101
|
Jimenez AJ, Maiuri P, Lafaurie-Janvore J, Divoux S, Piel M, Perez F. ESCRT Machinery Is Required for Plasma Membrane Repair. Science 2014; 343:1247136. [DOI: 10.1126/science.1247136] [Citation(s) in RCA: 412] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
102
|
Senior MJ, Wallace MI. Fluorescence imaging of MACPF/CDC proteins: new techniques and their application. Subcell Biochem 2014; 80:293-319. [PMID: 24798018 DOI: 10.1007/978-94-017-8881-6_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Structural and biochemical investigations have helped illuminate many of the important details of MACPF/CDC pore formation. However, conventional techniques are limited in their ability to tackle many of the remaining key questions, and new biophysical techniques might provide the means to improve our understanding. Here we attempt to identify the properties of MACPF/CDC proteins that warrant further study, and explore how new developments in fluorescence imaging are able to probe these properties.
Collapse
Affiliation(s)
- Michael J Senior
- Department of Chemistry, Oxford University, 12 Mansfield Rd, Oxford, OX1 3TA, UK
| | | |
Collapse
|
103
|
Abstract
The cell membrane is crucial for protection of the cell from its environment. MACPF/CDC proteins are a large superfamily known to be essential for bacterial pathogenesis and proper functioning of the immune system. The three most studied groups of MACPF/CDC proteins are cholesterol-dependent cytolysins from bacteria, the membrane attack complex of complement and human perforin. Their primary function is to form transmembrane pores in target cell membranes. The common mechanism of action comprises water-soluble monomeric proteins binding to the host cell membrane, oligomerization, and formation of a functional pore. This causes a disturbance in gradients of ions and other molecules across the membrane and can lead to cell death. Cells react to this form of attack in a complex manner. Responses can be general, like removing the perforated part of the membrane, or more specific, in many cases depending on binding of proteins to specific receptors to trigger various signalling cascades.
Collapse
|
104
|
Vaginolysin drives epithelial ultrastructural responses to Gardnerella vaginalis. Infect Immun 2013; 81:4544-50. [PMID: 24082080 DOI: 10.1128/iai.00627-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gardnerella vaginalis, the bacterial species most frequently isolated from women with bacterial vaginosis (BV), produces a cholesterol-dependent cytolysin (CDC), vaginolysin (VLY). At sublytic concentrations, CDCs may initiate complex signaling cascades crucial to target cell survival. Using live-cell imaging, we observed the rapid formation of large membrane blebs in human vaginal and cervical epithelial cells (VK2 and HeLa cells) exposed to recombinant VLY toxin and to cell-free supernatants from growing liquid cultures of G. vaginalis. Binding of VLY to its human-specific receptor (hCD59) is required for bleb formation, as antibody inhibition of either toxin or hCD59 abrogates this response, and transfection of nonhuman cells (CHO-K1) with hCD59 renders them susceptible to toxin-induced membrane blebbing. Disruption of the pore formation process (by exposure to pore-deficient toxoids or pretreatment of cells with methyl-β-cyclodextrin) or osmotic protection of target cells inhibits VLY-induced membrane blebbing. These results indicate that the formation of functional pores drives the observed ultrastructural rearrangements. Rapid bleb formation may represent a conserved response of epithelial cells to sublytic quantities of pore-forming toxins, and VLY-induced epithelial cell membrane blebbing in the vaginal mucosa may play a role in the pathogenesis of BV.
Collapse
|
105
|
Keyel PA, Roth R, Yokoyama WM, Heuser JE, Salter RD. Reduction of streptolysin O (SLO) pore-forming activity enhances inflammasome activation. Toxins (Basel) 2013; 5:1105-18. [PMID: 23744055 PMCID: PMC3717772 DOI: 10.3390/toxins5061105] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/29/2013] [Accepted: 06/03/2013] [Indexed: 12/21/2022] Open
Abstract
Pore-forming toxins are utilized by bacterial and mammalian cells to exert pathogenic effects and induce cell lysis. In addition to rapid plasma membrane repair, macrophages respond to pore-forming toxins through activation of the NLRP3 inflammasome, leading to IL-1β secretion and pyroptosis. The structural determinants of pore-forming toxins required for NLRP3 activation remain unknown. Here, we demonstrate using streptolysin O (SLO) that pore-formation controls IL-1β secretion and direct toxicity. An SLO mutant incapable of pore-formation did not promote direct killing, pyroptosis or IL-1β production. This indicated that pore formation is necessary for inflammasome activation. However, a partially active mutant (SLO N402C) that was less toxic to macrophages than wild-type SLO, even at concentrations that directly lysed an equivalent number of red blood cells, enhanced IL-1β production but did not alter pyroptosis. This suggests that direct lysis may attenuate immune responses by preventing macrophages from successfully repairing their plasma membrane and elaborating more robust cytokine production. We suggest that mutagenesis of pore-forming toxins represents a strategy to enhance adjuvant activity.
Collapse
Affiliation(s)
- Peter A. Keyel
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15260, USA; E-Mail:
| | - Robyn Roth
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110, USA; E-Mails: (R.R.); (J.E.H.)
| | - Wayne M. Yokoyama
- Howard Hughes Medical Institute and Rheumatology Division, Department of Medicine, Washington University, St. Louis, MO 63110, USA; E-Mail:
| | - John E. Heuser
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110, USA; E-Mails: (R.R.); (J.E.H.)
| | - Russell D. Salter
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15260, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-412-648-9471; Fax: +1-412-383-8096
| |
Collapse
|
106
|
Sacchetti A. Cancer cell killing by Celecoxib: Reality or just in vitro precipitation-related artifact? J Cell Biochem 2013; 114:1434-44. [DOI: 10.1002/jcb.24485] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 12/18/2012] [Indexed: 11/06/2022]
|
107
|
Cassidy SKB, O'Riordan MXD. More than a pore: the cellular response to cholesterol-dependent cytolysins. Toxins (Basel) 2013; 5:618-36. [PMID: 23584137 PMCID: PMC3705283 DOI: 10.3390/toxins5040618] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/07/2013] [Accepted: 04/07/2013] [Indexed: 12/15/2022] Open
Abstract
Targeted disruption of the plasma membrane is a ubiquitous form of attack used in all three domains of life. Many bacteria secrete pore-forming proteins during infection with broad implications for pathogenesis. The cholesterol-dependent cytolysins (CDC) are a family of pore-forming toxins expressed predominately by Gram-positive bacterial pathogens. The structure and assembly of some of these oligomeric toxins on the host membrane have been described, but how the targeted cell responds to intoxication by the CDCs is not as clearly understood. Many CDCs induce lysis of their target cell and can activate apoptotic cascades to promote cell death. However, the extent to which intoxication causes cell death is both CDC- and host cell-dependent, and at lower concentrations of toxin, survival of intoxicated host cells is well documented. Additionally, the effect of CDCs can be seen beyond the plasma membrane, and it is becoming increasingly clear that these toxins are potent regulators of signaling and immunity, beyond their role in intoxication. In this review, we discuss the cellular response to CDC intoxication with emphasis on the effects of pore formation on the host cell plasma membrane and subcellular organelles and whether subsequent cellular responses contribute to the survival of the affected cell.
Collapse
Affiliation(s)
- Sara K B Cassidy
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 W. Medical Center Dr., Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
108
|
Bischofberger M, Iacovache I, van der Goot FG. Pathogenic pore-forming proteins: function and host response. Cell Host Microbe 2013; 12:266-75. [PMID: 22980324 DOI: 10.1016/j.chom.2012.08.005] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Organisms from all kingdoms produce pore-forming proteins, with the best-characterized being of bacterial origin. The last decade of research has revealed that the channels formed by these proteins can be very diverse, thus differentially affecting target cell-membrane permeability and consequent cellular outcome. The responses to these toxins are also extremely diverse due to multiple downstream effects of pore-induced changes in ion balance. Determining the secondary effects of pore-forming toxins is essential to understand their contribution to infection.
Collapse
Affiliation(s)
- Mirko Bischofberger
- Ecole Polytechnique Fédérale de Lausanne, Global Health Institute, Station 15, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
109
|
Keyel PA, Heid ME, Watkins SC, Salter RD. Visualization of bacterial toxin induced responses using live cell fluorescence microscopy. J Vis Exp 2012:e4227. [PMID: 23052609 DOI: 10.3791/4227] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Bacterial toxins bind to cholesterol in membranes, forming pores that allow for leakage of cellular contents and influx of materials from the external environment. The cell can either recover from this insult, which requires active membrane repair processes, or else die depending on the amount of toxin exposure and cell type(1). In addition, these toxins induce strong inflammatory responses in infected hosts through activation of immune cells, including macrophages, which produce an array of pro-inflammatory cytokines(2). Many Gram positive bacteria produce cholesterol binding toxins which have been shown to contribute to their virulence through largely uncharacterized mechanisms. Morphologic changes in the plasma membrane of cells exposed to these toxins include their sequestration into cholesterol-enriched surface protrusions, which can be shed into the extracellular space, suggesting an intrinsic cellular defense mechanism(3,4). This process occurs on all cells in the absence of metabolic activity, and can be visualized using EM after chemical fixation(4). In immune cells such as macrophages that mediate inflammation in response to toxin exposure, induced membrane vesicles are suggested to contain cytokines of the IL-1 family and may be responsible both for shedding toxin and disseminating these pro-inflammatory cytokines(5,6,7). A link between IL-1β release and a specific type of cell death, termed pyroptosis has been suggested, as both are caspase-1 dependent processes(8). To sort out the complexities of this macrophage response, which includes toxin binding, shedding of membrane vesicles, cytokine release, and potentially cell death, we have developed labeling techniques and fluorescence microscopy methods that allow for real time visualization of toxin-cell interactions, including measurements of dysfunction and death (Figure 1). Use of live cell imaging is necessary due to limitations in other techniques. Biochemical approaches cannot resolve effects occurring in individual cells, while flow cytometry does not offer high resolution, real-time visualization of individual cells. The methods described here can be applied to kinetic analysis of responses induced by other stimuli involving complex phenotypic changes in cells.
Collapse
Affiliation(s)
- Peter A Keyel
- Department of Immunology, University of Pittsburgh School of Medicine, PA, USA
| | | | | | | |
Collapse
|
110
|
Keyel PA, Tkacheva OA, Larregina AT, Salter RD. Coordinate stimulation of macrophages by microparticles and TLR ligands induces foam cell formation. THE JOURNAL OF IMMUNOLOGY 2012; 189:4621-9. [PMID: 23018455 DOI: 10.4049/jimmunol.1200828] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aberrant activation of macrophages in arterial walls by oxidized lipoproteins can lead to atherosclerosis. Oxidized lipoproteins convert macrophages to foam cells through lipid uptake and TLR signaling. To investigate the relative contributions of lipid uptake and TLR signaling in foam cell formation, we established an in vitro assay using liposomes of defined lipid compositions. We found that TLRs signaling through Toll/IL-1R domain-containing adapter inducing IFN-β promoted foam cell formation by inducing both NF-κB signaling and type I IFN production, whereas TLRs that do not induce IFN, like TLR2, did not enhance foam cell formation. Addition of IFN-α to TLR2 activator promoted robust foam cell formation. TLR signaling further required peroxisome proliferator-activated receptor α, as inhibition of peroxisome proliferator-activated receptor α blocked foam cell formation. We then investigated the ability of endogenous microparticles (MP) to contribute to foam cell formation. We found that lipid-containing MP promoted foam cell formation, which was enhanced by TLR stimulation or IFN-α. These MP also stimulated foam cell formation in a human skin model. However, these MP suppressed TNF-α production and T cell activation, showing that foam cell formation can occur by immunosuppressive MP. Taken together, the data reveal novel signaling requirements for foam cell formation and suggest that uptake of distinct types of MP in the context of activation of multiple distinct TLR can induce foam cell formation.
Collapse
Affiliation(s)
- Peter A Keyel
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | | | |
Collapse
|
111
|
Kano F, Nakatsu D, Noguchi Y, Yamamoto A, Murata M. A resealed-cell system for analyzing pathogenic intracellular events: perturbation of endocytic pathways under diabetic conditions. PLoS One 2012; 7:e44127. [PMID: 22952896 PMCID: PMC3430665 DOI: 10.1371/journal.pone.0044127] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 07/30/2012] [Indexed: 12/25/2022] Open
Abstract
Cell-based assay systems that can serve as cellular models of aberrant function in pathogenic organs would be novel and useful tools for screening drugs and clarifying the molecular mechanisms of various diseases. We constructed model cells that replicated the conditions in diabetic hepatocytes by using the cell resealing technique, which enables the exchange of cytosol. The plasma membrane of HeLa cells was permeabilized with the streptococcal toxin streptolysin O, and cytosol that had been prepared from wild-type or db/db diabetic mice was introduced into the resulting semi-intact cells. By resealing the plasma membrane by exposure to Ca2+, we created WT or Db model cells, in which the cytosolic conditions replicated those of healthy or diabetic liver. Interestingly, phosphorylation of p38 MAPK was promoted, whereas the level of endosomal phosphatidylinositol-3-phosphate was decreased, in Db cells. We investigated several endocytic pathways in WT and Db cells, and found that retrograde endosome-to-Golgi transport was delayed in a p38 MAPK-dependent manner in Db cells. Furthermore, the degradation pathway of the EGF receptor from endosomes to lysosomes was enhanced in Db cells, and this did not depend on the activation of p38 MAPK. The disease model cell system should become a powerful tool for the detection of aberrant processes in cells under pathogenic conditions and for therapeutic applications.
Collapse
Affiliation(s)
- Fumi Kano
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Daiki Nakatsu
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Yoshiyuki Noguchi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Akitsugu Yamamoto
- Department of Cell Biology, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Masayuki Murata
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
112
|
Kloft N, Neukirch C, von Hoven G, Bobkiewicz W, Weis S, Boller K, Husmann M. A subunit of eukaryotic translation initiation factor 2α-phosphatase (CreP/PPP1R15B) regulates membrane traffic. J Biol Chem 2012; 287:35299-35317. [PMID: 22915583 DOI: 10.1074/jbc.m112.379883] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The constitutive reverter of eIF2α phosphorylation (CReP)/PPP1r15B targets the catalytic subunit of protein phosphatase 1 (PP1c) to phosphorylated eIF2α (p-eIF2α) to promote its dephosphorylation and translation initiation. Here, we report a novel role and mode of action of CReP. We found that CReP regulates uptake of the pore-forming Staphylococcus aureus α-toxin by epithelial cells. This function was independent of PP1c and translation, although p-eIF2α was involved. The latter accumulated at sites of toxin attack and appeared conjointly with α-toxin in early endosomes. CReP localized to membranes, interacted with phosphomimetic eIF2α, and, upon overexpression, induced and decorated a population of intracellular vesicles, characterized by accumulation of N-(lissamine rhodamine B sulfonyl)phosphatidylethanolamine (N-Rh-PE), a lipid marker of exosomes and intralumenal vesicles of multivesicular bodies. By truncation analysis, we delineated the CReP vesicle induction/association region, which comprises an amphipathic α-helix and is distinct from the PP1c interaction domain. CReP was also required for exocytosis from erythroleukemia cells and thus appears to play a broader role in membrane traffic. In summary, the mammalian traffic machinery co-opts p-eIF2α and CReP, regulators of translation initiation.
Collapse
Affiliation(s)
- Nicole Kloft
- Institute of Medical Microbiology and Hygiene, University Medical Center, Johannes Gutenberg-University Mainz, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | - Claudia Neukirch
- Institute of Medical Microbiology and Hygiene, University Medical Center, Johannes Gutenberg-University Mainz, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | - Gisela von Hoven
- Institute of Medical Microbiology and Hygiene, University Medical Center, Johannes Gutenberg-University Mainz, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | - Wiesia Bobkiewicz
- Institute of Medical Microbiology and Hygiene, University Medical Center, Johannes Gutenberg-University Mainz, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | - Silvia Weis
- Institute of Medical Microbiology and Hygiene, University Medical Center, Johannes Gutenberg-University Mainz, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | - Klaus Boller
- Department of Immunology, Morphology Section, Paul Ehrlich-Institute, 63225 Langen, Germany
| | - Matthias Husmann
- Institute of Medical Microbiology and Hygiene, University Medical Center, Johannes Gutenberg-University Mainz, Hochhaus am Augustusplatz, 55131 Mainz, Germany.
| |
Collapse
|
113
|
Corrotte M, Fernandes MC, Tam C, Andrews NW. Toxin pores endocytosed during plasma membrane repair traffic into the lumen of MVBs for degradation. Traffic 2012; 13:483-94. [PMID: 22212686 DOI: 10.1111/j.1600-0854.2011.01323.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 12/15/2022]
Abstract
Cells permeabilized by the bacterial pore-forming toxin streptolysin O (SLO) reseal their plasma membrane in a Ca(2+) -dependent manner. Resealing involves Ca(2+) -dependent exocytosis of lysosomes, release of acid sphingomyelinase and rapid formation of endosomes that carry the transmembrane pores into the cell. The intracellular fate of the toxin-carrying endocytic vesicles, however, is still unknown. Here, we show that SLO pores removed from the plasma membrane by endocytosis are sorted into the lumen of lysosomes, where they are degraded. SLO-permeabilized cells contain elevated numbers of total endosomes, which increase gradually in size while transitioning from endosomes with flat clathrin coats to large multivesicular bodies (MVBs). Under conditions that allow endocytosis and plasma membrane repair, SLO is rapidly ubiquitinated and gradually degraded, in a process sensitive to inhibitors of lysosomal hydrolysis but not of proteasomes. The endosomes induced by SLO permeabilization become increasingly acidified and promote SLO degradation under normal conditions, but not in cells silenced for expression of Vps24, an ESCRT-III complex component required for the release of intraluminal vesicles into MVBs. Thus, cells dispose of SLO transmembrane pores by ubiquitination/ESCRT-dependent sorting into the lumen of late endosomes/lysosomes.
Collapse
Affiliation(s)
- Matthias Corrotte
- Department of Cell Biology and Molecular Genetics, College of Computer, Mathematics and Natural Sciences, University of Maryland, College Park, MD, USA
| | | | | | | |
Collapse
|
114
|
Usmani SM, von Einem J, Frick M, Miklavc P, Mayenburg M, Husmann M, Dietl P, Wittekindt OH. Molecular basis of early epithelial response to streptococcal exotoxin: role of STIM1 and Orai1 proteins. Cell Microbiol 2011; 14:299-315. [PMID: 22073982 DOI: 10.1111/j.1462-5822.2011.01724.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Streptolysin O (SLO) is a cholesterol-dependent cytolysin (CDC) from Streptococcus pyogenes. SLO induces diverse types of Ca(2+) signalling in host cells which play a key role in membrane repair and cell fate determination. The mechanisms behind SLO-induced Ca(2+) signalling remain poorly understood. Here, we show that in NCI-H441 cells, wild-type SLO as well as non-pore-forming mutant induces long-lasting intracellular Ca(2+) oscillations via IP(3) -mediated depletion of intracellular stores and activation of store-operated Ca(2+) (SOC) entry. SLO-induced activation of SOC entry was confirmed by Ca(2+) add-back experiments, pharmacologically and by overexpression as well as silencing of STIM1 and Orai1 expression. SLO also activated SOC entry in primary cultivated alveolar type II (ATII) cells but Ca(2+) oscillations were comparatively short-lived in nature. Comparison of STIM1 and Orai1 revealed a differential expression pattern in H441 and ATII cells. Overexpression of STIM1 and Orai1 proteins in ATII cells changed the short-lived oscillatory response into a long-lived one. Thus, we conclude that SLO-mediated Ca(2+) signalling involves Ca(2+) release from intracellular stores and STIM1/Orai1-dependent SOC entry. The phenotype of Ca(2+) signalling depends on STIM1 and Orai1 expression levels. Our findings suggest a new role for SOC entry-associated proteins in S. pyogenes-induced lung infection and pneumonia.
Collapse
Affiliation(s)
- Shariq M Usmani
- Institute of General Physiology, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Abstract
Toxins secreted by bacteria can impact the host in a number of different ways. In some infections, toxins play a crucial and central role in pathogenesis (i.e., anthrax), while in other bacterial infections, the role of toxins is less understood. The cholesterol-dependent cytolysins (CDCs), of which streptolysin O is a prototype, are a class of pore-forming toxins produced by many gram-positive bacteria and have only been studied in a few experimental infection models. Our laboratory has demonstrated that CDCs have effects on macrophages that are both pro- and anti-inflammatory. Here, we review evidence that CDCs promote inflammation by driving secretion of IL-1β and HMGB-1 from macrophages in a NLRP3-dependent manner, while also causing shedding of membrane microvesicles from cells that can interact with macrophages and inhibit TNF-α release. CDCs thus impact macrophage function in ways that may be both beneficial and detrimental to the host.
Collapse
|