101
|
Wolkers CPB, Serra M, Hoshiba MA, Urbinati EC. Dietary L-tryptophan alters aggression in juvenile matrinxã Brycon amazonicus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:819-827. [PMID: 22071569 DOI: 10.1007/s10695-011-9569-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 10/25/2011] [Indexed: 05/31/2023]
Abstract
This study evaluated the effect of dietary supplementation with L: -tryptophan (L-TRP), a serotonin precursor, on the aggressiveness of juvenile matrinxã Brycon amazonicus. Fish were kept in individual aquaria for 7 days receiving the diets: D1 (control: 0.47% of TRP), D2 (0.94% of TRP), D3 (1.88% of TRP), and D4 (3.76% of TRP). After this, they were grouped with an intruder fish to establish a resident-intruder relationship during periods of 20 min. Blood cortisol, glucose, chloride, sodium and calcium; hemoglobin, hematocrit, red blood cell count and volume; liver glycogen and lipids were measured. Territoriality had significant effect on the aggressiveness of matrinxã (the residents were more aggressive than intruders, P < 0.001) and tryptophan significantly affected their behavior. Fish fed with the D2 diet presented a longer latency until the first attack (P = 0.0069) and bit the intruder fewer times (P = 0.0136) during the period of observation, compared to the control group. The frequency of bites and chases after the first attack was not affected by the dietary supplementation of TRP. Physiological variables were not significantly affected by the diet, except for a moderate increase in cortisol level in fish fed with D2 diet after the fight, indicating slight activation of the hypothalamus-pituitary-interrenal axis. The results show that juvenile matrinxã have aggressive and territorial behavior and that a diet containing 9.4 g TRP kg(-1) alter their aggressiveness, without affecting the stress-related physiological parameters.
Collapse
Affiliation(s)
- Carla Patrícia Bejo Wolkers
- Aquaculture Center, and Faculty of Agriculture and Veterinary Sciences, Universidade Estadual Paulista, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP, Brazil
| | | | | | | |
Collapse
|
102
|
Dahlbom SJ, Backström T, Lundstedt-Enkel K, Winberg S. Aggression and monoamines: Effects of sex and social rank in zebrafish (Danio rerio). Behav Brain Res 2012; 228:333-8. [DOI: 10.1016/j.bbr.2011.12.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 12/02/2011] [Accepted: 12/06/2011] [Indexed: 12/16/2022]
|
103
|
Conceição LEC, Aragão C, Dias J, Costas B, Terova G, Martins C, Tort L. Dietary nitrogen and fish welfare. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:119-41. [PMID: 22212981 DOI: 10.1007/s10695-011-9592-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/16/2011] [Indexed: 05/12/2023]
Abstract
Little research has been done in optimizing the nitrogenous fraction of the fish diets in order to minimize welfare problems. The purpose of this review is to give an overview on how amino acid (AA) metabolism may be affected when fish are under stress and the possible effects on fish welfare when sub-optimal dietary nitrogen formulations are used to feed fish. In addition, it intends to evaluate the current possibilities, and future prospects, of using improved dietary nitrogen formulations to help fish coping with predictable stressful periods. Both metabolomic and genomic evidence show that stressful husbandry conditions affect AA metabolism in fish and may bring an increase in the requirement of indispensable AA. Supplementation in arginine and leucine, but also eventually in lysine, methionine, threonine and glutamine, may have an important role in enhancing the innate immune system. Tryptophan, as precursor for serotonin, modulates aggressive behaviour and feed intake in fish. Bioactive peptides may bring important advances in immunocompetence, disease control and other aspects of welfare of cultured fish. Fishmeal replacement may reduce immune competence, and the full nutritional potential of plant-protein ingredients is attained only after the removal or inactivation of some antinutritional factors. This review shows that AA metabolism is affected when fish are under stress, and this together with sub-optimal dietary nitrogen formulations may affect fish welfare. Furthermore, improved dietary nitrogen formulations may help fish coping with predictable stressful events.
Collapse
Affiliation(s)
- Luis E C Conceição
- CCMAR-CIMAR L.A., Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal,
| | | | | | | | | | | | | |
Collapse
|
104
|
Hall IC, Sell GL, Chester EM, Hurley LM. Stress-evoked increases in serotonin in the auditory midbrain do not directly result from elevations in serum corticosterone. Behav Brain Res 2012; 226:41-9. [DOI: 10.1016/j.bbr.2011.08.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/26/2011] [Accepted: 08/27/2011] [Indexed: 11/26/2022]
|
105
|
De Miguel Z, Vegas O, Garmendia L, Arregi A, Beitia G, Azpiroz A. Behavioral coping strategies in response to social stress are associated with distinct neuroendocrine, monoaminergic and immune response profiles in mice. Behav Brain Res 2011; 225:554-61. [DOI: 10.1016/j.bbr.2011.08.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 08/01/2011] [Accepted: 08/06/2011] [Indexed: 01/06/2023]
|
106
|
High novelty-seeking predicts aggression and gene expression differences within defined serotonergic cell groups. Brain Res 2011; 1419:34-45. [PMID: 21925645 DOI: 10.1016/j.brainres.2011.08.038] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 08/11/2011] [Accepted: 08/16/2011] [Indexed: 11/21/2022]
Abstract
Aggression frequently coincides with specific dimensions of emotionality, such as impulsivity, risk-taking, and drug abuse. Serotonergic (5-HTergic) neurotransmission contributes to the regulation of numerous neurobiological functions, and is thought to play a key role in modulating aggressive responses. The current study uses selectively-bred High (bHR) and Low (bLR) Responder rats that exhibit differences in emotionality and behavioral control, with bHRs exhibiting heightened novelty-induced exploration, impulsivity, and increased sensitivity to drugs of abuse, and with bLRs characterized by exaggerated depressive- and anxiety-like behaviors. Based on this behavioral profile we hypothesized that bHR rats exhibit increased aggression along with changes in testosterone and corticosterone secretion characteristic of aggression, and that these changes are accompanied by alterations in the expression of key genes that regulate 5-HTergic neurotransmission (Tph2 and Sert) as well as in the activation of 5-HTergic cell groups following aggressive encounter. Our data demonstrate that when compared to bLR rats, bHRs express increased baseline Tph2 and Sert in select brainstem nuclei, and when tested on the resident-intruder test they exhibited: 1) increased aggressive behavior; 2) potentiated corticosterone and testosterone secretion; and 3) diminished intrusion-induced c-fos expression in select 5-HTergic brainstem cell groups. The most prominent gene expression differences occurred in the B9 cell group, pontomesencephalic reticular formation, median raphe, and the gigantocellular nucleus pars α. These data are consistent with the notion that altered 5-HT neurotransmission contributes to bHRs' heightened aggression. Furthermore, they indicate that a specific subset of brainstem 5-HTergic cell groups contributes to the regulation of intrusion-elicited behavioral responses.
Collapse
|
107
|
Terçariol SG, Almeida AA, Godinho AF. Cadmium and exposure to stress increase aggressive behavior. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2011; 32:40-45. [PMID: 21787728 DOI: 10.1016/j.etap.2011.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 02/28/2011] [Accepted: 03/08/2011] [Indexed: 05/31/2023]
Abstract
Environmental toxicants and stress influence the health and behavior of people from different parts of the world. In the present study, aggressive behavior was evaluated in rats exposed to cadmium (Cd) for four weeks and subjected to immobilization stress (IS) based on the resident/intruder paradigm. Latency to the first bite (LB), total number of attacks (NA), total duration of attack manifestations (DAM), and a composite aggression score (CAS) were used to assess aggressiveness. Cadmium concentrations in the blood and the brain were determined. We observed that the parameters of aggressiveness were not altered by either Cd or IS when administered separately. However, animals exposed to Cd+IS had increased NA, DAM, and CAS. Cadmium was detected in the blood and the brain after treatment and Cd+IS exposure modified Cd distribution in these tissues. These results suggest that exposure to low levels of Cd associated with stress may lead to increased aggressiveness in rats.
Collapse
Affiliation(s)
- Simone Galbiati Terçariol
- Centro de Assistência Toxicológica (CEATOX), Instituto de Biociências, Universidade Estadual Paulista - UNESP, CEP 18618-000, Distrito de Rubião Júnior, s/n, Botucatu, SP, Brazil
| | | | | |
Collapse
|
108
|
Backström T, Pettersson A, Johansson V, Winberg S. CRF and urotensin I effects on aggression and anxiety-like behavior in rainbow trout. ACTA ACUST UNITED AC 2011; 214:907-14. [PMID: 21346117 DOI: 10.1242/jeb.045070] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Corticotropin-releasing factor (CRF) is central in the stress response but also modulates several behaviors including anxiety-related behaviors and aggression. In this study, juvenile rainbow trout (Oncorhynchus mykiss) were tested for competitive ability, determined during dyadic fights for dominance, after intracerebroventricular (i.c.v.) administration of CRF, urotensin I (UI), the non-specific CRF antagonist α-helical RF(9-41) (ahCRF) or the CRF receptor subtype 1-specific antagonist antalarmin, when paired with a mass-matched con-specific injected with saline. In addition, isolated fish received the same substances. Plasma cortisol and brain monoamines were monitored in all fish. Most fish receiving CRF showed a conspicuous behavior consisting of flaring the opercula, opening the mouth and violent shaking of the head from side to side. When this occurred, the fish immediately forfeited the fight. Similar behavior was observed in most fish receiving UI but no effect on outcome of dyadic fights was noted. This behavior seems similar to non-ambulatory motor activity seen in rats and could be anxiety related. Furthermore, fish receiving CRF at a dose of 1000 ng became subordinate, whereas all other treatments had no effects on the outcome of dyadic fights. In addition, isolated fish receiving ahCRF had lower brain stem concentrations of 5-hydroxyindoleacetic acid, serotonin, 3,4-dihydroxyphenylacetic acid and dopamine. In conclusion, CRF seems to attenuate competitive ability, and both CRF and UI seem to induce anxiety-like behavior.
Collapse
Affiliation(s)
- Tobias Backström
- Evolutionary Biology Centre, Comparative Physiology, Uppsala University, Norbyvägen 18A, Uppsala, Sweden
| | | | | | | |
Collapse
|
109
|
Volman I, Toni I, Verhagen L, Roelofs K. Endogenous testosterone modulates prefrontal-amygdala connectivity during social emotional behavior. Cereb Cortex 2011; 21:2282-90. [PMID: 21339377 PMCID: PMC3169658 DOI: 10.1093/cercor/bhr001] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
It is clear that the steroid hormone testosterone plays an important role in the regulation of social emotional behavior, but it remains unknown which neural circuits mediate these hormonal influences in humans. We investigated the modulatory effects of endogenous testosterone on the control of social emotional behavior by applying functional magnetic resonance imaging while healthy male participants performed a social approach-avoidance task. This task operationalized social emotional behavior by having participants approach and avoid emotional faces by pulling and pushing a joystick, respectively. Affect-congruent trials mapped the automatic tendency to approach happy faces and avoid angry faces. Affect-incongruent trials required participants to override those automatic action tendencies and select the opposite response (approach-angry, avoid-happy). The social emotional control required by affect-incongruent responses resulted in longer reaction times (RTs) and increased activity at the border of the ventrolateral prefrontal cortex and frontal pole (VLPFC/FP). We show that endogenous testosterone modulates these cerebral congruency effects through 2 mechanisms. First, participants with lower testosterone levels generate larger VLPFC/FP responses during affect-incongruent trials. Second, during the same trials, endogenous testosterone modulates the effective connectivity between the VLPFC/FP and the amygdala. These results indicate that endogenous testosterone influences local prefrontal activity and interregional connectivity supporting the control of social emotional behavior.
Collapse
Affiliation(s)
- Inge Volman
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6500 HB Nijmegen, the Netherlands.
| | | | | | | |
Collapse
|
110
|
van der Borg JA, Beerda B, Ooms M, de Souza AS, van Hagen M, Kemp B. Evaluation of behaviour testing for human directed aggression in dogs. Appl Anim Behav Sci 2010. [DOI: 10.1016/j.applanim.2010.09.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
111
|
Filby AL, Paull GC, Hickmore TF, Tyler CR. Unravelling the neurophysiological basis of aggression in a fish model. BMC Genomics 2010; 11:498. [PMID: 20846403 PMCID: PMC2996994 DOI: 10.1186/1471-2164-11-498] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 09/16/2010] [Indexed: 01/12/2023] Open
Abstract
Background Aggression is a near-universal behaviour with substantial influence on and implications for human and animal social systems. The neurophysiological basis of aggression is, however, poorly understood in all species and approaches adopted to study this complex behaviour have often been oversimplified. We applied targeted expression profiling on 40 genes, spanning eight neurological pathways and in four distinct regions of the brain, in combination with behavioural observations and pharmacological manipulations, to screen for regulatory pathways of aggression in the zebrafish (Danio rerio), an animal model in which social rank and aggressiveness tightly correlate. Results Substantial differences occurred in gene expression profiles between dominant and subordinate males associated with phenotypic differences in aggressiveness and, for the chosen gene set, they occurred mainly in the hypothalamus and telencephalon. The patterns of differentially-expressed genes implied multifactorial control of aggression in zebrafish, including the hypothalamo-neurohypophysial-system, serotonin, somatostatin, dopamine, hypothalamo-pituitary-interrenal, hypothalamo-pituitary-gonadal and histamine pathways, and the latter is a novel finding outside mammals. Pharmacological manipulations of various nodes within the hypothalamo-neurohypophysial-system and serotonin pathways supported their functional involvement. We also observed differences in expression profiles in the brains of dominant versus subordinate females that suggested sex-conserved control of aggression. For example, in the HNS pathway, the gene encoding arginine vasotocin (AVT), previously believed specific to male behaviours, was amongst those genes most associated with aggression, and AVT inhibited dominant female aggression, as in males. However, sex-specific differences in the expression profiles also occurred, including differences in aggression-associated tryptophan hydroxylases and estrogen receptors. Conclusions Thus, through an integrated approach, combining gene expression profiling, behavioural analyses, and pharmacological manipulations, we identified candidate genes and pathways that appear to play significant roles in regulating aggression in fish. Many of these are novel for non-mammalian systems. We further present a validated system for advancing our understanding of the mechanistic underpinnings of complex behaviours using a fish model.
Collapse
Affiliation(s)
- Amy L Filby
- School of Biosciences, University of Exeter, Hatherly Laboratories, Prince of Wales Road, Exeter, Devon EX4 4PS, UK.
| | | | | | | |
Collapse
|
112
|
van Honk J, Harmon-Jones E, Morgan BE, Schutter DJLG. Socially explosive minds: the triple imbalance hypothesis of reactive aggression. J Pers 2010; 78:67-94. [PMID: 20433613 DOI: 10.1111/j.1467-6494.2009.00609.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The psychobiological basis of reactive aggression, a condition characterized by uncontrolled outbursts of socially violent behavior, is unclear. Nonetheless, several theoretical models have been proposed that may have complementary views about the psychobiological mechanisms involved. In this review, we attempt to unite these models and theorize further on the basis of recent data from psychological and neuroscientific research to propose a comprehensive neuro-evolutionary framework: The Triple Imbalance Hypothesis (TIH) of reactive aggression. According to this model, reactive aggression is essentially subcortically motivated by an imbalance in the levels of the steroid hormones cortisol and testosterone (Subcortical Imbalance Hypothesis). This imbalance not only sets a primal predisposition for social aggression, but also down-regulates cortical-subcortical communication (Cortical-Subcortical Imbalance Hypothesis), hence diminishing control by cortical regions that regulate socially aggressive inclinations. However, these bottom-up hormonally mediated imbalances can drive both instrumental and reactive social aggression. The TIH suggests that reactive aggression is differentiated from proactive aggression by low brain serotonergic function and that reactive aggression is associated with left-sided frontal brain asymmetry (Cortical Imbalance Hypothesis), especially observed when the individual is socially threatened or provoked. This triple biobehavioral imbalance mirrors an evolutionary relapse into violently aggressive motivational drives that are adaptive among many reptilian and mammalian species, but may have become socially maladaptive in modern humans.
Collapse
Affiliation(s)
- Jack van Honk
- Department of Psychology, Experimental Psychology, Utrecht University, Heidelberglaan2, 3584 CS Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
113
|
Bakke MJ, Hustoft HK, Horsberg TE. Subclinical effects of saxitoxin and domoic acid on aggressive behaviour and monoaminergic turnover in rainbow trout (Oncorhynchus mykiss). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 99:1-9. [PMID: 20409597 DOI: 10.1016/j.aquatox.2010.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 03/03/2010] [Accepted: 03/23/2010] [Indexed: 05/29/2023]
Abstract
The algal produced neurotoxins saxitoxin and domoic acid may have serious effects on marine life and can be responsible for the intoxication of for instance sea mammals, sea birds and fish. Given that farmed fish cannot escape algal blooms, they may be more susceptible to intoxication than wild stocks. In the present study, subclinical effects of saxitoxin and domoic on aggressive behaviour and monoaminergic systems in the brain of the rainbow trout (Oncorhynchus mykiss) were investigated. The resident-intruder test was used to measure aggression where only the resident fish were subjected to the toxins and analysed for monoamines and their metabolites. The resident-intruder test was carried out on two consecutive days. On day one basal aggression was measured in the four groups. On day two three of the groups were injected with subclinical doses of one of the following: saxitoxin (1.752 microg/kg bw), domoic (0.75 mg/kg bw) or 0.9% saline solution. This was performed 30 min prior to the aggression test. Handling stress and injection affected aggressive behaviour, cortisol and the serotonergic system in telencephalic brain regions. Cortisol levels were elevated in all of the injected groups when compared to the control group. An increase in serotonergic turnover was evident when all injected groups were pooled and compared to the control group. All together this suggests that the handling stress in connection with the injection was similar in all of the three injected groups. In contrast to both the undisturbed control group and the toxin-injected groups, the saline-injected group displayed a reduction in aggressive behaviour which was evident in increased attack latency. Furthermore the domoic injected group displayed more aggressive attacks towards their conspecifics than the saline-injected group. Consequently the two toxins appear to mask the stress induced alteration in aggressive behaviour. Monoamine levels and monoaminergic turnover could not be demonstrated to be directly affected by the two toxins at the given doses in the investigated brain regions (dorsal and ventral parts of telencephalon, optic tectum, locus coeruleus, raphe nucleus, molecular and granular layer of cerebellum). This could indicate that the toxins mediate aggressive behaviour either through other systems than the monoaminergic systems, such as neuroactive amino acids, or that the mediation occurs in other brain regions.
Collapse
Affiliation(s)
- Marit Jørgensen Bakke
- Department of Pharmacology and Toxicology, Norwegian School of Veterinary Science, N-0033 Oslo, Norway.
| | | | | |
Collapse
|
114
|
Chichinadze KN, Domianidze TR, Matitaishvili TT, Chichinadze NK, Lazarashvili AG. Possible Relation of Plasma Testosterone Level to Aggressive Behavior of Male Prisoners. Bull Exp Biol Med 2010; 149:7-9. [DOI: 10.1007/s10517-010-0861-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
115
|
Ling TJ, Summers CH, Renner KJ, Watt MJ. Opponent recognition and social status differentiate rapid neuroendocrine responses to social challenge. Physiol Behav 2010; 99:571-8. [PMID: 20138068 PMCID: PMC2840053 DOI: 10.1016/j.physbeh.2010.01.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 10/13/2009] [Accepted: 01/21/2010] [Indexed: 11/24/2022]
Abstract
Individual social status discriminates rapid neuroendocrine responses to non-social stress in male Anolis carolinensis, but whether such status-influenced reactions are retained in response to subsequent social stress is unknown. Dominant and subordinate males modify their behavioral responses to social challenge according to familiarity of the opponent, suggesting that accompanying neuroendocrine responses may differ according to opponent recognition despite social rank. We examined endocrine and neurochemical correlates of prior social status and opponent recognition during the opening stages of social challenge. Male pairs interacted and established dominant/subordinate status, followed by 3 days separation. Subsequently, subjects were paired with either the same opponent or an unfamiliar male according to rank (dominant with subordinate). After 90 s of social exposure, subjects were caught and brains and plasma collected for measurement of circulating corticosterone and limbic monoamines. Controls included pairs experiencing just one 90 s encounter plus a group of non-interacting subjects. Opponent recognition differentiated status-influenced responses, such that dominant lizards paired with familiar subordinate opponents had increased hippocampal dopamine and epinephrine, but showed increased plasma corticosterone and ventral tegmental area (VTA) norepinephrine when challenged with an unfamiliar opponent. Subordinate lizards encountering familiar opponents also had increased corticosterone, along with decreased hippocampal dopamine and increased VTA epinephrine, but showed no changes in response to an unfamiliar opponent. Such plasticity in status-influenced rapid neuroendocrine responses according to opponent recognition may be necessary for facilitating production of behavioral responses adaptive for particular social contexts, such as encountering a novel versus familiar opponent.
Collapse
Affiliation(s)
- Travis J. Ling
- Department of Biology, University of South Dakota, 414 East Clark St, Vermillion, SD 57069 USA
| | - Cliff H. Summers
- Department of Biology, University of South Dakota, 414 East Clark St, Vermillion, SD 57069 USA
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 East Clark St, Vermillion, SD, USA
| | - Kenneth J. Renner
- Department of Biology, University of South Dakota, 414 East Clark St, Vermillion, SD 57069 USA
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 East Clark St, Vermillion, SD, USA
| | - Michael J. Watt
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 East Clark St, Vermillion, SD, USA
| |
Collapse
|
116
|
Godwin J. Neuroendocrinology of sexual plasticity in teleost fishes. Front Neuroendocrinol 2010; 31:203-16. [PMID: 20176046 PMCID: PMC2885357 DOI: 10.1016/j.yfrne.2010.02.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/12/2010] [Accepted: 02/13/2010] [Indexed: 01/01/2023]
Abstract
The study of sex differences has produced major insights into the organization of animal phenotypes and the regulatory mechanisms generating phenotypic variation from similar genetic templates. Teleost fishes display the greatest diversity of sexual expression among vertebrate animals. This diversity appears to arise from diversity in the timing of sex determination and less functional interdependence among the components of sexuality relative to tetrapod vertebrates. Teleost model systems therefore provide powerful models for understanding gonadal and non-gonadal influences on behavioral and physiological variation. This review addresses socially-controlled sex change and alternate male phenotypes in fishes. These sexual patterns are informative natural experiments that illustrate how variation in conserved neuroendocrine pathways can give rise to a wide range of reproductive adaptations. Key regulatory factors underlying sex change and alternative male phenotypes that have been identified to date include steroid hormones and the neuropeptides GnRH and arginine vasotocin, but genomic approaches are now implicating a diversity of other influences as well.
Collapse
Affiliation(s)
- John Godwin
- Department of Biology, Box 7617, North Carolina State University, Raleigh, NC 27695-7617, USA. <>
| |
Collapse
|
117
|
Neuroendocrine and neurochemical impact of aggressive social interactions in submissive and dominant mice: implications for stress-related disorders. Int J Neuropsychopharmacol 2010; 13:361-72. [PMID: 19545478 DOI: 10.1017/s1461145709990174] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Social conflicts may engender stress-related behavioural and physiological disturbances in the victims of aggression. In addition, stress-like neurochemical changes and ensuing depressive and anxiety symptoms might also be evident in the perpetrators of aggressive acts. The present investigation assessed basal levels of circulating corticosterone and of brain serotonin (5-HT) and norepinephrine (NE) in pre-identified submissive and dominant mice. In addition, brain neurochemical changes were determined following a single or three 15-min aggressive episodes both in submissive mice and in those that dominated the aggressive interplay. Three minutes after single and repeated confrontations, plasma corticosterone levels and 5-HT utilization within the prefrontal cortex (PFC) and hippocampus were increased to a comparable extent in submissive and dominant animals. Interestingly, however, NE utilization within the PFC and hippocampus was augmented to a greater level in submissive mice. These results suggest that 5-HT neuronal functioning was generally responsive to aggressive events, irrespective of social rank, whereas NE neuronal activity within the PFC and hippocampus was more sensitive to the submissive/dominance attributes of the social situation. It is possible that NE and 5-HT variations associated with an aggressive experience contribute to depressive- and anxiety-like manifestations typically observed after such psychosocial stressors, particularly in submissive mice. However, given that 5-HT changes occur irrespective of social rank, these data suggest that a toll is taken on both submissive and dominant mice, leaving them vulnerable to stress-related pathology.
Collapse
|
118
|
Neumann ID, Veenema AH, Beiderbeck DI. Aggression and anxiety: social context and neurobiological links. Front Behav Neurosci 2010; 4:12. [PMID: 20407578 PMCID: PMC2854527 DOI: 10.3389/fnbeh.2010.00012] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Accepted: 03/07/2010] [Indexed: 01/29/2023] Open
Abstract
Psychopathologies such as anxiety- and depression-related disorders are often characterized by impaired social behaviours including excessive aggression and violence. Excessive aggression and violence likely develop as a consequence of generally disturbed emotional regulation, such as abnormally high or low levels of anxiety. This suggests an overlap between brain circuitries and neurochemical systems regulating aggression and anxiety. In this review, we will discuss different forms of male aggression, rodent models of excessive aggression, and neurobiological mechanisms underlying male aggression in the context of anxiety. We will summarize our attempts to establish an animal model of high and abnormal aggression using rats selected for high (HAB) vs. low (LAB) anxiety-related behaviour. Briefly, male LAB rats and, to a lesser extent, male HAB rats show high and abnormal forms of aggression compared with non-selected (NAB) rats, making them a suitable animal model for studying excessive aggression in the context of extremes in innate anxiety. In addition, we will discuss differences in the activity of the hypothalamic–pituitary–adrenal axis, brain arginine vasopressin, and the serotonin systems, among others, which contribute to the distinct behavioural phenotypes related to aggression and anxiety. Further investigation of the neurobiological systems in animals with distinct anxiety phenotypes might provide valuable information about the link between excessive aggression and disturbed emotional regulation, which is essential for understanding the social and emotional deficits that are characteristic of many human psychiatric disorders.
Collapse
Affiliation(s)
- Inga D Neumann
- Department of Behavioural and Molecular Neuroendocrinology, University of Regensburg Regensburg, Germany
| | | | | |
Collapse
|
119
|
Salazar VL, Stoddard PK. Social competition affects electric signal plasticity and steroid levels in the gymnotiform fish Brachyhypopomus gauderio. Horm Behav 2009; 56:399-409. [PMID: 19647742 PMCID: PMC2761502 DOI: 10.1016/j.yhbeh.2009.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 07/14/2009] [Accepted: 07/15/2009] [Indexed: 11/29/2022]
Abstract
Sexually-selected communication signals can be used by competing males to settle contests without incurring the costs of fighting. Steroid regulation of these signals can render them as reliable indicators of a male's physiological state. We investigated how plasticity in electrocommunication signals is driven by social competition for mates, mediated by steroid hormones, and subject to the effects of past social experience. We measured the electric waveform's amplitude and duration and steroid hormone levels of male gymnotiform electric fish (Brachyhypopomus gauderio) following week-long periods of social isolation, and low or high social competition. To quantify the effect of social history on the modulation of the electric signal, six groups of six males experienced all three social conditions but in different order. We found that males differentially modulate their electric signals depending on the order they experienced these conditions. Thus, past social interactions affect both present and future social electric signals. Cortisol levels and the amplitude of the electric signal appeared to track the intensity of competition, while androgen levels and the duration of the electric signal only responded to the presence (low and high competition) or absence (isolation) of a social environment (low and high androgens respectively). In addition, cortisol levels were related to the body size of the males at high social competition. Taken together, these findings suggest that the capacity of males to modulate their signals in response to social competition is regulated by steroids.
Collapse
Affiliation(s)
- Vielka L Salazar
- Department of Biological Sciences, Florida International University, University Park, Miami, FL 33199, USA.
| | | |
Collapse
|
120
|
The effect of increased serotonergic neurotransmission on aggression: a critical meta-analytical review of preclinical studies. Psychopharmacology (Berl) 2009; 205:349-68. [PMID: 19404614 DOI: 10.1007/s00213-009-1543-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 04/08/2009] [Indexed: 12/28/2022]
Abstract
RATIONALE The role of serotonin (5-HT) on aggression has been extensively studied; nonetheless, the role of this neurotransmitter in aggression is still inconclusive. OBJECTIVES The current meta-analytical review investigated the role of increased 5-HT neurotransmission in aggression. METHODS Preclinical studies using serotonin reuptake inhibitors, 5-hydroxytryptophan, L-tryptophan, or serotonin (5-HT) to increase 5-HT levels were included in this meta-analysis. An overall effect of serotonin on aggression was calculated, and the role of several moderator variables was analyzed. RESULTS A total of 218 effect sizes revealed that increased 5-HT had an overall significant inhibitory effect on aggression (r = 0.3). The results showed that increased 5-HT had the strongest inhibitory effect on aggression when (1) a specific strain or species (e.g., Long Evans) was used; (2) aggression was offensive or predatory and/or induced by administration of 5,7-dihydroxytryptamine or p-chlorophenylalanine; (3) zimelidine, sertraline, L-tryptophan, citalopram, or 5-HT were used to increase 5-HT; (4) treatment was acute; (5) long chronic treatment durations were used; and (6) time between last injection and behavior testing was within 8 h before or after peak plasma concentration of drug. In contrast, the results revealed that increased-5-HT-facilitated aggression could be predicted when (1) Wistar rats, (2) social isolation or stress to induce aggression, and/or (3) animals treated for less than 3 weeks were used. CONCLUSIONS Although 5-HT has an overall inhibitory effect on aggression, the animal's genetic background, drug, treatment time, aggression inducing paradigm, and aggression type are critical variables that influence and modify this effect.
Collapse
|
121
|
Lorenzi V, Carpenter RE, Summers CH, Earley RL, Grober MS. Serotonin, social status and sex change in the bluebanded goby Lythrypnus dalli. Physiol Behav 2009; 97:476-83. [PMID: 19345236 PMCID: PMC2683889 DOI: 10.1016/j.physbeh.2009.03.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Revised: 03/23/2009] [Accepted: 03/26/2009] [Indexed: 10/20/2022]
Abstract
In a variety of vertebrates, highly aggressive individuals tend to have high social status and low serotonergic function. In the sex changing fish Lythrypnus dalli, serotonin (5-HT) may be involved as a mediator between the social environment and the reproductive system because social status is a critical cue in regulating sex change. Subordination inhibits sex change in L. dalli, and it is associated with higher serotonergic activity in other species. We tested the hypothesis that high serotonergic activity has an inhibitory effect on sex change. In a social situation permissive to sex change, we administered to the dominant female implants containing the serotonin precursor 5-hydroxytryptophan (5-HTP). In a social situation not conducive to sex change, we administered either the serotonin synthesis inhibitor p-chlorophenylalanine (PCPA) or the 5-HT(1A) receptor antagonist p-MPPI. After three weeks we used HPLC to measure brain levels of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA). We also performed PCPA, p-MPPI and fluoxetine injections in size-matched pairs of females to assess its effect on dominance status. Males and newly sex changed fish showed a trend for higher levels of 5-HIAA and 5-HT/5-HIAA ratio than females. The different implants treatments did not affect the probability of sex change. Interestingly, this species does not seem to fit the pattern seen in other vertebrates where dominant individuals have lower serotonergic activity than subordinates.
Collapse
Affiliation(s)
- Varenka Lorenzi
- Department of Biology, Georgia State University & Center for Behavioral Neuroscience, Atlanta, GA 30303, USA.
| | | | | | | | | |
Collapse
|
122
|
Shaw JC, Korzan WJ, Carpenter RE, Kuris AM, Lafferty KD, Summers CH, Øverli Ø. Parasite manipulation of brain monoamines in California killifish (Fundulus parvipinnis) by the trematode Euhaplorchis californiensis. Proc Biol Sci 2009; 276:1137-46. [PMID: 19129105 DOI: 10.1098/rspb.2008.1597] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
California killifish (Fundulus parvipinnis) infected with the brain-encysting trematode Euhaplorchis californiensis display conspicuous swimming behaviours rendering them more susceptible to predation by avian final hosts. Heavily infected killifish grow and reproduce normally, despite having thousands of cysts inside their braincases. This suggests that E. californiensis affects only specific locomotory behaviours. We hypothesised that changes in the serotonin and dopamine metabolism, essential for controlling locomotion and arousal may underlie this behaviour modification. We employed micropunch dissection and HPLC to analyse monoamine and monoamine metabolite concentrations in the brain regions of uninfected and experimentally infected fish. The parasites exerted density-dependent changes in monoaminergic activity distinct from those exhibited by fish subjected to stress. Specifically, E. californiensis inhibited a normally occurring, stress-induced elevation of serotonergic metabolism in the raphae nuclei. This effect was particularly evident in the experimentally infected fish, whose low-density infections were concentrated on the brainstem. Furthermore, high E. californiensis density was associated with increased dopaminergic activity in the hypothalamus and decreased serotonergic activity in the hippocampus. In conclusion, the altered monoaminergic metabolism may explain behavioural differences leading to increased predation of the infected killifish by their final host predators.
Collapse
Affiliation(s)
- J C Shaw
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106-7130, USA.
| | | | | | | | | | | | | |
Collapse
|
123
|
Backström T, Winberg S. Arginine–vasotocin influence on aggressive behavior and dominance in rainbow trout. Physiol Behav 2009; 96:470-5. [DOI: 10.1016/j.physbeh.2008.11.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Revised: 10/24/2008] [Accepted: 11/26/2008] [Indexed: 10/21/2022]
|
124
|
Ling TJ, Forster GL, Watt MJ, Korzan WJ, Renner KJ, Summers CH. Social status differentiates rapid neuroendocrine responses to restraint stress. Physiol Behav 2009; 96:218-32. [DOI: 10.1016/j.physbeh.2008.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 10/01/2008] [Accepted: 10/02/2008] [Indexed: 11/25/2022]
|
125
|
|
126
|
Carpenter RE, Korzan WJ, Bockholt C, Watt MJ, Forster GL, Renner KJ, Summers CH. Corticotropin releasing factor influences aggression and monoamines: modulation of attacks and retreats. Neuroscience 2009; 158:412-25. [PMID: 18992791 PMCID: PMC2653453 DOI: 10.1016/j.neuroscience.2008.10.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 10/09/2008] [Accepted: 10/17/2008] [Indexed: 11/20/2022]
Abstract
Salmonids establish social hierarchies as a result of aggressive social interactions. The establishment of dominant or subordinate status is strongly linked to neuroendocrine responses mediated through the stress axis. In this study, we tested the effects of introcerebroventricular (icv) corticotropin releasing factor (CRF) on the behavioral outcome, plasma cortisol and monoamine function in trout subjected to a socially aggressive encounter. Rainbow trout were treated with an icv injection of artificial cerebrospinal fluid (aCSF), 500 or 2000 ng ovine CRF, or not injected. Fish were allowed to interact with a similarly sized conspecific for 15 min. Following the behavioral interaction, plasma cortisol and central monoamine concentrations were analyzed. Trout treated with CRF were victorious in approximately 66% of the aggressive encounters against aCSF-treated opponents. Trout injected with CRF exhibited a reduction in the total number of attacks and decreased latency to attack. When trout were divided into winners and losers, only victorious CRF-treated fish exhibited a reduced latency to attack and fewer retreats. Social stress increased cortisol levels in both winners and losers of aggressive interaction. This effect was enhanced with the additional stress incurred from icv injection of aCSF. However, icv CRF in addition to social stress decreased plasma cortisol in both winners and losers. While aggression stimulated significant changes in serotonergic and dopaminergic activity, the magnitude and direction were dependent on limbic brain region, CRF dose, and outcome of social aggression. With broad effects on aggressive behavior, anxiety, stress responsiveness, and central monoaminergic activity, CRF plays an important role in modulating the behavioral components of social interaction.
Collapse
Affiliation(s)
- Russ E. Carpenter
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069 USA
| | - Wayne J. Korzan
- Department of Cell Biology, Harvard University, Boston, MA 94305 USA
| | - Craig Bockholt
- U.S. Fish and Wildlife Service, Gavins Point National Fish Hatchery, Yankton, SD 57078 USA
| | - Michael J. Watt
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069 USA
| | - Gina L. Forster
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069 USA
| | - Kenneth J. Renner
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069 USA
| | - Cliff H. Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069 USA
| |
Collapse
|
127
|
Prunet P, Cairns MT, Winberg S, Pottinger TG. Functional Genomics of Stress Responses in Fish. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/10641260802341838] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
128
|
Pérez-Neri I, Méndez-Sánchez I, Montes S, Ríos C. Acute dehydroepiandrosterone treatment exerts different effects on dopamine and serotonin turnover ratios in the rat corpus striatum and nucleus accumbens. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:1584-9. [PMID: 18585426 DOI: 10.1016/j.pnpbp.2008.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 06/05/2008] [Accepted: 06/05/2008] [Indexed: 01/12/2023]
Abstract
It has been shown that the steroid dehydroepiandrosterone (DHEA) interacts with dopamine (DA) and serotonin (5-HT) neurotransmitter systems, which are involved in the pathophysiology of neurological and psychiatric diseases such as Parkinson's disease as well as mood and psychotic disorders. To explore if DHEA modulates DA and 5-HT metabolism we analyzed the content of both neurotransmitters and their metabolites in the rat corpus striatum (CS) and nucleus accumbens (NAc) 2 h after steroid administration (30, 60 and 120 mg/kg i.p.). DHEA treatment significantly reduced DA turnover (up to 33%) in the CS, but increased 5-HT turnover (up to 76%) in both regions. Those effects could be relevant to mood and neurodegenerative disorders.
Collapse
Affiliation(s)
- Iván Pérez-Neri
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, Tlalpan, Mexico City 14269, Mexico
| | | | | | | |
Collapse
|
129
|
Chichinadze K, Chichinadze N. Stress-induced increase of testosterone: Contributions of social status and sympathetic reactivity. Physiol Behav 2008; 94:595-603. [DOI: 10.1016/j.physbeh.2008.03.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 03/25/2008] [Accepted: 03/27/2008] [Indexed: 01/01/2023]
|
130
|
Smith GT, Combs N. Serotonergic activation of 5HT1A and 5HT2 receptors modulates sexually dimorphic communication signals in the weakly electric fish Apteronotus leptorhynchus. Horm Behav 2008; 54:69-82. [PMID: 18336816 DOI: 10.1016/j.yhbeh.2008.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 01/20/2008] [Accepted: 01/24/2008] [Indexed: 11/17/2022]
Abstract
Serotonin modulates agonistic and reproductive behavior across vertebrate species. 5HT(1A) and 5HT(1B) receptors mediate many serotonergic effects on social behavior, but other receptors, including 5HT(2) receptors, may also contribute. We investigated serotonergic regulation of electrocommunication signals in the weakly electric fish Apteronotus leptorhynchus. During social interactions, these fish modulate their electric organ discharges (EODs) to produce signals known as chirps. Males chirp more than females and produce two chirp types. Males produce high-frequency chirps as courtship signals; whereas both sexes produce low-frequency chirps during same-sex interactions. Serotonergic innervation of the prepacemaker nucleus, which controls chirping, is more robust in females than males. Serotonin inhibits chirping and may contribute to sexual dimorphism and individual variation in chirping. We elicited chirps with EOD playbacks and pharmacologically manipulated serotonin receptors to determine which receptors regulated chirping. We also asked whether serotonin receptor activation generally modulated chirping or more specifically targeted particular chirp types. Agonists and antagonists of 5HT(1B/1D) receptors (CP-94253 and GR-125743) did not affect chirping. The 5HT(1A) receptor agonist 8OH-DPAT specifically increased production of high-frequency chirps. The 5HT(2) receptor agonist DOI decreased chirping. Receptor antagonists (WAY-100635 and MDL-11939) opposed the effects of their corresponding agonists. These results suggest that serotonergic inhibition of chirping may be mediated by 5HT(2) receptors, but that serotonergic activation of 5HT(1A) receptors specifically increases the production of high-frequency chirps. The enhancement of chirping by 5HT(1A) receptors may result from interactions with cortisol and/or arginine vasotocin, which similarly enhance chirping and are influenced by 5HT(1A) activity in other systems.
Collapse
Affiliation(s)
- G Troy Smith
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | |
Collapse
|
131
|
Brelin D, Petersson E, Dannewitz J, Dahl J, Winberg S. Frequency distribution of coping strategies in four populations of brown trout (Salmo trutta). Horm Behav 2008; 53:546-56. [PMID: 18280474 DOI: 10.1016/j.yhbeh.2007.12.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 12/20/2007] [Accepted: 12/20/2007] [Indexed: 11/23/2022]
Abstract
In a challenging situation some animals respond by active avoidance, aggression and an activation of the sympathetic nervous system whereas others respond by immobility, low levels of aggression and a predominant adrenocortical stress response. When consistent over time and across situations such inter-individual differences in behavioural and physiological stress responses are referred to as stress coping strategies. In a previous study we reported the existence of two distinct stress coping strategies in a sea-ranched brown trout (Salmo trutta) population. Using the same method, we here show that four brown trout populations with different origin, but reared under identical conditions, differ in their endocrine stress response, behaviour during hypoxia and aggression. Further more, if individuals are classified as high- and low responsive based on post-stress blood plasma noradrenalin levels (indicator of sympathetic reactivity) the frequency distribution shows that populations with hatchery origin are biased towards having higher frequencies of high responsive individuals. However, the number of high responsive trout ranges from 14-48% in the different populations which shows that generally the frequency is biased towards lower levels of high responsive individuals. We discuss different frequency-dependent mechanisms that maintain multiple phenotypes in populations and speculate about differences in selection regime among the studied populations.
Collapse
Affiliation(s)
- Daniel Brelin
- Comparative Physiology/Department of Physiology and Developmental Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
132
|
Earley RL, Hsu Y. Reciprocity between endocrine state and contest behavior in the killifish, Kryptolebias marmoratus. Horm Behav 2008; 53:442-51. [PMID: 18191133 DOI: 10.1016/j.yhbeh.2007.11.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 11/03/2007] [Accepted: 11/27/2007] [Indexed: 10/22/2022]
Abstract
Given the dramatic behavioral effects of winning and losing contests, and pronounced changes in stress and sex steroid hormones post-fight, it is reasonable to suppose that these hormones also dictate future behavior. We sampled water-borne cortisol, testosterone (T), and 11-ketotestosterone (KT) before and after contests in the mangrove killifish, Kryptolebias marmoratus, to determine how endogenous steroid hormone levels might predict and respond to contest dynamics or success. Pre-fight cortisol related negatively, and pre-fight T related positively to contest initiation and winning, particularly in the smaller opponent. In the pairs where a larger fish won the contest, winners with higher pre-fight T and lower pre-fight cortisol delivered more attacks to the losers. Contest duration and escalation influenced post-fight hormone concentrations primarily in losers. Escalation significantly increased post-fight cortisol, T, and KT for losers but not for winners. However, winners that attacked losers at higher rates had higher levels of post-fight cortisol. Losers also demonstrate the most consistent post-fight hormone responses, particularly to contest escalation and duration. Despite the bidirectional relationship between hormones and contest behavior, we found no overall mean differences in pre- or post-fight cortisol, T, or KT between eventual winners and losers. Thus, it is evident that the categorical states of winner and loser cannot alone reveal the complex, reciprocal associations between endocrine systems and social behavior.
Collapse
Affiliation(s)
- Ryan L Earley
- Department of Biology, California State University Fresno, 2555 East San Ramon Avenue, M/S SB73, Fresno, CA 93740, USA
| | | |
Collapse
|
133
|
Allee SJ, Markham MR, Salazar VL, Stoddard PK. Opposing actions of 5HT1A and 5HT2-like serotonin receptors on modulations of the electric signal waveform in the electric fish Brachyhypopomus pinnicaudatus. Horm Behav 2008; 53:481-8. [PMID: 18206154 PMCID: PMC2561899 DOI: 10.1016/j.yhbeh.2007.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 12/01/2007] [Accepted: 12/04/2007] [Indexed: 12/12/2022]
Abstract
Serotonin (5-HT) is an indirect modulator of the electric organ discharge (EOD) in the weakly electric gymnotiform fish, Brachyhypopomus pinnicaudatus. Injections of 5-HT enhance EOD waveform "masculinity", increasing both waveform amplitude and the duration of the second phase. This study investigated the pharmacological identity of 5-HT receptors that regulate the electric waveform and their effects on EOD amplitude and duration. We present evidence that two sets of serotonin receptors modulate the EOD in opposite directions. We found that the 5HT1AR agonist 8-OH-DPAT diminishes EOD duration and amplitude while the 5HT1AR antagonist WAY100635 increases these parameters. In contrast, the 5HT2R agonist alpha-Me-5-HT increases EOD amplitude but not duration, yet 5-HT-induced increases in EOD duration can be inhibited by blocking 5HT2A/2C-like receptors with ketanserin. These results show that 5-HT exerts bi-directional control of EOD modulations in B. pinnicaudatus via action at receptors similar to mammalian 5HT1A and 5HT2 receptors. The discordant amplitude and duration response suggests separate mechanisms for modulating these waveform parameters.
Collapse
Affiliation(s)
- Susan J Allee
- Department of Biological Sciences, Florida International University, Miami FL 33199, USA.
| | | | | | | |
Collapse
|
134
|
Sharpe JC, Mitchell JS, Lin L, Sedoglavich N, Blaikie RJ. Gold nanohole array substrates as immunobiosensors. Anal Chem 2008; 80:2244-9. [PMID: 18288819 DOI: 10.1021/ac702555r] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A gold nanohole array is functionalized with a cortisol thiol derivative, and binding to a monoclonal antibody is conveniently detected using the sensitive shift in the 1060 nm transmission peak of the array. Detection is also enhanced 3-fold by the application of a secondary antibody-gold nanoparticle conjugate. This regenerable response represents a more sensitive shift than that obtained previously for higher affinity binding and opens the way to application of nanohole arrays in immunobiosensing of important biomolecules.
Collapse
Affiliation(s)
- John C Sharpe
- The Horticulture and Food Research Institute of New Zealand, East Street, Private Bag 3123, Hamilton 3240, New Zealand.
| | | | | | | | | |
Collapse
|
135
|
Abstract
Electric fish produce weak electric fields to image their world in darkness and to communicate with potential mates and rivals. Eavesdropping by electroreceptive predators exerts selective pressure on electric fish to shift their signals into less-detectable high-frequency spectral ranges. Hypopomid electric fish evolved a signal-cloaking strategy that reduces their detectability by predators in the lab (and thus presumably their risk of predation in the field). These fish produce broad-frequency electric fields close to the body, but the heterogeneous local fields merge over space to cancel the low-frequency spectrum at a distance. Mature males dynamically regulate this cloaking mechanism to enhance or suppress low-frequency energy. The mechanism underlying electric-field cloaking involves electrogenic cells that produce two independent action potentials. In a unique twist, these cells orient sodium and potassium currents in the same direction, potentially boosting their capabilities for current generation. Exploration of such evolutionary inventions could aid the design of biogenerators to power implantable medical devices, an ambition that would benefit from the complete genome sequence of a gymnotiform fish.
Collapse
Affiliation(s)
- PHILIP K. STODDARD
- Philip K. Stoddard is a professor, and Michael R. Markham is a research associate, in the Department of Biological Sciences at Florida International University in Miami. They study the evolution, neurobiology, and behavior of communication
| | - MICHAEL R. MARKHAM
- Philip K. Stoddard is a professor, and Michael R. Markham is a research associate, in the Department of Biological Sciences at Florida International University in Miami. They study the evolution, neurobiology, and behavior of communication
| |
Collapse
|
136
|
Cordero MI, Sandi C. Stress amplifies memory for social hierarchy. Front Neurosci 2007; 1:175-84. [PMID: 18982127 PMCID: PMC2518054 DOI: 10.3389/neuro.01.1.1.013.2007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 09/01/2007] [Indexed: 01/01/2023] Open
Abstract
Individuals differ in their social status and societies in the extent of social status differences among their members. There is great interest in understanding the key factors that contribute to the establishment of social dominance structures. Given that stress can affect behavior and cognition, we hypothesized that, given equal opportunities to become either dominant or submissive, stress experienced by one of the individuals during their first encounter would determine the long-term establishment of a social hierarchy by acting as a two-stage rocket: (1) by influencing the rank achieved after a social encounter and (2) by facilitating and/or promoting a long-term memory for the specific hierarchy. Using a novel model for the assessment of long-term dominance hierarchies in rats, we present here the first evidence supporting such hypothesis. In control conditions, the social rank established through a first interaction and food competition test between two male rats is not maintained when animals are confronted 1 week later. However, if one of the rats is stressed just before their first encounter, the dominance hierarchy developed on day 1 is still clearly observed 1 week later, with the stressed animal becoming submissive (i.e., looser in competition tests) in both social interactions. Our findings also allow us to propose that stress potentiates a hierarchy-linked recognition memory between "specific" individuals through mechanisms that involve de novo protein synthesis. These results implicate stress among the key mechanisms contributing to create social imbalance and highlight memory mechanisms as key mediators of stress-induced long-term establishment of social rank.
Collapse
Affiliation(s)
- María Isabel Cordero
- Laboratory of Behavioural Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de LausanneSwitzerland
| | - Carmen Sandi
- Laboratory of Behavioural Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de LausanneSwitzerland
| |
Collapse
|
137
|
Korzan WJ, Höglund E, Watt MJ, Forster GL, Øverli Ø, Lukkes JL, Summers CH. Memory of opponents is more potent than visual sign stimuli after social hierarchy has been established. Behav Brain Res 2007; 183:31-42. [PMID: 17602761 PMCID: PMC3889489 DOI: 10.1016/j.bbr.2007.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 04/27/2007] [Accepted: 05/21/2007] [Indexed: 10/23/2022]
Abstract
During agonistic interactions between male Anolis carolinensis, perception of a visual sign stimulus (darkened eyespots) not only inhibits aggression and promotes initial attainment of dominant social status, but also evokes distinct neuroendocrine responses in each opponent. This study was designed to examine the effect of eyespot manipulation on behavior and social rank during a second interaction between opponents that had previously established a natural dyadic social hierarchy. Prior to a second interaction, eyespots of familiar size-matched combatants were manipulated to reverse information conveyed by this visual signal. Eyespots on the previously dominant male were masked with green paint to indicate low aggression and social status. Previously subordinate males had their eyespots permanently marked with black paint to convey high aggression and status. Opponents were then re-paired for a second 10 min interaction following either 1 or 3 days of separation. Aggression was generally decreased and social status between pairs remained reasonably consistent. Unlike rapidly activated monoaminergic activity that occurs following the initial pairing, most brain areas sampled were not affected when animals were re-introduced, regardless of visual signal reversal or length of separation between interactions. However in males with "normal" eyespot color, dominant males had reduced serotonergic activity in CA(3) and raphé, while subordinate males exhibited elevated CA(3) dopaminergic activity. Reversing eyespot color also reversed serotonergic activity in raphé and dopaminergic activity in CA(3) after 3 days of separation. The results suggest that males remember previous opponents, and respond appropriately to their previous social rank in spite of eyespot color.
Collapse
Affiliation(s)
- Wayne J. Korzan
- Biological Sciences, Stanford University, Stanford, CA 94305
| | - Erik Höglund
- Danish Institute for Fisheries Research, Department of Marine Ecology and Aquaculture, North Sea Center, Postbox 101, DK-9850 Hirtshals, Denmark
| | - Michael J. Watt
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
| | - Gina L. Forster
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
| | - Øyvind Øverli
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, PO Box 5003, N-1432 Ås, Norway
| | - Jodi L. Lukkes
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
| | - Cliff H. Summers
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
- Department of Biology, University of South Dakota, Vermillion, SD 57069
| |
Collapse
|
138
|
Korzan WJ, Summers CH. Behavioral diversity and neurochemical plasticity: selection of stress coping strategies that define social status. BRAIN, BEHAVIOR AND EVOLUTION 2007; 70:257-66. [PMID: 17914257 DOI: 10.1159/000105489] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Social interactions include a variety of stimulating but challenging factors that are the basis for strategies that allow individuals to cope with novel or familiar stressful situations. Evolutionarily conserved strategies have been identified that reflect specific behavioral and physiological identities. In this review we discuss a unique model for social stress in the lizard Anolis carolinensis, which has characteristics amenable to an investigation of individual differences in behavioral responses via central and sympathetic neurochemical adaptation. Profiles of proactive and reactive phenotypes of male A. carolinensis are relatively stable, yet retain limited flexibility that allows for the development of the social system over time. For male A. carolinensis, the celerity of social signal expression and response translate into future social standing. In addition, proactive aggressive, courtship, and feeding behaviors also predict social rank, but are not as important as prior interactions and memories of previous opponents to modify behavioral output and affect social status. The central neurotransmitters dopamine and serotonin, and the endocrine stress axis (HPA) appear to be the fundamental link to adaptive stress coping strategies during social interactions. Only small adaptations to these neural and endocrine systems are necessary to produce the variability measured in behavioral responses to stressful social interactions. These neuroendocrine factors are also manifest in responses to other stimuli and form the basis of heritable strategies for coping with stress.
Collapse
Affiliation(s)
- Wayne J Korzan
- Department of Biological Sciences, Neuroscience Program, Stanford University, Stanford, CA 94305-5020, USA.
| | | |
Collapse
|
139
|
Sørensen C, Øverli Ø, Summers CH, Nilsson GE. Social Regulation of Neurogenesis in Teleosts. BRAIN, BEHAVIOR AND EVOLUTION 2007; 70:239-46. [PMID: 17914255 DOI: 10.1159/000105487] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Salmonid fishes such as the rainbow trout (Oncorhynchus mykiss) are frequently used to study behavioral and neuroendocrine effects of socially induced stress. A predictable aggressive response to territorial intrusion, a well described neuroanatomy, and many essential similarities in the stress response in fishes and other vertebrates are among the advantages of this comparative model. One conspicuous difference when compared to mammals, however, is that in teleost fish and other non-mammalian vertebrates, neurogenesis persists into adulthood to a much higher degree. Very little is known about the functional significance of individual differences in the rate of brain cell proliferation in fish, or whether structural changes in the fish brain are influenced by the social environment. In this paper we discuss the observation that brain cell proliferation is reduced in subordinate fish, focusing in particular on whether such individual variation reflects a difference in coping style or is indeed a response to social interactions.
Collapse
|
140
|
Verbeek P, Iwamoto T, Murakami N. Variable stress-responsiveness in wild type and domesticated fighting fish. Physiol Behav 2007; 93:83-8. [PMID: 17884114 DOI: 10.1016/j.physbeh.2007.08.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 07/30/2007] [Accepted: 08/02/2007] [Indexed: 11/30/2022]
Abstract
We combined behavioral and physiological measures to compare coping style in wild-type Betta splendens and a domesticated strain selectively bred for sports fighting. We showed previously that the fighter strain is more aggressive than the wild type during experimental conditions that most closely resemble an actual fight. We predicted that compared to the wild type, the fighter strain would show a more proactive coping style, characterized by lesser cortisol and greater sympathetic responses to non-social challenges. We introduced males to an unfamiliar environment and spatial confinement as challenges that may resemble some of those that B. splendens may encounter in its natural habitat. We developed a non-invasive stress assay that enables repeated individual measures of water-borne cortisol. We estimated sympathetic activation through opercular beat rate and recorded the duration of behavioral immobility. We found that exposure to an unfamiliar environment raised cortisol levels in the wild type but not in the fighter strain and that confinement raised cortisol levels in both. In both strains opercular beat rates were significantly reduced during the latter stages of confinement compared to during the early stages. The fighter strain, but not the wild type, adopted a behavioral strategy of immobility from the very beginning of confinement.
Collapse
Affiliation(s)
- Peter Verbeek
- Miyazaki International College, 1405 Kano, Kiyotake-cho, Miyazaki 889-1605, Japan.
| | | | | |
Collapse
|
141
|
Clotfelter ED, O'Hare EP, McNitt MM, Carpenter RE, Summers CH. Serotonin decreases aggression via 5-HT1A receptors in the fighting fish Betta splendens. Pharmacol Biochem Behav 2007; 87:222-31. [PMID: 17553555 DOI: 10.1016/j.pbb.2007.04.018] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 04/18/2007] [Accepted: 04/26/2007] [Indexed: 11/29/2022]
Abstract
The role of the monoamine neurotransmitter serotonin (5-HT) in the modulation of conspecific aggression in the fighting fish (Betta splendens) was investigated using pharmacological manipulations. We used a fish's response to its mirror image as our index of aggressive behavior. We also investigated the effects of some manipulations on monoamine levels in the B. splendens brain. Acute treatment with 5-HT and with the 5-HT1A receptor agonist 8-OH-DPAT both decreased aggressive behavior; however, treatment with the 5-HT1A receptor antagonist WAY-100635 did not increase aggression. Chronic treatment with the selective serotonin reuptake inhibitor fluoxetine caused no significant changes in aggressive behavior and a significant decline in 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) concentrations. Treatment with the serotonin synthesis inhibitor p-chlorophenylalanine resulted in no change in aggression, yet serotonergic activity decreased significantly. Finally, a diet supplemented with L-tryptophan (Trp), the precursor to 5-HT, showed no consistent effects on aggressive behavior or brain monoamine concentrations. These results suggest a complex role for serotonin in the expression of aggression in teleost fishes, and that B. splendens may be a useful model organism in pharmacological and toxicological studies.
Collapse
Affiliation(s)
- Ethan D Clotfelter
- Department of Biology, Amherst College, Amherst, MA 01002, United States.
| | | | | | | | | |
Collapse
|
142
|
Bell AM, Backström T, Huntingford FA, Pottinger TG, Winberg S. Variable neuroendocrine responses to ecologically-relevant challenges in sticklebacks. Physiol Behav 2007; 91:15-25. [PMID: 17321556 DOI: 10.1016/j.physbeh.2007.01.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 01/17/2007] [Accepted: 01/24/2007] [Indexed: 11/26/2022]
Abstract
Variable neuroendocrine responses to ecologically-relevant challenges in sticklebacks. PHYSIOL BEHAV 00(0) 000-000, 2006. Here, we compare the behavioral, endocrine and neuroendocrine responses of individual sticklebacks exposed to either an unfamiliar conspecific or to a predator. We found that the two stressors elicited a similar hypothalamic-pituitary-interrenal response as assessed by whole-body concentrations of cortisol, but produced quite different patterns of change in brain monoamine and monoamine metabolite content as assessed by concentrations of serotonin (5-HT), dopamine (DA), norepinephrine (NE) and the monoamine metabolites 5-hydroxyindole acetic acid (5-HIAA), homovanillic acid (HVA) and 3-4-dihydroxyphenylacetic acid (DOPAC). For example, relative to baseline levels, NE levels were elevated in individuals exposed to a predator but were lower in individuals confronted by a challenging conspecific. Levels of monoamine neurotransmitters in specific regions of the brain showed extremely close links with behavioral characteristics. Frequency of attacking a conspecific and inspecting a predator were both positively correlated with concentrations of NE. However, whereas serotonin was negatively correlated with frequency of attacking a conspecific, it was positively associated with predator inspection. The data indicate that the qualitative and quantitative nature of the neuroendocrine stress response of sticklebacks varies according to the nature of the stressor, and that interindividual variation in behavioural responses to challenge are reflected by neuroendocrine differences.
Collapse
Affiliation(s)
- Alison M Bell
- Integrative Biology, University of Illinois at Urbana-Champaign, 505 South Goodwin Ave., Urbana, IL 61801, USA.
| | | | | | | | | |
Collapse
|
143
|
Ronan PJ, Gaikowski MP, Hamilton SJ, Buhl KJ, Summers CH. Ammonia causes decreased brain monoamines in fathead minnows (Pimephales promelas). Brain Res 2007; 1147:184-91. [PMID: 17362882 DOI: 10.1016/j.brainres.2007.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Revised: 01/31/2007] [Accepted: 02/06/2007] [Indexed: 11/27/2022]
Abstract
Hyperammonemia, arising from variety of disorders, leads to severe neurological dysfunction. The mechanisms of ammonia toxicity in brain are not completely understood. This study investigated the effects of ammonia on monoaminergic systems in brains of fathead minnows (Pimephales promelas). Fish serve as a good model system to investigate hyperammonemic effects on brain function since no liver manipulations are necessary to increase endogenous ammonia concentrations. Using high performance liquid chromatography with electrochemical detection, monoamines and some associated metabolites were measured from whole brain homogenate. Adult males were exposed for 48 h to six different concentrations of ammonia (0.01-2.36 mg/l unionized) which bracketed the 96-h LC(50) for this species. Ammonia concentration-dependent decreases were found for the catecholamines (norepinephrine and dopamine) and the indoleamine serotonin (5-HT). After an initial increase in the 5-HT precursor 5-hydroxytryptophan it too decreased with increasing ammonia concentrations. There were also significant increases in the 5-HIAA/5-HT and DOPAC/DA ratios, often used as measures of turnover. There were no changes in epinephrine (Epi) or monoamine catabolites (DOPAC, 5-HIAA) at any ammonia concentrations tested. Results suggest that ammonia causes decreased synthesis while also causing increased release and degradation. Increased release may underlie behavioral reactions to ammonia exposure in fish. This study adds weight to a growing body of evidence demonstrating that ammonia leads to dysfunctional monoaminergic systems in brain which may underlie neurological symptoms associated with human disorders such as hepatic encephalopathy.
Collapse
|