1H 8M5
| | - Caroline Brandon
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ONT, Canada, K1H 8M5
| | - Mireille Khacho
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ONT, Canada, K1H 8M5
| | - Stephen Lee
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ONT, Canada, K1H 8M5
| |
Collapse
|
115
|
Kosman J, Carmean N, Leaf EM, Dyamenahalli K, Bassuk JA. The motif of SPARC that inhibits DNA synthesis is not a nuclear localization signal. J Mol Biol 2007; 371:883-901. [PMID: 17586526 DOI: 10.1016/j.jmb.2007.04.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Revised: 04/25/2007] [Accepted: 04/27/2007] [Indexed: 11/23/2022]
Abstract
SPARC (secreted protein acidic and rich in cysteine), although primarily known as a secreted, matricellular protein, has also been identified in urothelial cell nuclei. Many biological activities, including inhibition of cell adhesion and repression of DNA synthesis, have been ascribed to SPARC, but the influence of its intracellular localization on each of these activities is unknown. When exposed by epitope retrieval and nuclear matrix unmasking techniques, endogenous SPARC was found to localize strongly to the nuclei and the nuclear matrix of cultured urothelial cells. Live-cell time-lapse imaging revealed that exogenous fluorescently labeled recombinant (r) SPARC was taken up from medium over a 16 h period and accumulated inside cells. Two variants of rSPARC with alterations in its putative nuclear localization signal (NLS) were generated to investigate the existence and effects of the NLS. These variants demonstrated similar biophysical characteristics as the wild-type protein. Visualization by a variety of techniques, including live-cell imaging, deconvolution microscopy, and cell fractionation, all concurred that exogenous rSPARC was not able to localize to cell nuclei, but instead accumulated as perinuclear clusters. Localization of the rSPARC NLS variants was no different than wild-type, arguing against the presence of an active NLS in rSPARC. Imaging experiments showed that only permeabilized, dead cells avidly took up rSPARC into their nuclei. The rSPARC(no NLS) variant proved ineffective at inhibiting DNA synthesis, whereas the rSPARC(strong NLS) variant was a more potent inhibitor of DNA synthesis than was wild-type rSPARC. The motif of SPARC that inhibits the synthesis of urothelial cell DNA is therefore not a nuclear localization signal, but its manipulation holds therapeutic potential to generate a "Super-SPARC" that can quiesce proliferative tissues.
Collapse
Affiliation(s)
- Jeffrey Kosman
- Program in Human Urothelial Biology, Seattle Children's Hospital Research Institute, Seattle, WA 98105, USA
| | | | | | | | | |
Collapse
|
116
|
Klinz FJ, Herberg N, Arnhold S, Addicks K, Bloch W. Phospho-eNOS Ser-1176 is associated with the nucleoli and the Golgi complex in C6 rat glioma cells. Neurosci Lett 2007; 421:224-8. [PMID: 17574745 DOI: 10.1016/j.neulet.2007.05.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Revised: 05/09/2007] [Accepted: 05/11/2007] [Indexed: 01/08/2023]
Abstract
Enzymatic activity of endothelial nitric oxide synthase (eNOS) is controlled by posttranslational modifications, protein-protein interactions, and subcellular localization. For example, N-terminal fatty acid modifications target eNOS to the Golgi complex where it becomes phosphorylated. We show here by immunofluorescence analysis that phospho-eNOS Ser-1176 is enriched in the perinuclear region of interphase C6 rat glioma cells. Confocal double immunofluorescence microscopy with the Golgi marker protein 58K revealed that phospho-eNOS Ser-1176 is associated with the Golgi complex. Surprisingly, we observed several spots in the nucleus of C6 cells that were positive for phospho-eNOS Ser-1176. Confocal double immunofluorescence analysis with the nucleolus marker protein fibrillarin revealed that within the nucleus phospho-eNOS Ser-1176 is exclusively associated with the nucleoli. It is known that in mitotic cells nucleoli are lost during prophase and rebuild during telophase. In agreement with this, we find no nucleoli-like distribution of phospho-eNOS Ser-1176 in metaphase and anaphase C6 glioma cells. Our finding that phospho-eNOS Ser-1176 is selectively associated with the nucleoli points to a so far unknown role for eNOS in interphase glioma cells.
Collapse
|
117
|
Casafont I, Bengoechea R, Navascués J, Pena E, Berciano MT, Lafarga M. The giant fibrillar center: a nucleolar structure enriched in upstream binding factor (UBF) that appears in transcriptionally more active sensory ganglia neurons. J Struct Biol 2007; 159:451-61. [PMID: 17587596 DOI: 10.1016/j.jsb.2007.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 05/11/2007] [Accepted: 05/14/2007] [Indexed: 11/21/2022]
Abstract
This paper studies the molecular organization, neuronal distribution and cellular differentiation dynamics of the giant fibrillar centers (GFCs) of nucleoli in rat sensory ganglia neurons. The GFC appeared as a round nucleolar domain (1-2 microm in diameter) partially surrounded by the dense fibrillar component and accompanied by numerous small FCs. By immunocytochemistry, the GFC concentrated the upstream binding factor, which may serve as a marker of this structure, and also contain RNA polymerase I, DNA topoisomerase I, SUMO-1 and Ubc9. However, they lack ubiquitin-proteasome conjugates and 20S proteasome. Transcription assay with 5'-fluorouridine incorporation revealed the presence of nascent RNA on the dense fibrillar component of the neuronal nucleolus, but not within the low electron-density area of the GFC. The formation of GFCs is neuronal size dependent: they were found in 58%, 30% and 0% of the large, medium and small neurons, respectively. GFCs first appeared during the postnatal period, concomitantly with a stage of neuronal growth, myelination and bioelectrical maturation. GFCs were not observed in segregated nucleoli induced by severe inhibition of RNA synthesis. We suggest that the formation of GFCs is associated with a high rate of ribosome biogenesis of the transcriptionally more active large-size neurons.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Nucleolus/chemistry
- Cell Nucleolus/ultrastructure
- Ganglia, Sensory/growth & development
- Ganglia, Sensory/metabolism
- Ganglia, Sensory/ultrastructure
- Male
- Microscopy, Immunoelectron
- Neurons, Afferent/metabolism
- Neurons, Afferent/ultrastructure
- Pol1 Transcription Initiation Complex Proteins/analysis
- Proteasome Endopeptidase Complex/analysis
- Proteasome Endopeptidase Complex/metabolism
- RNA, Ribosomal/analysis
- RNA, Ribosomal/metabolism
- Rats
- Rats, Sprague-Dawley
- SUMO-1 Protein/analysis
- SUMO-1 Protein/metabolism
- Transcription, Genetic
- Ubiquitin/analysis
- Ubiquitin/metabolism
Collapse
Affiliation(s)
- Iñigo Casafont
- Department of Anatomy and Cell Biology, and Biomedicine Unit, CSIC, University of Cantabria, Avd. Cardenal Herrera Oria s/n, 39011 Santander, Spain
| | | | | | | | | | | |
Collapse
|
118
|
Jarrous N, Reiner R. Human RNase P: a tRNA-processing enzyme and transcription factor. Nucleic Acids Res 2007; 35:3519-24. [PMID: 17483522 PMCID: PMC1920233 DOI: 10.1093/nar/gkm071] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ribonuclease P (RNase P) has been hitherto well known as a catalytic ribonucleoprotein that processes the 5' leader sequence of precursor tRNA. Recent studies, however, reveal a new role for nuclear forms of RNase P in the transcription of tRNA genes by RNA polymerase (pol) III, thus linking transcription with processing in the regulation of tRNA gene expression. However, RNase P is also essential for the transcription of other small noncoding RNA genes, whose precursor transcripts are not recognized as substrates for this holoenzyme. Accordingly, RNase P can act solely as a transcription factor for pol III, a role that seems to be conserved in eukarya.
Collapse
Affiliation(s)
- Nayef Jarrous
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | | |
Collapse
|
119
|
Abstract
The nucleolus is a dynamic subnuclear structure that is crucial to the successful functioning of a cell. Its functions include ribosomal RNA synthesis, cell growth and cell-cycle control as well as responding to cellular stress. Recent studies show that the nucleolus is not a steady-state structure but instead is made up of numerous protein–protein and protein–nucleic-acid interactions that are constantly changing in response to the metabolic conditions of the cell. Many different viruses target the nucleolus to disrupt host-cell function and to recruit cellular proteins to aid in virus replication. The study of viral-protein trafficking to the nucleolus and the interaction of viral proteins with nucleolar proteins is providing many insights into the cell biology of the nucleolus. Because the nucleolus is fundamental to the life cycle of many viruses, disrupting the interaction between the nucleolus and the virus could lead to the design of novel therapeutic strategies.
RNA viruses, particularly positive-strand RNA viruses, interact with the nucleolus to usurp host-cell functions and recruit nucleolar proteins to facilitate virus replication. Here, Julian Hiscox reviews the latest data on RNA-virus interactions with this dynamic subnuclear structure. The nucleolus is a dynamic subnuclear structure with roles in ribosome subunit biogenesis, mediation of cell-stress responses and regulation of cell growth. The proteome and structure of the nucleolus are constantly changing in response to metabolic conditions. RNA viruses interact with the nucleolus to usurp host-cell functions and recruit nucleolar proteins to facilitate virus replication. Investigating the interactions between RNA viruses and the nucleolus will facilitate the design of novel anti-viral therapies, such as recombinant vaccines and therapeutic molecular interventions, and also contribute to a more detailed understanding of the cell biology of the nucleolus.
Collapse
Affiliation(s)
- Julian A Hiscox
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, Garstang Building, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
120
|
Pontvianne F, Matía I, Douet J, Tourmente S, Medina FJ, Echeverria M, Sáez-Vásquez J. Characterization of AtNUC-L1 reveals a central role of nucleolin in nucleolus organization and silencing of AtNUC-L2 gene in Arabidopsis. Mol Biol Cell 2007; 18:369-79. [PMID: 17108323 PMCID: PMC1783796 DOI: 10.1091/mbc.e06-08-0751] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 10/27/2006] [Accepted: 11/02/2006] [Indexed: 11/11/2022] Open
Abstract
Nucleolin is one of the most abundant protein in the nucleolus and is a multifunctional protein involved in different steps of ribosome biogenesis. In contrast to animals and yeast, the genome of the model plant Arabidopsis thaliana encodes two nucleolin-like proteins, AtNUC-L1 and AtNUC-L2. However, only the AtNUC-L1 gene is ubiquitously expressed in normal growth conditions. Disruption of this AtNUC-L1 gene leads to severe plant growth and development defects. AtNUC-L1 is localized in the nucleolus, mainly in the dense fibrillar component. Absence of this protein in Atnuc-L1 plants induces nucleolar disorganization, nucleolus organizer region decondensation, and affects the accumulation levels of pre-rRNA precursors. Remarkably, in Atnuc-L1 plants the AtNUC-L2 gene is activated, suggesting that AtNUC-L2 might rescue, at least partially, the loss of AtNUC-L1. This work is the first description of a higher eukaryotic organism with a disrupted nucleolin-like gene and defines a new role for nucleolin in nucleolus structure and rDNA chromatin organization.
Collapse
Affiliation(s)
- Frederic Pontvianne
- *Unité Mixte de Recherche Centre National de la Recherche Scientifique 5096, Université de Perpignan, Perpignan, 66860 Perpignan, France
| | - Isabel Matía
- Centro de Investigaciones Biológicas-Consejo Superior de Investigaciones Cientificas, Ramiro de Maetzu 9, E-28040 Madrid, Spain; and
| | - Julien Douet
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 6547, BIOMOVE, Université Blaise Pascal, 63177 Aubière, France
| | - Sylvette Tourmente
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 6547, BIOMOVE, Université Blaise Pascal, 63177 Aubière, France
| | - Francisco J. Medina
- Centro de Investigaciones Biológicas-Consejo Superior de Investigaciones Cientificas, Ramiro de Maetzu 9, E-28040 Madrid, Spain; and
| | - Manuel Echeverria
- *Unité Mixte de Recherche Centre National de la Recherche Scientifique 5096, Université de Perpignan, Perpignan, 66860 Perpignan, France
| | - Julio Sáez-Vásquez
- *Unité Mixte de Recherche Centre National de la Recherche Scientifique 5096, Université de Perpignan, Perpignan, 66860 Perpignan, France
| |
Collapse
|
121
|
Martin RM, Tünnemann G, Leonhardt H, Cardoso MC. Nucleolar marker for living cells. Histochem Cell Biol 2007; 127:243-51. [PMID: 17205309 DOI: 10.1007/s00418-006-0256-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2006] [Indexed: 12/26/2022]
Abstract
In the recent molecular and cell biological research, there is an increasing need for labeling of subcellular structures in living cells. Here, we present the use of a fluorescently labeled cell penetrating peptide for fast labeling of nucleoli in living cells of different species and origin. We show that the short peptide with ten amino acids was able to cross cellular membranes and reach the nucleolar target sites, thereby marking this subnuclear structure in living cells. The treatment of cells with actinomycin D and labeling of B23 protein and fibrillarin provided evidence for a localization to the granular component of the nucleolus. The fluorescently conjugated nucleolar marker could be used in combination with different fluorophores like fluorescent proteins or DNA dyes, and nucleolar labeling was also preserved during fixation and staining of the cells. Furthermore, we observed a high stability of the label in long-term studies over 24 h as well as no effect on the cellular viability and proliferation and on rDNA transcription. The transducible nucleolar marker is therefore a valuable molecular tool for cell biology that allows a fast and easy labeling of this structure in living cells.
Collapse
Affiliation(s)
- Robert M Martin
- Max Delbrück Center for Molecular Medicine, Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | | | | | | |
Collapse
|
122
|
|
123
|
Orrù S, Aspesi A, Armiraglio M, Caterino M, Loreni F, Ruoppolo M, Santoro C, Dianzani I. Analysis of the ribosomal protein S19 interactome. Mol Cell Proteomics 2006; 6:382-93. [PMID: 17151020 DOI: 10.1074/mcp.m600156-mcp200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Ribosomal protein S19 (RPS19) is a 16-kDa protein found mainly as a component of the ribosomal 40 S subunit. Its mutations are responsible for Diamond Blackfan anemia, a congenital disease characterized by defective erythroid progenitor maturation. Dysregulation of RPS19 has therefore been implicated in this defective erythropoiesis, although the link between them is still unclear. Two not mutually exclusive hypotheses have been proposed: altered protein synthesis and loss of unknown functions not directly connected with the structural role of RPS19 in the ribosome. A role in rRNA processing has been surmised for the yeast ortholog, whereas the extracellular RPS19 dimer has a monocyte chemotactic activity. Three proteins are known to interact with RPS19: FGF2, complement component 5 receptor 1, and a nucleolar protein called RPS19-binding protein. We have used a yeast two-hybrid approach to identify a fourth protein: the serine-threonine kinase PIM1. The present study describes our use of proteomics strategies to look for proteins interacting with RPS19 to determine its functions. Proteins were isolated by affinity purification with a GST-RPS19 recombinant protein and identified using LCMS/MS analysis coupled to bioinformatics tools. We identified 159 proteins from the following Gene Ontology categories: NTPases (ATPases and GTPases; five proteins), hydrolases/helicases (19 proteins), isomerases (two proteins), kinases (three proteins), splicing factors (five proteins), structural constituents of ribosome (29 proteins), transcription factors (11 proteins), transferases (five proteins), transporters (nine proteins), DNA/RNA-binding protein species (53 proteins), other (one dehydrogenase protein, one ligase protein, one peptidase protein, one receptor protein, and one translation elongation factor), and 13 proteins of still unknown function. Proteomics results were validated by affinity purification and Western blotting. These interactions were further confirmed by co-immunoprecipitation using a monoclonal RPS19 antibody. Many interactors are nucleolar proteins and thus are expected to take part in the RPS19 interactome; however, some proteins suggest additional functional roles for RPS19.
Collapse
Affiliation(s)
- Stefania Orrù
- Centro di Ingegneria Genetica (CEINGE) Advanced Biotechnologies scarl, 80131 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Abstract
The nucleolus is the most prominent compartment in the nucleus and known as the site for ribosome biogenesis in eucaryotes. In contrast, there is no such equivalent structure for ribosome synthesis in procaryotes. This raises two concerns that how does the nucleolus evolve and that whether the nucleolus remains playing a single role in ribosome biogenesis along the evolution. Increasing data support new nucleolus functions, including signal recognition particle assembly, small RNA modification, telomerase maturation, cell-cycle and aging control, and cell stress sensor. Multiple functions of the nucleolus possibly result from the plurifunctionality of nucleolar proteins, such as nucleolin and Nopp140. Proteomic analyses of human and Arabidopsis nucleolus lead a remarkable progress in understanding the evolution and new functions of nucleoli. In this review, we present a brief history of nucleolus research and new concepts and unresolved questions. Also, we introduce hepatitis D virus for studying the communication between the nucleolus and other subnuclear compartments, and Caenorhabditis elegans for the role of nucleolus in the development and the epistatic control of nucleologenesis.
Collapse
Affiliation(s)
- Szecheng J Lo
- Department of Life Science, Graduate Institute of Basic Medical Science, 259, Wen-Hwa 1st Road, Chang Gung University, TaoYuan 333.
| | | | | |
Collapse
|
125
|
Falini B, Nicoletti I, Martelli MF, Mecucci C. Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+ AML): biologic and clinical features. Blood 2006; 109:874-85. [PMID: 17008539 DOI: 10.1182/blood-2006-07-012252] [Citation(s) in RCA: 400] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The nucleophosmin (NPM1) gene encodes for a multifunctional nucleocytoplasmic shuttling protein that is localized mainly in the nucleolus. NPM1 mutations occur in 50% to 60% of adult acute myeloid leukemia with normal karyotype (AML-NK) and generate NPM mutants that localize aberrantly in the leukemic-cell cytoplasm, hence the term NPM-cytoplasmic positive (NPMc+ AML). Cytoplasmic NPM accumulation is caused by the concerted action of 2 alterations at mutant C-terminus, that is, changes of tryptophan(s) 288 and 290 (or only 290) and creation of an additional nuclear export signal (NES) motif. NPMc+ AML shows increased frequency in adults and females, wide morphologic spectrum, multilineage involvement, high frequency of FLT3-ITD, CD34 negativity, and a distinct gene-expression profile. Analysis of mutated NPM has important clinical and pathologic applications. Immunohistochemical detection of cytoplasmic NPM predicts NPM1 mutations and helps rationalize cytogenetic/molecular studies in AML. NPM1 mutations in absence of FLT3-ITD identify a prognostically favorable subgroup in the heterogeneous AML-NK category. Due to their frequency and stability, NPM1 mutations may become a new tool for monitoring minimal residual disease in AML-NK. Future studies should focus on clarifying how NPM mutants promote leukemia, integrating NPMc+ AML in the upcoming World Health Organization leukemia classification, and eventually developing specific antileukemic drugs.
Collapse
|
126
|
Birchenall-Roberts MC, Fu T, Kim SG, Huang YK, Dambach M, Resau JH, Ruscetti FW. K-Ras4B proteins are expressed in the nucleolus: Interaction with nucleolin. Biochem Biophys Res Commun 2006; 348:540-9. [PMID: 16889753 DOI: 10.1016/j.bbrc.2006.07.094] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 07/17/2006] [Indexed: 11/17/2022]
Abstract
Kirsten Ras4B (K-Ras4B) is a potent onco-protein that is expressed in the majority of human cell types and is frequently mutated in carcinomas. K-Ras4B, like other members of the Ras family of proteins, is considered to be a cytoplasmic protein that must be localized to the plasma membrane for activation. Here, using confocal microscopy and biochemical analysis, we show that K-Ras4B, but not H-Ras or the closely related K-Ras4A, is also present in the nucleoli of normal and transformed cells. Subcellular fractionation and immunostaining show that K-Ras4B is located not only in the cytoplasm, but also in the nucleolar compartment. Modification of a C-terminal hexa-lysine motif unique to K-Ras4B results in exclusively cytoplasmic forms of the protein. Nucleolin, a pleiotropic regulator of cellular processes, including transcriptional regulation, is also characterized by a nucleolar-like nuclear appearance. We show that K-Ras4B and nucleolin co-localize within the nucleus and that nucleolin physically associates with K-Ras4B. Inhibition of K-Ras4B/nucleolin association blocked nucleolar localization of K-Ras4B. Using siRNA to knockdown the expression of nucleolin eliminated the nucleolar localization of K-Ras4B and significantly repressed the activation of the well-characterized K-Ras4B transcriptional target Ap-1, but stimulated Elk1. These data provide evidence of a nucleolar localization of K-Ras4B and describe a functional association between K-Ras4B and nucleolin.
Collapse
Affiliation(s)
- Maria C Birchenall-Roberts
- Basic Research Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD 2170, USA.
| | | | | | | | | | | | | |
Collapse
|
127
|
Bártová E, Kozubek S. Nuclear architecture in the light of gene expression and cell differentiation studies. Biol Cell 2006; 98:323-36. [PMID: 16704376 DOI: 10.1042/bc20050099] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
It is evident that primary DNA sequences, that define genomes, are responsible for genome functions. However, the functional properties of chromatin are additionally regulated by heritable modifications known as epigenetic factors and, therefore, genomes should be also considered with respect to their 'epigenomes'. Nucleosome remodelling, DNA methylation and histone modifications are the most prominent epigenetic changes that play fundamental roles in the chromatin-mediated control of gene expression. Another important nuclear feature with functional relevance is the organization of mammalian chromatin into distinct chromosome territories which are surrounded by the interchromatin compartment that is necessary for transport of regulatory molecules to the targeted DNA. The inner structure of the chromosome territories, as well as the arrangement of the chromosomes within the interphase nuclei, has been found to be non-randomly organized. Therefore, a specific nuclear arrangement can be observed in many cellular processes, such as differentiation and tumour cell transformation.
Collapse
Affiliation(s)
- Eva Bártová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65, Brno, Czech Republic
| | | |
Collapse
|
128
|
Li Q, Kim Y, Namm J, Kulkarni A, Rosania GR, Ahn YH, Chang YT. RNA-selective, live cell imaging probes for studying nuclear structure and function. ACTA ACUST UNITED AC 2006; 13:615-23. [PMID: 16793519 DOI: 10.1016/j.chembiol.2006.04.007] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 03/24/2006] [Accepted: 04/17/2006] [Indexed: 11/19/2022]
Abstract
The higher-order structural organization of the cell nucleus reflects the underlying genome-wide transcriptional activity and macromolecular transport processes. To study the microscopic organization of RNA distribution within the nucleus, a combinatorial library of fluorescent styryl molecules was synthesized and screened for an in vitro RNA response and live cell nuclear imaging. Four different cell lines (HeLa, A549, 3T3, and 3T3-L1) were analyzed in terms of higher-order nuclear organization. We identified RNA-selective dyes with better imaging properties relative to commercially available SYTORNASelect dye; the selected dyes were also cell permeant, photostable, and well tolerated by the cells. Our dyes also had very good counterstain compatibility with Hoechst and DAPI, which could help to image the DNA distribution in relation to RNA distribution in live cells and therefore reveal different patterns of RNA-DNA colocalization.
Collapse
Affiliation(s)
- Qian Li
- Department of Chemistry, New York University, New York, New York 10003, USA
| | | | | | | | | | | | | |
Collapse
|
129
|
Dove BK, You JH, Reed ML, Emmett SR, Brooks G, Hiscox JA. Changes in nucleolar morphology and proteins during infection with the coronavirus infectious bronchitis virus. Cell Microbiol 2006; 8:1147-57. [PMID: 16819967 PMCID: PMC7162191 DOI: 10.1111/j.1462-5822.2006.00698.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The nucleolus is a dynamic subnuclear structure involved in ribosome subunit biogenesis, cell cycle control and mediating responses to cell stress, among other functions. While many different viruses target proteins to the nucleolus and recruit nucleolar proteins to facilitate virus replication, the effect of infection on the nucleolus in terms of morphology and protein content is unknown. Previously we have shown that the coronavirus nucleocapsid protein will localize to the nucleolus. In this study, using the avian infectious bronchitis coronavirus, we have shown that virus infection results in a number of changes to the nucleolus both in terms of gross morphology and protein content. Using confocal microscopy coupled with fluorescent labelled nucleolar marker proteins we observed changes in the morphology of the nucleolus including an enlarged fibrillar centre. We found that the tumour suppressor protein, p53, which localizes normally to the nucleus and nucleolus, was redistributed predominately to the cytoplasm.
Collapse
Affiliation(s)
- Brian K Dove
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | | | | | | | | |
Collapse
|
130
|
Shav-Tal Y, Darzacq X, Singer RH. Gene expression within a dynamic nuclear landscape. EMBO J 2006; 25:3469-79. [PMID: 16900099 PMCID: PMC1538565 DOI: 10.1038/sj.emboj.7601226] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 06/07/2006] [Indexed: 01/01/2023] Open
Abstract
Molecular imaging in living cells or organisms now allows us to observe macromolecular assemblies with a time resolution sufficient to address cause-and-effect relationships on specific molecules. These emerging technologies have gained much interest from the scientific community since they have been able to reveal novel concepts in cell biology, thereby changing our vision of the cell. One main paradigm is that cells stochastically vary, thus implying that population analysis may be misleading. In fact, cells should be analyzed within time-resolved single-cell experiments rather than being compared to other cells within a population. Technological imaging developments as well as the stochastic events present in gene expression have been reviewed. Here, we discuss how the structural organization of the nucleus is revealed using noninvasive single-cell approaches, which ultimately lead to the resolution required for the analysis of highly controlled molecular processes taking place within live cells. We also describe the efforts being made towards physiological approaches within the context of living organisms.
Collapse
Affiliation(s)
- Yaron Shav-Tal
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.
| | | | | |
Collapse
|
131
|
De A, Donahue SL, Tabah A, Castro NE, Mraz N, Cruise JL, Campbell C. A novel interaction [corrected] of nucleolin with Rad51. Biochem Biophys Res Commun 2006; 344:206-13. [PMID: 16600179 DOI: 10.1016/j.bbrc.2006.03.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 03/20/2006] [Indexed: 12/27/2022]
Abstract
Nucleolin associates with various DNA repair, recombination, and replication proteins, and possesses DNA helicase, strand annealing, and strand pairing activities. Examination of nuclear protein extracts from human somatic cells revealed that nucleolin and Rad51 co-immunoprecipitate. Furthermore, purified recombinant Rad51 associates with in vitro transcribed and translated nucleolin. Electroporation-mediated introduction of anti-nucleolin antibody resulted in a 10- to 20-fold reduction in intra-plasmid homologous recombination activity in human fibrosarcoma cells. Additionally, introduction of anti-nucleolin antibody sensitized cells to death induced by the topoisomerase II inhibitor, amsacrine. Introduction of anti-Rad51 antibody also reduced intra-plasmid homologous recombination activity and induced hypersensitivity to amsacrine-induced cell death. Co-introduction of anti-nucleolin and anti-Rad51 antibodies did not produce additive effects on homologous recombination or on cellular sensitivity to amsacrine. The association of the two proteins raises the intriguing possibility that nucleolin binding to Rad51 may function to regulate homologous recombinational repair of chromosomal DNA.
Collapse
Affiliation(s)
- Ananya De
- Department of Pharmacology, The University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
132
|
Reed ML, Dove BK, Jackson RM, Collins R, Brooks G, Hiscox JA. Delineation and modelling of a nucleolar retention signal in the coronavirus nucleocapsid protein. Traffic 2006; 7:833-48. [PMID: 16734668 PMCID: PMC7488588 DOI: 10.1111/j.1600-0854.2006.00424.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Unlike nuclear localization signals, there is no obvious consensus sequence for the targeting of proteins to the nucleolus. The nucleolus is a dynamic subnuclear structure which is crucial to the normal operation of the eukaryotic cell. Studying nucleolar trafficking signals is problematic as many nucleolar retention signals (NoRSs) are part of classical nuclear localization signals (NLSs). In addition, there is no known consensus signal with which to inform a study. The avian infectious bronchitis virus (IBV), coronavirus nucleocapsid (N) protein, localizes to the cytoplasm and the nucleolus. Mutagenesis was used to delineate a novel eight amino acid motif that was necessary and sufficient for nucleolar retention of N protein and colocalize with nucleolin and fibrillarin. Additionally, a classical nuclear export signal (NES) functioned to direct N protein to the cytoplasm. Comparison of the coronavirus NoRSs with known cellular and other viral NoRSs revealed that these motifs have conserved arginine residues. Molecular modelling, using the solution structure of severe acute respiratory (SARS) coronavirus N‐protein, revealed that this motif is available for interaction with cellular factors which may mediate nucleolar localization. We hypothesise that the N‐protein uses these signals to traffic to and from the nucleolus and the cytoplasm.
Collapse
Affiliation(s)
- Mark L. Reed
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Brian K. Dove
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Richard M. Jackson
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Rebecca Collins
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Gavin Brooks
- School of Pharmacy, University of Reading, Reading, UK
| | - Julian A. Hiscox
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
133
|
Torrano V, Navascués J, Docquier F, Zhang R, Burke LJ, Chernukhin I, Farrar D, León J, Berciano MT, Renkawitz R, Klenova E, Lafarga M, Delgado MD. Targeting of CTCF to the nucleolus inhibits nucleolar transcription through a poly(ADP-ribosyl)ation-dependent mechanism. J Cell Sci 2006; 119:1746-59. [PMID: 16595548 DOI: 10.1242/jcs.02890] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multiple functions have been reported for the transcription factor and candidate tumour suppressor, CTCF. Among others, they include regulation of cell growth, differentiation and apoptosis, enhancer-blocking activity and control of imprinted genes. CTCF is usually localized in the nucleus and its subcellular distribution during the cell cycle is dynamic; CTCF was found associated with mitotic chromosomes and the midbody, suggesting different roles for CTCF at different stages of the cell cycle. Here we report the nucleolar localization of CTCF in several experimental model systems. Translocation of CTCF from nucleoplasm to the nucleolus was observed after differentiation of K562 myeloid cells and induction of apoptosis in MCF7 breast cancer cells. CTCF was also found in the nucleoli in terminally differentiated rat trigeminal ganglion neurons. Thus our data show that nucleolar localization of CTCF is associated with growth arrest. Interestingly, the 180 kDa poly(ADP-ribosyl)ated isoform of CTCF was predominantly found in the nucleoli fractions. By transfecting different CTCF deletion constructs into cell lines of different origin we demonstrate that the central zinc-finger domain of CTCF is the region responsible for nucleolar targeting. Analysis of subnucleolar localization of CTCF revealed that it is distributed homogeneously in both dense fibrillar and granular components of the nucleolus, but is not associated with fibrillar centres. RNA polymerase I transcription and protein synthesis were required to sustain nucleolar localization of CTCF. Notably, the labelling of active transcription sites by in situ run-on assays demonstrated that CTCF inhibits nucleolar transcription through a poly(ADP-ribosyl)ation-dependent mechanism.
Collapse
Affiliation(s)
- Verónica Torrano
- Grupo de Biología Molecular del Cáncer, Departamento de Biologia Molecular, Universidad de Cantabria, 39011-Santander, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Percipalle P, Farrants AKO. Chromatin remodelling and transcription: be-WICHed by nuclear myosin 1. Curr Opin Cell Biol 2006; 18:267-74. [PMID: 16574391 DOI: 10.1016/j.ceb.2006.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 03/07/2006] [Accepted: 03/13/2006] [Indexed: 01/29/2023]
Abstract
Transcription in eukaryotic cells requires dynamic changes of chromatin structure to facilitate or prevent RNA polymerase access to active genes. These structural modifications rely on the concerted action of ATP-dependent chromatin-remodelling complexes and histone-modifying enzymes, which generate a chromatin configuration that is either compatible with transcription (euchromatin) or incompatible (heterochromatin). Insights into how these structural changes might be coordinated for RNA polymerase I (pol I) genes come from the discoveries of the nucleolar-remodelling complex (NoRC) and B-WICH--a high molecular weight fraction of the WSTF/SNF2h chromatin-remodelling complex. NoRC produces a repressive chromatin state; B-WICH, together with nuclear myosin 1, activates pol I transcription directly on chromatin templates and might also function in the maintenance of ribosomal chromatin structure.
Collapse
Affiliation(s)
- Piergiorgio Percipalle
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, P.O. Box 285, Stockholm SE-171 77, Sweden.
| | | |
Collapse
|
135
|
Suzuki S, Kanno M, Fujiwara T, Sugiyama H, Yokoyama A, Takahashi H, Tanaka J. Molecular cloning and characterization of Nop25, a novel nucleolar RNA binding protein, highly conserved in vertebrate species. Exp Cell Res 2006; 312:1031-41. [PMID: 16430885 DOI: 10.1016/j.yexcr.2005.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 12/05/2005] [Accepted: 12/14/2005] [Indexed: 11/27/2022]
Abstract
We report here the identification and characterization of a novel nucleolar RNA binding protein, referred to as Nop25 as based on its predicted molecular size and subcellular location. Nop25 homologues were widely discovered in diverse vertebrate species as hypothetical proteins, but not found in yeasts, plants and prokaryotic organisms. Nop25 was ubiquitously expressed in adult mouse organs and constitutively during mouse embryogenesis. Indirect immunofluorescence analysis with an anti-Nop25 antibody, as well as an experiment using a GFP-fused protein, demonstrated that Nop25 was localized in the nucleolus. Treatment of the cells with a low doses of actinomycin D caused Nop25 to translocate to the periphery of the nucleolus, suggesting that nucleolar localization of Nop25 is associated with rRNA transcription. Treatment of COS7 cells with RNase A resulted in a complete dissociation of Nop25 from the nucleolus, while in vitro binding assay demonstrated that Nop25 could bind directly to single-stranded nucleic acids. Further characterization of associated RNA molecules with Nop25 using immunoprecipitation experiment showed that Nop25 might bind to 28S rRNA. Studies on this novel nucleolar RNA binding protein may provide new information on the intricate nucleolar machinery as related to the transcription and processing of rRNA molecules and/or the subsequent assembly and maturation of ribosomes.
Collapse
Affiliation(s)
- Shunji Suzuki
- Division of Molecular and Cellular Physiology, Department of Molecular and Cellular Biology, School of Medicine, Ehime University, Toon City, Ehime 791-0295, Japan.
| | | | | | | | | | | | | |
Collapse
|
136
|
Abstract
For stem cells, life is full of potential: they have a high capacity to proliferate and a wide choice of future identities. When they differentiate, cells leave behind this freedom and become ever more committed to a single fate. Intriguingly, the Polycomb and Trithorax groups of proteins are vital to the very different natures of both stem cells and differentiated cells, but little is known about how they make the transition from one cell type to the other. A recent paper(1) throws light on this mystery, showing that the Polycomb proteins dramatically change their behaviour at a crucial moment of differentiation.
Collapse
Affiliation(s)
- Leonie Ringrose
- IMBA-Institute of Molecular Biotechnology GmbH, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
137
|
Handwerger KE, Gall JG. Subnuclear organelles: new insights into form and function. Trends Cell Biol 2006; 16:19-26. [PMID: 16325406 DOI: 10.1016/j.tcb.2005.11.005] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 09/15/2005] [Accepted: 11/21/2005] [Indexed: 11/30/2022]
Abstract
The cell nucleus is a complex and highly dynamic environment with many functionally specialized regions of substructure that form and maintain themselves in the absence of membranes. Relatively little is known about the basic physical properties of the nuclear interior or how domains within the nucleus are structurally and functionally organized and interrelated. Here, we summarize recent data that shed light on the structural and functional properties of three prominent subnuclear organelles--nucleoli, Cajal bodies (CBs) and speckles. We discuss how these findings impact our understanding of the guiding principles of nuclear organization and various types of human disease.
Collapse
Affiliation(s)
- Korie E Handwerger
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA.
| | | |
Collapse
|
138
|
You J, Dove BK, Enjuanes L, DeDiego ML, Alvarez E, Howell G, Heinen P, Zambon M, Hiscox JA. Subcellular localization of the severe acute respiratory syndrome coronavirus nucleocapsid protein. J Gen Virol 2005; 86:3303-3310. [PMID: 16298975 DOI: 10.1099/vir.0.81076-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The coronavirus nucleocapsid (N) protein is a viral RNA-binding protein with multiple functions in terms of virus replication and modulating cell signalling pathways. N protein is composed of three distinct regions containing RNA-binding motif(s), and appropriate signals for modulating cell signalling. The subcellular localization of severe acute respiratory syndrome coronavirus (SARS-CoV) N protein was studied. In infected cells, SARS-CoV N protein localized exclusively to the cytoplasm. In contrast to the avian coronavirus N protein, overexpressed SARS-CoV N protein remained principally localized to the cytoplasm, with very few cells exhibiting nucleolar localization. Bioinformatic analysis and deletion mutagenesis coupled to confocal microscopy and live-cell imaging, revealed that SARS-CoV N protein regions I and III contained nuclear localization signals and region II contained a nucleolar retention signal. However, cytoplasmic localization was directed by region III and was the dominant localization signal in the protein.
Collapse
Affiliation(s)
- Jaehwan You
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, University of Leeds, Leeds LS2 9JT, UK
| | - Brian K Dove
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, University of Leeds, Leeds LS2 9JT, UK
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB, CSIC), Campus Univ. Autonoma, 3 Darwin Street, Cantoblanco, 28049 Madrid, Spain
| | - Marta L DeDiego
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB, CSIC), Campus Univ. Autonoma, 3 Darwin Street, Cantoblanco, 28049 Madrid, Spain
| | - Enrique Alvarez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB, CSIC), Campus Univ. Autonoma, 3 Darwin Street, Cantoblanco, 28049 Madrid, Spain
| | - Gareth Howell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Paul Heinen
- Health Protection Agency, London NW9 5HT, UK
| | | | - Julian A Hiscox
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
139
|
Tomlinson RL, Ziegler TD, Supakorndej T, Terns RM, Terns MP. Cell cycle-regulated trafficking of human telomerase to telomeres. Mol Biol Cell 2005; 17:955-65. [PMID: 16339074 PMCID: PMC1356603 DOI: 10.1091/mbc.e05-09-0903] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Telomerase synthesizes telomeres at the ends of human chromosomes during S phase. The results presented here suggest that telomerase activity may be regulated by intranuclear trafficking of the key components of the enzyme in human cells. We examined the subcellular localization of endogenous human telomerase RNA (hTR) and telomerase reverse transcriptase (hTERT) in HeLa cervical carcinoma cells. Throughout most of the cell cycle, we found that the two essential components of telomerase accumulate at intranuclear sites separate from telomeres. However, during S phase, both hTR and hTERT are specifically recruited to subsets of telomeres. The localization of telomerase to telomeres is dynamic, peaking at mid-S phase. We also found complex associations of both hTR and hTERT with nucleoli and Cajal bodies during S phase, implicating both structures in the biogenesis and trafficking of telomerase. Our results mark the first observation of human telomerase at telomeres and provide a mechanism for the cell cycle-dependent regulation of telomere synthesis in human cells.
Collapse
Affiliation(s)
- Rebecca L Tomlinson
- Departments of Biochemistry and Molecular Biology and Genetics, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
140
|
Mekhail K, Khacho M, Carrigan A, Hache RRJ, Gunaratnam L, Lee S. Regulation of ubiquitin ligase dynamics by the nucleolus. ACTA ACUST UNITED AC 2005; 170:733-44. [PMID: 16129783 PMCID: PMC2171338 DOI: 10.1083/jcb.200506030] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cellular pathways relay information through dynamic protein interactions. We have assessed the kinetic properties of the murine double minute protein (MDM2) and von Hippel-Lindau (VHL) ubiquitin ligases in living cells under physiological conditions that alter the stability of their respective p53 and hypoxia-inducible factor substrates. Photobleaching experiments reveal that MDM2 and VHL are highly mobile proteins in settings where their substrates are efficiently degraded. The nucleolar architecture converts MDM2 and VHL to a static state in response to regulatory cues that are associated with substrate stability. After signal termination, the nucleolus is able to rapidly release these proteins from static detention, thereby restoring their high mobility profiles. A protein surface region of VHL's β-sheet domain was identified as a discrete [H+]-responsive nucleolar detention signal that targets the VHL/Cullin-2 ubiquitin ligase complex to nucleoli in response to physiological fluctuations in environmental pH. Data shown here provide the first evidence that cells have evolved a mechanism to regulate molecular networks by reversibly switching proteins between a mobile and static state.
Collapse
Affiliation(s)
- Karim Mekhail
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | | | |
Collapse
|