101
|
Carmosino M, Torretta S, Procino G, Gerbino A, Forleo C, Favale S, Svelto M. Role of nuclear Lamin A/C in cardiomyocyte functions. Biol Cell 2014; 106:346-58. [PMID: 25055884 DOI: 10.1111/boc.201400033] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/16/2014] [Indexed: 12/21/2022]
Abstract
Lamin A/C is a structural protein of the nuclear envelope (NE) and cardiac involvement in Lamin A/C mutations was one of the first phenotypes to be reported in humans, suggesting a crucial role of this protein in the cardiomyocytes function. Mutations in LMNA gene cause a class of pathologies generically named 'Lamanopathies' mainly involving heart and skeletal muscles. Moreover, the well-known disease called Hutchinson-Gilford Progeria Syndrome due to extensive mutations in LMNA gene, in addition to the systemic phenotype of premature aging, is characterised by the death of patients at around 13 typically for a heart attack or stroke, suggesting again the heart as the main site sensitive to Lamin A/C disfunction. Indeed, the identification of the roles of the Lamin A/C in cardiomyocytes function is a key area of exploration. One of the primary biological roles recently conferred to Lamin A/C is to affect contractile cells lineage determination and senescence. Then, in differentiated adult cardiomyocytes both the 'structural' and 'gene expression hypothesis' could explain the role of Lamin A in the function of cardiomyocytes. In fact, recent advances in the field propose that the structural weakness/stiffness of the NE, regulated by Lamin A/C amount in NE, can 'consequently' alter gene expression.
Collapse
Affiliation(s)
- Monica Carmosino
- Department of Sciences, University of Basilicata, Potenza, Italy; Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
102
|
Lee JM, Jung HJ, Fong LG, Young SG. Do lamin B1 and lamin B2 have redundant functions? Nucleus 2014; 5:287-92. [PMID: 25482116 PMCID: PMC4152341 DOI: 10.4161/nucl.29615] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 06/12/2014] [Accepted: 06/16/2014] [Indexed: 12/29/2022] Open
Abstract
Lamins B1 and B2 have a high degree of sequence similarity and are widely expressed from the earliest stages of development. Studies of Lmnb1 and Lmnb2 knockout mice revealed that both of the B-type lamins are crucial for neuronal migration in the developing brain. These observations naturally posed the question of whether the two B-type lamins might play redundant functions in the development of the brain. To explore that issue, Lee and coworkers generated "reciprocal knock-in mice" (knock-in mice that produce lamin B1 from the Lmnb2 locus and knock-in mice that produce lamin B2 from the Lmnb1 locus). Both lines of knock-in mice manifested neurodevelopmental abnormalities similar to those in conventional knockout mice, indicating that lamins B1 and B2 have unique functions and that increased production of one B-type lamin cannot compensate for the loss of the other.
Collapse
Affiliation(s)
- John M Lee
- Department of Medicine; David Geffen School of Medicine; University of California; Los Angeles, CA USA
| | - Hea-Jin Jung
- Molecular Biology Institute; University of California; Los Angeles, CA USA
| | - Loren G Fong
- Department of Medicine; David Geffen School of Medicine; University of California; Los Angeles, CA USA
| | - Stephen G Young
- Department of Medicine; David Geffen School of Medicine; University of California; Los Angeles, CA USA
- Molecular Biology Institute; University of California; Los Angeles, CA USA
- Department of Human Genetics; David Geffen School of Medicine; University of California; Los Angeles, CA USA
| |
Collapse
|
103
|
Artman L, Dormoy-Raclet V, von Roretz C, Gallouzi IE. Planning your every move: the role of β-actin and its post-transcriptional regulation in cell motility. Semin Cell Dev Biol 2014; 34:33-43. [PMID: 24878350 DOI: 10.1016/j.semcdb.2014.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 05/21/2014] [Indexed: 01/23/2023]
Abstract
Cell motility is a tightly regulated process that involves the polymerization of actin subunits. The formation of actin filaments is controlled through a variety of protein factors that accelerate or perturb the polymerization process. As is the case for most biological events, cell movement is also controlled at the level of gene expression. Growing research explains how the β-actin isoform of actin is particularly regulated through post-transcriptional events. This includes the discovery of multiple sites in the 3' untranslated region of β-actin mRNA to which RNA-binding proteins can associate. The control such proteins have on β-actin expression, and as a result, cell migration, continues to develop, and presents a thorough process that involves guiding an mRNA out of the nucleus, to a specific cytosolic destination, and then controlling the translation and decay of this message. In this review we will provide an overview on the recent progress regarding the mechanisms by which actin polymerization modulates cell movement and invasion and we will discuss the importance of post-transcriptional regulatory events in β-actin mediated effects on these processes.
Collapse
Affiliation(s)
- Lise Artman
- McGill University, Biochemistry Department and Rosalind and Morris Goodman Cancer Center, Montreal, Canada
| | | | | | - Imed-Eddine Gallouzi
- McGill University, Biochemistry Department and Rosalind and Morris Goodman Cancer Center, Montreal, Canada.
| |
Collapse
|
104
|
UVC Mutagenicity Is Suppressed in Japanese Miso-Treated Human RSa Cells, PossiblyviaGRP78 Expression. Biosci Biotechnol Biochem 2014; 75:1685-91. [DOI: 10.1271/bbb.110175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
105
|
Kojima SI, Borisy GG. An image-based, dual fluorescence reporter assay to evaluate the efficacy of shRNA for gene silencing at the single-cell level. F1000Res 2014. [DOI: 10.12688/f1000research.3-60.v2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
RNA interference (RNAi) is widely used to suppress gene expression in a specific manner. The efficacy of RNAi is mainly dependent on the sequence of small interfering RNA (siRNA) in relation to the target mRNA. Although several algorithms have been developed for the design of siRNA, it is still difficult to choose a really effective siRNA from among multiple candidates. In this article, we report the development of an image-based, quantitative, ratiometric fluorescence reporter assay to evaluate the efficacy of RNAi at the single-cell level. Two fluorescence reporter constructs are used. One expresses the candidate small hairpin RNA (shRNA) together with an enhanced green fluorescent protein (EGFP); the other expresses a 19-nt target sequence inserted into a cassette expressing a red fluorescent protein (either DsRed or mCherry). Effectiveness of the candidate shRNA is evaluated as the extent to which it knocks down expression of the red fluorescent protein. Thus, the red-to-green fluorescence intensity ratio (appropriately normalized to controls) is used as the read-out for quantifying the siRNA efficacy at the individual cell level. We tested this dual fluorescence assay and compared predictions to actual endogenous knockdown levels for three different genes (vimentin, lamin A/C and Arp3) and twenty different shRNAs. For each of the genes, our assay successfully predicted the target sequences for effective RNAi.To further facilitate testing of RNAi efficacy, we developed a negative selection marker (ccdB) method for construction of shRNA and red fluorescent reporter plasmids that allowed us to purify these plasmids directly from transformed bacteria without the need for colony selection and DNA sequencing verification.
Collapse
|
106
|
Abstract
Much of the work on nuclear lamins during the past 15 years has focused on mutations in LMNA (the gene for prelamin A and lamin C) that cause particular muscular dystrophy, cardiomyopathy, partial lipodystrophy, and progeroid syndromes. These disorders, often called "laminopathies," mainly affect mesenchymal tissues (e.g., striated muscle, bone, and fibrous tissue). Recently, however, a series of papers have identified important roles for nuclear lamins in the central nervous system. Studies of knockout mice uncovered a key role for B-type lamins (lamins B1 and B2) in neuronal migration in the developing brain. Also, duplications of LMNB1 (the gene for lamin B1) have been shown to cause autosome-dominant leukodystrophy. Finally, recent studies have uncovered a peculiar pattern of nuclear lamin expression in the brain. Lamin C transcripts are present at high levels in the brain, but prelamin A expression levels are very low-due to regulation of prelamin A transcripts by microRNA 9. This form of prelamin A regulation likely explains why "prelamin A diseases" such as Hutchinson-Gilford progeria syndrome spare the central nervous system. In this review, we summarize recent progress in elucidating links between nuclear lamins and neurobiology.
Collapse
|
107
|
Abstract
For over two decades, B-type lamins were thought to have roles in fundamental processes including correct assembly of nuclear envelopes, DNA replication, transcription and cell survival. Recent studies have questioned these roles and have instead emphasised the role of these proteins in tissue building and tissue integrity, particularly in tissues devoid of A-type lamins. Other studies have suggested that the expression of B-type lamins in somatic cells influences the rate of entry into states of cellular senescence. In humans duplication of the LMNB1 gene (encoding lamin B1) causes an adult onset neurodegenerative disorder, termed autosomal dominant leukodystrophy, whilst very recently, LMNB1 has been implicated as a susceptibility gene in neural tube defects. This is consistent with studies in mice that reveal a critical role for B-type lamins in neuronal migration and brain development. In this review, I will consider how different model systems have contributed to our understanding of the functions of B-type lamins and which of those functions are critical for human health and disease.
Collapse
Affiliation(s)
- C J Hutchison
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom.
| |
Collapse
|
108
|
The higher-order structure in the cells nucleus as the structural basis of the post-mitotic state. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 114:137-45. [DOI: 10.1016/j.pbiomolbio.2014.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/09/2014] [Indexed: 11/19/2022]
|
109
|
Lee JM, Tu Y, Tatar A, Wu D, Nobumori C, Jung HJ, Yoshinaga Y, Coffinier C, de Jong PJ, Fong LG, Young SG. Reciprocal knock-in mice to investigate the functional redundancy of lamin B1 and lamin B2. Mol Biol Cell 2014; 25:1666-75. [PMID: 24672053 PMCID: PMC4019497 DOI: 10.1091/mbc.e14-01-0683] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/14/2014] [Accepted: 03/14/2014] [Indexed: 11/17/2022] Open
Abstract
Lamins B1 and B2 (B-type lamins) have very similar sequences and are expressed ubiquitously. In addition, both Lmnb1- and Lmnb2-deficient mice die soon after birth with neuronal layering abnormalities in the cerebral cortex, a consequence of defective neuronal migration. The similarities in amino acid sequences, expression patterns, and knockout phenotypes raise the question of whether the two proteins have redundant functions. To investigate this topic, we generated "reciprocal knock-in mice"-mice that make lamin B2 from the Lmnb1 locus (Lmnb1(B2/B2)) and mice that make lamin B1 from the Lmnb2 locus (Lmnb2(B1/B1)). Lmnb1(B2/B2) mice produced increased amounts of lamin B2 but no lamin B1; they died soon after birth with neuronal layering abnormalities in the cerebral cortex. However, the defects in Lmnb1(B2/B2) mice were less severe than those in Lmnb1-knockout mice, indicating that increased amounts of lamin B2 partially ameliorate the abnormalities associated with lamin B1 deficiency. Similarly, increased amounts of lamin B1 in Lmnb2(B1/B1) mice did not prevent the neurodevelopmental defects elicited by lamin B2 deficiency. We conclude that lamins B1 and B2 have unique roles in the developing brain and that increased production of one B-type lamin does not fully complement loss of the other.
Collapse
Affiliation(s)
- John M Lee
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Yiping Tu
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Angelica Tatar
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Daniel Wu
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Chika Nobumori
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Hea-Jin Jung
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Yuko Yoshinaga
- Children's Hospital Oakland Research Institute, Oakland, CA 94609
| | - Catherine Coffinier
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Pieter J de Jong
- Children's Hospital Oakland Research Institute, Oakland, CA 94609
| | - Loren G Fong
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
110
|
Han Y, Fu Z, Hong Y, Zhang M, Han H, Lu K, Yang J, Li X, Lin J. Inhibitory effects and analysis of RNA interference on thioredoxin glutathione reductase expression in Schistosoma japonicum. J Parasitol 2014; 100:463-9. [PMID: 24628421 DOI: 10.1645/13-397.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Schistosomes infect around 280 million people worldwide. The worms survive in the veins of the final host, where thioredoxin glutathione reductase (TGR) activity helps the parasites to survive in the aerobic environment. In the present study, we synthesized 4 small interfering RNAs (siRNA S1, S2, S3, and S4) targeting the Schistosoma japonicum (Sj) TGR gene and used them to knockdown the TGR gene. The knockdown effects of the siRNAs on SjTGR, and the thioredoxin reductase (TrxR) activity of SjTGR, were evaluated in vitro. The results of transfection with the siRNAs via the soaking method in vitro were confirmed by flow cytometry. S2 siRNA at a final concentration of 200 nM partially inhibited the expression of SjTGR at both the transcript and protein levels in vitro. TrxR-activity was lower in worms in the S2 siRNA-treated group compared with the control groups. Further analysis revealed that purified recombinant SjTGR could remove oxygen free radicals but not H(2)O(2) directly, which may explain the incomplete effects of RNA interference on SjTGR. The results of this study indicate that SjTGR may play an important role in the clearance of oxygen free radicals and protection of S. japonicum parasites against oxidative damage.
Collapse
Affiliation(s)
- Yanhui Han
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Simiczyjew A, Mazur AJ, Popow-Woźniak A, Malicka-Błaszkiewicz M, Nowak D. Effect of overexpression of β- and γ-actin isoforms on actin cytoskeleton organization and migration of human colon cancer cells. Histochem Cell Biol 2014; 142:307-22. [PMID: 24682235 PMCID: PMC4133152 DOI: 10.1007/s00418-014-1199-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2014] [Indexed: 01/26/2023]
Abstract
Actins are eukaryotic proteins, which are involved in diverse cellular functions including muscle contraction, cell motility, adhesion and maintenance of cell shape. Cytoplasmic actin isoforms β and γ are ubiquitously expressed and essential for cell functioning. However, their unique contributions are not very well understood. The aim of this study was to determine the effect of β- and γ-actin overexpression on the migration capacity and actin cytoskeleton organization of human colon adenocarcinoma BE cells. In cells overexpressing β- or γ-actin, distinct cytoskeletal actin rearrangements were observed under the laser scanning confocal microscope. Overexpressed actins localized at the submembranous region of the cell body, especially near to the leading edge and on the tips of pseudopodia. The cells transfected with plasmids containing cDNA for β- or γ-actin were characterized by increased migration and invasion capacities. However, the migration velocity was statistically significantly higher only in the case of γ-actin overexpressing cells. In conclusion, the increased level of β- or γ-actin leads to actin cytoskeletal remodeling followed by an increase in migration and invasion capacities of human colon BE cells. These data suggest that expression of both actin isoforms has an impact on cancer cell motility, with the subtle predominance of γ-actin, and may influence invasiveness of human colon cancer.
Collapse
Affiliation(s)
- Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Antonina Joanna Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Agnieszka Popow-Woźniak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Maria Malicka-Błaszkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
112
|
Kojima SI, Borisy GG. An image-based, dual fluorescence reporter assay to evaluate the efficacy of shRNA for gene silencing at the single-cell level. F1000Res 2014; 3:60. [PMID: 24741441 PMCID: PMC3983939 DOI: 10.12688/f1000research.3-60.v1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/06/2014] [Indexed: 12/26/2022] Open
Abstract
RNA interference (RNAi) is widely used to suppress gene expression in a specific manner. The efficacy of RNAi is mainly dependent on the sequence of small interfering RNA (siRNA) in relation to the target mRNA. Although several algorithms have been developed for the design of siRNA, it is still difficult to choose a really effective siRNA from among multiple candidates. In this article, we report the development of an image-based, quantitative, ratiometric fluorescence reporter assay to evaluate the efficacy of RNAi at the single-cell level. Two fluorescence reporter constructs are used. One expresses the candidate small hairpin RNA (shRNA) together with an enhanced green fluorescent protein (EGFP); the other expresses a 19-nt target sequence inserted into a cassette expressing a red fluorescent protein (either DsRed or mCherry). Effectiveness of the candidate shRNA is evaluated as the extent to which it knocks down expression of the red fluorescent protein. Thus, the red-to-green fluorescence intensity ratio (appropriately normalized to controls) is used as the read-out for quantifying the siRNA efficacy at the individual cell level. We tested this dual fluorescence assay and compared predictions to actual endogenous knockdown levels for three different genes (vimentin, lamin A/C and Arp3) and twenty different shRNAs. For each of the genes, our assay successfully predicted the target sequences for effective RNAi. To further facilitate testing of RNAi efficacy, we developed a negative selection marker ( ccdB) method for construction of shRNA and red fluorescent reporter plasmids that allowed us to purify these plasmids directly from transformed bacteria without the need for colony selection and DNA sequencing verification.
Collapse
Affiliation(s)
- Shin-ichiro Kojima
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, 171-8588, Japan
| | | |
Collapse
|
113
|
Intracellular delivery of functionally active proteins using self-assembling pyridylthiourea-polyethylenimine. J Control Release 2014; 178:86-94. [PMID: 24476809 DOI: 10.1016/j.jconrel.2014.01.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/12/2014] [Accepted: 01/17/2014] [Indexed: 11/23/2022]
Abstract
Intracellular delivery of functionally active proteins into cells is emerging as a novel strategy for research and therapeutic applications. Here, we present the properties of a self-assembling pyridylthiourea-modified polyethylenimine (πPEI), which interacts with proteins and promotes their delivery into the cytosol of mammalian cells. In aqueous medium at pH7.4, self-association of πPEI in the presence of green fluorescent proteins (GFP) leads to supramolecular protein-entrapped assemblies. These assemblies protect GFP from losing its fluorescence upon pH variation and assist delivery/translocation into the cytosol of mammalian cells via the endocytic pathway. The scope of application of this delivery system was extended to antibodies against intracellular targets as illustrated using a monoclonal antibody directed against the HPV-16 viral E6 oncoprotein and an antibody directed against the threonine-927 phosporylation site of the EG5 kinesin spindle protein. The πPEI-mediated delivery of native anti-E6 antibodies or anti-E6 antibodies equipped with a nuclear localization signal (NLS), led to regeneration of the p53 tumor suppression protein in E6-transformed CaSki cells. Delivery of functionally active anti-EG5 antibodies, with the same polymer, reduced HeLa cell viability and appeared to perturb, as expected, chromosome segregation during mitosis. Altogether, these results provide an easy to use delivery system for extending the scope of application of antibodies for epitope recognition within living cells and may provide novel opportunities for selective interference of cell function by a steric hindrance modality.
Collapse
|
114
|
Huenchuguala S, Muñoz P, Zavala P, Villa M, Cuevas C, Ahumada U, Graumann R, Nore BF, Couve E, Mannervik B, Paris I, Segura-Aguilar J. Glutathione transferase mu 2 protects glioblastoma cells against aminochrome toxicity by preventing autophagy and lysosome dysfunction. Autophagy 2014; 10:618-30. [PMID: 24434817 DOI: 10.4161/auto.27720] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
U373MG cells constitutively express glutathione S-transferase mu 2 (GSTM2) and exhibit (3)H-dopamine uptake, which is inhibited by 2 µM of nomifensine and 15 µM of estradiol. We generated a stable cell line (U373MGsiGST6) expressing an siRNA against GSTM2 that resulted in low GSTM2 expression (26% of wild-type U373MG cells). A significant increase in cell death was observed when U373MGsiGST6 cells were incubated with 50 µM purified aminochrome (18-fold increase) compared with wild-type cells. The incubation of U373MGsiGST6 cells with 75 µM aminochrome resulted in the formation of autophagic vacuoles containing undigested cellular components, as determined using transmission electron microscopy. A significant increase in autophagosomes was determined by measuring endogenous LC3-II, a significant decrease in cell death was observed in the presence of bafilomycin A 1, and a significant increase in cell death was observed in the presence of trehalose. A significant increase in LAMP2 immunostaining was observed, a significant decrease in bright red fluorescence of lysosomes with acridine orange was observed, and bafilomycin A 1 pretreatment reduced the loss of lysosome acidity. A significant increase in cell death was observed in the presence of lysosomal protease inhibitors. Aggregation of TUBA/α-tubulin (tubulin, α) and SQSTM1 protein accumulation were also observed. Moreover, a significant increase in the number of lipids droplets was observed compared with U373MG cells with normal expression of GSTM2. These results support the notion that GSTM2 is a protective enzyme against aminochrome toxicity in astrocytes and that aminochrome cell death in U373MGsiGST6 cells involves autophagic-lysosomal dysfunction.
Collapse
Affiliation(s)
- Sandro Huenchuguala
- Molecular and Clinical Pharmacology; ICBM-Instituto de Ciencias Biomédicas; Faculty of Medicine; University of Chile; Santiago, Chile
| | - Patricia Muñoz
- Molecular and Clinical Pharmacology; ICBM-Instituto de Ciencias Biomédicas; Faculty of Medicine; University of Chile; Santiago, Chile
| | - Patricio Zavala
- Molecular and Clinical Pharmacology; ICBM-Instituto de Ciencias Biomédicas; Faculty of Medicine; University of Chile; Santiago, Chile
| | - Mónica Villa
- Molecular and Clinical Pharmacology; ICBM-Instituto de Ciencias Biomédicas; Faculty of Medicine; University of Chile; Santiago, Chile
| | - Carlos Cuevas
- Molecular and Clinical Pharmacology; ICBM-Instituto de Ciencias Biomédicas; Faculty of Medicine; University of Chile; Santiago, Chile
| | - Ulises Ahumada
- Molecular and Clinical Pharmacology; ICBM-Instituto de Ciencias Biomédicas; Faculty of Medicine; University of Chile; Santiago, Chile
| | - Rebecca Graumann
- Molecular and Clinical Pharmacology; ICBM-Instituto de Ciencias Biomédicas; Faculty of Medicine; University of Chile; Santiago, Chile
| | - Beston F Nore
- Laboratory of Medicine; Clinical Research Center-Novum; Karolinska Institutet; Sweden; Department of Medical Biochemistry; School of Medicine; Faculty of Medical Sciences; University of Sulaimani; Ministry of Higher Education and Research; Kurdistan Regional Government; Iraq
| | - Eduardo Couve
- Department of Biology and Environmental sciences; University of Valparaiso; Valparaiso, Chile
| | - Bengt Mannervik
- Department of Neurochemistry; Stockholm University; Stockholm, Sweden
| | - Irmgard Paris
- Molecular and Clinical Pharmacology; ICBM-Instituto de Ciencias Biomédicas; Faculty of Medicine; University of Chile; Santiago, Chile; Department of Basic Sciences; Santo Tomas University; Viña del Mar, Chile
| | - Juan Segura-Aguilar
- Molecular and Clinical Pharmacology; ICBM-Instituto de Ciencias Biomédicas; Faculty of Medicine; University of Chile; Santiago, Chile
| |
Collapse
|
115
|
RNAi-mediated knockdown of IKK1 in transgenic mice using a transgenic construct containing the human H1 promoter. ScientificWorldJournal 2014; 2014:193803. [PMID: 24523631 PMCID: PMC3913291 DOI: 10.1155/2014/193803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/12/2013] [Indexed: 01/16/2023] Open
Abstract
Inhibition of gene expression through siRNAs is a tool increasingly used for the study of gene function in model systems, including transgenic mice. To achieve perdurable effects, the stable expression of siRNAs by an integrated transgenic construct is necessary. For transgenic siRNA expression, promoters transcribed by either RNApol II or III (such as U6 or H1 promoters) can be used. Relatively large amounts of small RNAs synthesis are achieved when using RNApol III promoters, which can be advantageous in knockdown experiments. To study the feasibility of H1 promoter-driven RNAi-expressing constructs for protein knockdown in transgenic mice, we chose IKK1 as the target gene. Our results indicate that constructs containing the H1 promoter are sensitive to the presence of prokaryotic sequences and to transgene position effects, similar to RNApol II promoters-driven constructs. We observed variable expression levels of transgenic siRNA among different tissues and animals and a reduction of up to 80% in IKK1 expression. Furthermore, IKK1 knockdown led to hair follicle alterations. In summary, we show that constructs directed by the H1 promoter can be used for knockdown of genes of interest in different organs and for the generation of animal models complementary to knockout and overexpression models.
Collapse
|
116
|
Davidson PM, Lammerding J. Broken nuclei--lamins, nuclear mechanics, and disease. Trends Cell Biol 2013; 24:247-56. [PMID: 24309562 DOI: 10.1016/j.tcb.2013.11.004] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/04/2013] [Accepted: 11/06/2013] [Indexed: 11/19/2022]
Abstract
Mutations in lamins, which are ubiquitous nuclear intermediate filaments, lead to a variety of disorders including muscular dystrophy and dilated cardiomyopathy. Lamins provide nuclear stability, help connect the nucleus to the cytoskeleton, and can modulate chromatin organization and gene expression. Nonetheless, the diverse functions of lamins remain incompletely understood. We focus here on the role of lamins on nuclear mechanics and their involvement in human diseases. Recent findings suggest that lamin mutations can decrease nuclear stability, increase nuclear fragility, and disturb mechanotransduction signaling, possibly explaining the muscle-specific defects in many laminopathies. At the same time, altered lamin expression has been reported in many cancers, where the resulting increased nuclear deformability could enhance the ability of cells to transit tight interstitial spaces, thereby promoting metastasis.
Collapse
Affiliation(s)
- Patricia M Davidson
- Weill Institute for Cell and Molecular Biology, Cornell University, 526 Campus Road, Ithaca, NY 14853, USA
| | - Jan Lammerding
- Department of Biomedical Engineering/Weill Institute for Cell and Molecular Biology, Cornell University, 526 Campus Road, Ithaca, NY 14853, USA.
| |
Collapse
|
117
|
Abstract
The nucleus is the distinguishing feature of eukaryotic cells. Until recently, it was often considered simply as a unique compartment containing the genetic information of the cell and associated machinery, without much attention to its structure and mechanical properties. This article provides compelling examples that illustrate how specific nuclear structures are associated with important cellular functions, and how defects in nuclear mechanics can cause a multitude of human diseases. During differentiation, embryonic stem cells modify their nuclear envelope composition and chromatin structure, resulting in stiffer nuclei that reflect decreased transcriptional plasticity. In contrast, neutrophils have evolved characteristic lobulated nuclei that increase their physical plasticity, enabling passage through narrow tissue spaces in their response to inflammation. Research on diverse cell types further demonstrates how induced nuclear deformations during cellular compression or stretch can modulate cellular function. Pathological examples of disturbed nuclear mechanics include the many diseases caused by mutations in the nuclear envelope proteins lamin A/C and associated proteins, as well as cancer cells that are often characterized by abnormal nuclear morphology. In this article, we will focus on determining the functional relationship between nuclear mechanics and cellular (dys-)function, describing the molecular changes associated with physiological and pathological examples, the resulting defects in nuclear mechanics, and the effects on cellular function. New insights into the close relationship between nuclear mechanics and cellular organization and function will yield a better understanding of normal biology and will offer new clues into therapeutic approaches to the various diseases associated with defective nuclear mechanics.
Collapse
Affiliation(s)
- Jan Lammerding
- Brigham and Women's Hospital/Harvard Medical School, Cambridge, Massachusetts, USA.
| |
Collapse
|
118
|
Horn HF, Kim DI, Wright GD, Wong ESM, Stewart CL, Burke B, Roux KJ. A mammalian KASH domain protein coupling meiotic chromosomes to the cytoskeleton. ACTA ACUST UNITED AC 2013; 202:1023-39. [PMID: 24062341 PMCID: PMC3787381 DOI: 10.1083/jcb.201304004] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A complex of KASH5 and Sun1 is required for meiotic homologous chromosome pairing through the coupling of telomere attachment sites to cytoplasmic dynein and microtubules. Chromosome pairing is an essential meiotic event that ensures faithful haploidization and recombination of the genome. Pairing of homologous chromosomes is facilitated by telomere-led chromosome movements and formation of a meiotic bouquet, where telomeres cluster to one pole of the nucleus. In metazoans, telomere clustering is dynein and microtubule dependent and requires Sun1, an inner nuclear membrane protein. Here we provide a functional analysis of KASH5, a mammalian dynein-binding protein of the outer nuclear membrane that forms a meiotic complex with Sun1. This protein is related to zebrafish futile cycle (Fue), a nuclear envelope (NE) constituent required for pronuclear migration. Mice deficient in this Fue homologue are infertile. Males display meiotic arrest in which pairing of homologous chromosomes fails. These findings demonstrate that telomere attachment to the NE is insufficient to promote pairing and that telomere attachment sites must be coupled to cytoplasmic dynein and the microtubule system to ensure meiotic progression.
Collapse
Affiliation(s)
- Henning F Horn
- Laborotory of Nuclear Dynamics and Architecture, 2 Laboratory of Developmental and Regenerative Biology, and 3 IMB Microscopy Unit, Institute of Medical Biology, 8A Biomedical Grove, Immunos, Singapore 138648
| | | | | | | | | | | | | |
Collapse
|
119
|
Govan JM, Young DD, Lusic H, Liu Q, Lively MO, Deiters A. Optochemical control of RNA interference in mammalian cells. Nucleic Acids Res 2013; 41:10518-28. [PMID: 24021631 PMCID: PMC3905849 DOI: 10.1093/nar/gkt806] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Short interfering RNAs (siRNAs) and microRNAs (miRNAs) have been widely used in mammalian tissue culture and model organisms to selectively silence genes of interest. One limitation of this technology is the lack of precise external control over the gene-silencing event. The use of photocleavable protecting groups installed on nucleobases is a promising strategy to circumvent this limitation, providing high spatial and temporal control over siRNA or miRNA activation. Here, we have designed, synthesized and site-specifically incorporated new photocaged guanosine and uridine RNA phosphoramidites into short RNA duplexes. We demonstrated the applicability of these photocaged siRNAs in the light-regulation of the expression of an exogenous green fluorescent protein reporter gene and an endogenous target gene, the mitosis motor protein, Eg5. Two different approaches were investigated with the caged RNA molecules: the light-regulation of catalytic RNA cleavage by RISC and the light-regulation of seed region recognition. The ability to regulate both functions with light enables the application of this optochemical methodology to a wide range of small regulatory RNA molecules.
Collapse
Affiliation(s)
- Jeane M Govan
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA, Department of Chemistry, College of William & Mary, Williamsburg, VA 32187, USA, Center for Structural Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA and Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | |
Collapse
|
120
|
Vasilevsky NA, Brush MH, Paddock H, Ponting L, Tripathy SJ, Larocca GM, Haendel MA. On the reproducibility of science: unique identification of research resources in the biomedical literature. PeerJ 2013; 1:e148. [PMID: 24032093 PMCID: PMC3771067 DOI: 10.7717/peerj.148] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 08/12/2013] [Indexed: 12/24/2022] Open
Abstract
Scientific reproducibility has been at the forefront of many news stories and there exist numerous initiatives to help address this problem. We posit that a contributor is simply a lack of specificity that is required to enable adequate research reproducibility. In particular, the inability to uniquely identify research resources, such as antibodies and model organisms, makes it difficult or impossible to reproduce experiments even where the science is otherwise sound. In order to better understand the magnitude of this problem, we designed an experiment to ascertain the “identifiability” of research resources in the biomedical literature. We evaluated recent journal articles in the fields of Neuroscience, Developmental Biology, Immunology, Cell and Molecular Biology and General Biology, selected randomly based on a diversity of impact factors for the journals, publishers, and experimental method reporting guidelines. We attempted to uniquely identify model organisms (mouse, rat, zebrafish, worm, fly and yeast), antibodies, knockdown reagents (morpholinos or RNAi), constructs, and cell lines. Specific criteria were developed to determine if a resource was uniquely identifiable, and included examining relevant repositories (such as model organism databases, and the Antibody Registry), as well as vendor sites. The results of this experiment show that 54% of resources are not uniquely identifiable in publications, regardless of domain, journal impact factor, or reporting requirements. For example, in many cases the organism strain in which the experiment was performed or antibody that was used could not be identified. Our results show that identifiability is a serious problem for reproducibility. Based on these results, we provide recommendations to authors, reviewers, journal editors, vendors, and publishers. Scientific efficiency and reproducibility depend upon a research-wide improvement of this substantial problem in science today.
Collapse
Affiliation(s)
- Nicole A Vasilevsky
- Ontology Development Group, Library, Oregon Health & Science University , Portland, OR , USA
| | | | | | | | | | | | | |
Collapse
|
121
|
Li L, Du Y, Kong X, Li Z, Jia Z, Cui J, Gao J, Wang G, Xie K. Lamin B1 is a novel therapeutic target of betulinic acid in pancreatic cancer. Clin Cancer Res 2013; 19:4651-61. [PMID: 23857605 PMCID: PMC3800003 DOI: 10.1158/1078-0432.ccr-12-3630] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE Betulinic acid, a naturally occurring pentacyclic triterpenoid, exhibits potent antitumor activities, whereas the underlying mechanisms remain unclear. In the current study, we sought to determine the role and regulation of lamin B1 expression in human pancreatic cancer pathogenesis and betulinic acid-based therapy. EXPERIMENTAL DESIGN We used cDNA microarray to identify betulinic acid target genes and used tissue microarray to determine the expression levels of lamin B1 in pancreatic cancer tissues and to define their relationship with the clinicopathologic characteristics of pancreatic cancer. We also used in vitro and in vivo models to determine the biologic impacts of altered lamin B1 expression on and mechanisms underlying lamin B1 overexpression in human pancreatic cancer. RESULTS We found that lamin B1 was significantly downregulated by betulinic acid treatment in pancreatic cancer in both in vitro culture and xenograft models. Overexpression of lamin B1 was pronounced in human pancreatic cancer, and increased lamin B1 expression was directly associated with low-grade differentiation, increased incidence of distant metastasis, and poor prognosis of patients with pancreatic cancer. Furthermore, knockdown of lamin B1 significantly attenuated the proliferation, invasion, and tumorigenicity of pancreatic cancer cells. CONCLUSIONS Lamin B1 plays an important role in pancreatic cancer pathogenesis and is a novel therapeutic target of betulinic acid treatment.
Collapse
Affiliation(s)
- Lei Li
- Departments of Gastroenterology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, The People's Republic of China
| | - Yiqi Du
- Departments of Gastroenterology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, The People's Republic of China
| | - Xiangyu Kong
- Departments of Gastroenterology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, The People's Republic of China
- Department of Gastroenterology and Hepatology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhaoshen Li
- Departments of Gastroenterology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, The People's Republic of China
| | - Zhiliang Jia
- Department of Gastroenterology and Hepatology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jiujie Cui
- Department of Gastroenterology and Hepatology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Oncology, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, The People's Republic of China
| | - Jun Gao
- Departments of Gastroenterology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, The People's Republic of China
| | - Guokun Wang
- Departments of Cardiology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, The People's Republic of China
| | - Keping Xie
- Department of Gastroenterology and Hepatology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
122
|
Hemphill J, Chou C, Chin JW, Deiters A. Genetically encoded light-activated transcription for spatiotemporal control of gene expression and gene silencing in mammalian cells. J Am Chem Soc 2013; 135:13433-9. [PMID: 23931657 DOI: 10.1021/ja4051026] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photocaging provides a method to spatially and temporally control biological function and gene expression with high resolution. Proteins can be photochemically controlled through the site-specific installation of caging groups on amino acid side chains that are essential for protein function. The photocaging of a synthetic gene network using unnatural amino acid mutagenesis in mammalian cells was demonstrated with an engineered bacteriophage RNA polymerase. A caged T7 RNA polymerase was expressed in cells with an expanded genetic code and used in the photochemical activation of genes under control of an orthogonal T7 promoter, demonstrating tight spatial and temporal control. The synthetic gene expression system was validated with two reporter genes (luciferase and EGFP) and applied to the light-triggered transcription of short hairpin RNA constructs for the induction of RNA interference.
Collapse
Affiliation(s)
- James Hemphill
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | | | | | | |
Collapse
|
123
|
Liu Z, Yang X, Chen C, Liu B, Ren B, Wang L, Zhao K, Yu S, Ming H. Expression of the Arp2/3 complex in human gliomas and its role in the migration and invasion of glioma cells. Oncol Rep 2013; 30:2127-36. [PMID: 23969835 DOI: 10.3892/or.2013.2669] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/25/2013] [Indexed: 11/06/2022] Open
Abstract
A hallmark of directional cell migration is localized actin polymerization at the leading protrusions of the cell. The Arp2/3 complex nucleates the formation of the dendritic actin network (lamellipodia) at the leading edge of motile cells. This study was designed to investigate the role of the Arp2/3 complex in the infiltrative behavior of glioma cells. Immunofluorescence and western blotting showed a positive correlation between the expression of Arp2/3 and the malignancy of glioma specimens (r=0.686, P=0.02) and confocal microscopy demonstrated localization of the Arp2/3 complex in lamellipodia of glioma cells. Furthermore, we examined the effects of Arp2/3 complex inhibition in U251, LN229 and SNB19 glioma cells using CK666, an Arp2/3 complex inhibitor. Glioma cells lost lamellipodia and cell polarity after treatment with CK666. Inhibition of the Arp2/3 complex significantly affected the ability of glioma cells to migrate and invade. In the wound-healing assay, CK666 markedly inhibited cell migration, U251 cell migration was inhibited to 38.73±3.45% of control, LN229 cells to 57.40±2.16% of control and SNB19 cells to 34.17±3.82% of control. Also, CK666 significantly impaired Transwell chamber invasion capability of U251, LN229 and SNB19 cells compared with DMSO control by 72.70±4.86, 39.12±8.42 and 41.41±4.66%, respectively. The Arp2/3 complex is, therefore, likely to be a crucial participant in glioma cell invasion and migration, and may represent a target for therapeutic intervention.
Collapse
Affiliation(s)
- Zhifeng Liu
- Neuro-Oncology Laboratory, Tianjin Neurological Institute, Tianjin 300052, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Mamede JI, Sitbon M, Battini JL, Courgnaud V. Heterogeneous susceptibility of circulating SIV isolate capsids to HIV-interacting factors. Retrovirology 2013; 10:77. [PMID: 23883001 PMCID: PMC3751554 DOI: 10.1186/1742-4690-10-77] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/05/2013] [Indexed: 11/13/2022] Open
Abstract
Background Many species of non-human primates in Africa are naturally infected by simian immunodeficiency viruses (SIV) and humans stand at the forefront of exposure to these viruses in Sub-Saharan Africa. Cross-species transmission and adaptation of SIV to humans have given rise to human immunodeficiency viruses (HIV-1 and HIV-2) on twelve accountable, independent occasions. However, the determinants contributing to a simian-to-human lasting transmission are not fully understood. Following entry, viral cores are released into the cytoplasm and become the principal target of host cellular factors. Here, we evaluated cellular factors likely to be involved in potential new SIV cross-species transmissions. We investigated the interactions of capsids from naturally circulating SIV isolates with both HIV-1 restricting (i.e. TRIM5 proteins) and facilitating (i.e. cyclophilin A and nucleopore-associated Nup358/RanBP2 and Nup153) factors in single-round infectivity assays that reproduce early stages of the viral life-cycle. Results We show that human TRIM5α is unlikely to prevent cross-species transmission of any SIV we tested and observed that the SIV CA-CypA interaction is a widespread but not a universal feature. Moreover, entry in the nucleus of different SIV appeared to follow pathways that do not necessarily recruit Nup358/RanBP2 or Nup153, and this regardless of their interaction with CypA. Nevertheless, we found that, like HIV-1, human-adapted HIV-2 infection was dependent on Nup358/RanBP2 and Nup153 interactions for optimal infection. Furthermore, we found that, unlike HIV CA, SIV CA did not require a direct interaction with the Cyp-like domain of Nup358/RanBP2 to carry out successful infection. Conclusions Circulating SIV present a variety of phenotypes with regard to CA-interacting restricting or facilitating factors. Altogether, we unveiled unidentified pathways for SIV CA, which could also be exploited by HIV in different cellular contexts, to drive entry into the nucleus. Our findings warrant a closer evaluation of other potential defenses against circulating SIV.
Collapse
Affiliation(s)
- João I Mamede
- Institut de Génétique Moléculaire de Montpellier UMR 5535 CNRS, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | | | | | | |
Collapse
|
125
|
Dreesen O, Ong PF, Chojnowski A, Colman A. The contrasting roles of lamin B1 in cellular aging and human disease. Nucleus 2013; 4:283-90. [PMID: 23873483 PMCID: PMC3810336 DOI: 10.4161/nucl.25808] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 12/17/2022] Open
Abstract
The nuclear lamina underlies the inner nuclear membrane and consists of a proteinaceous meshwork of intermediate filaments: the A- and B-type lamins. Mutations in LMNA (encoding lamin A and C) give rise to a variety of human diseases including muscular dystrophies, cardiomyopathies and the premature aging syndrome progeria (HGPS). Duplication of the LMNB1 locus, leading to elevated levels of lamin B1, causes adult-onset autosomal dominant leukodystrophy (ADLD), a rare genetic disease that leads to demyelination in the central nervous system (CNS). Conversely, reduced levels of lamin B1 have been observed in HGPS patient derived fibroblasts, as well as fibroblasts and keratinocytes undergoing replicative senescence, suggesting that the regulation of lamin B1 is important for cellular physiology and disease. However, the causal relationship between low levels of lamin B1 and cellular senescence and its relevance in vivo remain unclear. How do elevated levels of lamin B1 cause disease and why is the CNS particularly susceptible to lamin B1 fluctuations? Here we summarize recent findings as to how perturbations of lamin B1 affect cellular physiology and discuss the implications this has on senescence, HGPS and ADLD.
Collapse
Affiliation(s)
- Oliver Dreesen
- Stem Cell Disease Models; Institute of Medical Biology; Singapore, Singapore
| | - Peh Fern Ong
- Stem Cell Disease Models; Institute of Medical Biology; Singapore, Singapore
| | - Alexandre Chojnowski
- Developmental and Regenerative Biology; Institute of Medical Biology; Singapore, Singapore
| | - Alan Colman
- Stem Cell Disease Models; Institute of Medical Biology; Singapore, Singapore
| |
Collapse
|
126
|
Efficient Biodistribution and Gene Silencing in the Lung epithelium via Intravenous Liposomal Delivery of siRNA. MOLECULAR THERAPY-NUCLEIC ACIDS 2013; 2:e96. [PMID: 23736774 PMCID: PMC3696903 DOI: 10.1038/mtna.2013.22] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RNA interference (RNAi) may provide a therapeutic solution to many pulmonary epithelium diseases. However, the main barrier to the clinical use of RNAi remains the lack of efficient delivery vectors. Research has mainly concentrated on the intranasal route of delivery of short interfering RNA (siRNA) effector molecules for the treatment of respiratory diseases. However, this may be complicated in a diseased state due to the increased fluid production and tissue remodeling. Therefore, we investigated our hydration of a freeze-dried matrix (HFDM) formulated liposomes for systemic delivery to the lung epithelium. Here, we show that 45 ± 2% of epithelial murine lung cells receive siRNA delivery upon intravenous (IV) liposomal administration. Furthermore, we demonstrate that liposomal siRNA delivery resulted in targeted gene and protein knockdown throughout the lung, including lung epithelium. Taken together, this is the first description of lung epithelial delivery via cationic liposomes, and provides a proof of concept for the use of IV liposomal RNAi delivery to specifically knockdown targeted genes in the respiratory system. This approach may provide an attractive alternate therapeutic delivery strategy for the treatment of lung epithelium diseases.
Collapse
|
127
|
Shagieva GS, Domnina LV, Chipysheva TA, Ermilova VD, Chaponnier C, Dugina VB. Actin isoforms and reorganization of adhesion junctions in epithelial-to-mesenchymal transition of cervical carcinoma cells. BIOCHEMISTRY (MOSCOW) 2013; 77:1266-76. [PMID: 23240564 DOI: 10.1134/s0006297912110053] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Malignant cell transformation requires changes in the ability of cells to migrate. The disruption of actin cytoskeleton and intercellular adhesions is an important component of the acquisition of invasive properties in epithelial malignancies. The invasive ability of carcinoma cells is associated with reduced expression of adhesion junction molecules and increased expression of mesenchymal markers, frequently referred to as epithelial-to-mesenchymal transition (EMT). Standard features of the EMT program in cancer cells include fibroblastic phenotype, downregulation of the epithelial marker E-cadherin, induction of Snail-family transcription factors, as well as expression of mesenchymal proteins. We compared the epithelial and mesenchymal marker profiles of nonmalignant HaCaT keratinocytes to the corresponding profiles of cervical carcinoma cell lines C-33A, SiHa, and CaSki. The characteristics of the EMT appeared to be more developed in SiHa and CaSki cervical cancer cells. Further activation of the EMT program in cancer cells was induced by epidermal growth factor. Decreased epithelial marker E-cadherin in CaSki cells was accompanied by increased mesenchymal markers N-cadherin and vimentin. Downregulated expression of E-cadherin in SiHa and CaSki cells was associated with increased expression of Snail transcription factor. Our goal was to study actin reorganization in the EMT process in cell cultures and in tissue. We found that β-cytoplasmic actin structures are disorganized in the cervical cancer cells. The expression of β-cytoplasmic actin was downregulated.
Collapse
Affiliation(s)
- G S Shagieva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | | | | | | | | |
Collapse
|
128
|
Xie XY, Yang C, Ren M, Hao SY, Zhu P, Yan L. Inhibition of matrix metalloproteinase 9 expression in rat dermal fibroblasts using small interfering RNA. J Am Podiatr Med Assoc 2013; 102:299-308. [PMID: 22826328 DOI: 10.7547/1020299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) degrade extracellular matrix components. Increased MMP-9 content in diabetic skin contributes to skin vulnerability and refractory foot ulcers. To identify ways to decrease MMP-9 levels in skin, inhibition of MMP-9 expression in dermal fibroblasts using small interfering RNA was investigated in vitro. METHODS A full-thickness wound was created on the midback of streptozotocin-induced diabetic rats; skin biopsies were performed 3 days later. Skin MMP-9 expression was observed by immunohistochemical analysis. Dermal fibroblasts from 1-day-old normal Sprague Dawley rats cultured with high glucose and homocysteine concentrations were transfected with small interfering RNA complexes. Cells were collected 30, 48, and 72 hours after transfection, and reverse transcription-polymerase chain reaction, Western blot analysis, and gelatin zymography for MMP-9 were performed. RESULTS Expression of MMP-9 was increased in diabetic rat skin, especially around wounds. After 30-, 48-, and 72-hour transfection with each MMP-9-specific small interfering RNA, reverse transcription-polymerase chain reaction showed markedly decreased MMP-9 messenger RNA expression, protein abundance, and activity. Of four MMP-9 small interfering RNAs, one sequence had a stable high inhibition rate (>70% at 30 and 48 hours after transfection). CONCLUSIONS Expression of MMP-9 was increased in diabetic rat skin, especially around wounds, and was markedly inhibited after MMP-9 small interfering RNA transfection in vitro (P < .05). These findings may provide new treatments for diabetic skin wounds.
Collapse
Affiliation(s)
- Xiao-Ying Xie
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
129
|
Yoshimura SH, Otsuka S, Kumeta M, Taga M, Takeyasu K. Intermolecular disulfide bonds between nucleoporins regulate karyopherin-dependent nuclear transport. J Cell Sci 2013; 126:3141-50. [PMID: 23641069 DOI: 10.1242/jcs.124172] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Disulfide (S-S) bonds play important roles in the regulation of protein function and cellular stress responses. In this study, we demonstrate that distinct sets of nucleoporins (Nups), components of the nuclear pore complex (NPC), form S-S bonds and regulate nuclear transport through the NPC. Kinetic analysis of importin β demonstrated that the permeability of the NPC was increased by dithiothreitol treatment and reduced by oxidative stress. The permeability of small proteins such as GFP was not affected by either oxidative stress or a reducing reagent. Immunoblot analysis revealed that the oxidative stress significantly induced S-S bond formation in Nups 358, 155, 153 and 62 but not 88 and 160. The direct involvement of cysteine residues in the formation of S-S bonds was confirmed by mutating conserved cysteine residues in Nup62, which abolished the formation of S-S bonds and enhanced the permeability of the NPC. Knocking down Nup62 reduced the stress-inducible S-S bonds of Nup155, suggesting that Nup62 and Nup155 are covalently coupled via S-S bonds. From these results, we propose that the inner channel of the NPC is somehow insulated from the cytoplasm and is more sensitive than the cytoplasm to the intracellular redox state.
Collapse
Affiliation(s)
- Shige H Yoshimura
- Graduate School of Biostudies, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | | | | | |
Collapse
|
130
|
Uchino K, Ochiya T, Takeshita F. RNAi therapeutics and applications of microRNAs in cancer treatment. Jpn J Clin Oncol 2013; 43:596-607. [PMID: 23592885 DOI: 10.1093/jjco/hyt052] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RNA interference-based therapies are proving to be powerful tools for combating various diseases, including cancer. Scientists are researching the development of safe and efficient systems for the delivery of small RNA molecules, which are extremely fragile in serum, to target organs and cells in the human body. A dozen pre-clinical and clinical trials have been under way over the past few years involving biodegradable nanoparticles, lipids, chemical modification and conjugation. On the other hand, microRNAs, which control the balance of cellular biological processes, have been studied as attractive therapeutic targets in cancer treatment. In this review, we provide an overview of RNA interference-based therapeutics in clinical trials and discuss the latest technology for the systemic delivery of nucleic acid drugs. Furthermore, we focus on dysregulated microRNAs in human cancer, which have progressed in pre-clinical trials as therapeutic targets, and describe a wide range of strategies to control the expression levels of endogenous microRNAs. Further development of RNA interference technologies and progression of clinical trials will contribute to the achievement of practical applications of nucleic acid drugs.
Collapse
Affiliation(s)
- Keita Uchino
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045, Japan
| | | | | |
Collapse
|
131
|
Sierant M, Yang X, Nawrot B. Sirna Analogs Containing Phosphorodithioate Substitutions. PHOSPHORUS SULFUR 2013. [DOI: 10.1080/10426507.2012.745079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Malgorzata Sierant
- a Centre of Molecular and Macromolecular Studies , Polish Academy of Sciences , Lodz , Poland
| | | | - Barbara Nawrot
- a Centre of Molecular and Macromolecular Studies , Polish Academy of Sciences , Lodz , Poland
| |
Collapse
|
132
|
Eicher SC, Dehio C. Systems-level analysis of host-pathogen interaction using RNA interference. N Biotechnol 2013; 30:308-13. [PMID: 23395778 DOI: 10.1016/j.nbt.2013.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
Abstract
Hand-in-hand with the availability of full genome sequences for eukaryotic model organisms and humans the demand for analysis of gene function on a system level has grown. In a process called RNA interference (RNAi) specific mRNA species can be degraded by introduction of double-stranded small interfering RNAs (siRNAs) that are complementary to the targeted transcript sequence. This enables the selective impairment of gene function. During the past decade RNAi has been exploited in many different eukaryotic cell types and model organisms. Large-scale and eventually genome-wide RNAi screens ablating gene functions in a systematic manner have delivered an overwhelming amount of data on the requirement of distinct gene products for major cellular pathways. A large part of the RNAi field is dedicated to disease states such as cancer or infection with the prospect of discovering pathways suitable for new therapeutic interventions. Here some of the major steps in the development of the RNAi technology will be outlined and exemplified with a focus on the progress made in the field of mammalian host-pathogen interactions.
Collapse
Affiliation(s)
- Simone C Eicher
- Focal Area Infection Biology, Biozentrum of the University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | |
Collapse
|
133
|
Yao J, Da M, Guo T, Duan Y, Zhang Y. RNAi-mediated gene silencing of vascular endothelial growth factor-C inhibits tumor lymphangiogenesis and growth of gastric cancer in vivo in mice. Tumour Biol 2013; 34:1493-501. [DOI: 10.1007/s13277-013-0674-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 01/17/2013] [Indexed: 12/19/2022] Open
|
134
|
Dreesen O, Chojnowski A, Ong PF, Zhao TY, Common JE, Lunny D, Lane EB, Lee SJ, Vardy LA, Stewart CL, Colman A. Lamin B1 fluctuations have differential effects on cellular proliferation and senescence. J Cell Biol 2013; 200:605-17. [PMID: 23439683 PMCID: PMC3587829 DOI: 10.1083/jcb.201206121] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 01/30/2013] [Indexed: 12/19/2022] Open
Abstract
The nuclear lamina consists of A- and B-type lamins. Mutations in LMNA cause many human diseases, including progeria, a premature aging syndrome, whereas LMNB1 duplication causes adult-onset autosomal dominant leukodystrophy (ADLD). LMNB1 is reduced in cells from progeria patients, but the significance of this reduction is unclear. In this paper, we show that LMNB1 protein levels decline in senescent human dermal fibroblasts and keratinocytes, mediated by reduced transcription and inhibition of LMNB1 messenger ribonucleic acid (RNA) translation by miRNA-23a. This reduction is also observed in chronologically aged human skin tissue. To determine whether altered LMNB1 levels cause senescence, we either increased or reduced LMNB1. Both LMNB1 depletion and overexpression inhibited proliferation, but only LMNB1 overexpression induced senescence, which was prevented by telomerase expression or inactivation of p53. This phenotype was exacerbated by a simultaneous reduction of LMNA/C. Our results demonstrate that altering LMNB1 levels inhibits proliferation and are relevant to understanding the molecular pathology of ADLD.
Collapse
Affiliation(s)
- Oliver Dreesen
- Stem Cell Disease Models, Developmental and Regenerative Biology, Translational Regulation in Stem Cells, and Epithelial Biology Laboratory, Institute of Medical Biology, 138648 Singapore
| | - Alexandre Chojnowski
- Stem Cell Disease Models, Developmental and Regenerative Biology, Translational Regulation in Stem Cells, and Epithelial Biology Laboratory, Institute of Medical Biology, 138648 Singapore
| | - Peh Fern Ong
- Stem Cell Disease Models, Developmental and Regenerative Biology, Translational Regulation in Stem Cells, and Epithelial Biology Laboratory, Institute of Medical Biology, 138648 Singapore
| | - Tian Yun Zhao
- Stem Cell Disease Models, Developmental and Regenerative Biology, Translational Regulation in Stem Cells, and Epithelial Biology Laboratory, Institute of Medical Biology, 138648 Singapore
| | - John E. Common
- Stem Cell Disease Models, Developmental and Regenerative Biology, Translational Regulation in Stem Cells, and Epithelial Biology Laboratory, Institute of Medical Biology, 138648 Singapore
| | - Declan Lunny
- Stem Cell Disease Models, Developmental and Regenerative Biology, Translational Regulation in Stem Cells, and Epithelial Biology Laboratory, Institute of Medical Biology, 138648 Singapore
| | - E. Birgitte Lane
- Stem Cell Disease Models, Developmental and Regenerative Biology, Translational Regulation in Stem Cells, and Epithelial Biology Laboratory, Institute of Medical Biology, 138648 Singapore
| | - Shu Jin Lee
- Division of Plastic, Reconstructive and Aesthetic Surgery, Department of Surgery, National University of Singapore, 119228 Singapore
| | - Leah A. Vardy
- Stem Cell Disease Models, Developmental and Regenerative Biology, Translational Regulation in Stem Cells, and Epithelial Biology Laboratory, Institute of Medical Biology, 138648 Singapore
| | - Colin L. Stewart
- Stem Cell Disease Models, Developmental and Regenerative Biology, Translational Regulation in Stem Cells, and Epithelial Biology Laboratory, Institute of Medical Biology, 138648 Singapore
| | - Alan Colman
- Stem Cell Disease Models, Developmental and Regenerative Biology, Translational Regulation in Stem Cells, and Epithelial Biology Laboratory, Institute of Medical Biology, 138648 Singapore
| |
Collapse
|
135
|
Lima PC, Harris JO, Cook M. Exploring RNAi as a therapeutic strategy for controlling disease in aquaculture. FISH & SHELLFISH IMMUNOLOGY 2013; 34:729-743. [PMID: 23276883 DOI: 10.1016/j.fsi.2012.11.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 11/21/2012] [Accepted: 11/30/2012] [Indexed: 06/01/2023]
Abstract
Aquatic animal diseases are one of the most significant constraints to the development and management of aquaculture worldwide. As a result, measures to combat diseases of fish and shellfish have assumed a high priority in many aquaculture-producing countries. RNA interference (RNAi), a natural mechanism for post-transcriptional silencing of homologous genes by double-stranded RNA (dsRNA), has emerged as a powerful tool not only to investigate the function of specific genes, but also to suppress infection or replication of many pathogens that cause severe economic losses in aquaculture. However, despite the enormous potential as a novel therapeutical approach, many obstacles must still be overcome before RNAi therapy finds practical application in aquaculture, largely due to the potential for off-target effects and the difficulties in providing safe and effective delivery of RNAi molecules in vivo. In the present review, we discuss the current knowledge of RNAi as an experimental tool, as well as the concerns and challenges ahead for the application of such technology to combat infectious disease of farmed aquatic animals.
Collapse
Affiliation(s)
- Paula C Lima
- CSIRO Marine and Atmospheric Research, C/-CSIRO Livestock Industries, QBP, 306 Carmody Rd, St Lucia, QLD 4067, Australia
| | | | | |
Collapse
|
136
|
Po'uha ST, Honore S, Braguer D, Kavallaris M. Partial depletion of gamma-actin suppresses microtubule dynamics. Cytoskeleton (Hoboken) 2013; 70:148-60. [PMID: 23335583 PMCID: PMC3613743 DOI: 10.1002/cm.21096] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 12/16/2012] [Accepted: 12/20/2012] [Indexed: 01/09/2023]
Abstract
Actin and microtubule interactions are important for many cellular events, however these interactions are poorly described. Alterations in γ-actin are associated with diseases such as hearing loss and cancer. Functional investigations demonstrated that partial depletion of γ-actin affects cell polarity and induces resistance to microtubule-targeted agents. To determine whether γ-actin alterations directly affect microtubule dynamics, microtubule dynamic instability was analyzed in living cells following partial siRNA depletion of γ-actin. Partial depletion of γ-actin suppresses interphase microtubule dynamics by 17.5% due to a decrease in microtubule shortening rates and an increase in microtubule attenuation. γ-Actin partial depletion also increased distance-based microtubule catastrophe and rescue frequencies. In addition, knockdown of γ-actin delayed mitotic progression, partially blocking metaphase–anaphase transition and inhibiting cell proliferation. Interestingly, in the presence of paclitaxel, interphase microtubule dynamics were further suppressed by 24.4% in the γ-actin knockdown cells, which is comparable to 28.8% suppression observed in the control siRNA treated cells. Paclitaxel blocked metaphase–anaphase transition in both the γ-actin knockdown cells and the control siRNA cells. However, the extent of mitotic arrest was much higher in the control cells (28.4%), compared to the γ-actin depleted cells (8.5%). Therefore, suppression of microtubule dynamics by partial depletion of γ-actin is associated with marked delays in metaphase-anaphase transition and not mitotic arrest. This is the first demonstration that γ-actin can modulate microtubule dynamics by reducing the microtubule shortening rate, promoting paused/attenuated microtubules, and increasing transition frequencies suggesting a mechanistic link between γ-actin and microtubules. © 2013 Wiley Periodicals, Inc
Collapse
Affiliation(s)
- Sela T Po'uha
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick, NSW, Australia
| | | | | | | |
Collapse
|
137
|
Abstract
Lamins are the major components of the nuclear lamina, a filamentous layer found at the interphase between chromatin and the inner nuclear membrane. The lamina supports the nuclear envelope and provides anchorage sites for chromatin. Lamins and their associated proteins are required for most nuclear activities, mitosis, and for linking the nucleoskeleton to the network of cytoskeletal filaments. Mutations in lamins and their associated proteins give rise to a wide range of diseases, collectively called laminopathies. This review focuses on the evolution of the lamin protein family. Evolution from basal metazoans to man will be described on the basis of protein sequence comparisons and analyses of their gene structure. Lamins are the founding members of the family of intermediate filament proteins. How genes encoding cytoplasmic IF proteins could have arisen from the archetypal lamin gene progenitor, can be inferred from a comparison of the respective gene structures. The lamin/IF protein family seems to be restricted to the metazoans. In general, invertebrate genomes harbor only a single lamin gene encoding a B-type lamin. The archetypal lamin gene structure found in basal metazoans is conserved up to the vertebrate lineage. The completely different structure of lamin genes in Caenorhabditis and Drosophila are exceptions rather than the rule within their systematic groups. However, variation in the length of the coiled-coil forming central domain might be more common than previously anticipated. The increase in the number of lamin genes in vertebrates can be explained by two rounds of genome duplication. The origin of lamin A by exon shuffling might explain the processing of prelamin A to the mature non-isoprenylated form of lamin A. By alternative splicing the number of vertebrate lamin proteins has increased even further. Lamin C, an alternative splice form of the LMNA gene, is restricted to mammals. Amphibians and mammals express germline-specific lamins that differ in their protein structure from that of somatic lamins. Evidence is provided that there exist lamin-like proteins outside the metazoan lineage.
Collapse
Affiliation(s)
- Annette Peter
- Department for Cell Biology, University of Bremen, Bremen, Germany
| | | |
Collapse
|
138
|
Lim J, Clements MA, Dobson J. Delivery of short interfering ribonucleic acid-complexed magnetic nanoparticles in an oscillating field occurs via caveolae-mediated endocytosis. PLoS One 2012; 7:e51350. [PMID: 23236481 PMCID: PMC3517400 DOI: 10.1371/journal.pone.0051350] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/01/2012] [Indexed: 11/25/2022] Open
Abstract
Gene delivery technologies to introduce foreign genes into highly differentiated mammalian cells have improved significantly over the last few decades. Relatively new techniques such as magnetic nanoparticle-based gene transfection technology are showing great promise in terms of its high transfection efficiency and wide-ranging research applications. We have developed a novel gene delivery technique, which uses magnetic nanoparticles moving under the influence of an oscillating magnetic array. Herein we successfully introduced short interfering RNA (siRNA) against green fluorescent protein (GFP) or actin into stably-transfected GFP-HeLa cells or wild-type HeLa and rat aortic smooth muscle cells, respectively. This gene silencing technique occurred in a dose- and cell density- dependent manner, as reflected using fluorescence intensity and adhesion assays. Furthermore, using endocytosis inhibitors, we established that these magnetic nanoparticle-nucleic acid complexes, moving across the cell surface under the influence of an oscillating magnet array, enters into the cells via the caveolae-mediated endocytic pathway.
Collapse
Affiliation(s)
- Jenson Lim
- nanoTherics Limited, Med IC4, Keele University Science and Business Park, Newcastle under Lyme, Staffordshire, United Kingdom
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail:
| | - Michael A. Clements
- nanoTherics Limited, Med IC4, Keele University Science and Business Park, Newcastle under Lyme, Staffordshire, United Kingdom
| | - Jon Dobson
- J. Crayton Pruitt Family Department of Biomedical Engineering, Department of Materials Science and Engineering, and Institute for Cell Engineering and Regenerative Medicine (ICERM), University of Florida, Gainesville, Florida, United States of America
- Institute for Science and Technology in Medicine, Keele University, Stoke-On-Trent, Staffordshire, United Kingdom
| |
Collapse
|
139
|
|
140
|
Zuela N, Bar DZ, Gruenbaum Y. Lamins in development, tissue maintenance and stress. EMBO Rep 2012; 13:1070-8. [PMID: 23146893 PMCID: PMC3512410 DOI: 10.1038/embor.2012.167] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 10/01/2012] [Indexed: 12/24/2022] Open
Abstract
Lamins are nuclear intermediate filament proteins. They provide mechanical stability, organize chromatin and regulate transcription, replication, nuclear assembly and nuclear positioning. Recent studies provide new insights into the role of lamins in development, differentiation and tissue response to mechanical, reactive oxygen species and thermal stresses. These studies also propose the existence of separate filament networks for A- and B-type lamins and identify new roles for the different networks. Furthermore, they show changes in lamin composition in different cell types, propose explanations for the more than 14 distinct human diseases caused by lamin A and lamin C mutations and propose a role for lamin B1 in these diseases.
Collapse
Affiliation(s)
- Noam Zuela
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Daniel Z Bar
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yosef Gruenbaum
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
141
|
Bhinder B, Antczak C, Ramirez CN, Shum D, Liu-Sullivan N, Radu C, Frattini MG, Djaballah H. An arrayed genome-scale lentiviral-enabled short hairpin RNA screen identifies lethal and rescuer gene candidates. Assay Drug Dev Technol 2012. [PMID: 23198867 DOI: 10.1089/adt.2012.475] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RNA interference technology is becoming an integral tool for target discovery and validation.; With perhaps the exception of only few studies published using arrayed short hairpin RNA (shRNA) libraries, most of the reports have been either against pooled siRNA or shRNA, or arrayed siRNA libraries. For this purpose, we have developed a workflow and performed an arrayed genome-scale shRNA lethality screen against the TRC1 library in HeLa cells. The resulting targets would be a valuable resource of candidates toward a better understanding of cellular homeostasis. Using a high-stringency hit nomination method encompassing criteria of at least three active hairpins per gene and filtered for potential off-target effects (OTEs), referred to as the Bhinder-Djaballah analysis method, we identified 1,252 lethal and 6 rescuer gene candidates, knockdown of which resulted in severe cell death or enhanced growth, respectively. Cross referencing individual hairpins with the TRC1 validated clone database, 239 of the 1,252 candidates were deemed independently validated with at least three validated clones. Through our systematic OTE analysis, we have identified 31 microRNAs (miRNAs) in lethal and 2 in rescuer genes; all having a seed heptamer mimic in the corresponding shRNA hairpins and likely cause of the OTE observed in our screen, perhaps unraveling a previously unknown plausible essentiality of these miRNAs in cellular viability. Taken together, we report on a methodology for performing large-scale arrayed shRNA screens, a comprehensive analysis method to nominate high-confidence hits, and a performance assessment of the TRC1 library highlighting the intracellular inefficiencies of shRNA processing in general.
Collapse
Affiliation(s)
- Bhavneet Bhinder
- High-Throughput Screening Core Facility, Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Havugimana PC, Hart GT, Nepusz T, Yang H, Turinsky AL, Li Z, Wang PI, Boutz DR, Fong V, Phanse S, Babu M, Craig SA, Hu P, Wan C, Vlasblom J, Dar VUN, Bezginov A, Clark GW, Wu GC, Wodak SJ, Tillier ERM, Paccanaro A, Marcotte EM, Emili A. A census of human soluble protein complexes. Cell 2012; 150:1068-81. [PMID: 22939629 DOI: 10.1016/j.cell.2012.08.011] [Citation(s) in RCA: 674] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 07/30/2012] [Accepted: 08/10/2012] [Indexed: 12/19/2022]
Abstract
Cellular processes often depend on stable physical associations between proteins. Despite recent progress, knowledge of the composition of human protein complexes remains limited. To close this gap, we applied an integrative global proteomic profiling approach, based on chromatographic separation of cultured human cell extracts into more than one thousand biochemical fractions that were subsequently analyzed by quantitative tandem mass spectrometry, to systematically identify a network of 13,993 high-confidence physical interactions among 3,006 stably associated soluble human proteins. Most of the 622 putative protein complexes we report are linked to core biological processes and encompass both candidate disease genes and unannotated proteins to inform on mechanism. Strikingly, whereas larger multiprotein assemblies tend to be more extensively annotated and evolutionarily conserved, human protein complexes with five or fewer subunits are far more likely to be functionally unannotated or restricted to vertebrates, suggesting more recent functional innovations.
Collapse
Affiliation(s)
- Pierre C Havugimana
- Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Maia AR, Garcia Z, Kabeche L, Barisic M, Maffini S, Macedo-Ribeiro S, Cheeseman IM, Compton DA, Kaverina I, Maiato H. Cdk1 and Plk1 mediate a CLASP2 phospho-switch that stabilizes kinetochore-microtubule attachments. J Cell Biol 2012; 199:285-301. [PMID: 23045552 PMCID: PMC3471233 DOI: 10.1083/jcb.201203091] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 09/17/2012] [Indexed: 11/22/2022] Open
Abstract
Accurate chromosome segregation during mitosis relies on a dynamic kinetochore (KT)-microtubule (MT) interface that switches from a labile to a stable condition in response to correct MT attachments. This transition is essential to satisfy the spindle-assembly checkpoint (SAC) and couple MT-generated force with chromosome movements, but the underlying regulatory mechanism remains unclear. In this study, we show that during mitosis the MT- and KT-associated protein CLASP2 is progressively and distinctively phosphorylated by Cdk1 and Plk1 kinases, concomitant with the establishment of KT-MT attachments. CLASP2 S1234 was phosphorylated by Cdk1, which primed CLASP2 for association with Plk1. Plk1 recruitment to KTs was enhanced by CLASP2 phosphorylation on S1234. This was specifically required to stabilize KT-MT attachments important for chromosome alignment and to coordinate KT and non-KT MT dynamics necessary to maintain spindle bipolarity. CLASP2 C-terminal phosphorylation by Plk1 was also required for chromosome alignment and timely satisfaction of the SAC. We propose that Cdk1 and Plk1 mediate a fine CLASP2 "phospho-switch" that temporally regulates KT-MT attachment stability.
Collapse
Affiliation(s)
- Ana R.R. Maia
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Zaira Garcia
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Lilian Kabeche
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755
- Norris Cotton Cancer Center, Lebanon, NH 03766
| | - Marin Barisic
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Stefano Maffini
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Sandra Macedo-Ribeiro
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Iain M. Cheeseman
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Duane A. Compton
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755
- Norris Cotton Cancer Center, Lebanon, NH 03766
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Helder Maiato
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- Department of Experimental Biology, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| |
Collapse
|
144
|
Jung HJ, Lee JM, Yang SH, Young SG, Fong LG. Nuclear lamins in the brain - new insights into function and regulation. Mol Neurobiol 2012; 47:290-301. [PMID: 23065386 DOI: 10.1007/s12035-012-8350-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/12/2012] [Indexed: 11/28/2022]
Abstract
The nuclear lamina is an intermediate filament meshwork composed largely of four nuclear lamins - lamins A and C (A-type lamins) and lamins B1 and B2 (B-type lamins). Located immediately adjacent to the inner nuclear membrane, the nuclear lamina provides a structural scaffolding for the cell nucleus. It also interacts with both nuclear membrane proteins and the chromatin and is thought to participate in many important functions within the cell nucleus. Defects in A-type lamins cause cardiomyopathy, muscular dystrophy, peripheral neuropathy, lipodystrophy, and progeroid disorders. In contrast, the only bona fide link between the B-type lamins and human disease is a rare demyelinating disease of the central nervous system - adult-onset autosomal-dominant leukoencephalopathy, caused by a duplication of the gene for lamin B1. However, this leukoencephalopathy is not the only association between the brain and B-type nuclear lamins. Studies of conventional and tissue-specific knockout mice have demonstrated that B-type lamins play essential roles in neuronal migration in the developing brain and in neuronal survival. The importance of A-type lamin expression in the brain is unclear, but it is intriguing that the adult brain preferentially expresses lamin C rather than lamin A, very likely due to microRNA-mediated removal of prelamin A transcripts. Here, we review recent studies on nuclear lamins, focusing on the function and regulation of the nuclear lamins in the central nervous system.
Collapse
Affiliation(s)
- Hea-Jin Jung
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
145
|
Rajput R, Khanna M, Kumar P, Kumar B, Sharma S, Gupta N, Saxena L. Small interfering RNA targeting the nonstructural gene 1 transcript inhibits influenza A virus replication in experimental mice. Nucleic Acid Ther 2012; 22:414-22. [PMID: 23062009 DOI: 10.1089/nat.2012.0359] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Nonstructural protein 1 (NS1) of influenza A viruses counteracts the host immune response against the influenza viruses by not only inhibiting the nuclear export and maturation of host cell messenger RNA (mRNA), but by also blocking the double-stranded RNA-activated protein kinase-mediated inhibition of viral RNA translation. Reduction of NS1 gene product in the host cell may be a potent antiviral strategy to provide protection against the influenza virus infection. We used small interfering RNAs (siRNAs) synthesized against the viral mRNA to down regulate the NS1 gene and observed its effect on inhibition of virus replication. When NS1 gene-specific siRNA were transfected in Madin Darby canine kidney (MDCK) cells followed by influenza A virus infection, approximately 60% inhibition in intracellular levels of NS1 RNA was observed. When siRNA was administered in BALB/c mice, 92% reduction in the levels of NS1 gene expression in mice lungs was observed. A significant reduction in the lung virus titers and cytokine levels was also detected in the presence of siRNAs as compared with the untreated control. The study was validated by the use of selectively disabled mutants of each set of siRNA. Our findings suggest that siRNA targeted against NS1 gene of influenza A virus can provide considerable protection to the virus-infected host cells and may be used as potential candidates for nucleic acid-based antiviral therapy for prevention of influenza A virus infection.
Collapse
Affiliation(s)
- Roopali Rajput
- Department of Respiratory Virology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | | | | | | | | | | | | |
Collapse
|
146
|
Butin-Israeli V, Adam SA, Goldman AE, Goldman RD. Nuclear lamin functions and disease. Trends Genet 2012; 28:464-71. [PMID: 22795640 DOI: 10.1016/j.tig.2012.06.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/25/2012] [Accepted: 06/13/2012] [Indexed: 12/26/2022]
Abstract
Recent studies have shown that premature cellular senescence and normal organ development and function depend on the type V intermediate filament proteins, the lamins, which are major structural proteins of the nucleus. This review presents an up-to-date summary of the literature describing new findings on lamin functions in various cellular processes and emphasizes the relationship between the lamins and devastating diseases ranging from premature aging to cancer. Recent insights into the structure and function of the A- and B- type lamins in normal cells and their dysfunctions in diseased cells are providing novel targets for the development of new diagnostic procedures and disease intervention. We summarize these recent findings, focusing on data from mice and humans, and highlight the expanding knowledge of these proteins in both healthy and diseased cells.
Collapse
Affiliation(s)
- Veronika Butin-Israeli
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
147
|
Imamoto N, Funakoshi T. Nuclear pore dynamics during the cell cycle. Curr Opin Cell Biol 2012; 24:453-9. [PMID: 22770730 DOI: 10.1016/j.ceb.2012.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 06/17/2012] [Indexed: 01/08/2023]
Abstract
A nuclear pore complex (NPC) is a large protein assembly that mediates the nucleocytoplasmic exchange of molecules. During the cell cycle, NPCs assemble, disassemble, and dynamically change their distribution on assembled nuclear envelope (NE), whereas in post-mitosis, NPCs are extremely stable. Extensive studies on its components, structure, and building blocks allow the study of its assembly and disassembly at the molecular level. Depending on the location that the initial components of this structure are built (e.g. chromatin versus double lipid bilayers of the nuclear envelope), the regulation and the mechanism of the assembly differ. Moreover, cell cycle dynamics of NPC are linked with INM proteins, lamins, lipid membranes, and the cell cycle signal, which show that NPC dynamics are highly regulated processes.
Collapse
Affiliation(s)
- Naoko Imamoto
- Cellular Dynamics Laboratory, Riken Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | |
Collapse
|
148
|
Lussi YC, Shumaker DK, Shimi T, Fahrenkrog B. The nucleoporin Nup153 affects spindle checkpoint activity due to an association with Mad1. Nucleus 2012; 1:71-84. [PMID: 21327106 DOI: 10.4161/nucl.1.1.10244] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 09/29/2009] [Accepted: 10/07/2009] [Indexed: 01/10/2023] Open
Abstract
The nucleoporin Nup153 is known to play pivotal roles in nuclear import and export in interphase cells and as the cell transitions into mitosis, Nup153 is involved in nuclear envelope breakdown. In this study, we demonstrate that the interaction of Nup153 with the spindle assembly checkpoint protein Mad1 is important in the regulation of the spindle checkpoint. Overexpression of human Nup153 in HeLa cells leads to the appearance of multinucleated cells and induces the formation of multipolar spindles. Importantly, it causes inactivation of the spindle checkpoint due to hypophosphorylation of Mad1. Depletion of Nup153 using RNA interference results in the decline of Mad1 at nuclear pores during interphase and more significantly causes a delayed dissociation of Mad1 from kinetochores in metaphase and an increase in the number of unresolved midbodies. In the absence of Nup153 the spindle checkpoint remains active. In vitro studies indicate direct binding of Mad1 to the N-terminal domain of Nup153. Importantly, Nup153 binding to Mad1 affects Mad1's phosphorylation status, but not its ability to interact with Mad2. Our data suggest that Nup153 levels regulate the localization of Mad1 during the metaphase/anaphase transition thereby affecting its phoshorylation status and in turn spindle checkpoint activity and mitotic exit.
Collapse
Affiliation(s)
- Yvonne C Lussi
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
149
|
Freund A, Laberge RM, Demaria M, Campisi J. Lamin B1 loss is a senescence-associated biomarker. Mol Biol Cell 2012; 23:2066-75. [PMID: 22496421 PMCID: PMC3364172 DOI: 10.1091/mbc.e11-10-0884] [Citation(s) in RCA: 710] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 03/30/2012] [Accepted: 04/05/2012] [Indexed: 12/30/2022] Open
Abstract
Cellular senescence is a potent tumor-suppressive mechanism that arrests cell proliferation and has been linked to aging. However, studies of senescence have been impeded by the lack of simple, exclusive biomarkers of the senescent state. Senescent cells develop characteristic morphological changes, which include enlarged and often irregular nuclei and chromatin reorganization. Because alterations to the nuclear lamina can affect both nuclear morphology and gene expression, we examined the nuclear lamina of senescent cells. We show here than lamin B1 is lost from primary human and murine cell strains when they are induced to senesce by DNA damage, replicative exhaustion, or oncogene expression. Lamin B1 loss did not depend on the p38 mitogen-activated protein kinase, nuclear factor-κB, ataxia telangiectasia-mutated kinase, or reactive oxygen species signaling pathways, which are positive regulators of senescent phenotypes. However, activation of either the p53 or pRB tumor suppressor pathway was sufficient to induce lamin B1 loss. Lamin B1 declined at the mRNA level via a decrease in mRNA stability rather than by the caspase-mediated degradation seen during apoptosis. Last, lamin B1 protein and mRNA declined in mouse tissue after senescence was induced by irradiation. Our findings suggest that lamin B1 loss can serve as biomarker of senescence both in culture and in vivo.
Collapse
Affiliation(s)
- Adam Freund
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
- Buck Institute for Research on Aging, Novato, CA 94945
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | | | - Marco Demaria
- Buck Institute for Research on Aging, Novato, CA 94945
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94945
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
150
|
Young SG, Jung HJ, Coffinier C, Fong LG. Understanding the roles of nuclear A- and B-type lamins in brain development. J Biol Chem 2012; 287:16103-10. [PMID: 22416132 PMCID: PMC3351360 DOI: 10.1074/jbc.r112.354407] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nuclear lamina is composed mainly of lamins A and C (A-type lamins) and lamins B1 and B2 (B-type lamins). Dogma has held that lamins B1 and B2 play unique and essential roles in the nucleus of every eukaryotic cell. Recent studies have raised doubts about that view but have uncovered crucial roles for lamins B1 and B2 in neuronal migration during the development of the brain. The relevance of lamins A and C in the brain remains unclear, but it is intriguing that prelamin A expression in the brain is low and is regulated by miR-9, a brain-specific microRNA.
Collapse
Affiliation(s)
| | - Hea-Jin Jung
- the Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | | | | |
Collapse
|