101
|
Pekovic V, Hutchison CJ. Adult stem cell maintenance and tissue regeneration in the ageing context: the role for A-type lamins as intrinsic modulators of ageing in adult stem cells and their niches. J Anat 2008; 213:5-25. [PMID: 18638067 PMCID: PMC2475560 DOI: 10.1111/j.1469-7580.2008.00928.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2008] [Indexed: 02/06/2023] Open
Abstract
Adult stem cells have been identified in most mammalian tissues of the adult body and are known to support the continuous repair and regeneration of tissues. A generalized decline in tissue regenerative responses associated with age is believed to result from a depletion and/or a loss of function of adult stem cells, which itself may be a driving cause of many age-related disease pathologies. Here we review the striking similarities between tissue phenotypes seen in many degenerative conditions associated with old age and those reported in age-related nuclear envelope disorders caused by mutations in the LMNA gene. The concept is beginning to emerge that nuclear filament proteins, A-type lamins, may act as signalling receptors in the nucleus required for receiving and/or transducing upstream cytosolic signals in a number of pathways central to adult stem cell maintenance as well as adaptive responses to stress. We propose that during ageing and in diseases caused by lamin A mutations, dysfunction of the A-type lamin stress-resistant signalling network in adult stem cells, their progenitors and/or stem cell niches leads to a loss of protection against growth-related stress. This in turn triggers an inappropriate activation or a complete failure of self-renewal pathways with the consequent initiation of stress-induced senescence. As such, A-type lamins should be regarded as intrinsic modulators of ageing within adult stem cells and their niches that are essential for survival to old age.
Collapse
Affiliation(s)
- Vanja Pekovic
- School of Biological and Biomedical Science, Integrated Cell Biology Laboratories, Durham University, South Road, Durham DH1 3LE, UK.
| | | |
Collapse
|
102
|
Burke B, Stewart CL. The laminopathies: the functional architecture of the nucleus and its contribution to disease. Annu Rev Genomics Hum Genet 2008; 7:369-405. [PMID: 16824021 DOI: 10.1146/annurev.genom.7.080505.115732] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most inherited diseases are associated with mutations in a specific gene. Often, mutations in two or more different genes result in diseases with a similar phenotype. Rarely do different mutations in the same gene result in a multitude of seemingly different and unrelated diseases. Mutations in the Lamin A gene (LMNA), which encodes largely ubiquitously expressed nuclear proteins (A-type lamins), are associated with at least eight different diseases, collectively called the laminopathies. Studies examining how different tissue-specific diseases arise from unique LMNA mutations are providing unanticipated insights into the structural organization of the nucleus, and how disruption of this organization relates to novel mechanisms of disease.
Collapse
Affiliation(s)
- Brian Burke
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida 32610
| | | |
Collapse
|
103
|
Chromatin changes induced by lamin A/C deficiency and the histone deacetylase inhibitor trichostatin A. Eur J Cell Biol 2008; 87:291-303. [PMID: 18396346 DOI: 10.1016/j.ejcb.2008.01.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 01/22/2008] [Accepted: 01/28/2008] [Indexed: 01/28/2023] Open
Abstract
Recent studies have shown that histone code dictates the type and structure of chromatin. Bearing in mind the importance of A-type lamins for chromatin arrangement, we studied the effect of trichostatin A (TSA)-induced histone hyperacetylation in lamin A/C-deficient (LMNA-/-) fibroblasts. Lamin A/C deficiency caused condensation of chromosome territories and the nuclear reorganization of centromeric heterochromatin, which was accompanied by the appearance of a chain-like morphology of HP1beta foci. Conversely, histone deacetylase (HDAC) inhibition induced de-condensation of chromosome territories, which compensated the effect of lamin A/C deficiency on chromosome regions. The amount of heterochromatin in the area associated with the nuclear membrane was significantly reduced in LMNA-/- cells when compared with lamin A/C-positive (LMNA+/+) fibroblasts. TSA also decreased the amount of peripheral heterochromatin, similarly as lamin A/C deficiency. In both LMNA+/+ and LMNA-/- cells, physically larger chromosomes were positioned more peripherally as compared with the smaller ones, even after TSA treatment. Our observations indicate that lamin A/C deficiency causes not only reorganization of chromatin and some chromatin-associated domains, but also has an impact on the extent of chromosome condensation. As HDAC inhibition can compensate the lamin A/C-dependent chromatin changes, the interaction between lamins and specifically modified histones may play an important role in higher-order chromatin organization, which influences transcriptional activity.
Collapse
|
104
|
A cancer-associated RING finger protein, RNF43, is a ubiquitin ligase that interacts with a nuclear protein, HAP95. Exp Cell Res 2008; 314:1519-28. [DOI: 10.1016/j.yexcr.2008.01.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 12/21/2007] [Accepted: 01/11/2008] [Indexed: 02/06/2023]
|
105
|
Renaud O, Viña J, Yu Y, Machu C, Trouvé A, Van der Voort H, Chalmond B, Shorte SL. High-resolution 3-D imaging of living cells in suspension using confocal axial tomography. Biotechnol J 2008; 3:53-62. [PMID: 18022857 DOI: 10.1002/biot.200700188] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Conventional flow cytometry (FC) methods report optical signals integrated from individual cells at throughput rates as high as thousands of cells per second. This is further combined with the powerful utility to subsequently sort and/or recover the cells of interest. However, these methods cannot extract spatial information. This limitation has prompted efforts by some commercial manufacturers to produce state-of-the-art commercial flow cytometry systems allowing fluorescence images to be recorded by an imaging detector. Nonetheless, there remains an immediate and growing need for technologies facilitating spatial analysis of fluorescent signals from cells maintained in flow suspension. Here, we report a novel methodological approach to this problem that combines micro-fluidic flow, and microelectrode dielectric-field control to manipulate, immobilize and image individual cells in suspension. The method also offers unique possibilities for imaging studies on cells in suspension. In particular, we report the system's immediate utility for confocal "axial tomography" using micro-rotation imaging and show that it greatly enhances 3-D optical resolution compared with conventional light reconstruction (deconvolution) image data treatment. That the method we present here is relatively rapid and lends itself to full automation suggests its eventual utility for 3-D imaging cytometry.
Collapse
Affiliation(s)
- Olivier Renaud
- Institut Pasteur, Plate-forme d'Imagerie Dynamique, Imagopole, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Parnaik VK. Role of Nuclear Lamins in Nuclear Organization, Cellular Signaling, and Inherited Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 266:157-206. [DOI: 10.1016/s1937-6448(07)66004-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
107
|
Laksameethanasan D, Brandt SS, Engelhardt P, Renaud O, Shorte SL. A Bayesian reconstruction method for micro-rotation imaging in light microscopy. Microsc Res Tech 2007; 71:158-67. [PMID: 18044699 DOI: 10.1002/jemt.20550] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The authors present a three-dimensional (3D) reconstruction algorithm and reconstruction-based deblurring method for light microscopy using a micro-rotation device. In contrast to conventional 3D optical imaging where the focal plane is shifted along the optical axis, micro-rotation imaging employs dielectric fields to rotate the object inside a fixed optical set-up. To address this entirely new 3D-imaging modality, the authors present a reconstruction algorithm based on Bayesian inversion theory and use the total variation function as a structure prior. The spectral properties of the reconstruction by simulations that illustrate the strengths and the weaknesses of the micro-rotation approach, compared with conventional 3D optical imaging, were studied. The reconstruction from real data sets shows that this method is promising for 3D reconstruction and offers itself as a deblurring method using a reconstruction-based procedure for removing out-of-focus light from the micro-rotation image series.
Collapse
Affiliation(s)
- Danai Laksameethanasan
- Laboratory of Computational Engineering, Helsinki University of Technology, FI-02015 TKK, Finland.
| | | | | | | | | |
Collapse
|
108
|
Salpingidou G, Smertenko A, Hausmanowa-Petrucewicz I, Hussey PJ, Hutchison CJ. A novel role for the nuclear membrane protein emerin in association of the centrosome to the outer nuclear membrane. ACTA ACUST UNITED AC 2007; 178:897-904. [PMID: 17785515 PMCID: PMC2064615 DOI: 10.1083/jcb.200702026] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The type II inner nuclear membrane protein emerin is a component of the LINC complex that connects the nuclear lamina to the actin cytoskeleton. In emerin-null or -deficient human dermal fibroblasts we find that the centrosome is detached from the nucleus. Moreover, following siRNA knockdown of emerin in wild-type fibroblasts, the centrosome also becomes detached from the nucleus. We show that emerin interacts with tubulin, and that nocadozole-treated wild-type cells phenocopy the detached centrosome characteristic of emerin-null/deficient cells. We also find that a significant fraction of emerin is located at the outer nuclear membrane and peripheral ER, where it interacts directly with the centrosome. Our data provide the first evidence in mammalian cells as to the nature of the linkage of the centrosome, and therefore the tubulin cytoskeleton, with the outer nuclear membrane.
Collapse
Affiliation(s)
- Georgia Salpingidou
- School of Biological and Biomedical Sciences, The University of Durham, Durham, England, UK
| | | | | | | | | |
Collapse
|
109
|
Stewart CL, Kozlov S, Fong LG, Young SG. Mouse models of the laminopathies. Exp Cell Res 2007; 313:2144-56. [PMID: 17493612 PMCID: PMC1949387 DOI: 10.1016/j.yexcr.2007.03.026] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Revised: 03/05/2007] [Accepted: 03/12/2007] [Indexed: 12/25/2022]
Abstract
The A and B type lamins are nuclear intermediate filament proteins that comprise the bulk of the nuclear lamina, a thin proteinaceous structure underlying the inner nuclear membrane. The A type lamins are encoded by the lamin A gene (LMNA). Mutations in this gene have been linked to at least nine diseases, including the progeroid diseases Hutchinson-Gilford progeria and atypical Werner's syndromes, striated muscle diseases including muscular dystrophies and dilated cardiomyopathies, lipodystrophies affecting adipose tissue deposition, diseases affecting skeletal development, and a peripheral neuropathy. To understand how different diseases arise from different mutations in the same gene, mouse lines carrying some of the same mutations found in the human diseases have been established. We, and others have generated mice with different mutations that result in progeria, muscular dystrophy, and dilated cardiomyopathy. To further our understanding of the functions of the lamins, we also created mice lacking lamin B1, as well as mice expressing only one of the A type lamins. These mouse lines are providing insights into the functions of the lamina and how changes to the lamina affect the mechanical integrity of the nucleus as well as signaling pathways that, when disrupted, may contribute to the disease.
Collapse
Affiliation(s)
- Colin L Stewart
- Laboratory of Cancer and Developmental Biology, National Cancer Institute, Frederick, Maryland 21702, USA.
| | | | | | | |
Collapse
|
110
|
Schirmer EC, Foisner R. Proteins that associate with lamins: many faces, many functions. Exp Cell Res 2007; 313:2167-79. [PMID: 17451680 DOI: 10.1016/j.yexcr.2007.03.012] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 03/05/2007] [Accepted: 03/12/2007] [Indexed: 11/27/2022]
Abstract
Lamin-associated polypeptides (LAPs) comprise inner nuclear membrane proteins tightly associated with the peripheral lamin scaffold as well as proteins forming stable complexes with lamins in the nucleoplasm. The involvement of LAPs in a wide range of human diseases may be linked to an equally bewildering range of their functions, including sterol reduction, histone modification, transcriptional repression, and Smad- and beta-catenin signaling. Many LAPs are likely to be at the center of large multi-protein complexes, components of which may dictate their functions, and a few LAPs have defined enzymatic activities. Here we discuss the definition of LAPs, review their many binding partners, elaborate their functions in nuclear architecture, chromatin organization, gene expression and signaling, and describe what is currently known about their links to human disease.
Collapse
Affiliation(s)
- Eric C Schirmer
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | | |
Collapse
|
111
|
Gieni RS, Hendzel MJ. Mechanotransduction from the ECM to the genome: Are the pieces now in place? J Cell Biochem 2007; 104:1964-87. [PMID: 17546585 DOI: 10.1002/jcb.21364] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A multitude of biochemical signaling processes have been characterized that affect gene expression and cellular activity. However, living cells often need to integrate biochemical signals with mechanical information from their microenvironment as they respond. In fact, the signals received by shape alone can dictate cell fate. This mechanotrasduction of information is powerful, eliciting proliferation, differentiation, or apoptosis in a manner dependent upon the extent of physical deformation. The cells internal "prestressed" structure and its "hardwired" interaction with the extra-cellular matrix (ECM) appear to confer this ability to filter biochemical signals and decide between divergent cell functions influenced by the nature of signals from the mechanical environment. In some instances mechanical signaling through the tissue microenvironment has been shown to be dominant over genomic defects, imparting a normal phenotype on cells that otherwise have transforming genetic lesions. This mechanical control of phenotype is postulated to have a central role in embryogenesis, tissue physiology as well as the pathology of a wide variety of diseases, including cancer. We will briefly review studies showing physical continuity between the external cellular microenvironment and the interior of the cell nucleus. Newly characterized structures, termed nuclear envelope lamina spanning complexes (NELSC), and their interactions will be described as part of a model for mechanical transduction of extracellular cues from the ECM to the genome.
Collapse
Affiliation(s)
- Randall S Gieni
- Cross Cancer Institute and Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
112
|
Vlcek S, Foisner R. A-type lamin networks in light of laminopathic diseases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:661-74. [PMID: 16934891 DOI: 10.1016/j.bbamcr.2006.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 07/10/2006] [Accepted: 07/12/2006] [Indexed: 11/22/2022]
Abstract
Lamins are major structural components of the lamina providing mechanical support for the nuclear envelope in vertebrates. A subgroup of lamins, the A-type lamins, are only expressed in differentiated cells and serve important functions both at the nuclear envelope and in the nucleoplasm in higher order chromatin organization and gene regulation. Mutations in A-type lamins cause a variety of diseases from muscular dystrophy and lipodystrophy to systemic diseases such as premature ageing syndromes. The molecular basis of these diseases is still unknown. Here we summarize known interactions of A-type lamins with components of the nuclear envelope and the nucleoplasm and discuss their potential involvement in the etiology and molecular mechanisms of the diseases. Lamin binding partners involve chromatin proteins potentially involved in higher order chromatin organization, transcriptional regulators controlling gene expression during cell cycle progression, differentiation and senescence, and several enzymes involved in a multitude of functions.
Collapse
Affiliation(s)
- Sylvia Vlcek
- Max. F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | |
Collapse
|
113
|
Houben F, Ramaekers FCS, Snoeckx LHEH, Broers JLV. Role of nuclear lamina-cytoskeleton interactions in the maintenance of cellular strength. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:675-86. [PMID: 17050008 DOI: 10.1016/j.bbamcr.2006.09.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 07/12/2006] [Accepted: 09/08/2006] [Indexed: 01/08/2023]
Abstract
The response of individual cells to cellular stress is vital for cellular functioning. A large network of physically interconnected cellular components, starting from the structural components of the cells' nucleus, via cytoskeleton filaments to adhesion molecules and the extracellular matrix, constitutes an integrated matrix that functions as a scaffold allowing the cell to cope with mechanical stress. Next to a role in mechanical properties, this network also has a mechanotransductional function in the response to mechanical stress. This signaling route does not only regulate a rapid reorganization of structural components such as actin filaments, but also stimulates for example gene activation via NFkappaB and other transcription factors. The importance of an intact mechano-signaling network is illustrated by the physiological consequences of several genetic defects of cellular network components e.g. actin, dystrophin, desmin and lamins. These give rise to an impaired response of the affected cells to mechanical stress and often result in dystrophy of the affected tissue. Recently, the importance of the cell nucleus in cellular strength has been established. Several new interconnecting proteins, such as the nesprins that link the nuclear lamina to the cytoskeleton, have been identified. Furthermore, the function of nuclear lamins in determining cellular strength and nuclear stability was illustrated in lamin-knock-out cells. Absence of the A-type lamins or mutations in these structural components of the nuclear lamina lead to an impaired cellular response to mechanical stress and disturbances in cytoskeletal organization. In addition, laminopathies show clinical phenotypes comparable to those seen for diseases resulting from genetic defects in cytoskeletal components, further indicating that lamins play a central role in maintaining the mechanical properties of the cell.
Collapse
Affiliation(s)
- F Houben
- Department of Molecular Cell Biology, Cardiovascular Research Institute Maastricht (CARIM) and Research Institute for Growth and Development (GROW), University of Maastricht, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
114
|
Morris JB, Hofemeister H, O'Hare P. Herpes simplex virus infection induces phosphorylation and delocalization of emerin, a key inner nuclear membrane protein. J Virol 2007; 81:4429-37. [PMID: 17301149 PMCID: PMC1900177 DOI: 10.1128/jvi.02354-06] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 02/02/2007] [Indexed: 02/07/2023] Open
Abstract
The inner nuclear membrane (INM) contains specialized membrane proteins that selectively interact with nuclear components including the lamina, chromatin, and DNA. Alterations in the organization of and interactions with INM and lamina components are likely to play important roles in herpesvirus replication and, in particular, exit from the nucleus. Emerin, a member of the LEM domain class of INM proteins, binds a number of nuclear components including lamins, the DNA-bridging protein BAF, and F-actin and is thought to be involved in maintaining nuclear integrity. Here we report that emerin is quantitatively modified during herpes simplex virus (HSV) infection. Modification begins early in infection, involves multiple steps, and is reversed by phosphatase treatment. Emerin phosphorylation during infection involves one or more cellular kinases but can also be influenced by the US3 viral kinase, a protein whose function is known to be involved in HSV nuclear egress. The results from biochemical extraction analyses and from immunofluorescence of the detergent-resistant population demonstrate that emerin association with the INM significantly reduced during infection. We propose that the induction of emerin phosphorylation in infected cells may be involved in nuclear egress and uncoupling interactions with targets such as the lamina, chromatin, or cytoskeletal components.
Collapse
Affiliation(s)
- James B Morris
- Marie Curie Research Institute, The Chart, Oxted, Surrey RH8 0TL, United Kingdom
| | | | | |
Collapse
|
115
|
Lusk CP, Blobel G, King MC. Highway to the inner nuclear membrane: rules for the road. Nat Rev Mol Cell Biol 2007; 8:414-20. [PMID: 17440484 DOI: 10.1038/nrm2165] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
To enter the nucleus a protein must be chaperoned by a transport factor through the nuclear pore complex or it must be small enough to pass through by diffusion. Although these principles have long described the nuclear import of soluble proteins, recent evidence indicates that they also apply to the import of integral inner nuclear membrane proteins. Here we develop a set of rules that might govern the transport of proteins to the inner nuclear membrane.
Collapse
Affiliation(s)
- C Patrick Lusk
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
116
|
Brachner A, Reipert S, Foisner R, Gotzmann J. LEM2 is a novel MAN1-related inner nuclear membrane protein associated with A-type lamins. J Cell Sci 2007; 118:5797-810. [PMID: 16339967 DOI: 10.1242/jcs.02701] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The LEM (lamina-associated polypeptide-emerin-MAN1) domain is a motif shared by a group of lamin-interacting proteins in the inner nuclear membrane (INM) and in the nucleoplasm. The LEM domain mediates binding to a DNA-crosslinking protein, barrier-to-autointegration factor (BAF). We describe a novel, ubiquitously expressed LEM domain protein, LEM2, which is structurally related to MAN1. LEM2 contains an N-terminal LEM motif, two predicted transmembrane domains and a MAN1-Src1p C-terminal (MSC) domain highly homologous to MAN1, but lacks the MAN1-specific C-terminal RNA-recognition motif. Immunofluorescence microscopy of digitonin-treated cells and subcellular fractionation identified LEM2 as a lamina-associated protein residing in the INM. LEM2 binds to the lamin C tail in vitro. Targeting of LEM2 to the nuclear envelope requires A-type lamins and is mediated by the N-terminal and transmembrane domains. Highly overexpressed LEM2 accumulates in patches at the nuclear envelope and forms membrane bridges between nuclei of adjacent cells. LEM2 structures recruit A-type lamins, emerin, MAN1 and BAF, whereas lamin B and lamin B receptor are excluded. Our data identify LEM2 as a novel A-type-lamin-associated INM protein involved in nuclear structure organization.
Collapse
Affiliation(s)
- Andreas Brachner
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, Medical University of Vienna, Dr Bohrgasse 9/3, A-1030 Vienna, Austria
| | | | | | | |
Collapse
|
117
|
Wagner N, Krohne G. LEM‐Domain Proteins: New Insights into Lamin‐Interacting Proteins. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 261:1-46. [PMID: 17560279 DOI: 10.1016/s0074-7696(07)61001-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
LEM-domain proteins present a growing family of nonrelated inner nuclear membrane and intranuclear proteins, including emerin, MAN1, LEM2, several alternatively spliced isoforms of LAP2, and various uncharacterized proteins in higher eukaryotes as well as the Drosophila-specific proteins otefin and Bocksbeutel. LEM-domain proteins are involved in diverse cellular processes including replication and cell cycle control, chromatin organization and nuclear assembly, the regulation of gene expression and signaling pathways, as well as retroviral infection. Genetic analyses in different model organisms reveal new insights into the various functions of LEM-domain proteins, lamins, and their involvement in laminopathic diseases. All these findings as well as previously proposed ideas and models have been summarized to broaden our view of this exciting protein family.
Collapse
Affiliation(s)
- Nicole Wagner
- Department of Developmental Biology, Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | | |
Collapse
|
118
|
Rowat AC, Lammerding J, Ipsen JH. Mechanical properties of the cell nucleus and the effect of emerin deficiency. Biophys J 2006; 91:4649-64. [PMID: 16997877 PMCID: PMC1779937 DOI: 10.1529/biophysj.106.086454] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 09/05/2006] [Indexed: 11/18/2022] Open
Abstract
Nuclear structure and mechanics are gaining recognition as important factors that affect gene expression, development, and differentiation in normal function and disease, yet the physical mechanisms that govern nuclear mechanical stability remain unclear. Here we examined the physical properties of the cell nucleus by imaging fluorescently labeled components of the inner nucleus (chromatin and nucleoli) and the nuclear envelope (lamins and membranes) in nuclei deformed by micropipette aspiration (confocal imaged microdeformation). We investigated nuclei, both isolated and in intact, living cells, and found that nuclear volume significantly decreased by 60-70% during aspiration. While nuclear membranes exhibited blebbing and fluid characteristics during aspiration, the nuclear lamina exhibited behavior of a solid-elastic shell. Under large deformations of GFP-lamin A-labeled nuclei, we observed a decay of fluorescence intensity into the tip of the deformed tongue that we interpreted in terms of nonlinear, two-dimensional elasticity theory. Here we applied this method to study nuclear envelope stability in disease and found that mouse embryo fibroblasts lacking the inner nuclear membrane protein, emerin, had a significantly decreased ratio of the area expansion to shear moduli (K/mu) compared to wild-type cells (2.1 +/- 0.2 versus 5.1 +/- 1.3). These data suggest that altered nuclear envelope elasticity caused by loss of emerin could contribute to increased nuclear fragility in Emery-Dreifuss muscular dystrophy patients with mutations in the emerin gene. Based on our experimental results and theoretical considerations, we present a model describing how the nucleus is stabilized in the pipette. Such a model is essential for interpreting the results of any micropipette study of the nucleus and porous materials in general.
Collapse
Affiliation(s)
- A C Rowat
- MEMPHYS Centre for Biomembrane Physics, Department of Physics, University of Southern Denmark, Odense, Denmark.
| | | | | |
Collapse
|
119
|
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is caused by a LMNA mutation that leads to the synthesis of a mutant prelamin A that is farnesylated but cannot be further processed to mature lamin A. A more severe progeroid disorder, restrictive dermopathy (RD), is caused by the loss of the prelamin A-processing enzyme, ZMPSTE24. The absence of ZMPSTE24 prevents the endoproteolytic processing of farnesyl-prelamin A to mature lamin A and leads to the accumulation of farnesyl-prelamin A. In both HGPS and RD, the farnesyl-prelamin A is targeted to the nuclear envelope, where it interferes with the integrity of the nuclear envelope and causes misshapen cell nuclei. Recent studies have shown that the frequency of misshapen nuclei can be reduced by treating cells with a farnesyltransferase inhibitor (FTI). Also, administering an FTI to mouse models of HGPS and RD ameliorates the phenotypes of progeria. These studies have prompted interest in testing the efficacy of FTIs in children with HGPS.
Collapse
Affiliation(s)
- Stephen G Young
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA.
| | | | | | | |
Collapse
|
120
|
Davies KE, Nowak KJ. Molecular mechanisms of muscular dystrophies: old and new players. Nat Rev Mol Cell Biol 2006; 7:762-73. [PMID: 16971897 DOI: 10.1038/nrm2024] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The study of the muscle cell in the muscular dystrophies (MDs) has shown that mutant proteins result in perturbations of many cellular components. MDs have been associated with mutations in structural proteins, signalling molecules and enzymes as well as mutations that result in aberrant processing of mRNA or alterations in post-translational modifications of proteins. These findings have not only revealed important insights for cell biologists, but have also provided unexpected and exciting new approaches for therapy.
Collapse
Affiliation(s)
- Kay E Davies
- Department of Physiology, Anatomy and Genetics, MRC Functional Genetics Unit, South Parks Road, Oxford OX1 3QX, UK.
| | | |
Collapse
|
121
|
Lammerding J, Fong LG, Ji JY, Reue K, Stewart CL, Young SG, Lee RT. Lamins A and C but not lamin B1 regulate nuclear mechanics. J Biol Chem 2006; 281:25768-80. [PMID: 16825190 DOI: 10.1074/jbc.m513511200] [Citation(s) in RCA: 519] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mutations in the nuclear envelope proteins lamins A and C cause a broad variety of human diseases, including Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy, and Hutchinson-Gilford progeria syndrome. Cells lacking lamins A and C have reduced nuclear stiffness and increased nuclear fragility, leading to increased cell death under mechanical strain and suggesting a potential mechanism for disease. Here, we investigated the contribution of major lamin subtypes (lamins A, C, and B1) to nuclear mechanics by analyzing nuclear shape, nuclear dynamics over time, nuclear deformations under strain, and cell viability under prolonged mechanical stimulation in cells lacking both lamins A and C, cells lacking only lamin A (i.e. "lamin C-only" cells), cells lacking wild-type lamin B1, and wild-type cells. Lamin A/C-deficient cells exhibited increased numbers of misshapen nuclei and had severely reduced nuclear stiffness and decreased cell viability under strain. Lamin C-only cells had slightly abnormal nuclear shape and mildly reduced nuclear stiffness but no decrease in cell viability under strain. Interestingly, lamin B1-deficient cells exhibited normal nuclear mechanics despite having a significantly increased frequency of nuclear blebs. Our study indicates that lamins A and C are important contributors to the mechanical stiffness of nuclei, whereas lamin B1 contributes to nuclear integrity but not stiffness.
Collapse
Affiliation(s)
- Jan Lammerding
- Cardiovascular Division, Department of Medicine, and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02139, USA.
| | | | | | | | | | | | | |
Collapse
|
122
|
King MC, Lusk CP, Blobel G. Karyopherin-mediated import of integral inner nuclear membrane proteins. Nature 2006; 442:1003-7. [PMID: 16929305 DOI: 10.1038/nature05075] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 07/11/2006] [Indexed: 11/08/2022]
Abstract
Targeting of newly synthesized integral membrane proteins to the appropriate cellular compartment is specified by discrete sequence elements, many of which have been well characterized. An understanding of the signals required to direct integral membrane proteins to the inner nuclear membrane (INM) remains a notable exception. Here we show that integral INM proteins possess basic sequence motifs that resemble 'classical' nuclear localization signals. These sequences can mediate direct binding to karyopherin-alpha and are essential for the passage of integral membrane proteins to the INM. Furthermore, karyopherin-alpha, karyopherin-beta1 and the Ran GTPase cycle are required for INM targeting, underscoring parallels between mechanisms governing the targeting of integral INM proteins and soluble nuclear transport. We also provide evidence that specific nuclear pore complex proteins contribute to this process, suggesting a role for signal-mediated alterations in the nuclear pore complex to allow for passage of INM proteins along the pore membrane.
Collapse
Affiliation(s)
- Megan C King
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA.
| | | | | |
Collapse
|
123
|
Nitta RT, Jameson SA, Kudlow BA, Conlan LA, Kennedy BK. Stabilization of the retinoblastoma protein by A-type nuclear lamins is required for INK4A-mediated cell cycle arrest. Mol Cell Biol 2006; 26:5360-72. [PMID: 16809772 PMCID: PMC1592700 DOI: 10.1128/mcb.02464-05] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mutations in the LMNA gene, which encodes all A-type lamins, including lamin A and lamin C, cause a variety of tissue-specific degenerative diseases termed laminopathies. Little is known about the pathogenesis of these disorders. Previous studies have indicated that A-type lamins interact with the retinoblastoma protein (pRB). Here we probe the functional consequences of this association and further examine links between nuclear structure and cell cycle control. Since pRB is required for cell cycle arrest by p16(ink4a), we tested the responsiveness of multiple lamin A/C-depleted cell lines to overexpression of this CDK inhibitor and tumor suppressor. We find that the loss of A-type lamin expression results in marked destabilization of pRB. This reduction in pRB renders cells resistant to p16(ink4a)-mediated G(1) arrest. Reintroduction of lamin A, lamin C, or pRB restores p16(ink4a)-responsiveness to Lmna(-/-) cells. An array of lamin A mutants, representing a variety of pathologies as well as lamin A processing mutants, was introduced into Lmna(-/-) cells. Of these, a mutant associated with mandibuloacral dysplasia (MAD R527H), as well as two lamin A processing mutants, but not other disease-associated mutants, failed to restore p16(ink4a) responsiveness. Although our findings do not rule out links between altered pRB function and laminopathies, they fail to support such an assertion. These findings do link lamin A/C to the functional activation of a critical tumor suppressor pathway and further the possibility that somatic mutations in LMNA contribute to tumor progression.
Collapse
Affiliation(s)
- Ryan T Nitta
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
124
|
Markiewicz E, Tilgner K, Barker N, van de Wetering M, Clevers H, Dorobek M, Hausmanowa-Petrusewicz I, Ramaekers FCS, Broers JLV, Blankesteijn WM, Salpingidou G, Wilson RG, Ellis JA, Hutchison CJ. The inner nuclear membrane protein emerin regulates beta-catenin activity by restricting its accumulation in the nucleus. EMBO J 2006; 25:3275-85. [PMID: 16858403 PMCID: PMC1523183 DOI: 10.1038/sj.emboj.7601230] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 06/13/2006] [Indexed: 11/08/2022] Open
Abstract
Emerin is a type II inner nuclear membrane (INM) protein of unknown function. Emerin function is likely to be important because, when it is mutated, emerin promotes both skeletal muscle and heart defects. Here we show that one function of Emerin is to regulate the flux of beta-catenin, an important transcription coactivator, into the nucleus. Emerin interacts with beta-catenin through a conserved adenomatous polyposis coli (APC)-like domain. When GFP-emerin is expressed in HEK293 cells, beta-catenin is restricted to the cytoplasm and beta-catenin activity is inhibited. In contrast, expression of an emerin mutant, lacking its APC-like domain (GFP-emerinDelta), dominantly stimulates beta-catenin activity and increases nuclear accumulation of beta-catenin. Human fibroblasts that are null for emerin have an autostimulatory growth phenotype. This unusual growth phenotype arises through enhanced nuclear accumulation and activity of beta-catenin and can be replicated in wild-type fibroblasts by transfection with constitutively active beta-catenin. Our results support recent findings that suggest that INM proteins can influence signalling pathways by restricting access of transcription coactivators to the nucleus.
Collapse
Affiliation(s)
- Ewa Markiewicz
- Department of Biological Science, The School of Biological and Biomedical Sciences, The University of Durham, Durham, UK
| | - Katarzyna Tilgner
- Department of Biological Science, The School of Biological and Biomedical Sciences, The University of Durham, Durham, UK
| | - Nick Barker
- Hubrecht Laboratory, Center for Biomedical Genetics, Utrecht, The Netherlands
| | | | - Hans Clevers
- Hubrecht Laboratory, Center for Biomedical Genetics, Utrecht, The Netherlands
| | - Margareth Dorobek
- Neuromuscular Unit, Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | | - Frans C S Ramaekers
- Department of Molecular Cell Biology, The University of Maastricht, Maastricht, The Netherlands
| | - Jos L V Broers
- Department of Molecular Cell Biology, The University of Maastricht, Maastricht, The Netherlands
- The Netherlands and Faculty of Biomedical Engineering, Technical University of Eindhoven, Eindhoven, The Netherlands
| | - W Matthijs Blankesteijn
- Department of Pharmacology, Research Institutes CARIM and GROW, The University of Maastricht, Maastricht, The Netherlands
| | - Georgia Salpingidou
- Department of Biological Science, The School of Biological and Biomedical Sciences, The University of Durham, Durham, UK
| | - Robert G Wilson
- Academic Centre, James Cook University Hospital, Middlesborough, UK
| | - Juliet A Ellis
- Randall Division of Cell and Molecular Biophysics, Kings College London, New Hunts House, Guys Campus, London, UK
| | - Christopher J Hutchison
- Department of Biological Science, The School of Biological and Biomedical Sciences, The University of Durham, Durham, UK
| |
Collapse
|
125
|
Schlosser A, Amanchy R, Otto H. Identification of tyrosine-phosphorylation sites in the nuclear membrane protein emerin. FEBS J 2006; 273:3204-15. [PMID: 16857009 DOI: 10.1111/j.1742-4658.2006.05329.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although several proteins undergo tyrosine phosphorylation at the nuclear envelope, we achieved, for the first time, the identification of tyrosine-phosphorylation sites of a nuclear-membrane protein, emerin, by applying two mass spectrometry-based techniques. With a multiprotease approach combined with highly specific phosphopeptide enrichment and nano liquid chromatography tandem mass spectrometry analysis, we identified three tyrosine-phosphorylation sites, Y-75, Y-95, and Y-106, in mouse emerin. Stable isotope labeling with amino acids in cell culture revealed phosphotyrosines at Y-59, Y-74, Y-86, Y-161, and Y-167 of human emerin. The phosphorylation sites Y-74/Y-75 (human/mouse emerin), Y-85/Y-86, Y-94/Y-95, and Y-105/Y-106 are located in regions previously shown to be critical for interactions of emerin with lamin A, actin or the transcriptional regulators GCL and Btf, while the residues Y-161 and Y-167 are in a region linked to binding lamin-A or actin. Tyrosine Y-94/Y-95 is located adjacent to a five-residue motif in human emerin, whose deletion has been associated with X-linked Emery-Dreifuss muscle dystrophy.
Collapse
|
126
|
Broers JLV, Ramaekers FCS, Bonne G, Yaou RB, Hutchison CJ. Nuclear Lamins: Laminopathies and Their Role in Premature Ageing. Physiol Rev 2006; 86:967-1008. [PMID: 16816143 DOI: 10.1152/physrev.00047.2005] [Citation(s) in RCA: 432] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It has been demonstrated that nuclear lamins are important proteins in maintaining cellular as well as nuclear integrity, and in maintaining chromatin organization in the nucleus. Moreover, there is growing evidence that lamins play a prominent role in transcriptional control. The family of laminopathies is a fast-growing group of diseases caused by abnormalities in the structure or processing of the lamin A/C ( LMNA) gene. Mutations or incorrect processing cause more than a dozen different inherited diseases, ranging from striated muscular diseases, via fat- and peripheral nerve cell diseases, to progeria. This broad spectrum of diseases can only be explained if the responsible A-type lamin proteins perform multiple functions in normal cells. This review gives an overview of current knowledge on lamin structure and function and all known diseases associated with LMNA abnormalities. Based on the knowledge of the different functions of A-type lamins and associated proteins, explanations for the observed phenotypes are postulated. It is concluded that lamins seem to be key players in, among others, controlling the process of cellular ageing, since disturbance in lamin protein structure gives rise to several forms of premature ageing.
Collapse
Affiliation(s)
- J L V Broers
- Department of Molecular Cell Biology, University of Maastricht, Research Institutes CARIM, GROW, and EURON, The Netherlands
| | | | | | | | | |
Collapse
|
127
|
Taylor MRG, Slavov D, Gajewski A, Vlcek S, Ku L, Fain PR, Carniel E, Di Lenarda A, Sinagra G, Boucek MM, Cavanaugh J, Graw SL, Ruegg P, Feiger J, Zhu X, Ferguson DA, Bristow MR, Gotzmann J, Foisner R, Mestroni L. Thymopoietin (lamina-associated polypeptide 2) gene mutation associated with dilated cardiomyopathy. Hum Mutat 2006; 26:566-74. [PMID: 16247757 DOI: 10.1002/humu.20250] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Thymopoietin or TMPO (indicated by its alternative gene symbol, LAP2, in this work) has been proposed as a candidate disease gene for dilated cardiomyopathy (DCM), since a LAP2 product associates with nucleoplasmic lamins A/C, which are encoded by the DCM gene LMNA. We developed a study to screen for genetic mutations in LAP2 in a large collection of DCM patients and families. A total of 113 subjects from 88 families (56 with familial DCM (FDC) and 32 with sporadic DCM) were screened for LAP2 mutations using denaturing high-performance liquid chromatography and sequence analysis. We found a single putative mutation affecting the LAP2alpha isoform in one FDC pedigree. The mutation predicts an Arg690Cys substitution (c.2068C>T; p.R690C) located in the C-terminal domain of the LAP2alpha protein, a region that is known to interact with lamin A/C. RT-PCR, Western blot analyses, and immunolocalization revealed low-level LAP2alpha expression in adult cardiac muscle, and localization to a subset of nuclei. Mutated Arg690Cys LAP2alpha expressed in HeLa cells localized to the nucleoplasm like wild-type LAP2alpha, with no effect on peripheral and nucleoplasmic lamin A distribution. However, the in vitro interaction of mutated LAP2alpha with the pre-lamin A C-terminus was significantly compromised compared to the wild-type protein. LAP2 mutations may represent a rare cause of DCM. The Arg690Cys mutation altered the observed LAP2alpha interaction with A-type lamins. Our finding implicates a novel nuclear lamina-associated protein in the pathogenesis of genetic forms of dilated cardiomyopathy.
Collapse
Affiliation(s)
- Matthew R G Taylor
- CU-Cardiovascular Institute, University of Colorado Health Sciences Center, Denver, Colorado, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Manju K, Muralikrishna B, Parnaik VK. Expression of disease-causing lamin A mutants impairs the formation of DNA repair foci. J Cell Sci 2006; 119:2704-14. [PMID: 16772334 DOI: 10.1242/jcs.03009] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A-type lamins are components of the nuclear lamina. Mutations in the gene encoding lamin A are associated with a range of highly degenerative diseases termed laminopathies. To evaluate sensitivity to DNA damage, GFP-tagged lamin A cDNAs with disease-causing mutations were expressed in HeLa cells. The inner nuclear membrane protein emerin was mislocalised upon expression of the muscular dystrophy mutants G232E, Q294P or R386K, which aberrantly assembled into nuclear aggregates, or upon expression of mutants causing progeria syndromes in vivo (lamin A del50, R471C, R527C and L530P). The ability of cells expressing these mutants to form DNA repair foci comprising phosphorylated H2AX in response to mild doses of cisplatin or UV irradiation was markedly diminished, unlike the nearly normal response of cells expressing wild-type GFP-lamin A or disease-causing H222P and R482L mutants. Interestingly, mutants that impaired the formation of DNA repair foci mislocalised ATR (for ;ataxia telangiectasia-mutated and Rad3-related') kinase, which is a key sensor in the response to DNA damage. Our results suggest that a subset of lamin A mutants might hinder the response of components of the DNA repair machinery to DNA damage by altering interactions with chromatin.
Collapse
Affiliation(s)
- Kaliyaperumal Manju
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | | | | |
Collapse
|
129
|
Haque F, Lloyd DJ, Smallwood DT, Dent CL, Shanahan CM, Fry AM, Trembath RC, Shackleton S. SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton. Mol Cell Biol 2006; 26:3738-51. [PMID: 16648470 PMCID: PMC1488999 DOI: 10.1128/mcb.26.10.3738-3751.2006] [Citation(s) in RCA: 399] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear migration and positioning within cells are critical for many developmental processes and are governed by the cytoskeletal network. Although mechanisms of nuclear-cytoskeletal attachment are unclear, growing evidence links a novel family of nuclear envelope (NE) proteins that share a conserved C-terminal SUN (Sad1/UNC-84 homology) domain. Analysis of Caenorhabditis elegans mutants has implicated UNC-84 in actin-mediated nuclear positioning by regulating NE anchoring of a giant actin-binding protein, ANC-1. Here, we report the identification of SUN1 as a lamin A-binding protein in a yeast two-hybrid screen. We demonstrate that SUN1 is an integral membrane protein located at the inner nuclear membrane. While the N-terminal domain of SUN1 is responsible for detergent-resistant association with the nuclear lamina and lamin A binding, lamin A/C expression is not required for SUN1 NE localization. Furthermore, SUN1 does not interact with type B lamins, suggesting that NE localization is ensured by binding to an additional nuclear component(s), most likely chromatin. Importantly, we find that the luminal C-terminal domain of SUN1 interacts with the mammalian ANC-1 homologs nesprins 1 and 2 via their conserved KASH domain. Our data provide evidence of a physical nuclear-cytoskeletal connection that is likely to be a key mechanism in nuclear-cytoplasmic communication and regulation of nuclear position.
Collapse
Affiliation(s)
- Farhana Haque
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Abstract
PURPOSE OF REVIEW In this review, we will outline the most recent and significant findings on the role of the lamin A/C in cardiac diseases. RECENT FINDINGS Mutations in the lamin A/C gene (LMNA) are associated with numerous diseases involving the heart, skeletal muscles, bones, adipose and nervous tissues. LMNA is one of the most prevalent genes in dilated cardiomyopathy in which it is associated with a high risk of dysrhythmias, sudden death and heart failure. Lamins A and C interact with several proteins reflecting their multiple functions, some of which are likely still unknown. No abnormalities specific to dilated cardiomyopathy are emerging from investigations of striated muscles biopsies or fibroblasts from LMNA mutation carriers. An early diagnosis of the disease is difficult. Both animal and cellular models tend to confirm that lamins A and C play a key role in maintaining the nuclear architecture as well as in regulating transcription. SUMMARY The cardiac phenotype associated to LMNA mutations is now much clearer, but the molecular mechanisms underlying cellular and tissue specific phenotypes are still puzzling. Systematic mutation screenings and cardioverter-defibrillator implantation have been recommended in patients with cardiac symptoms.
Collapse
Affiliation(s)
- Nicolas Sylvius
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | |
Collapse
|
131
|
Bakay M, Wang Z, Melcon G, Schiltz L, Xuan J, Zhao P, Sartorelli V, Seo J, Pegoraro E, Angelini C, Shneiderman B, Escolar D, Chen YW, Winokur ST, Pachman LM, Fan C, Mandler R, Nevo Y, Gordon E, Zhu Y, Dong Y, Wang Y, Hoffman EP. Nuclear envelope dystrophies show a transcriptional fingerprint suggesting disruption of Rb–MyoD pathways in muscle regeneration. Brain 2006; 129:996-1013. [PMID: 16478798 DOI: 10.1093/brain/awl023] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mutations of lamin A/C (LMNA) cause a wide range of human disorders, including progeria, lipodystrophy, neuropathies and autosomal dominant Emery-Dreifuss muscular dystrophy (EDMD). EDMD is also caused by X-linked recessive loss-of-function mutations of emerin, another component of the inner nuclear lamina that directly interacts with LMNA. One model for disease pathogenesis of LMNA and emerin mutations is cell-specific perturbations of the mRNA transcriptome in terminally differentiated cells. To test this model, we studied 125 human muscle biopsies from 13 diagnostic groups (125 U133A, 125 U133B microarrays), including EDMD patients with LMNA and emerin mutations. A Visual and Statistical Data Analyzer (VISDA) algorithm was used to statistically model cluster hierarchy, resulting in a tree of phenotypic classifications. Validations of the diagnostic tree included permutations of U133A and U133B arrays, and use of two probe set algorithms (MAS5.0 and MBEI). This showed that the two nuclear envelope defects (EDMD LMNA, EDMD emerin) were highly related disorders and were also related to fascioscapulohumeral muscular dystrophy (FSHD). FSHD has recently been hypothesized to involve abnormal interactions of chromatin with the nuclear envelope. To identify disease-specific transcripts for EDMD, we applied a leave-one-out (LOO) cross-validation approach using LMNA patient muscle as a test data set, with reverse transcription-polymerase chain reaction (RT-PCR) validations in both LMNA and emerin patient muscle. A high proportion of top-ranked and validated transcripts were components of the same transcriptional regulatory pathway involving Rb1 and MyoD during muscle regeneration (CRI-1, CREBBP, Nap1L1, ECREBBP/p300), where each was specifically upregulated in EDMD. Using a muscle regeneration time series (27 time points) we develop a transcriptional model for downstream consequences of LMNA and emerin mutations. We propose that key interactions between the nuclear envelope and Rb and MyoD fail in EDMD at the point of myoblast exit from the cell cycle, leading to poorly coordinated phosphorylation and acetylation steps. Our data is consistent with mutations of nuclear lamina components leading to destabilization of the transcriptome in differentiated cells.
Collapse
Affiliation(s)
- Marina Bakay
- Research Center for Genetic Medicine, Children's National Medical Center, Washington DC 20010, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Ostlund C, Sullivan T, Stewart CL, Worman HJ. Dependence of diffusional mobility of integral inner nuclear membrane proteins on A-type lamins. Biochemistry 2006; 45:1374-82. [PMID: 16445279 PMCID: PMC2527696 DOI: 10.1021/bi052156n] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Integral proteins of the nuclear envelope inner membrane have been proposed to reach their sites by diffusion after their co-translational insertion in the rough endoplasmic reticulum. They are then retained in the inner nuclear membrane by binding to nuclear structures. One such structure is the nuclear lamina, an intermediate filament meshwork composed of A-type and B-type lamin proteins. Emerin, MAN1, and LBR are three integral inner nuclear membrane proteins. We expressed these proteins fused to green fluorescent protein in embryonic fibroblasts from wild-type mice and Lmna -/- mice, which lack A-type lamins. We then studied the diffusional mobilities of emerin, MAN1, and LBR using fluorescence recovery after photobleaching. We show that emerin and MAN1, but not LBR, are more mobile in the inner nuclear membrane of cells from Lmna -/- mice than in cells from wild-type mice. In cells from Lmna -/- mice expressing exogenous lamin A, the protein mobilities were similar to those in cells from wild-type mice. This supports a model where emerin and MAN1 are at least partly retained in the inner nuclear membrane by binding to A-type lamins, while LBR depends on other binding partners for its retention.
Collapse
Affiliation(s)
- Cecilia Ostlund
- Department of Medicine, College of Physicians and Surgeons, Columbia University, Room 10-509, 630 West 168th Street, New York, New York 10032, USA
| | | | | | | |
Collapse
|
133
|
Padmakumar VC, Libotte T, Lu W, Zaim H, Abraham S, Noegel AA, Gotzmann J, Foisner R, Karakesisoglou I. The inner nuclear membrane protein Sun1 mediates the anchorage of Nesprin-2 to the nuclear envelope. J Cell Sci 2005; 118:3419-30. [PMID: 16079285 DOI: 10.1242/jcs.02471] [Citation(s) in RCA: 333] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Nesprins form a novel class of nuclear envelope-anchored spectrin-repeat proteins. We show that a direct association of their highly conserved C-terminal luminal domain with the inner nuclear membrane protein Sun1 mediates their nuclear envelope localisation. In Nesprin-1 and Nesprin-2 the conserved C-terminal amino acids PPPX are essential for the interaction with a C-terminal region in Sun1. In fact, Sun1 is required for the proper nuclear envelope localisation of Nesprin-2 as shown using dominant-negative mutants and by knockdown of Sun1 expression. Sun1 itself does not require functional A-type lamins for its localisation at the inner nuclear membrane in mammalian cells. Our findings propose a conserved nuclear anchorage mechanism between Caenorhabditis elegans and mammals and suggest a model in which Sun1 serves as a ;structural bridge' connecting the nuclear interior with the actin cytoskeleton.
Collapse
Affiliation(s)
- V C Padmakumar
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Chromosome positioning is largely unaffected in lymphoblastoid cell lines containing emerin or A-type lamin mutations. Biochem Soc Trans 2005; 33:1438-40. [PMID: 16246140 DOI: 10.1042/bst0331438] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gene-poor human chromosomes are reproducibly found at the nuclear periphery in proliferating cells. There are a number of inner nuclear envelope proteins that may have roles in chromosome location and anchorage, e.g. emerin and A-type lamins. In the last decade, a number of diseases associated with tissue degeneration and premature aging have been linked with mutations in lamin A or emerin. These are termed laminopathies, with mutations in emerin causing Emery-Dreifuss muscular dystrophy. Despite highly aberrant nuclear distributions of A-type lamins and emerin in lymphoblastoid cell lines derived from patients with emerin or lamin A mutations, little or no change in chromosome location was detected.
Collapse
|
135
|
Schirmer EC, Gerace L. The nuclear membrane proteome: extending the envelope. Trends Biochem Sci 2005; 30:551-8. [PMID: 16125387 DOI: 10.1016/j.tibs.2005.08.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 07/29/2005] [Accepted: 08/15/2005] [Indexed: 10/25/2022]
Abstract
The marriage of proteomics with cell biology has produced extensive inventories of the proteins that inhabit several subcellular organelles. Recent proteomic analysis has identified many new putative transmembrane proteins in the nuclear envelope, and transcriptome profiling suggests that the nuclear-membrane proteome exhibits some significant variations among different tissues. Cell-type-specific differences in the composition of protein sub-complexes of the nuclear envelope, particularly those containing the disease-associated protein lamin A, could yield distinctive functions and, thus, explain the tissue specificity of a diverse group of nuclear-envelope-linked disorders in humans. Considered together, these recent results suggest an unexpected functional complexity at the nuclear envelope.
Collapse
Affiliation(s)
- Eric C Schirmer
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3JR, UK.
| | | |
Collapse
|
136
|
Motsch I, Kaluarachchi M, Emerson LJ, Brown CA, Brown SC, Dabauvalle MC, Ellis JA. Lamins A and C are differentially dysfunctional in autosomal dominant Emery-Dreifuss muscular dystrophy. Eur J Cell Biol 2005; 84:765-81. [PMID: 16218190 DOI: 10.1016/j.ejcb.2005.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mutations in the LMNA gene, which encodes nuclear lamins A and C by alternative splicing, can give rise to Emery-Dreifuss muscular dystrophy. The mechanism by which lamins A and C separately contribute to this molecular phenotype is unknown. To address this question we examined ten LMNA mutations exogenously expressed as lamins A and C in COS-7 cells. Eight of the mutations when expressed in lamin A, exhibited a range of nuclear mislocalisation patterns. However, two mutations (T150P and delQ355) almost completely relocated exogenous lamin A from the nuclear envelope to the cytoplasm, disrupted nuclear envelope reassembly following cell division and altered the protein composition of the mid-body. In contrast, exogenously expressed DsRed2-tagged mutant lamin C constructs were only inserted into the nuclear lamina if co-expressed with any EGFP-tagged lamin A construct, except with one carrying the T150P mutation. The T150P, R527P and L530P mutations reduced the ability of lamin A, but not lamin C from binding to emerin. These data identify specific functional roles for the emerin-lamin C- and emerin-lamin A- containing protein complexes and is the first report to suggest that the A-type lamin mutations may be differentially dysfunctional for the same LMNA mutation.
Collapse
Affiliation(s)
- Isabell Motsch
- The Randall Division of Cell and Molecular Biophysics, Kings College, New Hunts House, Guy's Campus, London SE1 1UL, UK
| | | | | | | | | | | | | |
Collapse
|
137
|
Young SG, Fong LG, Michaelis S. Prelamin A, Zmpste24, misshapen cell nuclei, and progeria--new evidence suggesting that protein farnesylation could be important for disease pathogenesis. J Lipid Res 2005; 46:2531-58. [PMID: 16207929 DOI: 10.1194/jlr.r500011-jlr200] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prelamin A undergoes multistep processing to yield lamin A, a structural protein of the nuclear lamina. Prelamin A terminates with a CAAX motif, which triggers farnesylation of a C-terminal cysteine (the C of the CAAX motif), endoproteolytic release of the last three amino acids (the AAX), and methylation of the newly exposed farnesylcysteine residue. In addition, prelamin A is cleaved a second time, releasing 15 more residues from the C terminus (including the farnesylcysteine methyl ester), generating mature lamin A. This second cleavage step is carried out by an endoplasmic reticulum membrane protease, ZMPSTE24. Interest in the posttranslational processing of prelamin A has increased with the recognition that certain progeroid syndromes can be caused by mutations that lead to an accumulation of farnesyl-prelamin A. Recently, we showed that a key cellular phenotype of these progeroid disorders, misshapen cell nuclei, can be ameliorated by inhibitors of protein farnesylation, suggesting a potential strategy for treating these diseases. In this article, we review the posttranslational processing of prelamin A, describe several mouse models for progeroid syndromes, explain the mutations underlying several human progeroid syndromes, and summarize recent data showing that misshapen nuclei can be ameliorated by treating cells with protein farnesyltransferase inhibitors.
Collapse
Affiliation(s)
- Stephen G Young
- Division of Cardiology, Department of Internal Medicine, University of California, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
138
|
Lammerding J, Hsiao J, Schulze PC, Kozlov S, Stewart CL, Lee RT. Abnormal nuclear shape and impaired mechanotransduction in emerin-deficient cells. ACTA ACUST UNITED AC 2005; 170:781-91. [PMID: 16115958 PMCID: PMC2171355 DOI: 10.1083/jcb.200502148] [Citation(s) in RCA: 300] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Emery-Dreifuss muscular dystrophy can be caused by mutations in the nuclear envelope proteins lamin A/C and emerin. We recently demonstrated that A-type lamin-deficient cells have impaired nuclear mechanics and altered mechanotransduction, suggesting two potential disease mechanisms (Lammerding, J., P.C. Schulze, T. Takahashi, S. Kozlov, T. Sullivan, R.D. Kamm, C.L. Stewart, and R.T. Lee. 2004. J. Clin. Invest. 113:370–378). Here, we examined the function of emerin on nuclear mechanics and strain-induced signaling. Emerin-deficient mouse embryo fibroblasts have abnormal nuclear shape, but in contrast to A-type lamin-deficient cells, exhibit nuclear deformations comparable to wild-type cells in cellular strain experiments, and the integrity of emerin-deficient nuclear envelopes appeared normal in a nuclear microinjection assay. Interestingly, expression of mechanosensitive genes in response to mechanical strain was impaired in emerin-deficient cells, and prolonged mechanical stimulation increased apoptosis in emerin-deficient cells. Thus, emerin-deficient mouse embryo fibroblasts have apparently normal nuclear mechanics but impaired expression of mechanosensitive genes in response to strain, suggesting that emerin mutations may act through altered transcriptional regulation and not by increasing nuclear fragility.
Collapse
Affiliation(s)
- Jan Lammerding
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
139
|
Abstract
Most neuromuscular disorders display only non-specific myopathological features in routine histological preparations. However, a number of proteins, including sarcolemmal, sarcomeric, and nuclear proteins as well as enzymes with defects responsible for neuromuscular disorders, have been identified during the past two decades, allowing a more specific and firm diagnosis of muscle diseases. Identification of protein defects relies predominantly on immunohistochemical preparations and on Western blot analysis. While immunohistochemistry is very useful in identifying abnormal expression of primary protein abnormalities in recessive conditions, it is less helpful in detecting primary defects in dominantly inherited disorders. Abnormal immunohistochemical expression patterns can be confirmed by Western blot analysis which may also be informative in dominant disorders, although its role has yet to be established. Besides identification of specific protein defects, immunohistochemistry is also helpful in the differentiation of inflammatory myopathies by subtyping cellular infiltrates and demonstrating up-regulation of subtle immunological parameters such as cell adhesion molecules. The role of immunohistochemistry in denervating disorders, however, remains controversial in the absence of a reliable marker of muscle fibre denervation. Nevertheless, as well as the diagnostic value of immunocytochemical analysis it may also widen understanding of muscle fibre pathology as well as help in the development of therapeutic strategies.
Collapse
Affiliation(s)
- D S Tews
- Edinger-Institute of the Johann-Wolfgang Goethe-University, Frankfurt, Germany.
| | | |
Collapse
|
140
|
Libotte T, Zaim H, Abraham S, Padmakumar VC, Schneider M, Lu W, Munck M, Hutchison C, Wehnert M, Fahrenkrog B, Sauder U, Aebi U, Noegel AA, Karakesisoglou I. Lamin A/C-dependent localization of Nesprin-2, a giant scaffolder at the nuclear envelope. Mol Biol Cell 2005; 16:3411-24. [PMID: 15843432 PMCID: PMC1165422 DOI: 10.1091/mbc.e04-11-1009] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The vertebrate proteins Nesprin-1 and Nesprin-2 (also referred to as Enaptin and NUANCE) together with ANC-1 of Caenorhabditis elegans and MSP-300 of Drosophila melanogaster belong to a novel family of alpha-actinin type actin-binding proteins residing at the nuclear membrane. Using biochemical techniques, we demonstrate that Nesprin-2 binds directly to emerin and the C-terminal common region of lamin A/C. Selective disruption of the lamin A/C network in COS7 cells, using a dominant negative lamin B mutant, resulted in the redistribution of Nesprin-2. Furthermore, using lamin A/C knockout fibroblasts we show that lamin A/C is necessary for the nuclear envelope localization of Nesprin-2. In normal skin where lamin A/C is differentially expressed, strong Nesprin-2 expression was found in all epidermal layers, including the basal layer where only lamin C is present. This indicates that lamin C is sufficient for proper Nesprin-2 localization at the nuclear envelope. Expression of dominant negative Nesprin-2 constructs and knockdown studies in COS7 cells revealed that the presence of Nesprin-2 at the nuclear envelope is necessary for the proper localization of emerin. Our data imply a scaffolding function of Nesprin-2 at the nuclear membrane and suggest a potential involvement of this multi-isomeric protein in human disease.
Collapse
Affiliation(s)
- Thorsten Libotte
- Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Smith ED, Kudlow BA, Frock RL, Kennedy BK. A-type nuclear lamins, progerias and other degenerative disorders. Mech Ageing Dev 2005; 126:447-60. [PMID: 15722103 DOI: 10.1016/j.mad.2004.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 10/25/2004] [Accepted: 10/26/2004] [Indexed: 02/01/2023]
Abstract
Nuclear lamins were identified as core nuclear matrix constituents over 20 years ago. They have been ascribed structural roles such as maintaining nuclear integrity and assisting in nuclear envelope formation after mitosis, and have also been linked to nuclear activities including DNA replication and transcription. Recently, A-type lamin mutations have been linked to a variety of rare human diseases including muscular dystrophy, lipodystrophy, cardiomyopathy, neuropathy and progeroid syndromes (collectively termed laminopathies). Most diseases arise from dominant, missense mutations, leading to speculation as to how different mutations in the same gene can give rise to such a diverse set of diseases, some of which share little phenotypic overlap. Understanding the cellular dysfunctions that lead to laminopathies will almost certainly provide insight into specific roles of A-type lamins in nuclear organization. Here, we compare and contrast the LMNA mutations leading to laminopathies with emphasis on progerias, and discuss possible functional roles for A-type lamins in the maintenance of healthy tissues.
Collapse
Affiliation(s)
- Erica D Smith
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
142
|
Scaffidi P, Misteli T. Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome. Nat Med 2005; 11:440-5. [PMID: 15750600 PMCID: PMC1351119 DOI: 10.1038/nm1204] [Citation(s) in RCA: 441] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Accepted: 02/04/2005] [Indexed: 11/10/2022]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a childhood premature aging disease caused by a spontaneous point mutation in lamin A (encoded by LMNA), one of the major architectural elements of the mammalian cell nucleus. The HGPS mutation activates an aberrant cryptic splice site in LMNA pre-mRNA, leading to synthesis of a truncated lamin A protein and concomitant reduction in wild-type lamin A. Fibroblasts from individuals with HGPS have severe morphological abnormalities in nuclear envelope structure. Here we show that the cellular disease phenotype is reversible in cells from individuals with HGPS. Introduction of wild-type lamin A protein does not rescue the cellular disease symptoms. The mutant LMNA mRNA and lamin A protein can be efficiently eliminated by correction of the aberrant splicing event using a modified oligonucleotide targeted to the activated cryptic splice site. Upon splicing correction, HGPS fibroblasts assume normal nuclear morphology, the aberrant nuclear distribution and cellular levels of lamina-associated proteins are rescued, defects in heterochromatin-specific histone modifications are corrected and proper expression of several misregulated genes is reestablished. Our results establish proof of principle for the correction of the premature aging phenotype in individuals with HGPS.
Collapse
Affiliation(s)
| | - Tom Misteli
- Correspondence to TM: T: 301 402 3959; F: 928 832 0970;
| |
Collapse
|
143
|
Zhang Q, Ragnauth CD, Skepper JN, Worth NF, Warren DT, Roberts RG, Weissberg PL, Ellis JA, Shanahan CM. Nesprin-2 is a multi-isomeric protein that binds lamin and emerin at the nuclear envelope and forms a subcellular network in skeletal muscle. J Cell Sci 2005; 118:673-87. [PMID: 15671068 DOI: 10.1242/jcs.01642] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nesprin-2 is a multi-isomeric, modular protein composed of variable numbers of spectrin-repeats linked to a C-terminal transmembrane domain and/or to N-terminal paired calponin homology (CH) domains. The smaller isoforms of nesprin-2 co-localize with and bind lamin A and emerin at the inner nuclear envelope (NE). In SW-13 cells, which lack lamin A/C, nesprin-2 epitopes and emerin were both mislocalized and formed aggregates in the endoplasmic reticulum (ER). The larger isoforms and other CH-domain-containing isoforms co-localize with heterochromatin within the nucleus and are also present at the outer NE and in multiple cytoplasmic compartments. Nesprin-2 isoforms relocalize during in vitro muscle differentiation of C2C12 myoblasts to the sarcomere of myotubes. Immunogold electron microscopy using antibodies specific for three different epitopes detected nesprin-2 isoforms at multiple locations including intranuclear foci, both membranes of the NE, mitochondria, sarcomeric structures and plasma membrane foci. In adult skeletal muscle, confocal immunolocalization studies demonstrated that nesprin-2 epitopes were present at the Z-line and were also associated with the sarcoplasmic reticulum (SR) in close apposition to SERCA2. These data suggest that nesprin-2 isoforms form a linking network between organelles and the actin cytoskeleton and thus may be important for maintaining sub-cellular spatial organisation. Moreover, its association at the NE with lamin and emerin, the genes mutated in Emery-Dreifuss muscular dystrophy, suggests a mechanism to explain how disruption of the NE leads to muscle dysfunction.
Collapse
Affiliation(s)
- Qiuping Zhang
- Department of Medicine, ACCI, Box 110, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2QQ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Maraldi NM, Lattanzi G, Squarzoni S, Capanni C, Cenni V, Manzoli FA. Implications for nuclear organization and gene transcription of lamin A/C specific mutations. ACTA ACUST UNITED AC 2005; 45:1-16. [PMID: 16185751 DOI: 10.1016/j.advenzreg.2005.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
145
|
Abstract
The pathophysiology of statin-mediated muscle dysfunction is poorly defined. Reductions in skeletal muscle membrane cholesterol were initially thought to account for the range of myopathic reactions, e.g., myalgia, elevated serum creatine kinase, or rhabdomyolysis. This assumption however, does not consider a potential role of the isoprenoids in the pathophysiology of statin myopathy. The observation that derangements in mevalonate kinase (MK), but not more distal enzymes of cholesterologenesis, are associated with a skeletal myopathy suggests a critical role for the isoprenoids in the maintenance of muscle. Statins also deplete the isoprenoid pool by inhibiting the enzyme, beta-hydroxy-beta-methylglutaryl coenzyme A reductase, which is upstream of MK. Identifying candidate proteins that are both dependent on isoprenoid-mediated modification and associated with muscle disease, when genetically mutated, offers further insight into potential mechanisms of statin myopathy. For example, lamin A/C, selenoprotein N, alpha- and beta-dystroglycan, and cytoskeletal G-proteins all require isoprenylation for optimal function. Understanding the pleiotropic effects of protein prenylation, and the potential consequences of a generalized insufficiency of this form of protein modification, may help clarify the molecular pathogenesis of statin myopathy.
Collapse
Affiliation(s)
- Steven K Baker
- Division of Physical Medicine and Rehabilitation, Department of Medicine, McMaster University, McMaster University Medical Center, Room 4U4, Hamilton, Ontario, L8N 3Z5, Canada.
| |
Collapse
|
146
|
Abstract
Nuclear lamins form a fibrous nucleoskeletal network of intermediate-sized filaments that underlies the inner nuclear membrane. It associates with this membrane through interactions with specific integral nuclear membrane proteins, while within this flattened lamin lattice the nuclear pore complexes are embedded. Next to this peripheral network, the lamins can form intranuclear structures. The lamins are the evolutionary progenitors of the cytoplasmic intermediate filament proteins and have profound influences on nuclear structure and function. These influences require that lamins have dynamic properties and dual identities as structural building blocks on the one hand, and transcription regulators on the other. Which of these identities underlies the laminopathies, a myriad of genetic diseases caused by mutations in lamins or lamin-associated proteins, is a topic of intense debate.
Collapse
Affiliation(s)
- Jos L V Broers
- Department of Molecular Cell Biology, Research Institutes CARIM, GROW, and EURON, University of Maastricht, The Netherlands
| | | | | |
Collapse
|
147
|
Abstract
Proteomics is a relatively new approach for understanding the pathology and pathogenesis of various diseases. It has also been used for characterizing the modifications in protein expression during the development of interstitial lung diseases, in lung tumors, or following exposure to exogenous stress signals. We compared the protein composition of primary human lung fibroblasts derived from patients with lung fibrosis and control fibroblasts of unaffected lung tissues. We found a predominant modulation in proteins related to the cytoskeleton, including decreased expression of vimentin and lamin A/C, and increased expression of moesin. Furthermore, we observed lower levels of components of the antioxidative system, such as omega class glutathione S-transferase and an up-regulation of an intracellular chloride channel. In fibroblasts obtained from fibrotic lungs, the expression of a major histocompatibility complex class I C was decreased, and so was the expression of tripeptidyl-peptidase-I-precursor, a collagen-degrading exopeptidase. Our results and the studies reviewed in this paper represent just the beginning of detailed studies that should unravel the relevance and the functional consequences of differential protein expressions in the diseased lung.
Collapse
Affiliation(s)
- Nadine Waldburg
- Division of Pneumology and Critical Care, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | | | | | | | | | | |
Collapse
|
148
|
Dechat T, Gajewski A, Korbei B, Gerlich D, Daigle N, Haraguchi T, Furukawa K, Ellenberg J, Foisner R. LAP2α and BAF transiently localize to telomeres and specific regions on chromatin during nuclear assembly. J Cell Sci 2004; 117:6117-28. [PMID: 15546916 DOI: 10.1242/jcs.01529] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Lamina-associated polypeptide (LAP) 2α is a LEM (lamina-associated polypeptide emerin MAN1) family protein associated with nucleoplasmic A-type lamins and chromatin. Using live cell imaging and fluorescence microscopy we demonstrate that LAP2α was mostly cytoplasmic in metaphase and associated with telomeres in anaphase. Telomeric LAP2α clusters grew in size, formed `core' structures on chromatin adjacent to the spindle in telophase, and translocated to the nucleoplasm in G1 phase. A subfraction of lamin C and emerin followed LAP2α to the core region early on, whereas LAP2β, lamin B receptor and lamin B initially bound to more peripheral regions of chromatin, before they spread to core structures with different kinetics. Furthermore, the DNA-crosslinking protein barrier-to-autointegration factor (BAF) bound to LAP2α in vitro and in mitotic extracts, and subfractions of BAF relocalized to core structures with LAP2α. We propose that LAP2α and a subfraction of BAF form defined complexes in chromatin core regions and may be involved in chromatin reorganization during early stages of nuclear assembly.
Collapse
Affiliation(s)
- Thomas Dechat
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Department of Medical Biochemistry, Medical University of Vienna, 1030 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Abstract
The gene LMNA encodes the proteins lamins A and C and is implicated in nine different laminopathies - inherited diseases that are linked to premature ageing. Recent evidence has demonstrated that lamins A and C have essential functions in protecting cells from physical damage, as well as in maintaining the function of transcription factors required for the differentiation of adult stem cells. Thus, the degenerative nature of laminopathies is explained because these lamins are essential for maintenance of somatic tissues in adulthood.
Collapse
Affiliation(s)
- Chris J Hutchison
- School of Biological and Biomedical Sciences, The University of Durham, South Road, Durham, DH1 4EB, UK.
| | | |
Collapse
|
150
|
Schirmer EC, Gerace L. The stability of the nuclear lamina polymer changes with the composition of lamin subtypes according to their individual binding strengths. J Biol Chem 2004; 279:42811-7. [PMID: 15284226 DOI: 10.1074/jbc.m407705200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nuclear lamina, which provides a structural scaffolding for the nuclear envelope, consists largely of a polymer of the intermediate filament lamin proteins. Although different cell types contain distinctive relative amounts of the major lamin subtypes (A, C, B1, and B2), the functions of this variation are not understood. We have investigated the possibility that subtype variation affects lamina stability. We find that homotypic and heterotypic binding interactions of lamin B2 are substantially less resistant to chemical dissociation in vitro than those between the other lamin subtypes, whereas lamin A interactions are the most stable. Surprisingly, removal of the central four-fifths of the rod domain did not substantially weaken the interactions of lamins A and B2, suggesting that other regions also strongly contribute to their binding interactions. In contrast, this rod deletion strongly destabilizes the binding interactions of lamins B1 and C. Consistent with the binding studies, lamins are more readily solubilized by chemical extraction from cells enriched for lamin B2 than from cells enriched for lamin A. This suggests that the distinctive ensemble of heterotypic lamin interactions in a particular cell type affects the stability of the lamin polymer, and, correspondingly, could be relevant to tissue-specific properties of the lamina including its involvement in disease.
Collapse
Affiliation(s)
- Eric C Schirmer
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|