101
|
Zhang H, Yang M, Wu X, Li Q, Li X, Zhao Y, Du F, Chen Y, Wu Z, Xiao Z, Shen J, Wen Q, Hu W, Cho CH, Chen M, Zhou Y, Li M. The distinct roles of exosomes in tumor-stroma crosstalk within gastric tumor microenvironment. Pharmacol Res 2021; 171:105785. [PMID: 34311072 DOI: 10.1016/j.phrs.2021.105785] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) development is a complex process displaying polytropic cell and molecular landscape within gastric tumor microenvironment (TME). Stromal cells in TME, including fibroblasts, endothelial cells, mesenchymal stem cells, and various immune cells, support tumor growth, metastasis, and recurrence, functioning as the soil for gastric tumorigenesis. Importantly, exosomes secreted by either stromal cells or tumor cells during tumor-stroma crosstalk perform as crucial transporter of agents including RNAs and proteins for cell-cell communication in GC pathogenesis. Therefore, given the distinct roles of exosomes secreted by various cell types in GC TME, increasing evidence has indicated that exosomes present as new biomarkers for GC diagnosis and prognosis and shed light on novel approaches for GC treatment.
Collapse
Affiliation(s)
- Hanyu Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; Nanchong Key Laboratory of Individualized Drug Therapy, Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Min Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Qianxiu Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Xin Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Zhigui Wu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, Guangzhou, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Yejiang Zhou
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China.
| |
Collapse
|
102
|
Bioinspired artificial exosomes based on lipid nanoparticles carrying let-7b-5p promote angiogenesis in vitro and in vivo. Mol Ther 2021; 29:2239-2252. [PMID: 33744469 PMCID: PMC8261169 DOI: 10.1016/j.ymthe.2021.03.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 01/18/2021] [Accepted: 03/15/2021] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression by post-transcriptional inhibition of target genes. Proangiogenic small extracellular vesicles (sEVs; popularly identified with the name "exosomes") with a composite cargo of miRNAs are secreted by cultured stem cells and present in human biological fluids. Lipid nanoparticles (LNPs) represent an advanced platform for clinically approved delivery of RNA therapeutics. In this study, we aimed to (1) identify the miRNAs responsible for sEV-induced angiogenesis; (2) develop the prototype of bioinspired "artificial exosomes" (AEs) combining LNPs with a proangiogenic miRNA, and (3) validate the angiogenic potential of the bioinspired AEs. We previously reported that human sEVs from bone marrow (BM)-CD34+ cells and pericardial fluid (PF) are proangiogenic. Here, we have shown that sEVs secreted from saphenous vein pericytes and BM mesenchymal stem cells also promote angiogenesis. Analysis of miRNA datasets available in-house or datamined from GEO identified the let-7 family as common miRNA signature of the proangiogenic sEVs. LNPs with either hsa-let-7b-5p or cyanine 5 (Cy5)-conjugated Caenorhabditis elegans miR-39 (Cy5-cel-miR-39; control miRNA) were prepared using microfluidic micromixing. let-7b-5p-AEs did not cause toxicity and transferred functionally active let-7b-5p to recipient endothelial cells (ECs). let-7b-AEs also improved EC survival under hypoxia and angiogenesis in vitro and in vivo. Bioinspired proangiogenic AEs could be further developed into innovative nanomedicine products targeting ischemic diseases.
Collapse
|
103
|
Matuszczak M, Schalken JA, Salagierski M. Prostate Cancer Liquid Biopsy Biomarkers' Clinical Utility in Diagnosis and Prognosis. Cancers (Basel) 2021; 13:3373. [PMID: 34282798 PMCID: PMC8268859 DOI: 10.3390/cancers13133373] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 01/09/2023] Open
Abstract
Prostate cancer (PCa) is the most common cancer in men worldwide. The current gold standard for diagnosing PCa relies on a transrectal ultrasound-guided systematic core needle biopsy indicated after detection changes in a digital rectal examination (DRE) and elevated prostate-specific antigen (PSA) level in the blood serum. PSA is a marker produced by prostate cells, not just cancer cells. Therefore, an elevated PSA level may be associated with other symptoms such as benign prostatic hyperplasia or inflammation of the prostate gland. Due to this marker's low specificity, a common problem is overdiagnosis, which leads to unnecessary biopsies and overtreatment. This is associated with various treatment complications (such as bleeding or infection) and generates unnecessary costs. Therefore, there is no doubt that the improvement of the current procedure by applying effective, sensitive and specific markers is an urgent need. Several non-invasive, cost-effective, high-accuracy liquid biopsy diagnostic biomarkers such as Progensa PCA3, MyProstateScore ExoDx, SelectMDx, PHI, 4K, Stockholm3 and ConfirmMDx have been developed in recent years. This article compares current knowledge about them and their potential application in clinical practice.
Collapse
Affiliation(s)
- Milena Matuszczak
- Department of Urology, Collegium Medicum, University of Zielona Góra, 65-046 Zielona Góra, Poland;
| | - Jack A. Schalken
- Department of Urology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands;
| | - Maciej Salagierski
- Department of Urology, Collegium Medicum, University of Zielona Góra, 65-046 Zielona Góra, Poland;
| |
Collapse
|
104
|
Pelissier Vatter FA, Cioffi M, Hanna SJ, Castarede I, Caielli S, Pascual V, Matei I, Lyden D. Extracellular vesicle- and particle-mediated communication shapes innate and adaptive immune responses. J Exp Med 2021; 218:212439. [PMID: 34180950 PMCID: PMC8241538 DOI: 10.1084/jem.20202579] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/25/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Intercellular communication among immune cells is vital for the coordination of proper immune responses. Extracellular vesicles and particles (EVPs) act as messengers in intercellular communication, with important consequences for target cell and organ physiology in both health and disease. Under normal physiological conditions, immune cell-derived EVPs participate in immune responses by regulating innate and adaptive immune responses. EVPs play a major role in antigen presentation and immune activation. On the other hand, immune cell-derived EVPs exert immunosuppressive and regulatory effects. Consequently, EVPs may contribute to pathological conditions, such as autoimmune and inflammatory diseases, graft rejection, and cancer progression and metastasis. Here, we provide an overview of the role of EVPs in immune homeostasis and pathophysiology, with a particular focus on their contribution to innate and adaptive immunity and their potential use for immunotherapies.
Collapse
Affiliation(s)
- Fanny A Pelissier Vatter
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - Michele Cioffi
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - Samer J Hanna
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - Ines Castarede
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY.,Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Simone Caielli
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY
| | - Virginia Pascual
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| |
Collapse
|
105
|
Gong RQ, Nuh AM, Cao HS, Ma M. Roles of exosomes-derived lncRNAs in preeclampsia. Eur J Obstet Gynecol Reprod Biol 2021; 263:132-138. [PMID: 34214799 DOI: 10.1016/j.ejogrb.2021.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022]
Abstract
Preeclampsia is a pregnancy-specific hypertensive syndrome, which seriously threatens the safety of mother and infant. However, there is still no accurate biomarkers for the diagnosis of preeclampsia, and its etiology and pathogenesis have not been fully elucidated. Exosomes are extracellular vesicles widely existing in body fluids, which carry a variety of bioactive molecules such as proteins, lipids and nucleic acids with various biological functions. The lncRNAs carried by exosomes are characterized by specificity, plurality, anti-degradation and stable detection. Multiple differentially expressed lncRNAs were found in exosomes secreted by placental tissues of patients with preeclampsia, suggesting that they may be involved in the occurrence and development of preeclampsia. In this paper, we summarized the structures and functions of exosomes-derived lncRNAs and their relationships with preeclampsia in order to provide new ideas for the pathogenesis, early prediction, diagnosis and treatment of preeclampsia.
Collapse
Affiliation(s)
- Rong-Quan Gong
- Yangzhou University Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Abdifatah Mohamed Nuh
- Yangzhou University Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225009, China; Department of Obstetrics, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225012, China
| | - Heng-Shan Cao
- Yangzhou University Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Min Ma
- Yangzhou University Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225009, China; Department of Obstetrics, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225012, China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, Jiangsu Province 225009, China.
| |
Collapse
|
106
|
Munir MT, Kay MK, Kang MH, Rahman MM, Al-Harrasi A, Choudhury M, Moustaid-Moussa N, Hussain F, Rahman SM. Tumor-Associated Macrophages as Multifaceted Regulators of Breast Tumor Growth. Int J Mol Sci 2021; 22:6526. [PMID: 34207035 PMCID: PMC8233875 DOI: 10.3390/ijms22126526] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most commonly occurring cancer in women of Western countries and is the leading cause of cancer-related mortality. The breast tumor microenvironment contains immune cells, fibroblasts, adipocytes, mesenchymal stem cells, and extracellular matrix. Among these cells, macrophages or tumor-associated macrophages (TAMs) are the major components of the breast cancer microenvironment. TAMs facilitate metastasis of the breast tumor and are responsible for poor clinical outcomes. High TAM density was also found liable for the poor prognosis of breast cancer. These observations make altering TAM function a potential therapeutic target to treat breast cancer. The present review summarizes the origin of TAMs, mechanisms of macrophage recruitment and polarization in the tumor, and the contributions of TAMs in tumor progression. We have also discussed our current knowledge about TAM-targeted therapies and the roles of miRNAs and exosomes in re-educating TAM function.
Collapse
Affiliation(s)
- Maliha Tabassum Munir
- Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.T.M.); (N.M.-M.)
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Matthew K. Kay
- Texas A&M University Health Sciences Center, College Station, TX 77843, USA; (M.K.K.); (M.C.)
| | - Min H. Kang
- Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Md Mizanur Rahman
- Department of Biological and Environmental Sciences, Qatar University, Doha 2713, Qatar;
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mouz 616, Oman;
| | - Mahua Choudhury
- Texas A&M University Health Sciences Center, College Station, TX 77843, USA; (M.K.K.); (M.C.)
| | - Naima Moustaid-Moussa
- Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.T.M.); (N.M.-M.)
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Fazle Hussain
- Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA;
| | - Shaikh Mizanoor Rahman
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mouz 616, Oman;
| |
Collapse
|
107
|
Huda MN, Nafiujjaman M, Deaguero IG, Okonkwo J, Hill ML, Kim T, Nurunnabi M. Potential Use of Exosomes as Diagnostic Biomarkers and in Targeted Drug Delivery: Progress in Clinical and Preclinical Applications. ACS Biomater Sci Eng 2021; 7:2106-2149. [PMID: 33988964 PMCID: PMC8147457 DOI: 10.1021/acsbiomaterials.1c00217] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022]
Abstract
Exosomes are cell-derived vesicles containing heterogeneous active biomolecules such as proteins, lipids, mRNAs, receptors, immune regulatory molecules, and nucleic acids. They typically range in size from 30 to 150 nm in diameter. An exosome's surfaces can be bioengineered with antibodies, fluorescent dye, peptides, and tailored for small molecule and large active biologics. Exosomes have enormous potential as a drug delivery vehicle due to enhanced biocompatibility, excellent payload capability, and reduced immunogenicity compared to alternative polymeric-based carriers. Because of active targeting and specificity, exosomes are capable of delivering their cargo to exosome-recipient cells. Additionally, exosomes can potentially act as early stage disease diagnostic tools as the exosome carries various protein biomarkers associated with a specific disease. In this review, we summarize recent progress on exosome composition, biological characterization, and isolation techniques. Finally, we outline the exosome's clinical applications and preclinical advancement to provide an outlook on the importance of exosomes for use in targeted drug delivery, biomarker study, and vaccine development.
Collapse
Affiliation(s)
- Md Nurul Huda
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX 79968
| | - Md Nafiujjaman
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Isaac G Deaguero
- Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968
| | - Jude Okonkwo
- John A Paulson School of Engineering, Harvard University, Cambridge, MA 02138
| | - Meghan L. Hill
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Taeho Kim
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Md Nurunnabi
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX 79968
- Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968
| |
Collapse
|
108
|
Xu J, Jiang R, He H, Ma C, Tang Z. Recent advances on G-quadruplex for biosensing, bioimaging and cancer therapy. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116257] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
109
|
Gurunathan S, Kang MH, Qasim M, Khan K, Kim JH. Biogenesis, Membrane Trafficking, Functions, and Next Generation Nanotherapeutics Medicine of Extracellular Vesicles. Int J Nanomedicine 2021; 16:3357-3383. [PMID: 34040369 PMCID: PMC8140893 DOI: 10.2147/ijn.s310357] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/25/2021] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of membrane-limited vesicles and multi-signal messengers loaded with biomolecules. Exosomes and ectosomes are two different types of EVs generated by all cell types. Their formation depends on local microdomains assembled in endocytic membranes for exosomes and in the plasma membrane for ectosomes. Further, EV release is a fundamental process required for intercellular communication in both normal physiology and pathological conditions to transmit/exchange bioactive molecules to recipient cells and the extracellular environment. The unique structure and composition of EVs enable them to serve as natural nanocarriers, and their physicochemical properties and biological functions can be used to develop next-generation nano and precision medicine. Knowledge of the cellular processes that govern EVs biology and membrane trafficking is essential for their clinical applications. However, in this rapidly expanding field, much remains unknown regarding EV origin, biogenesis, cargo sorting, and secretion, as well as EV-based theranostic platform generation. Hence, we present a comprehensive overview of the recent advances in biogenesis, membrane trafficking, and functions of EVs, highlighting the impact of nanoparticles and oxidative stress on EVs biogenesis and release and finally emphasizing the role of EVs as nanotherapeutic agents.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Muhammad Qasim
- Center of Bioengineering and Nanomedicine, Department of Food Science, University of Otago, Dunedin, 9054, New Zealand
| | - Khalid Khan
- Science and Technology KPK, Peshawar, Pakistan
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| |
Collapse
|
110
|
Fatty Acid Unsaturation Degree of Plasma Exosomes in Colorectal Cancer Patients: A Promising Biomarker. Int J Mol Sci 2021; 22:ijms22105060. [PMID: 34064646 PMCID: PMC8151919 DOI: 10.3390/ijms22105060] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 01/08/2023] Open
Abstract
Even though colorectal cancer (CRC) is one of the most preventable cancers, it is currently one of the deadliest. Worryingly, incidence in people <50 years has increased unexpectedly, and for unknown causes, despite the successful implementation of screening programs in the population aged >50 years. Thus, there is a need to improve early diagnosis detection strategies by identifying more precise biomarkers. In this scenario, the analysis of exosomes is given considerable attention. Previously, we demonstrated the exosome lipidome was able to classify CRC cell lines according to their malignancy. Herein, we investigated the use of the lipidome of plasma extracellular vesicles as a potential source of non-invasive biomarkers for CRC. A plasma exosome-enriched fraction was analyzed from patients undergoing colonoscopic procedure. Patients were divided into a healthy group and four pathological groups (patients with hyperplastic polyps; adenomatous polyps; invasive neoplasia (CRC patients); or hereditary non-polyposis CRC. The results showed a shift from 34:1- to 38:4-containing species in the pathological groups. We demonstrate that the ratio Σ34:1-containing species/Σ38:4-containing species has the potential to discriminate between healthy and pathological patients. Altogether, the results reinforce the utility of plasma exosome lipid fingerprint to provide new non-invasive biomarkers in a clinical context.
Collapse
|
111
|
Trigg NA, Stanger SJ, Zhou W, Skerrett-Byrne DA, Sipilä P, Dun MD, Eamens AL, De Iuliis GN, Bromfield EG, Roman SD, Nixon B. A novel role for milk fat globule-EGF factor 8 protein (MFGE8) in the mediation of mouse sperm-extracellular vesicle interactions. Proteomics 2021; 21:e2000079. [PMID: 33792189 DOI: 10.1002/pmic.202000079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 01/06/2023]
Abstract
Spermatozoa transition to functional maturity as they are conveyed through the epididymis, a highly specialized region of the male excurrent duct system. Owing to their transcriptionally and translationally inert state, this transformation into fertilization competent cells is driven by complex mechanisms of intercellular communication with the secretory epithelium that delineates the epididymal tubule. Chief among these mechanisms are the release of extracellular vesicles (EV), which have been implicated in the exchange of varied macromolecular cargo with spermatozoa. Here, we describe the optimization of a tractable cell culture model to study the mechanistic basis of sperm-extracellular vesicle interactions. In tandem with receptor inhibition strategies, our data demonstrate the importance of milk fat globule-EGF factor 8 (MFGE8) protein in mediating the efficient exchange of macromolecular EV cargo with mouse spermatozoa; with the MFGE8 integrin-binding Arg-Gly-Asp (RGD) tripeptide motif identified as being of particular importance. Specifically, complementary strategies involving MFGE8 RGD domain ablation, competitive RGD-peptide inhibition and antibody-masking of alpha V integrin receptors, all significantly inhibited the uptake and redistribution of EV-delivered proteins into immature mouse spermatozoa. These collective data implicate the MFGE8 ligand and its cognate integrin receptor in the mediation of the EV interactions that underpin sperm maturation.
Collapse
Affiliation(s)
- Natalie A Trigg
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Simone J Stanger
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Wei Zhou
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, Victoria, Australia.,Gynaecology Research Centre, The Royal Women's Hospital, Parkville, Victoria, Australia
| | - David A Skerrett-Byrne
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Petra Sipilä
- Research Centre for Integrative Physiology and Pharmacology, and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, New South Wales, Australia.,Cancer Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Andrew L Eamens
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Geoffry N De Iuliis
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Shaun D Roman
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,Priority Research Centre for Drug Development, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
112
|
Sorop A, Constantinescu D, Cojocaru F, Dinischiotu A, Cucu D, Dima SO. Exosomal microRNAs as Biomarkers and Therapeutic Targets for Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22094997. [PMID: 34066780 PMCID: PMC8125948 DOI: 10.3390/ijms22094997] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the second most common cause of cancer-related death globally. This type of liver cancer is frequently detected at a late stage by current biomarkers because of the high clinical and biological heterogeneity of HCC tumours. From a plethora of molecules and cellular compounds, small nanoparticles with an endosomal origin are valuable cancer biomarkers or cargos for novel treatments. Despite their small sizes, in the range of 40–150 nm, these particles are delimited by a lipid bilayer membrane with a specific lipid composition and carry functional information—RNA, proteins, miRNAs, long non-coding RNAs (lncRNAs), or DNA fragments. This review summarizes the role of exosomal microRNA (miRNA) species as biomarkers in HCC therapy. After we briefly introduce the exosome biogenesis and the methods of isolation and characterization, we discuss miRNA’s correlation with the diagnosis and prognosis of HCC, either as single miRNA species, or as specific panels with greater clinical impact. We also review the role of exosomal miRNAs in the tumourigenic process and in the cell communication pathways through the delivery of cargos, including proteins or specific drugs.
Collapse
Affiliation(s)
- Andrei Sorop
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania; (A.S.); (D.C.); (S.O.D.)
- Department DAFAB, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (F.C.); (A.D.)
| | - Diana Constantinescu
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania; (A.S.); (D.C.); (S.O.D.)
| | - Florentina Cojocaru
- Department DAFAB, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (F.C.); (A.D.)
| | - Anca Dinischiotu
- Department DAFAB, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (F.C.); (A.D.)
| | - Dana Cucu
- Department DAFAB, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (F.C.); (A.D.)
- Correspondence: ; Tel.: +40-728-257-607
| | - Simona Olimpia Dima
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania; (A.S.); (D.C.); (S.O.D.)
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, 022238 Bucharest, Romania
| |
Collapse
|
113
|
Negri S, Faris P, Moccia F. Endolysosomal Ca 2+ signaling in cardiovascular health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 363:203-269. [PMID: 34392930 DOI: 10.1016/bs.ircmb.2021.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An increase in intracellular Ca2+ concentration ([Ca2+]i) regulates a plethora of functions in the cardiovascular (CV) system, including contraction in cardiomyocytes and vascular smooth muscle cells (VSMCs), and angiogenesis in vascular endothelial cells and endothelial colony forming cells. The sarco/endoplasmic reticulum (SR/ER) represents the largest endogenous Ca2+ store, which releases Ca2+ through ryanodine receptors (RyRs) and/or inositol-1,4,5-trisphosphate receptors (InsP3Rs) upon extracellular stimulation. The acidic vesicles of the endolysosomal (EL) compartment represent an additional endogenous Ca2+ store, which is targeted by several second messengers, including nicotinic acid adenine dinucleotide phosphate (NAADP) and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], and may release intraluminal Ca2+ through multiple Ca2+ permeable channels, including two-pore channels 1 and 2 (TPC1-2) and Transient Receptor Potential Mucolipin 1 (TRPML1). Herein, we discuss the emerging, pathophysiological role of EL Ca2+ signaling in the CV system. We describe the role of cardiac TPCs in β-adrenoceptor stimulation, arrhythmia, hypertrophy, and ischemia-reperfusion injury. We then illustrate the role of EL Ca2+ signaling in VSMCs, where TPCs promote vasoconstriction and contribute to pulmonary artery hypertension and atherosclerosis, whereas TRPML1 sustains vasodilation and is also involved in atherosclerosis. Subsequently, we describe the mechanisms whereby endothelial TPCs promote vasodilation, contribute to neurovascular coupling in the brain and stimulate angiogenesis and vasculogenesis. Finally, we discuss about the possibility to target TPCs, which are likely to mediate CV cell infection by the Severe Acute Respiratory Disease-Coronavirus-2, with Food and Drug Administration-approved drugs to alleviate the detrimental effects of Coronavirus Disease-19 on the CV system.
Collapse
Affiliation(s)
- Sharon Negri
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Pawan Faris
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Francesco Moccia
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.
| |
Collapse
|
114
|
Tan C, Sun W, Xu Z, Zhu S, Hu W, Wang X, Zhang Y, Zhang G, Wang Z, Xu Y, Tang J. Small extracellular vesicles deliver TGF-β1 and promote adriamycin resistance in breast cancer cells. Mol Oncol 2021; 15:1528-1542. [PMID: 33508878 PMCID: PMC8096780 DOI: 10.1002/1878-0261.12908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/27/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022] Open
Abstract
Chemotherapeutic resistance is a major obstacle in the control of advanced breast cancer (BCa). We have previously shown that small extracellular vesicles (sEVs) can transmit adriamycin resistance between BCa cells. Here, we describe that sEV-mediated TGF-β1 intercellular transfer is involved in the drug-resistant transmission. sEVs were isolated and characterized from both sensitive and resistant cells. sEVs derived from the resistant cells were incubated with the sensitive cells and resulted in transmitting the resistant phenotype to the recipient cells. Cytokine antibody microarray revealed that most metastasis-associated cytokines present at the high levels in sEVs from the resistant cells compared with their levels in sEVs from the sensitive cells, particularly TGF-β1 is enriched in sEVs from the resistant cells. The sEV-mediated TGF-β1 intercellular transfer led to increasing Smad2 phosphorylation and improving cell survival by suppressing apoptosis and enhancing cell mobility. Furthermore, sEV-mediated drug-resistant transmission by delivering TGF-β1 was validated using a zebrafish xenograft tumor model. These results elaborated that sEV-mediated TGF-β1 intercellular transfer contributes to adriamycin resistance in BCa.
Collapse
Affiliation(s)
- Chunli Tan
- Jiangsu Institute of Cancer ResearchJiangsu Cancer HospitalThe Affiliated Cancer Hospital of Nanjing Medical UniversityChina
- Department of General Surgerythe First Affiliated Hospital with Nanjing Medical UniversityChina
- Department of PharmacyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Wenbo Sun
- Jiangsu Institute of Cancer ResearchJiangsu Cancer HospitalThe Affiliated Cancer Hospital of Nanjing Medical UniversityChina
| | - Zhi Xu
- Department of General Surgerythe First Affiliated Hospital with Nanjing Medical UniversityChina
| | - Shuyi Zhu
- Jiangsu Institute of Cancer ResearchJiangsu Cancer HospitalThe Affiliated Cancer Hospital of Nanjing Medical UniversityChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentNanjing Medical UniversityChina
| | - Weizi Hu
- Jiangsu Institute of Cancer ResearchJiangsu Cancer HospitalThe Affiliated Cancer Hospital of Nanjing Medical UniversityChina
- Department of General Surgerythe First Affiliated Hospital with Nanjing Medical UniversityChina
| | - Xiumei Wang
- Jiangsu Institute of Cancer ResearchJiangsu Cancer HospitalThe Affiliated Cancer Hospital of Nanjing Medical UniversityChina
| | - Yanyan Zhang
- Jiangsu Institute of Cancer ResearchJiangsu Cancer HospitalThe Affiliated Cancer Hospital of Nanjing Medical UniversityChina
| | - Guangqin Zhang
- School of Basic Medicine and Clinical PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Zibin Wang
- Analysis and Test CenterNanjing Medical UniversityChina
| | - Yong Xu
- Jiangsu Institute of Cancer ResearchJiangsu Cancer HospitalThe Affiliated Cancer Hospital of Nanjing Medical UniversityChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentNanjing Medical UniversityChina
| | - Jinhai Tang
- Department of General Surgerythe First Affiliated Hospital with Nanjing Medical UniversityChina
| |
Collapse
|
115
|
Yuan D, Luo J, Sun Y, Hao L, Zheng J, Yang Z. PCOS follicular fluid derived exosomal miR-424-5p induces granulosa cells senescence by targeting CDCA4 expression. Cell Signal 2021; 85:110030. [PMID: 33930499 DOI: 10.1016/j.cellsig.2021.110030] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 01/10/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous reproductive disease, characterized by increased ovarian androgen biosynthesis, chronic anovulation and polycystic ovaries. The objective of this study was to identify the altered miRNA expression profiles in follicular fluid derived exosomes isolated from PCOS patients and to investigate the molecular functions of exosomal miR-424-5p. Herein, small RNA sequencing showed that twenty-five miRNAs were differentially expressed between control and PCOS group. The alterations in the miRNA profile were related to the endocrine resistance, cell growth and proliferation, cellular senescence and insulin signaling pathway. Among these differentially expressed miRNAs, we found that the expression of miR-424-5p was significantly decreased in PCOS exosomes and primary granulosa cells (GCs). Exosome-enriched miR-424-5p significantly promoted GCs senescence and suppressed cell proliferation. Similar to the results obtained in the cells transfected with miR-424-5p mimic, miR-424-5p mimic significantly decreased cell proliferation ability and induced senescence, but treatment with miR-424-5p inhibitor got the opposite results. In addition, cell division cycle associated 4 (CDCA4) gene displayed an inverse expression pattern to those of miR-424-5p, was identified as the direct target of miR-424-5p. Overexpression of CDCA4 reversed the effects of exosomal miR-424-5p on GCs via activation of Rb/E2F1 signaling pathway. These results demonstrate that exosomal miR-424-5p inhibits GCs proliferation and induces cellular senescence in PCOS through blocking CDCA4-mediated Rb/E2F1 signaling. Our findings provide new information on abnormal follicular development in PCOS.
Collapse
Affiliation(s)
- Dong Yuan
- Department of Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Jing Luo
- Department of Pathology, Basic Medical College of Chongqing Medical University, 400016, PR China
| | - Yixuan Sun
- Department of Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Lijuan Hao
- Department of Reproductive Endocrinology, Chongqing Health Center for Women and Children, Chongqing 401147, PR China
| | - Jing Zheng
- Department of Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Zhu Yang
- Department of Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China.
| |
Collapse
|
116
|
Gang D, Yu CJ, Zhu S, Zhu P, Nasser MI. Application of mesenchymal stem cell-derived exosomes in kidney diseases. Cell Immunol 2021; 364:104358. [PMID: 33839596 DOI: 10.1016/j.cellimm.2021.104358] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 01/08/2023]
Abstract
Kidney injury (KI) has high morbidity and mortality; there has been no ideal practical treatment available in clinical practice until now. Exosomes are formed from fusing multisubunit body membranes and are secreted into the extracellular matrix, intercellular communication membracusses. As a cell-free treatment, it offers a new approach to the treatment of KI. Exosomes are spherical vesicles with or no separator cup that shapes proteins, and RNA acts on the target cells through various means to promote tissue damage and mitigate apoptosis, both inflammation and oxidative stress. Exosomes derived from mesenchymal stem cells (MSC) have a paracrine function in promoting tissue repair and immune regulation. The MSC-Exos provide specific benefits over the MSCs. The urinary exosomes closely follow the functions and diseases of the kidneys. Though much of the research in this field is only at the preliminary stages, previous research has demonstrated that MSC-Exos damaged tissues to offer proteins, mRNAs, and microRNAs as remedies for kidney injury. Although exosomes' role in tissue repair is currently is greatly debated, several key issues remain unaddressed. This is a summarization of the work done concerning MSC in the treatment of KI.
Collapse
Affiliation(s)
- Deng Gang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China; School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Chang Jiang Yu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Shuoji Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China.
| | - M I Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China.
| |
Collapse
|
117
|
Chiu M, Trigg B, Taracena M, Wells M. Diverse cellular morphologies during lumen maturation in Anopheles gambiae larval salivary glands. INSECT MOLECULAR BIOLOGY 2021; 30:210-230. [PMID: 33305876 PMCID: PMC8142555 DOI: 10.1111/imb.12689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/29/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Mosquitoes are the greatest animal threat to human health, causing hundreds of millions of infections and around 1 million deaths each year. All mosquito-borne pathogens must traverse the salivary glands (SGs) to be transmitted to the next host, making this organ an ideal target for interventions. The adult SG develops from precursor cells located in the larval SG duct bud. Characterization of the larval SG has been limited. We sought to better understand larval SG architecture, secretion and gene expression. We developed an optimized method for larval SG staining and surveyed hundreds of larval stage 4 (L4) SGs using fluorescence confocal microscopy. Remarkable variation in SG cell and chromatin organization differed among individuals and across the L4 stage. Lumen formation occurred during L4 stage through secretion likely involving a coincident cellular apical lipid enrichment and extracellular vesicle-like structures. Meta-analysis of microarray data showed that larval SG gene expression is divergent from adult SGs, more similar to larval gastric cecae, but different from other larval gut compartments. This work highlights the variable cell architecture of larval Anopheles gambiae SGs and provides candidate targets for genetic strategies aiming to disrupt SGs and transmission of mosquito-borne pathogens.
Collapse
Affiliation(s)
- M Chiu
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - B Trigg
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - M Taracena
- Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - M Wells
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Biomedical Sciences, Idaho College of Osteopathic Medicine (ICOM), Meridian, Idaho, USA
| |
Collapse
|
118
|
Juan CX, Mao Y, Cao Q, Chen Y, Zhou LB, Li S, Chen H, Chen JH, Zhou GP, Jin R. Exosome-mediated pyroptosis of miR-93-TXNIP-NLRP3 leads to functional difference between M1 and M2 macrophages in sepsis-induced acute kidney injury. J Cell Mol Med 2021; 25:4786-4799. [PMID: 33745232 PMCID: PMC8107088 DOI: 10.1111/jcmm.16449] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a systemic inflammatory response syndrome caused by infection, resulting in organ dysfunction. Sepsis-induced acute kidney injury (AKI) is one of the most common potential complications. Increasing reports have shown that M1 and M2 macrophages both take part in the progress of AKI by influencing the level of inflammatory factors and the cell death, including pyroptosis. However, whether M1 and M2 macrophages regulate AKI by secreting exosome remains unknown. In the present study, we isolated the exosomes from M1 and M2 macrophages and used Western blot and enzyme-linked immunosorbent assay (ELISA) to investigate the effect of M1 and M2 exosomes on cell pyroptosis. miRNA sequencing was used to identify the different miRNA in M1 and M2 exosomes. Luciferase reporter assay was used to verify the target gene of miRNA. We confirmed that exosomes excreted by macrophages regulated cell pyroptosis in vitro by using Western blot and ELISA. miRNA sequencing revealed the differentially expressed level of miRNAs in M1 and M2 exosomes, among which miR-93-5p was involved in the regulation of pyroptosis. By using bioinformatics predictions and luciferase reporter assay, we found that thioredoxin-interacting protein (TXNIP) was a direct target of miR-93-5p. Further in vitro and in vivo experiments indicated that exosomal miR-93-5p regulated the TXNIP directly to influence the pyroptosis in renal epithelial cells, which explained the functional difference between different phenotypes of macrophages. This study might provide new targets for the treatment of sepsis-induced AKI.
Collapse
Affiliation(s)
- Chen-Xia Juan
- Department of Pediatrics, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China.,Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yan Mao
- Department of Pediatrics, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Qian Cao
- Department of Pediatrics, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yan Chen
- Department of Nephrology, Affiliated Geriatric Hospital, Nanjing Medical University, Nanjing, China
| | - Lan-Bo Zhou
- Department of Dermatology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Sheng Li
- Department of Pediatrics, Yancheng Maternity and Child Health Care Hospital, Yancheng, China
| | - Hao Chen
- Department of Urology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jia-He Chen
- Department of Pediatrics, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Guo-Ping Zhou
- Department of Pediatrics, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Rui Jin
- Department of Pediatrics, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
119
|
O’Brien RM, Cannon A, Reynolds JV, Lysaght J, Lynam-Lennon N. Complement in Tumourigenesis and the Response to Cancer Therapy. Cancers (Basel) 2021; 13:1209. [PMID: 33802004 PMCID: PMC7998562 DOI: 10.3390/cancers13061209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
In recent years, our knowledge of the complement system beyond innate immunity has progressed significantly. A modern understanding is that the complement system has a multifaceted role in malignancy, impacting carcinogenesis, the acquisition of a metastatic phenotype and response to therapies. The ability of local immune cells to produce and respond to complement components has provided valuable insights into their regulation, and the subsequent remodeling of the tumour microenvironment. These novel discoveries have advanced our understanding of the immunosuppressive mechanisms supporting tumour growth and uncovered potential therapeutic targets. This review discusses the current understanding of complement in cancer, outlining both direct and immune cell-mediated roles. The role of complement in response to therapies such as chemotherapy, radiation and immunotherapy is also presented. While complement activities are largely context and cancer type-dependent, it is evident that promising therapeutic avenues have been identified, in particular in combination therapies.
Collapse
Affiliation(s)
- Rebecca M. O’Brien
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
- Cancer Immunology and Immunotherapy Group, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland
| | - Aoife Cannon
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
| | - John V. Reynolds
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
| | - Joanne Lysaght
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
- Cancer Immunology and Immunotherapy Group, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland
| | - Niamh Lynam-Lennon
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
| |
Collapse
|
120
|
Valter M, Verstockt S, Finalet Ferreiro JA, Cleynen I. Extracellular Vesicles in Inflammatory Bowel Disease: Small Particles, Big Players. J Crohns Colitis 2021; 15:499-510. [PMID: 32905585 DOI: 10.1093/ecco-jcc/jjaa179] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles are nanovesicles released by many cell types into the extracellular space. They are important mediators of intercellular communication, enabling the functional transfer of molecules from one cell to another. Moreover, their molecular composition reflects the physiological status of the producing cell and tissue. Consequently, these vesicles have been involved in many [patho]physiological processes such as immunomodulation and intestinal epithelial repair, both key processes involved in inflammatory bowel disease. Given that these vesicles are present in many body fluids, they also provide opportunities for diagnostic, prognostic, and therapeutic applications. In this review, we summarise functional roles of extracellular vesicles in health and disease, with a focus on immune regulation and intestinal barrier integrity, and review recent studies on extracellular vesicles and inflammatory bowel disease. We also elaborate on their clinical potential in inflammatory bowel disease.
Collapse
Affiliation(s)
- M Valter
- Laboratory for Complex Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Sare Verstockt
- Translational Research center for Gastrointestinal Disorders [TARGID], Department of Chronic Diseases, Metabolism and Ageing [CHROMETA], KU Leuven, Leuven, Belgium
| | - J A Finalet Ferreiro
- Laboratory for Complex Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - I Cleynen
- Laboratory for Complex Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
121
|
Isolation of Extracellular Vesicles from Biological Fluids via the Aggregation-Precipitation Approach for Downstream miRNAs Detection. Diagnostics (Basel) 2021; 11:diagnostics11030384. [PMID: 33668297 PMCID: PMC7996260 DOI: 10.3390/diagnostics11030384] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) have high potential as sources of biomarkers for non-invasive diagnostics. Thus, a simple and productive method of EV isolation is demanded for certain scientific and medical applications of EVs. Here we aim to develop a simple and effective method of EV isolation from different biofluids, suitable for both scientific, and clinical analyses of miRNAs transported by EVs. The proposed aggregation-precipitation method is based on the aggregation of EVs using dextran blue and the subsequent precipitation of EVs using 1.5% polyethylene glycol solutions. The developed method allows the effective isolation of EVs from plasma and urine. As shown using TEM, dynamic light scattering, and miRNA analyses, this method is not inferior to ultracentrifugation-based EV isolation in terms of its efficacy, lack of inhibitors for polymerase reactions and applicable for both healthy donors and cancer patients. This method is fast, simple, does not need complicated equipment, can be adapted for different biofluids, and has a low cost. The aggregation-precipitation method of EV isolation accessible and suitable for both research and clinical laboratories. This method has the potential to increase the diagnostic and prognostic utilization of EVs and miRNA-based diagnostics of urogenital pathologies.
Collapse
|
122
|
Gurunathan S, Kang MH, Kim JH. A Comprehensive Review on Factors Influences Biogenesis, Functions, Therapeutic and Clinical Implications of Exosomes. Int J Nanomedicine 2021; 16:1281-1312. [PMID: 33628021 PMCID: PMC7898217 DOI: 10.2147/ijn.s291956] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/16/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are nanoscale-sized membrane vesicles secreted by almost all cell types into the extracellular environment upon fusion of multivesicular bodies and plasma membrane. Biogenesis of exosomes is a protein quality control mechanism, and once released, exosomes transmit signals to other cells. The applications of exosomes have increased immensely in biomedical fields owing to their cell-specific cargos that facilitate intercellular communications with neighboring cells through the transfer of biologically active compounds. The diverse constituents of exosomes reflect their cell of origin and their detection in biological fluids represents a diagnostic marker for various diseases. Exosome research is expanding rapidly due to the potential for clinical application to therapeutics and diagnosis. However, several aspects of exosome biology remain elusive. To discover the use of exosomes in the biomedical applications, we must better understand the basic molecular mechanisms underlying their biogenesis and function. In this comprehensive review, we describe factors involved in exosomes biogenesis and the role of exosomes in intercellular signaling and cell-cell communications, immune responses, cellular homeostasis, autophagy, and infectious diseases. In addition, we discuss the role of exosomes as diagnostic markers, and their therapeutic and clinical implications. Furthermore, we addressed the challenges and outstanding developments in exosome research, and discuss future perspectives.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| |
Collapse
|
123
|
Amiri A, Pourhanifeh MH, Mirzaei HR, Nahand JS, Moghoofei M, Sahebnasagh R, Mirzaei H, Hamblin MR. Exosomes and Lung Cancer: Roles in Pathophysiology, Diagnosis and Therapeutic Applications. Curr Med Chem 2021; 28:308-328. [PMID: 32013817 DOI: 10.2174/0929867327666200204141952] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/18/2019] [Accepted: 11/29/2019] [Indexed: 11/22/2022]
Abstract
Lung cancer is a malignancy with a high morbidity and mortality rate, and affected patients have low survival and poor prognosis. The therapeutic approaches for the treatment of this cancer, including radiotherapy and chemotherapy, are not particularly effective partly due to late diagnosis. Therefore, the search for new diagnostic and prognostic tools is a critical issue. Novel biomarkers, such as exosomes, could be considered as potential diagnostic tools for malignancies, particularly lung cancer. Exosomes are nanovesicles, which are associated with different physiological and pathological conditions. It has been shown that these particles are released from many cells, such as cancer cells, immune cells and to some degree normal cells. Exosomes could alter the behavior of target cells through intercellular transfer of their cargo (e.g. DNA, mRNA, long non-coding RNAs, microRNAs and proteins). Thus, these vehicles may play pivotal roles in various physiological and pathological conditions. The current insights into lung cancer pathogenesis suggest that exosomes are key players in the pathogenesis of this cancer. Hence, these nanovesicles and their cargos could be used as new diagnostic, prognostic and therapeutic biomarkers in the treatment of lung cancer. Besides the diagnostic roles of exosomes, their use as drug delivery systems and as cancer vaccines is under investigation. The present review summarizes the current information on the diagnostic and pathogenic functions of exosomes in lung cancer.
Collapse
Affiliation(s)
- Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashahd, Iran
| | | | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, University of Medical Sciences, Tehran, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roxana Sahebnasagh
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, United States
| |
Collapse
|
124
|
Ligand-competent fractalkine receptor is expressed on exosomes. Biochem Biophys Rep 2021; 26:100932. [PMID: 33553692 PMCID: PMC7859287 DOI: 10.1016/j.bbrep.2021.100932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/18/2020] [Accepted: 01/11/2021] [Indexed: 11/28/2022] Open
Abstract
Expression of chemokine receptor CX3CR1 is reportedly restricted to several cell types including natural killer cells, cytotoxic T cells, monocytes, and macrophages. However, its expression and function on exosomes, which are nanosized extracellular vesicles known to act as mediators of intercellular communications, remain unclear. Here, we investigated CX3CR1 expression on exosomes isolated from various cell types. Although we found that all the exosomes tested in our study highly expressed CX3CR1, this chemokine receptor was expressed only inside, but barely on, their source cells. Moreover, exosomal CX3CR1 was capable of binding soluble CX3CL1. Therefore, our study suggests that CX3CR1 is a novel and ligand-competent exosome receptor. CX3CR1 is highly expressed by exosomes. Expression of CX3CR1 is restricted within, but not on, the cells. Exosomal CX3CR1 is capable of binding soluble CX3CL1. CX3CL1 binding of exosomes may deprive their source cells of the chance to bind this chemokine.
Collapse
|
125
|
de Brun V, Loor JJ, Naya H, Graña-Baumgartner A, Vailati-Riboni M, Bulgari O, Shahzad K, Abecia JA, Sosa C, Meikle A. The presence of an embryo affects day 14 uterine transcriptome depending on the nutritional status in sheep. b. Immune system and uterine remodeling. Theriogenology 2020; 161:210-218. [PMID: 33340754 DOI: 10.1016/j.theriogenology.2020.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
Transcriptomics and bioinformatics were used to investigate the potential interactions of undernutrition and the presence of the conceptus at the time of maternal recognition of pregnancy on uterine immune system and remodeling. Adult Rasa Aragonesa ewes were allocated to one of two planes of nutrition for 28 days: maintenance energy intake (control; 5 cyclic, 6 pregnant ewes) providing 7.8 MJ of metabolisable energy and 0.5 maintenance intake (undernourished; 6 cyclic, 7 pregnant ewes) providing 3.9 MJ of metabolisable energy per ewe. Uterine gene expression was measured using Agilent 15 K Sheep Microarray chip on day 14 of estrus or pregnancy. Functional bioinformatics analyses were performed using PANTHER (Protein ANalysis THrough Evolutionary Relationships) Classification System. Pregnancy affected the expression of 18 genes in both control and undernourished ewes, underscoring the relevance for embryo-maternal interactions. Immune system evidenced by classical interferon stimulated genes were activated in control and -in a lesser extent-in undernourished pregnant vs cyclic ewes. Genes involved in uterine remodeling such as protein metabolism were also upregulated with the presence of an embryo in control and undernourished ewes. However, relevant genes for the adaptation of the uterus to the embryo were differentially expressed between pregnant vs cyclic ewes both in control and undernourished groups. Undernutrition alone led to an overall weak activation of immune system pathways both in cyclic and pregnant ewes. Data revealed that cellular and immune adaptations of the uterus to pregnancy are dependent on the nutritional status.
Collapse
Affiliation(s)
- Victoria de Brun
- Laboratorio de Endocrinología y Metabolismo Animal, Universidad de la República, Montevideo, Uruguay.
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Hugo Naya
- Departamento de Bioinformática, Institut Pasteur de Montevideo, Uruguay
| | - Andrea Graña-Baumgartner
- Laboratorio de Endocrinología y Metabolismo Animal, Universidad de la República, Montevideo, Uruguay
| | - Mario Vailati-Riboni
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Omar Bulgari
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Khuram Shahzad
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - José Alfonso Abecia
- Instituto de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Spain
| | - Cecilia Sosa
- Departamento de Anatomía Patológica, Medicina Legal, Forense y Toxicología, Universidad de Zaragoza, Spain
| | - Ana Meikle
- Laboratorio de Endocrinología y Metabolismo Animal, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
126
|
Kharazi U, Badalzadeh R. A review on the stem cell therapy and an introduction to exosomes as a new tool in reproductive medicine. Reprod Biol 2020; 20:447-459. [DOI: 10.1016/j.repbio.2020.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/18/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022]
|
127
|
Lam NT, Gartz M, Thomas L, Haberman M, Strande JL. Influence of microRNAs and exosomes in muscle health and diseases. J Muscle Res Cell Motil 2020; 41:269-284. [PMID: 31564031 PMCID: PMC7101267 DOI: 10.1007/s10974-019-09555-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
Abstract
microRNAs are short, (18-22 nt) non-coding RNAs involved in important cellular processes due to their ability to regulate gene expression at the post-transcriptional level. Exosomes are small (50-200 nm) extracellular vesicles, naturally secreted from a variety of living cells and are believed to mediate cell-cell communication through multiple mechanisms, including uptake in destination cells. Circulating microRNAs and exosome-derived microRNAs can have key roles in regulating muscle cell development and differentiation. Several microRNAs are highly expressed in muscle and their regulation is important for myocyte homeostasis. Changes in muscle associated microRNA expression are associated with muscular diseases including muscular dystrophies, inflammatory myopathies, and congenital myopathies. In this review, we aim to highlight the biology of microRNAs and exosomes as well as their roles in muscle health and diseases. We also discuss the potential crosstalk between skeletal and cardiac muscle through exosomes and their contents.
Collapse
Affiliation(s)
- Ngoc Thien Lam
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Melanie Gartz
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Leah Thomas
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Margaret Haberman
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jennifer L Strande
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
- Medical College of Wisconsin, CVC/MEB 4679, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA.
| |
Collapse
|
128
|
Ariotti N, Wu Y, Okano S, Gambin Y, Follett J, Rae J, Ferguson C, Teasdale RD, Alexandrov K, Meunier FA, Hill MM, Parton RG. An inverted CAV1 (caveolin 1) topology defines novel autophagy-dependent exosome secretion from prostate cancer cells. Autophagy 2020; 17:2200-2216. [DOI: 10.1080/15548627.2020.1820787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Nicholas Ariotti
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Mark Wainwright Analytical Centre, Electron Microscope Unit, The University of New South Wales, Sydney, Australia
| | - Yeping Wu
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Satomi Okano
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Yann Gambin
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jordan Follett
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - James Rae
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Charles Ferguson
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Rohan D. Teasdale
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Kirill Alexandrov
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Frederic A. Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Michelle M. Hill
- UQ Diamantina Institute, The University of Queensland, Brisbane, Australia
| | - Robert G. Parton
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- The Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Australia
| |
Collapse
|
129
|
Li S, Tang Y, Dou Y. The Potential of Milk-Derived Exosomes for Drug Delivery. Curr Drug Deliv 2020; 18:688-699. [PMID: 32807052 DOI: 10.2174/1567201817666200817112503] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/30/2020] [Accepted: 06/26/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Exosomes, one of the extracellular vesicles, are widely present in all biological fluids and play an important role in intercellular communication. Due to their hydrophobic lipid bilayer and aqueous hydrophilic core structure, they are considered a possible alternative to liposome drug delivery systems. Not only do they protect the cargo like liposomes during delivery, but they are also less toxic and better tolerated. However, due to the lack of sources and methods for obtaining enough exosomes, the therapeutic application of exosomes as drug carriers is limited. METHODS A literature search was performed using the ScienceDirect and PubMed electronic databases to obtain information from published literature on milk exosomes related to drug delivery. RESULTS Here, we briefly reviewed the current knowledge of exosomes, expounded the advantages of milk-derived exosomes over other delivery vectors, including higher yield, the oral delivery characteristic and additional therapeutic benefits. The purification and drug loading methods of milk exosomes, and the current application of milk exosomes were also introduced. CONCLUSION The emergence of milk-derived exosomes is expected to break through the limitations of exosomes as therapeutic carriers of drugs. We hope to raise awareness of the therapeutic potential of milk-derived exosomes as a new drug delivery system.
Collapse
Affiliation(s)
- Shuyuan Li
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Tang
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yushun Dou
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
130
|
Orinska Z, Hagemann PM, Halova I, Draber P. Tetraspanins in the regulation of mast cell function. Med Microbiol Immunol 2020; 209:531-543. [PMID: 32507938 PMCID: PMC7395004 DOI: 10.1007/s00430-020-00679-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022]
Abstract
Mast cells (MCs) are long-living immune cells highly specialized in the storage and release of different biologically active compounds and are involved in the regulation of innate and adaptive immunity. MC degranulation and replacement of MC granules are accompanied by active membrane remodelling. Tetraspanins represent an evolutionary conserved family of transmembrane proteins. By interacting with lipids and other membrane and intracellular proteins, they are involved in organisation of membrane protein complexes and act as "molecular facilitators" connecting extracellular and cytoplasmic signaling elements. MCs express different tetraspanins and MC degranulation is accompanied by changes in membrane organisation. Therefore, tetraspanins are very likely involved in the regulation of MC exocytosis and membrane reorganisation after degranulation. Antiviral response and production of exosomes are further aspects of MC function characterized by dynamic changes of membrane organization. In this review, we pay a particular attention to tetraspanin gene expression in different human and murine MC populations, discuss tetraspanin involvement in regulation of key MC signaling complexes, and analyze the potential contribution of tetraspanins to MC antiviral response and exosome production. In-depth knowledge of tetraspanin-mediated molecular mechanisms involved in different aspects of the regulation of MC response will be beneficial for patients with allergies, characterized by overwhelming MC reactions.
Collapse
Affiliation(s)
- Zane Orinska
- Division of Experimental Pneumology, Research Center Borstel, Leibniz Lungenzentrum, Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.
| | - Philipp M Hagemann
- Division of Experimental Pneumology, Research Center Borstel, Leibniz Lungenzentrum, Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
| | - Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
131
|
Macrophages inhibit adipogenic differentiation of adipose tissue derived mesenchymal stem/stromal cells by producing pro-inflammatory cytokines. Cell Biosci 2020; 10:88. [PMID: 32699606 PMCID: PMC7372775 DOI: 10.1186/s13578-020-00450-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/11/2020] [Indexed: 12/11/2022] Open
Abstract
Background Mesenchymal stem/stromal cells (MSCs) and macrophages are critical components in many tissue microenvironments, including that in adipose tissue. The close interaction between MSCs and macrophages modulates various adipose-related disease development. However, the effects of macrophages on the fate of MSCs remain largely elusive. We here studied the effect of macrophages on the adipogenic differentiation of MSCs. Methods Macrophages were obtained from THP-1 cells treated with phorbol-12-myristate-13-acetate (PMA). The induced matured macrophages were then induced to undergo classically activated macrophage (M1) or alternatively activated macrophage (M2) polarization with Iipopolysaccharide (LPS)/interferon (IFN)-γ and interleukin (IL)-4/IL-13, respectively. The supernatants derived from macrophages under different conditions were applied to cultured human adipose tissue-derived mesenchymal stem/stromal cells (hADSCs) undergoing adipogenic differentiation. Adipogenic differentiation was evaluated by examining Oil Red O staining of lipid droplets and the expression of adipogenesis-related genes with real-time quantitative polymerase chain reaction (Q-PCR) and western blot analysis. Results The adipogenic differentiation of hADSCs was impaired when treated with macrophage-derived supernatants, especially that from the M1-polarized macrophage (M1-sup). The inhibitory effect was found to be mediated by the inflammatory cytokines, mainly tumor necrosis factor-α (TNF-α) and IL-1β. Blocking TNF-α and IL-1β with neutralizing antibodies partially alleviated the inhibitory effect of M1-sup. Conclusion Macrophage-derived supernatants inhibited the adipogenic differentiation of hADSCs in vitro, irrespective of the polarization status (M0, M1 or M2 macrophages). M1-sup was more potent because of the higher expression of pro-inflammatory cytokines. Our findings shed new light on the interaction between hADSCs and macrophages and have implications in our understanding of disrupted adipose tissue homeostasis under inflammation.
Collapse
|
132
|
Ogasawara N, Kano F, Hashimoto N, Mori H, Liu Y, Xia L, Sakamaki T, Hibi H, Iwamoto T, Tanaka E, Yamamoto A. Factors secreted from dental pulp stem cells show multifaceted benefits for treating experimental temporomandibular joint osteoarthritis. Osteoarthritis Cartilage 2020; 28:831-841. [PMID: 32272195 DOI: 10.1016/j.joca.2020.03.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/17/2020] [Accepted: 03/19/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Temporomandibular joint osteoarthritis (TMJOA) is a degenerative disease characterized by progressive cartilage degeneration, abnormal bone remodeling, and chronic pain. In this study, we aimed to investigate effective therapies to reverse or suppress TMJOA progression. DESIGN To this end, we performed intravenous administration of serum free conditioned media from human exfoliated deciduous teeth stem cells (SHED-CM) into a mechanical-stress induced murine TMJOA model. RESULTS SHED-CM administration markedly suppressed temporal muscle inflammation, and improved bone integrity and surface smoothness of the destroyed condylar cartilage. Moreover, SHED-CM treatment decreased the number of IL-1β, iNOS, and MMP-13 expressing chondrocytes, whereas it specifically increased PCNA-positive cells in the multipotent polymorphic cell layer. Notably, the numbers of TdT-mediated dUTP nick end labeling (TUNEL)-positive apoptotic chondrocytes in the SHED-CM treated condyles were significantly lower than in those treated with DMEM, whereas the proteoglycan positive area was restored to a level similar to that of the sham treated group, demonstrating that SHED-CM treatment regenerated the mechanical-stress injured condylar cartilage and subchondral bone. Secretome analysis revealed that SHED-CM contained multiple therapeutic factors that act in osteochondral regeneration. CONCLUSIONS Our data demonstrated that SHED-CM treatment promoted the regeneration and repair of mechanical-stress induced mouse TMJOA. Our observations suggest that SHED-CM has potential to be a potent tissue-regenerating therapeutic agent for patients with severe TMJOA.
Collapse
Affiliation(s)
- N Ogasawara
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan; Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan.
| | - F Kano
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan.
| | - N Hashimoto
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan.
| | - H Mori
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan.
| | - Y Liu
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan; Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan.
| | - L Xia
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan; Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan.
| | - T Sakamaki
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan.
| | - H Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - T Iwamoto
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan.
| | - E Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan.
| | - A Yamamoto
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan.
| |
Collapse
|
133
|
Li S, Wu Y, Ding F, Yang J, Li J, Gao X, Zhang C, Feng J. Engineering macrophage-derived exosomes for targeted chemotherapy of triple-negative breast cancer. NANOSCALE 2020; 12:10854-10862. [PMID: 32396590 DOI: 10.1039/d0nr00523a] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most metastatic and recurrent subtype of all breast cancers. Owing to the lack of therapeutic targets, chemotherapy and surgical intervention are the only treatments for TNBC. However, the effectiveness of chemotherapeutics is limited by its shortcomings such as poor targeting, easy removal and high toxicity. Recently, exosomes have attracted more and more attention as a drug delivery system. As endogenous vesicles, exosomes ensure low immunogenicity, nontoxicity, and long blood circulation time. In addition, immune cell-derived exosomes can mimic the immune cell to target tumor cells. Herein, we developed a macrophage-derived exosome-coated poly(lactic-co-glycolic acid) nanoplatform for targeted chemotherapy of TNBC. To further improve the tumor targetability, the surface of the exosome was modified with a peptide to target the mesenchymal-epithelial transition factor (c-Met), which is overexpressed by TNBC cells. The results showed that the engineered exosome-coated nanoparticles significantly improved the cellular uptake efficiency and the antitumor efficacy of doxorubicin. In vivo study demonstrated that the nanocarriers exhibited remarkable tumor-targeting efficacy, led to increased inhibition of tumor growth and induced intense tumor apoptosis. These results indicated that the engineered macrophage exosome-coated nanoparticles were a promising drug delivery strategy for TNBC treatment.
Collapse
Affiliation(s)
- Sha Li
- Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China and Medical College, Anhui University of Science and Technology, 168 Taifeng Road, Huainan, 232001, China
| | - Yijing Wu
- Zhiyuan College, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fei Ding
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| | - Jiapei Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| | - Jing Li
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China. and Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China and Shanghai University of Medicine & Health Sciences affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China
| | - Xihui Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China. and Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China. and Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China
| | - Jing Feng
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China. and Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China and Shanghai University of Medicine & Health Sciences affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China
| |
Collapse
|
134
|
de Souza W, Barrias ES. Membrane-bound extracellular vesicles secreted by parasitic protozoa: cellular structures involved in the communication between cells. Parasitol Res 2020; 119:2005-2023. [PMID: 32394001 DOI: 10.1007/s00436-020-06691-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
The focus of this review is a group of structures/organelles collectively known as extracellular vesicles (EVs) that are secreted by most, if not all, cells, varying from mammalian cells to protozoa and even bacteria. They vary in size: some are small (100-200 nm) and others are larger (> 200 nm). In protozoa, however, most of them are small or medium in size (200-400 nm). These include vesicles from different origins. We briefly review the biogenesis of this distinct group that includes (a) exosome, which originates from the multivesicular bodies, an important component of the endocytic pathway; (b) ectosome, formed from a budding process that takes place in the plasma membrane of the cells; (c) vesicles released from the cell surface following a process of patching and capping of ligand/receptor complexes; (d) other processes where tubules secreted by the parasite subsequently originate exosome-like structures. Here, special emphasis is given to EVs secreted by parasitic protozoa such as Leishmania, Trypanosoma, Plasmodium, Toxoplasma, Cryptosporidium, Trichomonas, and Giardia. Most of them have been characterized as exosomes that were isolated using several approaches and characterized by electron microscopy, proteomic analysis, and RNA sequencing. The results obtained show clearly that they present several proteins and different types of RNAs. From the functional point of view, it is now clear that the secreted exosomes can be incorporated by the parasite itself as well as by mammalian cells with which they interact. As a consequence, there is interference both with the parasite (induction of differentiation, changes in infectivity, etc.) and with the host cell. Therefore, the EVs constitute a new system of transference of signals among cells. On the other hand, there are suggestions that exosomes may constitute potential biotechnology tools and are important players of what has been designated as nanobiotechnology. They may constitute an important delivery system for gene therapy and molecular-displaying cell regulation capabilities when incorporated into other cells and even by interfering with the exosomal membrane during its biogenesis, targeting the vesicles via specific ligands to different cell types. These vesicles may reach the bloodstream, overflow through intercellular junctions, and even pass through the central nervous system blood barrier. There is evidence that it is possible to interfere with the composition of the exosomes by interfering with multivesicular body biogenesis.
Collapse
Affiliation(s)
- Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Bloco G, Ilha do Fundão, Rio de Janeiro, RJ, 21941-900, Brazil. .,Instituto Nacional de Ciência e Tecnologia and Núcleo de Biologia Estrutural e Bioimagens, CENABIO, Rio de Janeiro, Brazil.
| | - Emile S Barrias
- Instituto Nacional de Ciência e Tecnologia and Núcleo de Biologia Estrutural e Bioimagens, CENABIO, Rio de Janeiro, Brazil.,Laboratorio de Metrologia Aplicada à Ciências da Vida, Diretoria de Metrologia Aplicada à Ciências da Vida - Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Rio de Janeiro, Brazil
| |
Collapse
|
135
|
Exosomes derived from hucMSC attenuate renal fibrosis through CK1δ/β-TRCP-mediated YAP degradation. Cell Death Dis 2020; 11:327. [PMID: 32382019 PMCID: PMC7205986 DOI: 10.1038/s41419-020-2510-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 01/02/2023]
Abstract
Exosomes from human umbilical cord mesenchymal stem cells (hucMSC-Ex) have been suggested as novel nanomaterials for regenerative medicine. Here we explored the roles of hucMSC-Ex through regulating Yes-associated protein (YAP) in renal injury repair by using rat unilateral ureteral obstruction (UUO) models. Our study identified mechanical stress induced YAP nucleus expression and stimulated collagen deposition and interstitial fibrosis in the kidney. Then, infusion with hucMSC-Ex promoted YAP nuclear cytoplasmic shuttling and ameliorated renal fibrosis in UUO model. Interestingly, hucMSC-Ex delivered casein kinase 1δ (CK1δ) and E3 ubiquitin ligase β-TRCP to boost YAP ubiquitination and degradation. Knockdown of CK1δ and β-TRCP in hucMSC decreased the repairing effects of hucMSC-Ex on renal fibrosis. Our results suggest that hucMSC-Ex attenuates renal fibrosis through CK1δ/β-TRCP inhibited YAP activity, unveiling a new mechanism for the therapeutic effects of hucMSC-Ex on tissue injury and offering a potential approach for renal fibrosis treatment.
Collapse
|
136
|
Jiang Z, Wang T, Sun Y, Nong Y, Tang L, Gu T, Wang S, Li Z. Application of Pb(II) to probe the physiological responses of fungal intracellular vesicles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110441. [PMID: 32155484 DOI: 10.1016/j.ecoenv.2020.110441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/17/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Vesicles (Ves) within fungal cells are the critical linkage between intracellular and extracellular systems. This study explored the application of Pb2+ to probe the physiology of intracellular Ves in Rhodotorula mucilaginosa (Rho). At low Pb2+ levels (0-500 mg/L), there was no evident change in the content of extracellular polymeric substances (EPS) or microbial activity. At medium-high levels (1000-2000 mg/L), the sizes of Ves within the Rho cells were significantly enlarged, with abundant lead nano-particles (Pb NPs) formed either on the cell surface or interior, whereas the EPS content and bioactivity were still stable. At a high level (2500 mg/L), the Rho cells were severely deformed, with cell counts reduced by more than 99%. However, the EPS contents and the respiration rate of the surviving cells dramatically increased to the maximum values (i.e., 1785 mg/1010 cells and 37 mg C 10-10 cells h-1, respectively). The Ves surface adsorbed Pb cations with higher density, compared with the cell membrane. Moreover, fusion of some Ves to the membrane (functioning in transport) was observed under transmission electron microscope (TEM). Three pathways of detoxification via intracellular Ves were finally proposed, i.e., Ve-mediated transport (from intracellular to extracellular) of EPS components, absorption of Pb NPs on the Ve surface, and accumulation of Pb NPs within Ves. This study sheds light on the possibility of exploring microbial physiology via Pb2+ cations.
Collapse
Affiliation(s)
- Zhongquan Jiang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tong Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yalin Sun
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ying Nong
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Lingyi Tang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tingting Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Shimei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
137
|
Urabe F, Kosaka N, Sawa Y, Yamamoto Y, Ito K, Yamamoto T, Kimura T, Egawa S, Ochiya T. miR-26a regulates extracellular vesicle secretion from prostate cancer cells via targeting SHC4, PFDN4, and CHORDC1. SCIENCE ADVANCES 2020; 6:eaay3051. [PMID: 32494663 PMCID: PMC7190312 DOI: 10.1126/sciadv.aay3051] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 02/10/2020] [Indexed: 05/12/2023]
Abstract
Extracellular vesicles (EVs) are involved in intercellular communication during cancer progression; thus, elucidating the mechanism of EV secretion in cancer cells will contribute to the development of an EV-targeted cancer treatment. However, the biogenesis of EVs in cancer cells is not fully understood. MicroRNAs (miRNAs) regulate a variety of biological phenomena; thus, miRNAs could regulate EV secretion. Here, we performed high-throughput miRNA-based screening to identify the regulators of EV secretion using an ExoScreen assay. By using this method, we identified miR-26a involved in EV secretion from prostate cancer (PCa) cells. In addition, we found that SHC4, PFDN4, and CHORDC1 genes regulate EV secretion in PCa cells. Furthermore, the progression of the PCa cells suppressing these genes was inhibited in an in vivo study. Together, our findings suggest that miR-26a regulates EV secretion via targeting SHC4, PFDN4, and CHORDC1 in PCa cells, resulting in the suppression of PCa progression.
Collapse
Affiliation(s)
- Fumihiko Urabe
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Nobuyoshi Kosaka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
- Corresponding author.
| | - Yurika Sawa
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Yusuke Yamamoto
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Kagenori Ito
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Tomofumi Yamamoto
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takahiro Kimura
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shin Egawa
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
138
|
Wang M, Su Z, Amoah Barnie P. Crosstalk among colon cancer-derived exosomes, fibroblast-derived exosomes, and macrophage phenotypes in colon cancer metastasis. Int Immunopharmacol 2020; 81:106298. [PMID: 32058925 DOI: 10.1016/j.intimp.2020.106298] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/13/2022]
Abstract
Cellular crosstalk is an important mechanism in the pathogenesis of inflammatory disorders and cancers. One significant means by which cells communicate with each other is through the release of exosomes. Exosomes are extracellular vesicles formed by the outward budding of plasma membranes, which are then released from cells into the extracellular space. Many studies have suggested that microvesicles released by colon cancer cells initiate crosstalk and modulate the fibroblast activities and macrophage phenotypes. Interestingly, crosstalk among colon cancer cells, macrophages and cancer-associated fibroblasts maximizes the mechanical composition of the stromal extracellular matrix (ECM). Exosomes contribute to cancer cell migration and invasion, which are critical for colon cancer progression to metastasis. The majority of the studies on colorectal cancers (CRCs) have focused on developing exosomal biomarkers for the early detection and prediction of CRC prognosis. This study highlights the crosstalk among colon cancer-derived exosomes, macrophage phenotypes and fibroblasts during colon cancer metastasis.
Collapse
Affiliation(s)
- Meiyun Wang
- Department of Nephrology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, PR China.
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China.
| | - Prince Amoah Barnie
- International Genome Center, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China; Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana.
| |
Collapse
|
139
|
Dawes C, Wong DTW. Role of Saliva and Salivary Diagnostics in the Advancement of Oral Health. J Dent Res 2020; 98:133-141. [PMID: 30782091 DOI: 10.1177/0022034518816961] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The objective of this article was to provide an account of some of the developments related to saliva over the first 100 years of the Journal of Dental Research and to outline some of the many biomarkers identified in saliva in the last few years. The first section covers findings in salivary physiology, biochemistry, calcium phosphate chemistry related to saliva, microbiology, and the role of saliva in maintaining oral health. The second section highlights salivary diagnostics, salivaomics, and saliva exosomics in the context of the emerging theme of personalized and precision medicine.
Collapse
Affiliation(s)
- C Dawes
- 1 Department of Oral Biology, Dental College, University of Manitoba, Winnipeg, MB, Canada
| | - D T W Wong
- 2 Center for Oral/Head and Neck Oncology Research, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, CA, USA
| |
Collapse
|
140
|
Extracellular vesicle (ECV)-modified polyethylenimine (PEI) complexes for enhanced siRNA delivery in vitro and in vivo. J Control Release 2019; 319:63-76. [PMID: 31866504 DOI: 10.1016/j.jconrel.2019.12.032] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 01/12/2023]
Abstract
Extracellular vesicles (ECVs) are secreted cell-derived membrane particles involved in intercellular signaling and cell-cell communication. By transporting various bio-macromolecules, ECVs and in particular exosomes are relevant in various (patho-) physiological processes. ECVs are also released by cancer cells and can confer pro-tumorigenic effects. Their target cell tropism, effects on proliferation rates, natural stability in blood and immunotolerance makes ECVs particularly interesting as delivery vehicles. Polyethylenimines (PEIs) are linear or branched polymers which are capable of forming non-covalent complexes with small RNA molecules including siRNAs or antimiRs, for their delivery in vitro and in vivo. This study explores for the first time the combination of PEI-based nanoparticles with naturally occurring ECVs from different cell lines, for the delivery of small RNAs. ECV-modified PEI/siRNA complexes are analyzed by electron microscopy vs. ECV or complex alone. On the functional side, we demonstrate increased knockdown efficacy and storage stability of PEI/siRNA complexes upon their modification with ECVs. This is paralleled by enhanced tumor cell-inhibition by ECV-modified PEI/siRNA complexes targeting Survivin. Pre-treatment with various inhibitors of cellular internalization reveals alterations in cellular uptake mechanisms and biological activities of PEI/siRNA complexes upon their ECV modification. Extending our studies towards PEI-complexed antimiRs against miR-155 or miR-1246, dose-dependent cellular and molecular effects are enhanced in ECV-modified complexes, based on the de-repression of direct miRNA target genes. Differences between ECVs from different cell lines are observed regarding their capacity of enhancing PEI/siRNA efficacies, independent of the target cell line for transfection. Finally, an in vivo therapy study in mice bearing s.c. PC3 prostate carcinoma xenografts reveals marked inhibition of tumor growth upon treatment with ECVPC3-modified PEI/siSurvivin complexes, based on profound target gene knockdown. We conclude that ECV-modification enhances the activity of PEI-based complexes, by altering pivotal physicochemical and biological nanoparticle properties.
Collapse
|
141
|
Xie F, Zhou X, Fang M, Li H, Su P, Tu Y, Zhang L, Zhou F. Extracellular Vesicles in Cancer Immune Microenvironment and Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901779. [PMID: 31871860 PMCID: PMC6918121 DOI: 10.1002/advs.201901779] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/26/2019] [Indexed: 05/10/2023]
Abstract
Extracellular vesicles (EVs) are secreted by almost all cells. They contain proteins, lipids, and nucleic acids which are delivered from the parent cells to the recipient cells. Thereby, they function as mediators of intercellular communication and molecular transfer. Recent evidences suggest that exosomes, a small subset of EVs, are involved in numerous physiological and pathological processes and play essential roles in remodeling the tumor immune microenvironment even before the occurrence and metastasis of cancer. Exosomes derived from tumor cells and host cells mediate their mutual regulation locally or remotely, thereby determining the responsiveness of cancer therapies. As such, tumor-derived circulating exosomes are considered as noninvasive biomarkers for early detection and diagnosis of tumor. Exosome-based therapies are also emerging as cutting-edge and promising strategies that could be applied to suppress tumor progression or enhance anti-tumor immunity. Herein, the current understanding of exosomes and their key roles in modulating immune responses, as well as their potential therapeutic applications are outlined. The limitations of current studies are also presented and directions for future research are described.
Collapse
Affiliation(s)
- Feng Xie
- Institute of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Xiaoxue Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Key Laboratory of Head & Neck CancerTranslational Research of Zhejiang ProvinceZhejiang Cancer HospitalHangzhou310058P. R. China
| | - Meiyu Fang
- Key Laboratory of Head & Neck CancerTranslational Research of Zhejiang ProvinceZhejiang Cancer HospitalHangzhou310058P. R. China
| | - Heyu Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Peng Su
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Yifei Tu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Fangfang Zhou
- Institute of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| |
Collapse
|
142
|
Xia X, Wang Y, Huang Y, Zhang H, Lu H, Zheng JC. Exosomal miRNAs in central nervous system diseases: biomarkers, pathological mediators, protective factors and therapeutic agents. Prog Neurobiol 2019; 183:101694. [PMID: 31542363 PMCID: PMC7323939 DOI: 10.1016/j.pneurobio.2019.101694] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/14/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
Exosomes are small bilipid layer-enclosed extracellular vesicles that can be found in tissues and biological fluids. As a key cell-to-cell and distant communication mediator, exosomes are involved in various central nervous system (CNS) diseases, potentially through transferring their contents such as proteins, lipids and nucleic acids to the target cells. Exosomal miRNAs, which are small non-coding RNAs in the exosomes, are known to be more stable than free miRNAs and therefore have lasting effects on disease-related gene expressions. There are distinct profiles of exosomal miRNAs in different types of CNS diseases even before the onset of irreversible neurological damages, indicating that exosomal miRNAs within tissues and biological fluids could serve as promising biomarkers. Emerging evidence has also demonstrated the pathological effects of several exosomal miRNAs in CNS diseases via specific modulation of disease-related factors. Moreover, exosomes carry therapeutically beneficial miRNAs across the blood-brain-barrier, which can be exploited as a powerful drug delivery tool to help alleviating multiple CNS diseases. In this review, we summarize the recent progress made in understanding the biological roles of exosomal miRNAs as potential diagnostic biomarkers, pathological regulators, and therapeutic targets/drugs for CNS diseases. A comprehensive discussion of the main concerns and challenges for the applications of exosomal miRNAs in the clinical setting is also provided.
Collapse
Affiliation(s)
- Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Yunlong Huang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China; Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA
| | - Han Zhang
- Second Military Medical University, Shanghai 200433, China
| | - Hongfang Lu
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China; Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China; Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA.
| |
Collapse
|
143
|
Kang YT, Purcell E, Palacios-Rolston C, Lo TW, Ramnath N, Jolly S, Nagrath S. Isolation and Profiling of Circulating Tumor-Associated Exosomes Using Extracellular Vesicular Lipid-Protein Binding Affinity Based Microfluidic Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903600. [PMID: 31588683 PMCID: PMC6951813 DOI: 10.1002/smll.201903600] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/19/2019] [Indexed: 05/19/2023]
Abstract
Extracellular vesicles (EVs) are emerging as a potential diagnostic test for cancer. Owing to the recent advances in microfluidics, on-chip EV isolation is showing promise with respect to improved recovery rates, smaller necessary sample volumes, and shorter processing times than ultracentrifugation. Immunoaffinity-based microfluidic EV isolation using anti-CD63 is widely used; however, anti-CD63 is not specific to cancer-EVs, and some cancers secrete EVs with low expression of CD63. Alternatively, phosphatidylserine (PS), usually expressed in the inner leaflet of the lipid bilayer of the cells, is shown to be expressed on the outer surface of cancer-associated EVs. A new exosome isolation microfluidic device (new ExoChip), conjugated with a PS-specific protein, to isolate cancer-associated exosomes from plasma, is presented. The device achieves 90% capture efficiency for cancer cell exosomes compared to 38% for healthy exosomes and isolates 35% more A549-derived exosomes than an anti-CD63-conjugated device. Immobilized exosomes are then easily released using Ca2+ chelation. The recovered exosomes from clinical samples are characterized by electron microscopy and western-blot analysis, revealing exosomal shapes and exosomal protein expressions. The new ExoChip facilitates the isolation of a specific subset of exosomes, allowing the exploration of the undiscovered roles of exosomes in cancer progression and metastasis.
Collapse
Affiliation(s)
- Yoon-Tae Kang
- Department of Chemical Engineering and Biointerface Institute, University of Michigan, 2800 Plymouth Road, NCRC B10-A184, Ann Arbor, MI, 48109, USA
| | - Emma Purcell
- Department of Chemical Engineering and Biointerface Institute, University of Michigan, 2800 Plymouth Road, NCRC B10-A184, Ann Arbor, MI, 48109, USA
| | - Colin Palacios-Rolston
- Department of Chemical Engineering and Biointerface Institute, University of Michigan, 2800 Plymouth Road, NCRC B10-A184, Ann Arbor, MI, 48109, USA
| | - Ting-Wen Lo
- Department of Chemical Engineering and Biointerface Institute, University of Michigan, 2800 Plymouth Road, NCRC B10-A184, Ann Arbor, MI, 48109, USA
| | - Nithya Ramnath
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shruti Jolly
- Department of Radiation Oncology, Michigan Medicine, University of Michigan, 1500 E Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Sunitha Nagrath
- Department of Chemical Engineering and Biointerface Institute, University of Michigan, 2800 Plymouth Road, NCRC B10-A184, Ann Arbor, MI, 48109, USA
| |
Collapse
|
144
|
Lema DA, Burlingham WJ. Role of exosomes in tumour and transplant immune regulation. Scand J Immunol 2019; 90:e12807. [PMID: 31282004 PMCID: PMC7050771 DOI: 10.1111/sji.12807] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/30/2019] [Accepted: 07/04/2019] [Indexed: 12/22/2022]
Abstract
Exosomes are a potent means for intercellular communication. However, exosomes have received intensive research focus in immunobiology only relatively recently. Because they transport proteins, lipids and genetic material between cells, they are especially suited to amplify their parental cell's message and overcome the physical constraints of cell-to-cell contact, that is exosome release gives cells the ability to alter distant, non-contiguous cells. As progress is made in this field, it has become increasingly obvious that exosomes are involved in most biological processes. In the immune system, exosomes are fundamental tools used by every immune cell type to fulfil its function and promote inflammation or tolerance. In this review, we first summarize key aspects of immune cell-specific exosomes and their functions. Then, we describe how exosomes have been shown to be indispensable orchestrators of the immune response in two immunological scenarios, namely transplant rejection or tolerance, and tumour evasion or initiation of anti-tumour immune responses.
Collapse
Affiliation(s)
- Diego A Lema
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - William J Burlingham
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
145
|
Caccioppo A, Franchin L, Grosso A, Angelini F, D'Ascenzo F, Brizzi MF. Ischemia Reperfusion Injury: Mechanisms of Damage/Protection and Novel Strategies for Cardiac Recovery/Regeneration. Int J Mol Sci 2019; 20:E5024. [PMID: 31614414 PMCID: PMC6834134 DOI: 10.3390/ijms20205024] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022] Open
Abstract
Ischemic diseases in an aging population pose a heavy social encumbrance. Moreover, current therapeutic approaches, which aimed to prevent or minimize ischemia-induced damage, are associated with relevant costs for healthcare systems. Early reperfusion by primary percutaneous coronary intervention (PPCI) has undoubtedly improved patient's outcomes; however, the prevention of long-term complications is still an unmet need. To face these hurdles and improve patient's outcomes, novel pharmacological and interventional approaches, alone or in combination, reducing myocardium oxygen consumption or supplying blood flow via collateral vessels have been proposed. A number of clinical trials are ongoing to validate their efficacy on patient's outcomes. Alternative options, including stem cell-based therapies, have been evaluated to improve cardiac regeneration and prevent scar formation. However, due to the lack of long-term engraftment, more recently, great attention has been devoted to their paracrine mediators, including exosomes (Exo) and microvesicles (MV). Indeed, Exo and MV are both currently considered to be one of the most promising therapeutic strategies in regenerative medicine. As a matter of fact, MV and Exo that are released from stem cells of different origin have been evaluated for their healing properties in ischemia reperfusion (I/R) settings. Therefore, this review will first summarize mechanisms of cardiac damage and protection after I/R damage to track the paths through which more appropriate interventional and/or molecular-based targeted therapies should be addressed. Moreover, it will provide insights on novel non-invasive/invasive interventional strategies and on Exo-based therapies as a challenge for improving patient's long-term complications. Finally, approaches for improving Exo healing properties, and topics still unsolved to move towards Exo clinical application will be discussed.
Collapse
Affiliation(s)
- Andrea Caccioppo
- Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Luca Franchin
- Division of Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Alberto Grosso
- Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Filippo Angelini
- Division of Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Fabrizio D'Ascenzo
- Division of Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | | |
Collapse
|
146
|
Gitsels A, Sanders N, Vanrompay D. Chlamydial Infection From Outside to Inside. Front Microbiol 2019; 10:2329. [PMID: 31649655 PMCID: PMC6795091 DOI: 10.3389/fmicb.2019.02329] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022] Open
Abstract
Chlamydia are obligate intracellular bacteria, characterized by a unique biphasic developmental cycle. Specific interactions with the host cell are crucial for the bacteria’s survival and amplification because of the reduced chlamydial genome. At the start of infection, pathogen-host interactions are set in place in order for Chlamydia to enter the host cell and reach the nutrient-rich peri-Golgi region. Once intracellular localization is established, interactions with organelles and pathways of the host cell enable the necessary hijacking of host-derived nutrients. Detailed information on the aforementioned processes will increase our understanding on the intracellular pathogenesis of chlamydiae and hence might lead to new strategies to battle chlamydial infection. This review summarizes how chlamydiae generate their intracellular niche in the host cell, acquire host-derived nutrients in order to enable their growth and finally exit the host cell in order to infect new cells. Moreover, the evolution in the development of molecular genetic tools, necessary for studying the chlamydial infection biology in more depth, is discussed in great detail.
Collapse
Affiliation(s)
- Arlieke Gitsels
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Niek Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Daisy Vanrompay
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
147
|
Kim Y, Shin S, Kim B, Lee KA. Selecting short length nucleic acids localized in exosomes improves plasma EGFR mutation detection in NSCLC patients. Cancer Cell Int 2019; 19:251. [PMID: 31582907 PMCID: PMC6771088 DOI: 10.1186/s12935-019-0978-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 09/24/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Exosomal nucleic acid (exoNA) is a feasible target to improve the sensitivity of EGFR mutation testing in non-small cell lung cancer patients with limited cell-free DNA (cfDNA) mutant copies. However, the type and size of target exoNA related to the sensitivity of EGFR mutation testing has not been explored extensively. METHODS The type and size of target exoNA related to the sensitivity of EGFR mutation testing was evaluated using ddPCR. A total of 47 plasma samples was tested using short-length exoTNA (exosomal DNA and RNA) and cfDNA. RESULTS The sensitivity of short-length exoTNA (76.5%) was higher than that of cfDNA (64.7%) for detecting EGFR mutations in NSCLC patients. In EGFR-mutant NSCLC patients with intrathoracic disease (M0/M1a) or cases with low-copy T790M, the positive rate was 63.6% (N = 7/11) and 45.5% (N = 5/11) for short-length exoTNA and cfDNA, respectively. On average, the number absolute mutant copies of short-length exoTNA were 1.5 times higher than that of cfDNA. The mutant allele copies (Ex19del and T790M) in short-length exoTNA were relatively well preserved at 4 weeks after storage. The difference (%) in absolute mutant allele copies (Ex19del) between 0 days and 4 weeks after storage was - 61.0% for cfDNA. CONCLUSION Target nucleic acids and their size distribution may be critical considerations for selecting an extraction method and a detection assay. A short-length exoTNA (200 bp) contained more detectable tumor-derived nucleic acids than exoDNA (~ 200 bp length or a full-length) or cfDNA. Therefore, a short-length exoTNA as a sensitive biomarker might be useful to detect EGFR mutants for NSCLC patients with low copy number of the mutation target.
Collapse
Affiliation(s)
- Yoonjung Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Saeam Shin
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Boyeon Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung-A Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
148
|
Pourakbari R, Khodadadi M, Aghebati-Maleki A, Aghebati-Maleki L, Yousefi M. The potential of exosomes in the therapy of the cartilage and bone complications; emphasis on osteoarthritis. Life Sci 2019; 236:116861. [PMID: 31513815 DOI: 10.1016/j.lfs.2019.116861] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/04/2019] [Accepted: 09/08/2019] [Indexed: 12/13/2022]
Abstract
Osteoarthritis is a prevalent worldwide joint disease, which demonstrates a remarkable adverse effect on the patients' life modality. Medicinal agents, exclusively nonsteroidal anti-inflammatory drugs (NSAIDs), have been routinely applied in the clinic. But, their effects are restricted to pain control with insignificant effects on cartilage renovation, which would finally lead to cartilage destruction. In the field of regenerative medicine, many researchers have tried to use stem cells to repair tissues and other human organs. However, in recent years, with the discovery of extracellular microvesicles, especially exosomes, researchers have been able to offer more exciting alternatives on the subject. Exosomes and microvesicles are derived from different types of bone cells such as mesenchymal stem cells, osteoblasts, and osteoclasts. They are also recognized to play substantial roles in bone remodeling processes including osteogenesis, osteoclastogenesis, and angiogenesis. Specifically, exosomes derived from a mesenchymal stem cell have shown a great potential for the desired purpose. Exosomal products include miRNA, DNA, proteins, and other factors. At present, if it is possible to extract exosomes from various stem cells effectively and load certain products or drugs into them, they can be used in diseases, such as rheumatoid arthritis, osteoarthritis, bone fractures, and other diseases. Of course, to achieve proper clinical use, advances have to be made to establish a promising regenerative ability for microvesicles for treatment purposes in the orthopedic disorders. In this review, we describe the exosomes biogenesis and bone cell derived exosomes in the regenerate process of bone and cartilage remodeling.
Collapse
Affiliation(s)
- Ramin Pourakbari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Meysam Khodadadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
149
|
Hussain S, Singh A, Nazir SU, Tulsyan S, Khan A, Kumar R, Bashir N, Tanwar P, Mehrotra R. Cancer drug resistance: A fleet to conquer. J Cell Biochem 2019; 120:14213-14225. [PMID: 31037763 DOI: 10.1002/jcb.28782] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 12/18/2022]
Abstract
Cancer is a disease that claims millions of lives each year across the world. Despite advancement in technologies and therapeutics for treating the disease, these modes are often found to turn ineffective during the course of treatment. The resistance against drugs in cancer patients stems from multiple factors, which constitute genetic heterogeneity like gene mutations, tumor microenvironment, exosomes, miRNAs, high rate of drug efflux from cells, and so on. This review attempts to collate all such known and reported factors that influence cancer drug resistance and may help researchers with information that might be useful in developing better therapeutics in near future to enable better management of several cancers across the world.
Collapse
Affiliation(s)
- Showket Hussain
- Division of Cellular and Molecular Diagnostics, National Institute of Cancer Prevention and Research, Noida, India
| | - Ankita Singh
- Division of Cellular and Molecular Diagnostics, National Institute of Cancer Prevention and Research, Noida, India
| | - Sheeraz Un Nazir
- Division of Cellular and Molecular Diagnostics, National Institute of Cancer Prevention and Research, Noida, India
| | - Sonam Tulsyan
- Division of Preventive Oncology, National Institute of Cancer Prevention and Research, Noida, India
| | - Asiya Khan
- Department of Lab Oncology, AIIMS, New Delhi, India
| | - Ramesh Kumar
- Department of Biochemistry, Bundelkhand University, Jhansi, India
| | - Nasreena Bashir
- College of Applied Medicine, King Khalid University, Abha, Saudi Arabia
| | | | - Ravi Mehrotra
- Division of Preventive Oncology, National Institute of Cancer Prevention and Research, Noida, India
| |
Collapse
|
150
|
Flow field-flow fractionation: Recent applications for lipidomic and proteomic analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|