101
|
Gangwar RS, Rajagopalan S, Natarajan R, Deiuliis JA. Noncoding RNAs in Cardiovascular Disease: Pathological Relevance and Emerging Role as Biomarkers and Therapeutics. Am J Hypertens 2018; 31:150-165. [PMID: 29186297 DOI: 10.1093/ajh/hpx197] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022] Open
Abstract
Noncoding RNAs (ncRNA) include a diverse range of functional RNA species-microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) being most studied in pathophysiology. Cardiovascular morbidity is associated with differential expression of myriad miRNAs; miR-21, miR-155, miR-126, miR-146a/b, miR-143/145, miR-223, and miR-221 are the top 9 most reported miRNAs in hypertension and atherosclerotic disease. A single miRNA may have hundreds of messenger RNA targets, which makes a full appreciation of the physiologic ramifications of such broad-ranging effects a challenge. miR-21 is the most prominent ncRNA associated with hypertension and atherosclerotic disease due to its role as a "mechano-miR", responding to arterial shear stresses. "Immuno-miRs", such as miR-155 and miR-223, affect cardiovascular disease (CVD) via regulation of hematopoietic cell differentiation, chemotaxis, and activation in response to many pro-atherogenic stimuli. "Myo-miRs", such as miR-1 and miR-133, affect cardiac muscle plasticity and remodeling in response to mechanical overload. This in-depth review analyzes observational and experimental reports of ncRNAs in CVD, including future applications of ncRNA-based strategies in diagnosis, prediction (e.g., survival and response to small molecule therapy), and biologic therapy.
Collapse
Affiliation(s)
- Roopesh S Gangwar
- Cardiovascular Research Institute (CVRI), Case Western Reserve University, Cleveland, Ohio, USA
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute (CVRI), Case Western Reserve University, Cleveland, Ohio, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Jeffrey A Deiuliis
- Cardiovascular Research Institute (CVRI), Case Western Reserve University, Cleveland, Ohio, USA
- Department of Medicine, Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
102
|
Regazzi R. MicroRNAs as therapeutic targets for the treatment of diabetes mellitus and its complications. Expert Opin Ther Targets 2017; 22:153-160. [DOI: 10.1080/14728222.2018.1420168] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
103
|
Cheng Y, Wei Z, Xie S, Peng Y, Yan Y, Qin D, Liu S, Xu Y, Li G, Zhang L. Alleviation of Toxicity Caused by Overactivation of Pparα through Pparα-Inducible miR-181a2. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 9:195-206. [PMID: 29246298 PMCID: PMC5645307 DOI: 10.1016/j.omtn.2017.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 11/16/2022]
Abstract
Widely varied compounds, including certain plasticizers, hypolipidemic drugs (e.g., ciprofibrate, fenofibrate, WY-14643, and clofibrate), agrochemicals, and environmental pollutants, are peroxisome proliferators (PPs). Appropriate dose of PPs causes a moderate increase in the number and size of peroxisomes and the expression of genes encoding peroxisomal lipid-metabolizing enzymes. However, high-dose PPs cause varied harmful effects. Chronic administration of PPs to mice and rats results in hepatomegaly and ultimately carcinogenesis. Nuclear receptor protein peroxisome proliferator-activated receptor-α (Pparα) was shown to be required for this process. However, biological adaptations to minimize this risk are poorly understood. In this study, we found that miR-181a2 expression was induced by the Pparα agonist WY-14643. Moreover, exogenous expression of miR-181a-5p dramatically alleviated the cell toxicity caused by overactivation of Pparα. Further studies showed that miR-181a-5p directly targeted the Pparα 3' untranslated region and depressed the Pparα protein level. This study identified a feedback loop between miR-181a-5p and Pparα, which allows biological systems to approach a balance when Pparα is overactivated.
Collapse
Affiliation(s)
- Yanjie Cheng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Bio-medical Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuying Wei
- The Key Laboratory of Mammalian, Reproductive Biology and Biotechnology of the Ministry of Education, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Shengsong Xie
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - You Peng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi Yan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Bio-medical Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Qin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Bio-medical Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Shenghui Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Bio-medical Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanling Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Bio-medical Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangpeng Li
- The Key Laboratory of Mammalian, Reproductive Biology and Biotechnology of the Ministry of Education, College of Life Sciences, Inner Mongolia University, Hohhot, China.
| | - Lisheng Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Bio-medical Center, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
104
|
Yin CM, Suen WCW, Lin S, Wu XM, Li G, Pan XH. Dysregulation of both miR-140-3p and miR-140-5p in synovial fluid correlate with osteoarthritis severity. Bone Joint Res 2017; 6:612-618. [PMID: 29092816 PMCID: PMC5717073 DOI: 10.1302/2046-3758.611.bjr-2017-0090.r1] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/10/2017] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES This study looked to analyse the expression levels of microRNA-140-3p and microRNA-140-5p in synovial fluid, and their correlations to the severity of disease regarding knee osteoarthritis (OA). METHODS Knee joint synovial fluid samples were collected from 45 patients with OA of the knee (15 mild, 15 moderate and 15 severe), ten healthy volunteers, ten patients with gouty arthritis, and ten with rheumatoid arthritis. The Kellgren-Lawrence grading (KLG) was used to assess the radiological severity of knee OA, and the patients were stratified into mild (KLG < 2), moderate (KLG = 2), and severe (KLG > 2). The expression of miR-140-3p and miR-140-5p of individual samples was measured by SYBR Green quantitative polymerase chain reaction (PCR) analysis. The expression of miR-140-3p and miR-140-5p was normalised to U6 internal control using the 2-△△CT method. All data were processed using SPSS software. RESULTS Expression of both miR-140-3p and miR-140-5p was downregulated in OA synovial fluid, showing a statistical difference between the OA and non-OA group, and increased OA severity was associated with a decreased expression of miR-140-3p or miR-140-5p. The Spearman rank correlation analysis suggested that the expression of miR-140-3p or miR-140-5p was negatively correlated with OA severity. In addition, the expression of miR-140-5p was 7.4 times higher than that of miR-140-3p across all groups. CONCLUSION The dysregulation of miR-140-3p and miR-140-5p in synovial fluid and their correlations with the disease severity of OA may provide an important experimental basis for OA classification, and the miR-140-3p/miR-140-5p are of great potential as biomarkers in the diagnosis and clinical management of patients with OA.Cite this article: C-M. Yin, W-C-W. Suen, S. Lin, X-M. Wu, G. Li, X-H. Pan. Dysregulation of both miR-140-3p and miR-140-5p in synovial fluid correlate with osteoarthritis severity. Bone Joint Res 2017;6:612-618. DOI: 10.1302/2046-3758.611.BJR-2017-0090.R1.
Collapse
Affiliation(s)
- C-M Yin
- Shenzhen Bao'an People's Hospital, Department of Orthopaedics and Traumatology, Shenzhen Bao'an People's Hospital affiliated to Southern Medical University and Shenzhen 8th People's Hospital, Shenzhen, China
| | - W-C-W Suen
- Shenzhen Bao'an People's Hospital, Department of Orthopaedics and Traumatology, affiliated to Southern Medical University and Shenzhen 8th People's Hospital, Shenzhen, China and Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - S Lin
- The Chinese University of Hong Kong, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - X-M Wu
- Shenzhen Bao'an People's Hospital, Department of Orthopaedics and Traumatology, Shenzhen Bao'an People's Hospital affiliated to Southern Medical University and Shenzhen 8th People's Hospital, Shenzhen, China
| | - G Li
- The Chinese University of Hong Kong, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - X-H Pan
- Shenzhen Bao'an People's Hospital, Department of Orthopaedics and Traumatology, Shenzhen Bao'an People's Hospital affiliated to Southern Medical University and Shenzhen 8th People's Hospital, Shenzhen, China
| |
Collapse
|
105
|
Sun Y, Ji F, Kumar MR, Zheng X, Xiao Y, Liu N, Shi J, Wong L, Forgues M, Qin LX, Tang ZY, Zhao X, Wang XW, Ji J. Transcriptome integration analysis in hepatocellular carcinoma reveals discordant intronic miRNA-host gene pairs in expression. Int J Biol Sci 2017; 13:1438-1449. [PMID: 29209147 PMCID: PMC5715526 DOI: 10.7150/ijbs.20836] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022] Open
Abstract
Intronic miRNAs, residing in intronic regions of host genes, are thought to be co-transcribed from their host genes and present consistent expression patterns with host genes. Recent studies reported a few intronic miRNAs with discordant expression with their host genes. We therefore aimed to understand the expression pattern of intronic miRNAs and their host genes in hepatocellular carcinoma (HCC) and reveal possible associated molecular mechanisms. Our genome wide integration analysis of miRNA and mRNA transcriptomes, in three dataset from 550 patients with HCC, found that a large amount of miRNA-host gene pairs were discordantly expressed. Consistent results were also revealed in 775 breast cancer patients. Further, most of HCC-related intronic miRNAs were predicted to have distinct upstream regulators and independent proximal promoter signals from host genes. The discordant expression of representative pairs, miR-26s/CTDSPs, was validated experimentally. We have also identified the independent transcriptional start site, promoter signal, and transcriptional factor of miR-26b from its host gene. Collectively, discordant expression of intronic miRNAs and their host genes was relatively ubiquitous and the intronic miRNA “independent transcription” may partially contribute to such a phenotype.
Collapse
Affiliation(s)
- Yulin Sun
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.,University of Hawai'i Cancer Center, Honolulu, HI, 96813, USA.,State Key Laboratory of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fubo Ji
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Mia R Kumar
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Xin Zheng
- Sinowell Beijing Tech Ltd, Beijing, 100045, China
| | - Yi Xiao
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Niya Liu
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Jiong Shi
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD, 20892, USA.,Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China, 200433
| | - Linda Wong
- University of Hawai'i Cancer Center, Honolulu, HI, 96813, USA.,Department of Surgery, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, 96813, USA
| | - Marshonna Forgues
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Lun-Xiu Qin
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China, 200433
| | - Zhao-You Tang
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China, 200433
| | - Xiaohang Zhao
- State Key Laboratory of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xin Wei Wang
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Junfang Ji
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
106
|
Saraiva C, Esteves M, Bernardino L. MicroRNA: Basic concepts and implications for regeneration and repair of neurodegenerative diseases. Biochem Pharmacol 2017; 141:118-131. [DOI: 10.1016/j.bcp.2017.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/07/2017] [Indexed: 12/25/2022]
|
107
|
Hassanlou M, Soltani BM, Mowla SJ. Expression and Function of hsa-miR-6165 in Human Cell Lines and During the NT2 Cell Neural Differentiation Process. J Mol Neurosci 2017; 63:254-266. [PMID: 28956260 DOI: 10.1007/s12031-017-0954-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/20/2017] [Indexed: 12/31/2022]
Abstract
MicroRNAs are small non-coding RNAs that posttranscriptionally regulate mRNA expression. hsa-miR-6165 which was previously discovered in our group is located in the forth intron of p75NTR gene and its function is still under investigation. As P75NTR has diverse cellular functions, some of the complexity of its function could be attributed to the internally located microRNA. Our analysis revealed that treatment of HCT116 cells with 5-azacytidine promoted differential expression of hsa-miR-6165 from its host gene which is consistent with the bioinformatic prediction of an independent promoter for hsa-miR-6165. In addition, hsa-miR-6165 promoter is capable of driving GFP reporter gene in HeLa cells. The putative target gene expression level which was detected using RT-qPCR is inversely proportional to the expression level of hsa-miR-6165 during NT2 cell neural differentiation. Furthermore, hsa-miR-6165 overexpression resulted in significant downregulation of ABLIM-1, PVRL1, and PDK1 target genes, while it attenuates NT2 neural differentiation. Hsa-miR-6165 overexpression in SW480 cells also resulted in significant downregulation of PKD1, DAGLA, and PLXNA2 putative target genes, while it increases the sub-G1 cell population of SW480 and HEK293T cells as detected by flow cytometry. Overall, in this study, we report an independent promoter for hsa-miR-6165 which is active in HeLa cells. Additionally, hsa-miR-6165 targets ABLIM-1, PVRL1, PKD1, PLXNA2, and PDK1 genes, and unlike in HEK293T and SW480 cells, hsa-miR-6165 overexpression does not affect HeLa cells while its downregulation reduces sub-G1 cell population. Our results validate that hsa-miR-6165 affects the cell cycle progression and could increase apoptosis in human cell lines.
Collapse
Affiliation(s)
- Maryam Hassanlou
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram Mohammad Soltani
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Seyed Javad Mowla
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
108
|
Hubé F, Ulveling D, Sureau A, Forveille S, Francastel C. Short intron-derived ncRNAs. Nucleic Acids Res 2017; 45:4768-4781. [PMID: 28053119 PMCID: PMC5416886 DOI: 10.1093/nar/gkw1341] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/21/2016] [Indexed: 01/02/2023] Open
Abstract
Introns represent almost half of the human genome, although they are eliminated from transcripts through RNA splicing. Yet, different classes of non-canonical miRNAs have been proposed to originate directly from intron splicing. Here, we considered the alternative splicing of introns as an interesting source of miRNAs, compatible with a developmental switch. We report computational prediction of new Short Intron-Derived ncRNAs (SID), defined as precursors of smaller ncRNAs like miRNAs and snoRNAs produced directly by splicing, and tested their dependence on each key factor in canonical or alternative miRNAs biogenesis (Drosha, DGCR8, DBR1, snRNP70, U2AF65, PRP8, Dicer, Ago2). We found that about half of predicted SID rely on debranching of the excised intron-lariat by the enzyme DBR1, as proposed for mirtrons. However, we identified new classes of SID for which miRNAs biogenesis may rely on intermingling between canonical and alternative pathways. We validated selected SID as putative miRNAs precursors and identified new endogenous miRNAs produced by non-canonical pathways, including one hosted in the first intron of SRA (Steroid Receptor RNA activator). Consistent with increased SRA intron retention during myogenic differentiation, release of SRA intron and its associated mature miRNA decreased in cells from healthy subjects but not from myotonic dystrophy patients with splicing defects.
Collapse
Affiliation(s)
- Florent Hubé
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Epigénétique et Destin Cellulaire, CNRS UMR 7216, Paris, France
| | - Damien Ulveling
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Epigénétique et Destin Cellulaire, CNRS UMR 7216, Paris, France
| | - Alain Sureau
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Epigénétique et Destin Cellulaire, CNRS UMR 7216, Paris, France
| | - Sabrina Forveille
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Epigénétique et Destin Cellulaire, CNRS UMR 7216, Paris, France
| | - Claire Francastel
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Epigénétique et Destin Cellulaire, CNRS UMR 7216, Paris, France
| |
Collapse
|
109
|
Gui B, Hsieh CL, Kantoff PW, Kibel AS, Jia L. Androgen receptor-mediated downregulation of microRNA-221 and -222 in castration-resistant prostate cancer. PLoS One 2017; 12:e0184166. [PMID: 28886115 PMCID: PMC5590894 DOI: 10.1371/journal.pone.0184166] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/18/2017] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs) play important roles in cancer formation and progression by suppressing the production of key functional proteins at the post-transcriptional level in a sequence-specific manner. While differential expression of miRNAs is widely observed in cancers including prostate cancer (PCa), how these miRNAs are transcriptionally regulated is largely unknown. MiRNA-221 and miRNA-222 (miR-221/-222) are well-established oncogenes and overexpressed in breast, liver, pancreas, and lung cancer, but their expression and biological functions in PCa remain controversial. Both up and down regulation have been observed in patient samples. Specifically, studies have demonstrated miR-221/-222 function as oncogenes, and promote PCa cell proliferation and the development of castration-resistant prostate cancer (CRPC). However, the expression level of miR-221/-222 is downregulated in several miRNA expression profiling studies. In this study, we demonstrate miR-221/-222 are androgen receptor (AR)-repressed genes and reside in a long primary transcript (pri-miRNA). Derepression of miR-221/-222 after androgen deprivation therapy (ADT) may enhance PCa cell proliferation potential through promoting G1/S phase transition. This function is likely transient but important in the development of CRPC. Downregulation of miR-221/-222 subsequently occurs once AR activity is restored through AR overexpression in CRPC. Our findings shed light on the complexity of transcriptional regulation of miRNAs in PCa and suggest context-dependent targeting of oncogenic miRNAs.
Collapse
Affiliation(s)
- Bin Gui
- Division of Urology, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chen-Lin Hsieh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Philip W. Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Adam S. Kibel
- Division of Urology, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Li Jia
- Division of Urology, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
110
|
Abstract
More than six decades ago Watson and Crick published the chemical structure of DNA. This discovery revolutionized our approach to medical science and opened new perspectives for the diagnosis and treatment of many diseases including cancer. Since then, progress in molecular biology, together with the rapid advance of technologies, allowed to clone hundreds of protein-coding genes that were found mutated in all types of cancer. Normal and aberrant gene functions, interactions, and mechanisms of mutations were studied to identify the intricate network of pathways leading to cancer. With the acknowledgment of the genetic nature of cancer, new diagnostic, prognostic, and therapeutic strategies have been attempted and developed, but very few have found their way in the clinical field. In an effort to identify new translational targets, another great discovery has changed our way to look at genes and their functions. MicroRNAs have been the first noncoding genes involved in cancer. This review is a brief chronological history of microRNAs and cancer. Through the work of few of the greatest scientists of our times, this chapter describes the discovery of microRNAs from C. elegans to their debut in cancer and in the medical field, the concurrent development of technologies, and their future translational applications. The purpose was to share the exciting path that lead to one of the most important discoveries in cancer genetics in the past 20 years.
Collapse
Affiliation(s)
- Alessandra Drusco
- Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Carlo M Croce
- Wexner Medical Center, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
111
|
Miele E, Po A, Begalli F, Antonucci L, Mastronuzzi A, Marras CE, Carai A, Cucchi D, Abballe L, Besharat ZM, Catanzaro G, Infante P, Di Marcotullio L, Canettieri G, De Smaele E, Screpanti I, Locatelli F, Ferretti E. β-arrestin1-mediated acetylation of Gli1 regulates Hedgehog/Gli signaling and modulates self-renewal of SHH medulloblastoma cancer stem cells. BMC Cancer 2017; 17:488. [PMID: 28716052 PMCID: PMC5512842 DOI: 10.1186/s12885-017-3477-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 07/09/2017] [Indexed: 02/08/2023] Open
Abstract
Background Aberrant Sonic Hedgehog/Gli (Hh/Gli) signaling pathway is a critical regulator of Sonic hedgehog medulloblastoma (SHH-MB). Cancer stem cells (CSCs), thought to be largely responsible for tumor initiation, maintenance, dissemination and relapse, have been identified in SHH-MB. Since we previously demonstrated that Hh/Gli signaling controls CSCs features in SHH-MB and that in these tumors miR-326 is down regulated, here we investigated whether there is a functional link between Hh/Gli signaling and miR-326. Methods We evaluated β-arrestin1 (Arrb1) and its intragenic miR-326 levels in CSCs derived from SHH-MB. Subsequently, we modulated the expression of Arrb1 and miR-326 in CSCs in order to gain insight into their biological role. We also analyzed the mechanism by which Arrb1 and miR-326 control Hh/Gli signaling and self-renewal, using luciferase and protein immunoprecipitation assays. Results Low levels of Arrb1 and miR-326 represent a feature of CSCs derived from SHH-MB. We observed that re-expression of Arrb1 and miR-326 inhibits Hh/Gli signaling pathway at multiple levels, which cause impaired proliferation and self-renewal, accompanied by down regulation of Nanog levels. In detail, miR-326 negatively regulates two components of the Hh/Gli pathway the receptor Smoothened (Smo) and the transcription factor Gli2, whereas Arrb1 suppresses the transcriptional activity of Gli1, by potentiating its p300-mediated acetylation. Conclusions Our results identify a new molecular mechanism involving miR-326 and Arrb1 as regulators of SHH-MB CSCs. Specifically, low levels of Arrb1 and miR-326 trigger and maintain Hh/Gli signaling and self-renewal.
Collapse
Affiliation(s)
- Evelina Miele
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, 00161, Rome, Italy.,Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Agnese Po
- Department of Molecular Medicine Sapienza University, 00161, Rome, Italy
| | - Federica Begalli
- Department of Molecular Medicine Sapienza University, 00161, Rome, Italy
| | - Laura Antonucci
- Department of Molecular Medicine Sapienza University, 00161, Rome, Italy
| | - Angela Mastronuzzi
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Carlo Efisio Marras
- Department of Neuroscience and Neurorehabilitation, Neurosurgery Unit, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Andrea Carai
- Department of Neuroscience and Neurorehabilitation, Neurosurgery Unit, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Danilo Cucchi
- Department of Molecular Medicine Sapienza University, 00161, Rome, Italy
| | - Luana Abballe
- Department of Experimental Medicine Sapienza University, Viale Regina Elena, 291 - 00161, 00161, Rome, Italy
| | - Zein Mersini Besharat
- Department of Experimental Medicine Sapienza University, Viale Regina Elena, 291 - 00161, 00161, Rome, Italy
| | - Giuseppina Catanzaro
- Department of Experimental Medicine Sapienza University, Viale Regina Elena, 291 - 00161, 00161, Rome, Italy
| | - Paola Infante
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | | | | | - Enrico De Smaele
- Department of Experimental Medicine Sapienza University, Viale Regina Elena, 291 - 00161, 00161, Rome, Italy
| | - Isabella Screpanti
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, 00161, Rome, Italy.,Department of Molecular Medicine Sapienza University, 00161, Rome, Italy
| | - Franco Locatelli
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy.,Department of Pediatric Science, University of Pavia, Pavia, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine Sapienza University, Viale Regina Elena, 291 - 00161, 00161, Rome, Italy. .,Neuromed Institute, 86077, Pozzilli, Italy.
| |
Collapse
|
112
|
Wang H, Luo J, He Q, Yao D, Wu J, Loor JJ. miR-26b promoter analysis reveals regulatory mechanisms by lipid-related transcription factors in goat mammary epithelial cells. J Dairy Sci 2017; 100:5837-5849. [DOI: 10.3168/jds.2016-12440] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/29/2017] [Indexed: 11/19/2022]
|
113
|
|
114
|
Tong HL, Jiang RY, Zhang WW, Yan YQ. MiR-2425-5p targets RAD9A and MYOG to regulate the proliferation and differentiation of bovine skeletal muscle-derived satellite cells. Sci Rep 2017; 7:418. [PMID: 28341832 PMCID: PMC5428422 DOI: 10.1038/s41598-017-00470-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 02/28/2017] [Indexed: 12/18/2022] Open
Abstract
Our group previously identified miR-2425-5p, a unique bovine miRNA; however, its biological function and regulation in muscle-derived satellite cells (MDSCs) remain unclear. Herein, stem-loop RT-PCR results showed that miR-2425-5p increased during MDSCs proliferation, but decreased during differentiation. Cell proliferation was examined using EdU assays, cyclin B1 (CCNB1) and proliferating cell nuclear antigen (PCNA) western blot (WB) and flow cytometry analysis. These results showed that miR-2425-5p mimics (miR-2425-M) enhanced MDSCs proliferation, whereas, miR-2425-5p inhibitor (miR-2425-I) had opposite effect. Conversely, cell differentiation studies by desmin (DES) immunofluorescence, myotubes formation, and myosin heavy chain 3 (MYH3) WB analyses revealed that miR-2425-M and miR-2425-I blocked and promoted MDSCs differentiation, respectively. Moreover, luciferase reporter, RT-PCR, and WB assays showed that miR-2425-5p directly targeted the 3′-UTR of RAD9 homolog A (RAD9A) and myogenin (MYOG) to regulate their expression. Rescue experiment showed RAD9A inhibited the proliferation of MDSCs through miR-2425-5p. In addition, we found that miR-2425-5p expression was regulated by its host gene NCK associated protein 5-like (NCKAP5L) rather than being transcribed independently as a separate small RNA. Collectively, these data indicate that miR-2425-5p is a novel regulator of bovine MDSCs proliferation and differentiation and provides further insight into the biological functions of miRNA in this species.
Collapse
Affiliation(s)
- Hui Li Tong
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Run Ying Jiang
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Wei Wei Zhang
- College of Life Sciences and Agriculture & Forestry, Qiqihar University, Qiqihar, Heilongjiang, 161006, China
| | - Yun Qin Yan
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| |
Collapse
|
115
|
Paraboschi EM, Cardamone G, Rimoldi V, Duga S, Soldà G, Asselta R. miR-634 is a Pol III-dependent intronic microRNA regulating alternative-polyadenylated isoforms of its host gene PRKCA. Biochim Biophys Acta Gen Subj 2017; 1861:1046-1056. [PMID: 28212793 DOI: 10.1016/j.bbagen.2017.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 02/02/2017] [Accepted: 02/13/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND The protein kinase C alpha (PRKCA) gene, coding for a Th17-cell-selective kinase, shows a complex splicing pattern, with at least 2 stable alternative transcripts characterized by an alternative upstream polyadenylation site. Polymorphisms in this gene were associated with several conditions, including multiple sclerosis, asthma, schizophrenia, and cancer. The presence of a microRNA (miRNA), i.e. miR-634, within intron 15 of the PRKCA gene, suggests the intriguing possibility that this miRNA might play a role in the susceptibility to these pathologies. METHODS Here, we characterized miR-634 expression profile and searched for its putative targets using a combination of RT-PCR and gene reporter assays. RESULTS The quantitative analysis of PRKCA and miR-634 transcripts in a panel of human tissues and cell lines revealed discordant expression profiles, suggesting the presence of an independent miR-634 promoter and/or a possible direct role of miR-634 in modulating PRKCA expression. Functional studies demonstrated the existence of a miRNA-specific promoter, which was shown to be Pol-III-dependent. Furthermore, transfection experiments showed that miR-634 is able to target its host gene by specifically down-regulating the shorter alternative-polyadenylated isoforms. CONCLUSIONS MiR-634 is a Pol III-dependent intronic miRNA, which could target its host gene through a "first-order" negative feedback. GENERAL SIGNIFICANCE MiR-634 is one of the few characterized examples of Pol-III-dependent intronic miRNAs. Its independent transcription from the host gene suggests caution in using expression profiles of host genes as proxies for the expression of the corresponding intronic miRNAs.
Collapse
Affiliation(s)
- Elvezia Maria Paraboschi
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089, Rozzano, Milan, Italy
| | - Giulia Cardamone
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089, Rozzano, Milan, Italy
| | - Valeria Rimoldi
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089, Rozzano, Milan, Italy; Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089, Rozzano, Milan, Italy; Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Giulia Soldà
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089, Rozzano, Milan, Italy; Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089, Rozzano, Milan, Italy; Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| |
Collapse
|
116
|
β-Arrestin1/miR-326 Transcription Unit Is Epigenetically Regulated in Neural Stem Cells Where It Controls Stemness and Growth Arrest. Stem Cells Int 2017; 2017:5274171. [PMID: 28298929 PMCID: PMC5337365 DOI: 10.1155/2017/5274171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/02/2017] [Accepted: 01/15/2017] [Indexed: 01/14/2023] Open
Abstract
Cell development is regulated by a complex network of mRNA-encoded proteins and microRNAs, all funnelling onto the modulation of self-renewal or differentiation genes. How intragenic microRNAs and their host genes are transcriptionally coregulated and their functional relationships for the control of neural stem cells (NSCs) are poorly understood. We propose here the intragenic miR-326 and its host gene β-arrestin1 as novel players whose epigenetic silencing maintains stemness in normal cerebellar stem cells. Such a regulation is mediated by CpG islands methylation of the common promoter. Epigenetic derepression of β-arrestin1/miR-326 by differentiation signals or demethylating agents leads to suppression of stemness features and cell growth and promotes cell differentiation. β-Arrestin1 inhibits cell proliferation by enhancing the nuclear expression of the cyclin-dependent kinase inhibitor p27. Therefore, we propose a new mechanism for the control of cerebellar NSCs where a coordinated epigenetic mechanism finely regulates β-arrestin1/miR-326 expression and consequently NSCs stemness and cell growth.
Collapse
|
117
|
Jaitner C, Reddy C, Abentung A, Whittle N, Rieder D, Delekate A, Korte M, Jain G, Fischer A, Sananbenesi F, Cera I, Singewald N, Dechant G, Apostolova G. Satb2 determines miRNA expression and long-term memory in the adult central nervous system. eLife 2016; 5. [PMID: 27897969 PMCID: PMC5207769 DOI: 10.7554/elife.17361] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 11/28/2016] [Indexed: 01/09/2023] Open
Abstract
SATB2 is a risk locus for schizophrenia and encodes a DNA-binding protein that regulates higher-order chromatin configuration. In the adult brain Satb2 is almost exclusively expressed in pyramidal neurons of two brain regions important for memory formation, the cerebral cortex and the CA1-hippocampal field. Here we show that Satb2 is required for key hippocampal functions since deletion of Satb2 from the adult mouse forebrain prevents the stabilization of synaptic long-term potentiation and markedly impairs long-term fear and object discrimination memory. At the molecular level, we find that synaptic activity and BDNF up-regulate Satb2, which itself binds to the promoters of coding and non-coding genes. Satb2 controls the hippocampal levels of a large cohort of miRNAs, many of which are implicated in synaptic plasticity and memory formation. Together, our findings demonstrate that Satb2 is critically involved in long-term plasticity processes in the adult forebrain that underlie the consolidation and stabilization of context-linked memory. DOI:http://dx.doi.org/10.7554/eLife.17361.001
Collapse
Affiliation(s)
- Clemens Jaitner
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| | - Chethan Reddy
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Abentung
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| | - Nigel Whittle
- Department of Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria
| | - Dietmar Rieder
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrea Delekate
- Zoological Institute, Technical University Braunschweig, Braunschweig, Germany
| | - Martin Korte
- Zoological Institute, Technical University Braunschweig, Braunschweig, Germany.,AG Neuroinflammation and Neurodegeneration (NIND), Braunschweig, Germany
| | - Gaurav Jain
- Research Group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany.,Research Group for Complex Neurodegenerative Disorders, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Andre Fischer
- Research Group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Farahnaz Sananbenesi
- Research Group for Complex Neurodegenerative Disorders, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Isabella Cera
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria
| | - Georg Dechant
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| | - Galina Apostolova
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
118
|
Ehtesham N, Sharifi M. From conventional therapy toward microRNA-based therapy in acute promyelocytic leukemia. Adv Biomed Res 2016; 5:187. [PMID: 28028527 PMCID: PMC5156975 DOI: 10.4103/2277-9175.190996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/09/2015] [Indexed: 12/18/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is a hematopoietic malignancy that is known with its special cytogenetic feature. Several studies have surveyed expression signature of microRNAs (miRNAs) in APL patients, especially patients who are treated with conventional therapy of this disease. Using miRNAs as diagnostic or prognostic biomarkers in various cancers has been widely studied. Currently, most studies are focusing on exploiting miRNAs as therapeutic tools, and promising progress has been achieved in this field. Recently, studies in the field of miRNA-based therapy in APL have been started.
Collapse
Affiliation(s)
- Naeim Ehtesham
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
119
|
Emmerling VV, Fischer S, Kleemann M, Handrick R, Kochanek S, Otte K. miR-483 is a self-regulating microRNA and can activate its own expression via USF1 in HeLa cells. Int J Biochem Cell Biol 2016; 80:81-86. [DOI: 10.1016/j.biocel.2016.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 01/03/2023]
|
120
|
Rao YS, Pak TR. microRNAs and the adolescent brain: Filling the knowledge gap. Neurosci Biobehav Rev 2016; 70:313-322. [PMID: 27328787 PMCID: PMC5074866 DOI: 10.1016/j.neubiorev.2016.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/09/2016] [Accepted: 06/11/2016] [Indexed: 12/14/2022]
Abstract
Over two decades ago the discovery of microRNAs (miRNA) broadened our understanding of the diverse molecular pathways mediating post-transcriptional control over gene expression. These small non-coding RNAs dynamically fluctuate, temporally and spatially, throughout the lifespan of all organisms. The fundamental role that miRNAs have in shaping embryonic neurodevelopment provides strong evidence that adolescent brain remodeling could be rooted in the changing miRNA landscape of the cell. Few studies have directly measured miRNA gene expression changes in the brain across pubertal development, and even less is known about the functional impact of those miRNAs on the maturational processes that occur in the developing adolescent brain. This review summarizes miRNA biogenesis and function in the brain in the context of normal (i.e. not diseased) physiology. These landmark studies can guide predictions about the role of miRNAs in facilitating maturation of the adolescent brain. However, there are clear indicators that adolescence/puberty is a unique life stage, suggesting miRNA function during adolescence is distinct from those in any other previously described system.
Collapse
Affiliation(s)
- Yathindar S Rao
- Loyola University Chicago, Stritch School of Medicine, Department of Cell and Molecular Physiology, United States
| | - Toni R Pak
- Loyola University Chicago, Stritch School of Medicine, Department of Cell and Molecular Physiology, United States.
| |
Collapse
|
121
|
Vathipadiekal V, Farrell JJ, Wang S, Edward HL, Shappell H, Al-Rubaish A, Al-Muhanna F, Naserullah Z, Alsuliman A, Qutub HO, Simkin I, Farrer LA, Jiang Z, Luo HY, Huang S, Mostoslavsky G, Murphy GJ, Patra PK, Chui DH, Alsultan A, Al-Ali AK, Sebastiani P, Steinberg MH. A candidate transacting modulator of fetal hemoglobin gene expression in the Arab-Indian haplotype of sickle cell anemia. Am J Hematol 2016; 91:1118-1122. [PMID: 27501013 DOI: 10.1002/ajh.24527] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/30/2022]
Abstract
Fetal hemoglobin (HbF) levels are higher in the Arab-Indian (AI) β-globin gene haplotype of sickle cell anemia compared with African-origin haplotypes. To study genetic elements that effect HbF expression in the AI haplotype we completed whole genome sequencing in 14 Saudi AI haplotype sickle hemoglobin homozygotes-seven selected for low HbF (8.2% ± 1.3%) and seven selected for high HbF (23.5% ± 2.6%). An intronic single nucleotide polymorphism (SNP) in ANTXR1, an anthrax toxin receptor (chromosome 2p13), was associated with HbF. These results were replicated in two independent Saudi AI haplotype cohorts of 120 and 139 patients, but not in 76 Saudi Benin haplotype, 894 African origin haplotype and 44 AI haplotype patients of Indian origin, suggesting that this association is effective only in the Saudi AI haplotype background. ANTXR1 variants explained 10% of the HbF variability compared with 8% for BCL11A. These two genes had independent, additive effects on HbF and together explained about 15% of HbF variability in Saudi AI sickle cell anemia patients. ANTXR1 was expressed at mRNA and protein levels in erythroid progenitors derived from induced pluripotent stem cells (iPSCs) and CD34+ cells. As CD34+ cells matured and their HbF decreased ANTXR1 expression increased; as iPSCs differentiated and their HbF increased, ANTXR1 expression decreased. Along with elements in cis to the HbF genes, ANTXR1 contributes to the variation in HbF in Saudi AI haplotype sickle cell anemia and is the first gene in trans to HBB that is associated with HbF only in carriers of the Saudi AI haplotype. Am. J. Hematol. 91:1118-1122, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vinod Vathipadiekal
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - John J. Farrell
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - Shuai Wang
- Department of Biostatistics; Boston University School of Public Health; Boston Massachusetts
| | - Heather L. Edward
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - Heather Shappell
- Department of Biostatistics; Boston University School of Public Health; Boston Massachusetts
| | - A.M. Al-Rubaish
- Department of Internal Medicine; College of Medicine, University of Dammam; Dammam Kingdom of Saudi Arabia
| | - Fahad Al-Muhanna
- Department of Internal Medicine; College of Medicine, University of Dammam; Dammam Kingdom of Saudi Arabia
| | - Z. Naserullah
- Al-Omran Scientific Chair for Hematological Diseases; King Faisal University; Al-Ahsa Kingdom of Saudi Arabia
- Department of Pediatrics; Maternity and Child Hospital; Dammam Kingdom of Saudi Arabia
| | - A. Alsuliman
- Alomran Scientific Chair; King Faisal University, King Fahd Hospital; Hafof Al-Ahsa Kingdom of Saudi Arabia
| | - Hatem Othman Qutub
- Alomran Scientific Chair; King Faisal University; Al-Ahsa Kingdom of Saudi Arabia
| | - Irene Simkin
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - Lindsay A. Farrer
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - Zhihua Jiang
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - Hong-Yuan Luo
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - Shengwen Huang
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - Gustavo Mostoslavsky
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - George J. Murphy
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - Pradeep K. Patra
- Department of Biochemistry; Pt. J. N. M. Medical College; Raipur Chattisgarh India
| | - David H.K. Chui
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - Abdulrahman Alsultan
- Sickle Cell Disease Research Center and Department of Pediatrics; College of Medicine, King Saud University; Riyadh Saudi Arabia
| | - Amein K. Al-Ali
- Center for Research and Medical Consultation; University of Dammam; Dammam Kingdom of Saudi Arabia
| | - Paola Sebastiani
- Department of Biostatistics; Boston University School of Public Health; Boston Massachusetts
| | - Martin H. Steinberg
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| |
Collapse
|
122
|
Hartmann D, Fiedler J, Sonnenschein K, Just A, Pfanne A, Zimmer K, Remke J, Foinquinos A, Butzlaff M, Schimmel K, Maegdefessel L, Hilfiker-Kleiner D, Lachmann N, Schober A, Froese N, Heineke J, Bauersachs J, Batkai S, Thum T. MicroRNA-Based Therapy of GATA2-Deficient Vascular Disease. Circulation 2016; 134:1973-1990. [PMID: 27780851 DOI: 10.1161/circulationaha.116.022478] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 10/03/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND The transcription factor GATA2 orchestrates the expression of many endothelial-specific genes, illustrating its crucial importance for endothelial cell function. The capacity of this transcription factor in orchestrating endothelial-important microRNAs (miRNAs/miR) is unknown. METHODS Endothelial GATA2 was functionally analyzed in human endothelial cells in vitro. Endogenous short interfering RNA-mediated knockdown and lentiviral-based overexpression were applied to decipher the capacity of GATA2 in regulating cell viability and capillary formation. Next, the GATA2-dependent miR transcriptome was identified by using a profiling approach on the basis of quantitative real-time polymerase chain reaction. Transcriptional control of miR promoters was assessed via chromatin immunoprecipitation, luciferase promoter assays, and bisulfite sequencing analysis of sites in proximity. Selected miRs were modulated in combination with GATA2 to identify signaling pathways at the angiogenic cytokine level via proteome profiler and enzyme-linked immunosorbent assays. Downstream miR targets were identified via bioinformatic target prediction and luciferase reporter gene assays. In vitro findings were translated to a mouse model of carotid injury in an endothelial GATA2 knockout background. Nanoparticle-mediated delivery of proangiogenic miR-126 was tested in the reendothelialization model. RESULTS GATA2 gain- and loss-of-function experiments in human umbilical vein endothelial cells identified a key role of GATA2 as master regulator of multiple endothelial functions via miRNA-dependent mechanisms. Global miRNAnome-screening identified several GATA2-regulated miRNAs including miR-126 and miR-221. Specifically, proangiogenic miR-126 was regulated by GATA2 transcriptionally and targeted antiangiogenic SPRED1 and FOXO3a contributing to GATA2-mediated formation of normal vascular structures, whereas GATA2 deficiency led to vascular abnormalities. In contrast to GATA2 deficiency, supplementation with miR-126 normalized vascular function and expression profiles of cytokines contributing to proangiogenic paracrine effects. GATA2 silencing resulted in endothelial DNA hypomethylation leading to induced expression of antiangiogenic miR-221 by GATA2-dependent demethylation of a putative CpG island in the miR-221 promoter. Mechanistically, a reverted GATA2 phenotype by endogenous suppression of miR-221 was mediated through direct proangiogenic miR-221 target genes ICAM1 and ETS1. In a mouse model of carotid injury, GATA2 was reduced, and systemic supplementation of miR-126-coupled nanoparticles enhanced miR-126 availability in the carotid artery and improved reendothelialization of injured carotid arteries in vivo. CONCLUSIONS GATA2-mediated regulation of miR-126 and miR-221 has an important impact on endothelial biology. Hence, modulation of GATA2 and its targets miR-126 and miR-221 is a promising therapeutic strategy for treatment of many vascular diseases.
Collapse
Affiliation(s)
- Dorothee Hartmann
- From Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Germany (D.H., J.F., K.S., A.J., A.P., K.Z., J.R., A.F., K.S., S.B., T.T.); Department of Cardiology and Angiology, Hannover Medical School, Germany (K.S., D.H.-K., N.F., J.H., J.B.); Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Germany (M.B.); Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (L.M.); Cluster of Excellence REBIRTH, Hannover Medical School, Germany (D.H.-K., N.F., J.H., J.B., T.T.); JRG Translational Hematology of Congenital Disease, Cluster of Excellence REBIRTH, Institute of Experimental Hematology, Hannover Medical School, Germany (N.L.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (A.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany (A.S.); and National Heart and Lung Institute, Imperial College London, UK (T.T.)
| | - Jan Fiedler
- From Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Germany (D.H., J.F., K.S., A.J., A.P., K.Z., J.R., A.F., K.S., S.B., T.T.); Department of Cardiology and Angiology, Hannover Medical School, Germany (K.S., D.H.-K., N.F., J.H., J.B.); Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Germany (M.B.); Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (L.M.); Cluster of Excellence REBIRTH, Hannover Medical School, Germany (D.H.-K., N.F., J.H., J.B., T.T.); JRG Translational Hematology of Congenital Disease, Cluster of Excellence REBIRTH, Institute of Experimental Hematology, Hannover Medical School, Germany (N.L.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (A.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany (A.S.); and National Heart and Lung Institute, Imperial College London, UK (T.T.)
| | - Kristina Sonnenschein
- From Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Germany (D.H., J.F., K.S., A.J., A.P., K.Z., J.R., A.F., K.S., S.B., T.T.); Department of Cardiology and Angiology, Hannover Medical School, Germany (K.S., D.H.-K., N.F., J.H., J.B.); Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Germany (M.B.); Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (L.M.); Cluster of Excellence REBIRTH, Hannover Medical School, Germany (D.H.-K., N.F., J.H., J.B., T.T.); JRG Translational Hematology of Congenital Disease, Cluster of Excellence REBIRTH, Institute of Experimental Hematology, Hannover Medical School, Germany (N.L.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (A.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany (A.S.); and National Heart and Lung Institute, Imperial College London, UK (T.T.)
| | - Annette Just
- From Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Germany (D.H., J.F., K.S., A.J., A.P., K.Z., J.R., A.F., K.S., S.B., T.T.); Department of Cardiology and Angiology, Hannover Medical School, Germany (K.S., D.H.-K., N.F., J.H., J.B.); Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Germany (M.B.); Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (L.M.); Cluster of Excellence REBIRTH, Hannover Medical School, Germany (D.H.-K., N.F., J.H., J.B., T.T.); JRG Translational Hematology of Congenital Disease, Cluster of Excellence REBIRTH, Institute of Experimental Hematology, Hannover Medical School, Germany (N.L.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (A.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany (A.S.); and National Heart and Lung Institute, Imperial College London, UK (T.T.)
| | - Angelika Pfanne
- From Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Germany (D.H., J.F., K.S., A.J., A.P., K.Z., J.R., A.F., K.S., S.B., T.T.); Department of Cardiology and Angiology, Hannover Medical School, Germany (K.S., D.H.-K., N.F., J.H., J.B.); Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Germany (M.B.); Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (L.M.); Cluster of Excellence REBIRTH, Hannover Medical School, Germany (D.H.-K., N.F., J.H., J.B., T.T.); JRG Translational Hematology of Congenital Disease, Cluster of Excellence REBIRTH, Institute of Experimental Hematology, Hannover Medical School, Germany (N.L.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (A.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany (A.S.); and National Heart and Lung Institute, Imperial College London, UK (T.T.)
| | - Karina Zimmer
- From Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Germany (D.H., J.F., K.S., A.J., A.P., K.Z., J.R., A.F., K.S., S.B., T.T.); Department of Cardiology and Angiology, Hannover Medical School, Germany (K.S., D.H.-K., N.F., J.H., J.B.); Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Germany (M.B.); Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (L.M.); Cluster of Excellence REBIRTH, Hannover Medical School, Germany (D.H.-K., N.F., J.H., J.B., T.T.); JRG Translational Hematology of Congenital Disease, Cluster of Excellence REBIRTH, Institute of Experimental Hematology, Hannover Medical School, Germany (N.L.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (A.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany (A.S.); and National Heart and Lung Institute, Imperial College London, UK (T.T.)
| | - Janet Remke
- From Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Germany (D.H., J.F., K.S., A.J., A.P., K.Z., J.R., A.F., K.S., S.B., T.T.); Department of Cardiology and Angiology, Hannover Medical School, Germany (K.S., D.H.-K., N.F., J.H., J.B.); Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Germany (M.B.); Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (L.M.); Cluster of Excellence REBIRTH, Hannover Medical School, Germany (D.H.-K., N.F., J.H., J.B., T.T.); JRG Translational Hematology of Congenital Disease, Cluster of Excellence REBIRTH, Institute of Experimental Hematology, Hannover Medical School, Germany (N.L.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (A.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany (A.S.); and National Heart and Lung Institute, Imperial College London, UK (T.T.)
| | - Ariana Foinquinos
- From Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Germany (D.H., J.F., K.S., A.J., A.P., K.Z., J.R., A.F., K.S., S.B., T.T.); Department of Cardiology and Angiology, Hannover Medical School, Germany (K.S., D.H.-K., N.F., J.H., J.B.); Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Germany (M.B.); Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (L.M.); Cluster of Excellence REBIRTH, Hannover Medical School, Germany (D.H.-K., N.F., J.H., J.B., T.T.); JRG Translational Hematology of Congenital Disease, Cluster of Excellence REBIRTH, Institute of Experimental Hematology, Hannover Medical School, Germany (N.L.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (A.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany (A.S.); and National Heart and Lung Institute, Imperial College London, UK (T.T.)
| | - Malte Butzlaff
- From Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Germany (D.H., J.F., K.S., A.J., A.P., K.Z., J.R., A.F., K.S., S.B., T.T.); Department of Cardiology and Angiology, Hannover Medical School, Germany (K.S., D.H.-K., N.F., J.H., J.B.); Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Germany (M.B.); Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (L.M.); Cluster of Excellence REBIRTH, Hannover Medical School, Germany (D.H.-K., N.F., J.H., J.B., T.T.); JRG Translational Hematology of Congenital Disease, Cluster of Excellence REBIRTH, Institute of Experimental Hematology, Hannover Medical School, Germany (N.L.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (A.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany (A.S.); and National Heart and Lung Institute, Imperial College London, UK (T.T.)
| | - Katharina Schimmel
- From Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Germany (D.H., J.F., K.S., A.J., A.P., K.Z., J.R., A.F., K.S., S.B., T.T.); Department of Cardiology and Angiology, Hannover Medical School, Germany (K.S., D.H.-K., N.F., J.H., J.B.); Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Germany (M.B.); Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (L.M.); Cluster of Excellence REBIRTH, Hannover Medical School, Germany (D.H.-K., N.F., J.H., J.B., T.T.); JRG Translational Hematology of Congenital Disease, Cluster of Excellence REBIRTH, Institute of Experimental Hematology, Hannover Medical School, Germany (N.L.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (A.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany (A.S.); and National Heart and Lung Institute, Imperial College London, UK (T.T.)
| | - Lars Maegdefessel
- From Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Germany (D.H., J.F., K.S., A.J., A.P., K.Z., J.R., A.F., K.S., S.B., T.T.); Department of Cardiology and Angiology, Hannover Medical School, Germany (K.S., D.H.-K., N.F., J.H., J.B.); Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Germany (M.B.); Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (L.M.); Cluster of Excellence REBIRTH, Hannover Medical School, Germany (D.H.-K., N.F., J.H., J.B., T.T.); JRG Translational Hematology of Congenital Disease, Cluster of Excellence REBIRTH, Institute of Experimental Hematology, Hannover Medical School, Germany (N.L.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (A.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany (A.S.); and National Heart and Lung Institute, Imperial College London, UK (T.T.)
| | - Denise Hilfiker-Kleiner
- From Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Germany (D.H., J.F., K.S., A.J., A.P., K.Z., J.R., A.F., K.S., S.B., T.T.); Department of Cardiology and Angiology, Hannover Medical School, Germany (K.S., D.H.-K., N.F., J.H., J.B.); Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Germany (M.B.); Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (L.M.); Cluster of Excellence REBIRTH, Hannover Medical School, Germany (D.H.-K., N.F., J.H., J.B., T.T.); JRG Translational Hematology of Congenital Disease, Cluster of Excellence REBIRTH, Institute of Experimental Hematology, Hannover Medical School, Germany (N.L.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (A.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany (A.S.); and National Heart and Lung Institute, Imperial College London, UK (T.T.)
| | - Nico Lachmann
- From Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Germany (D.H., J.F., K.S., A.J., A.P., K.Z., J.R., A.F., K.S., S.B., T.T.); Department of Cardiology and Angiology, Hannover Medical School, Germany (K.S., D.H.-K., N.F., J.H., J.B.); Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Germany (M.B.); Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (L.M.); Cluster of Excellence REBIRTH, Hannover Medical School, Germany (D.H.-K., N.F., J.H., J.B., T.T.); JRG Translational Hematology of Congenital Disease, Cluster of Excellence REBIRTH, Institute of Experimental Hematology, Hannover Medical School, Germany (N.L.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (A.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany (A.S.); and National Heart and Lung Institute, Imperial College London, UK (T.T.)
| | - Andreas Schober
- From Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Germany (D.H., J.F., K.S., A.J., A.P., K.Z., J.R., A.F., K.S., S.B., T.T.); Department of Cardiology and Angiology, Hannover Medical School, Germany (K.S., D.H.-K., N.F., J.H., J.B.); Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Germany (M.B.); Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (L.M.); Cluster of Excellence REBIRTH, Hannover Medical School, Germany (D.H.-K., N.F., J.H., J.B., T.T.); JRG Translational Hematology of Congenital Disease, Cluster of Excellence REBIRTH, Institute of Experimental Hematology, Hannover Medical School, Germany (N.L.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (A.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany (A.S.); and National Heart and Lung Institute, Imperial College London, UK (T.T.)
| | - Natali Froese
- From Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Germany (D.H., J.F., K.S., A.J., A.P., K.Z., J.R., A.F., K.S., S.B., T.T.); Department of Cardiology and Angiology, Hannover Medical School, Germany (K.S., D.H.-K., N.F., J.H., J.B.); Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Germany (M.B.); Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (L.M.); Cluster of Excellence REBIRTH, Hannover Medical School, Germany (D.H.-K., N.F., J.H., J.B., T.T.); JRG Translational Hematology of Congenital Disease, Cluster of Excellence REBIRTH, Institute of Experimental Hematology, Hannover Medical School, Germany (N.L.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (A.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany (A.S.); and National Heart and Lung Institute, Imperial College London, UK (T.T.)
| | - Jörg Heineke
- From Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Germany (D.H., J.F., K.S., A.J., A.P., K.Z., J.R., A.F., K.S., S.B., T.T.); Department of Cardiology and Angiology, Hannover Medical School, Germany (K.S., D.H.-K., N.F., J.H., J.B.); Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Germany (M.B.); Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (L.M.); Cluster of Excellence REBIRTH, Hannover Medical School, Germany (D.H.-K., N.F., J.H., J.B., T.T.); JRG Translational Hematology of Congenital Disease, Cluster of Excellence REBIRTH, Institute of Experimental Hematology, Hannover Medical School, Germany (N.L.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (A.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany (A.S.); and National Heart and Lung Institute, Imperial College London, UK (T.T.)
| | - Johann Bauersachs
- From Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Germany (D.H., J.F., K.S., A.J., A.P., K.Z., J.R., A.F., K.S., S.B., T.T.); Department of Cardiology and Angiology, Hannover Medical School, Germany (K.S., D.H.-K., N.F., J.H., J.B.); Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Germany (M.B.); Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (L.M.); Cluster of Excellence REBIRTH, Hannover Medical School, Germany (D.H.-K., N.F., J.H., J.B., T.T.); JRG Translational Hematology of Congenital Disease, Cluster of Excellence REBIRTH, Institute of Experimental Hematology, Hannover Medical School, Germany (N.L.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (A.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany (A.S.); and National Heart and Lung Institute, Imperial College London, UK (T.T.)
| | - Sandor Batkai
- From Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Germany (D.H., J.F., K.S., A.J., A.P., K.Z., J.R., A.F., K.S., S.B., T.T.); Department of Cardiology and Angiology, Hannover Medical School, Germany (K.S., D.H.-K., N.F., J.H., J.B.); Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Germany (M.B.); Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (L.M.); Cluster of Excellence REBIRTH, Hannover Medical School, Germany (D.H.-K., N.F., J.H., J.B., T.T.); JRG Translational Hematology of Congenital Disease, Cluster of Excellence REBIRTH, Institute of Experimental Hematology, Hannover Medical School, Germany (N.L.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (A.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany (A.S.); and National Heart and Lung Institute, Imperial College London, UK (T.T.)
| | - Thomas Thum
- From Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Germany (D.H., J.F., K.S., A.J., A.P., K.Z., J.R., A.F., K.S., S.B., T.T.); Department of Cardiology and Angiology, Hannover Medical School, Germany (K.S., D.H.-K., N.F., J.H., J.B.); Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Germany (M.B.); Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (L.M.); Cluster of Excellence REBIRTH, Hannover Medical School, Germany (D.H.-K., N.F., J.H., J.B., T.T.); JRG Translational Hematology of Congenital Disease, Cluster of Excellence REBIRTH, Institute of Experimental Hematology, Hannover Medical School, Germany (N.L.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (A.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany (A.S.); and National Heart and Lung Institute, Imperial College London, UK (T.T.).
| |
Collapse
|
123
|
Samir M, Vaas LAI, Pessler F. MicroRNAs in the Host Response to Viral Infections of Veterinary Importance. Front Vet Sci 2016; 3:86. [PMID: 27800484 PMCID: PMC5065965 DOI: 10.3389/fvets.2016.00086] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022] Open
Abstract
The discovery of small regulatory non-coding RNAs has been an exciting advance in the field of genomics. MicroRNAs (miRNAs) are endogenous RNA molecules, approximately 22 nucleotides in length, that regulate gene expression, mostly at the posttranscriptional level. MiRNA profiling technologies have made it possible to identify and quantify novel miRNAs and to study their regulation and potential roles in disease pathogenesis. Although miRNAs have been extensively investigated in viral infections of humans, their implications in viral diseases affecting animals of veterinary importance are much less understood. The number of annotated miRNAs in different animal species is growing continuously, and novel roles in regulating host–pathogen interactions are being discovered, for instance, miRNA-mediated augmentation of viral transcription and replication. In this review, we present an overview of synthesis and function of miRNAs and an update on the current state of research on host-encoded miRNAs in the genesis of viral infectious diseases in their natural animal host as well as in selected in vivo and in vitro laboratory models.
Collapse
Affiliation(s)
- Mohamed Samir
- TWINCORE, Center for Experimental and Clinical Infection Research, Hannover, Germany; Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Lea A I Vaas
- TWINCORE, Center for Experimental and Clinical Infection Research , Hannover , Germany
| | - Frank Pessler
- TWINCORE, Center for Experimental and Clinical Infection Research, Hannover, Germany; Helmholtz Center for Infection Research, Braunschweig, Germany
| |
Collapse
|
124
|
Jia Y, Ling M, Zhang L, Jiang S, Sha Y, Zhao R. Downregulation of miR-150 Expression by DNA Hypermethylation Is Associated with High 2-Hydroxy-(4-methylthio)butanoic Acid-Induced Hepatic Cholesterol Accumulation in Nursery Piglets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7530-7539. [PMID: 27648945 DOI: 10.1021/acs.jafc.6b03615] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Excess 2-hydroxy-(4-methylthio)butanoic acid (HMB) supplementation induces hyperhomocysteinemia, which contributes to hepatic cholesterol accumulation. However, it is unclear whether and how high levels of HMB break hepatic cholesterol homeostasis in nursery piglets. In this study, HMB oversupplementation suppressed food intake and decreased body weight in nursery piglets. Hyperhomocysteinemia and higher hepatic cholesterol accumulation were observed in HMB groups. Accordingly, HMB significantly increased the protein content of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and glycine N-methyltransferase (GNMT) but decreased that of acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT1). Significant downregulation of miR-150, miR-181d-5p, and miR-296-3p targeting the 3'-untranslated regions (UTRs) of GNMT and HMGCR was detected in the liver of HMB-treated piglets, and their functional validation was confirmed by dual-luciferase reporter assay. Furthermore, hypermethylation of miR-150 promoter was detected in association with suppressed miR-150 expression in the livers of HMB-treated piglets. This study indicated a new mechanism of hepatic cholesterol unhomeostasis by dietary methyl donor supplementation.
Collapse
Affiliation(s)
- Yimin Jia
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| | - Mingfa Ling
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| | - Luchu Zhang
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| | - Shuxia Jiang
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| | - Yusheng Sha
- China Feed Industry Association, Ministry of Agriculture , Peking 100125, People's Republic of China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| |
Collapse
|
125
|
Turchinovich A, Tonevitsky AG, Burwinkel B. Extracellular miRNA: A Collision of Two Paradigms. Trends Biochem Sci 2016; 41:883-892. [DOI: 10.1016/j.tibs.2016.08.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 12/21/2022]
|
126
|
Abstract
MicroRNAs (miRNAs) provide a unique mechanism of gene regulation and play a key role in different pathologies ranging from metabolic diseases to cancer. miRNAs can impact biological function as either suppressors of gene expression when their expression levels are enhanced in a disease state or they can cause upregulation of gene expression when their expression levels are reduced. Therefore both gain- and loss-of- function strategies are needed to fully exploit their therapeutic potential. miRNA research first focused on inhibition of single miRNAs using oligonucleotide inhibitors. However, more recent approaches explore the potential to deliver oligonucleotides to mimic miRNA expression or to employ small molecules to increase or inhibit miRNA function. Although we need to know more about the potential side effects and tissue specific delivery systems, these studies provide grounds to further exploit miRNAs as novel therapeutic targets in the clinic.
Collapse
Affiliation(s)
- Jan Krützfeldt
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Zurich and University Hospital Zurich, Switzerland; Competence Center Personalized Medicine, ETH Zurich and University of Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland.
| |
Collapse
|
127
|
Sarnow P, Sagan SM. Unraveling the Mysterious Interactions Between Hepatitis C Virus RNA and Liver-Specific MicroRNA-122. Annu Rev Virol 2016; 3:309-332. [PMID: 27578438 DOI: 10.1146/annurev-virology-110615-042409] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many viruses encode or subvert cellular microRNAs (miRNAs) to aid in their gene expression, amplification strategies, or pathogenic signatures. miRNAs typically downregulate gene expression by binding to the 3' untranslated region of their mRNA targets. As a result, target mRNAs are translationally repressed and subsequently deadenylated and degraded. Curiously, hepatitis C virus (HCV), a member of the Flaviviridae family, recruits two molecules of liver-specific microRNA-122 (miR-122) to the 5' end of its genome. In contrast to the canonical activity of miRNAs, the interactions of miR-122 with the viral genome promote viral RNA accumulation in cultured cells and in animal models of HCV infection. Sequestration of miR-122 results in loss of viral RNA both in cell culture and in the livers of chronic HCV-infected patients. This review discusses the mechanisms by which miR-122 is thought to enhance viral RNA abundance and the consequences of miR-122-HCV interactions. We also describe preliminary findings from phase II clinical trials in patients treated with miR-122 antisense oligonucleotides.
Collapse
Affiliation(s)
- Peter Sarnow
- Department of Microbiology and Immunology, Stanford University, Stanford, California 94305
| | - Selena M Sagan
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada;
| |
Collapse
|
128
|
Saleh AJ, Soltani BM, Dokanehiifard S, Medlej A, Tavalaei M, Mowla SJ. Experimental verification of a predicted novel microRNA located in human PIK3CA gene with a potential oncogenic function in colorectal cancer. Tumour Biol 2016; 37:14089-14101. [PMID: 27511117 DOI: 10.1007/s13277-016-5264-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022] Open
Abstract
PI3K/AKT signaling is involved in cell survival, proliferation, and migration. In this pathway, PI3Kα enzyme is composed of a regulatory protein encoded by p85 gene and a catalytic protein encoded by PIK3CA gene. Human PIK3CA locus is amplified in several cancers including lung and colorectal cancer (CRC). Therefore, microRNAs (miRNAs) that are encoded within the PIK3CA gene might have a role in cancer development. Here, we report a novel microRNA named PIK3CA-miR1 (EBI accession no. LN626315), which is located within PIK3CA gene. A DNA segment corresponding to PIK3CA-premir1 sequence was transfected in human cell lines that resulted in generation of mature exogenous PIK3CA-miR1. Following the overexpression of PIK3CA-miR1, its predicted target genes (APPL1 and TrkC) were significantly downregulated in the CRC-originated HCT116 and SW480 cell lines, detected by qRT-PCR. Then, dual luciferase assay supported the interaction of PIK3CA-miR1 with APPL1 and TrkC transcripts. Endogenous PIK3CA-miR1 expression was also detected in several cell lines (highly in HCT116 and SW480) and highly in CRC specimens. Consistently, overexpression of PIK3CA-premir1 in HCT116 and SW480 cells resulted in significant reduction of the sub-G1 cell distribution and apoptotic cell rate, as detected by flowcytometry, and resulted in increased cell proliferation, as detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. PIK3CA-miR1 overexpression also resulted in Wnt signaling upregulation detected by Top/Fop assay. Overall, accumulative evidences indicated the presence of a bona fide novel onco-miRNA encoded within the PIK3CA oncogene, which is highly expressed in colorectal cancer and has a survival effect in CRC-originated cells.
Collapse
Affiliation(s)
- Ali Jason Saleh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram M Soltani
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Sadat Dokanehiifard
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdallah Medlej
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Seyed Javad Mowla
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
129
|
Dai L, Chen K, Youngren B, Kulina J, Yang A, Guo Z, Li J, Yu P, Gu S. Cytoplasmic Drosha activity generated by alternative splicing. Nucleic Acids Res 2016; 44:10454-10466. [PMID: 27471035 PMCID: PMC5137420 DOI: 10.1093/nar/gkw668] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/01/2016] [Accepted: 07/19/2016] [Indexed: 01/03/2023] Open
Abstract
RNase III enzyme Drosha interacts with DGCR8 to form the Microprocessor, initiating canonical microRNA (miRNA) maturation in the nucleus. Here, we re-evaluated where Drosha functions in cells using Drosha and/or DGCR8 knock out (KO) cells and cleavage reporters. Interestingly, a truncated Drosha mutant located exclusively in the cytoplasm cleaved pri-miRNA effectively in a DGCR8-dependent manner. In addition, we demonstrated that in vitro generated pri-miRNAs when transfected into cells could be processed to mature miRNAs in the cytoplasm. These results indicate the existence of cytoplasmic Drosha (c-Drosha) activity. Although a subset of endogenous pri-miRNAs become enriched in the cytoplasm of Drosha KO cells, it remains unclear whether pri-miRNA processing is the main function of c-Drosha. We identified two novel in-frame Drosha isoforms generated by alternative splicing in both HEK293T and HeLa cells. One isoform loses the putative nuclear localization signal, generating c-Drosha. Further analysis indicated that the c-Drosha isoform is abundant in multiple cell lines, dramatically variable among different human tissues and upregulated in multiple tumors, suggesting that c-Drosha plays a unique role in gene regulation. Our results reveal a new layer of regulation on the miRNA pathway and provide novel insights into the ever-evolving functions of Drosha.
Collapse
Affiliation(s)
- Lisheng Dai
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Kevin Chen
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Brenda Youngren
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Julia Kulina
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Acong Yang
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Zhengyu Guo
- Department of Electrical and Computer Engineering & TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Jin Li
- Department of Electrical and Computer Engineering & TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Peng Yu
- Department of Electrical and Computer Engineering & TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Shuo Gu
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
130
|
Shi X, Zhan L, Xiao C, Lei Z, Yang H, Wang L, Zhao J, Zhang HT. miR-1238 inhibits cell proliferation by targeting LHX2 in non-small cell lung cancer. Oncotarget 2016; 6:19043-54. [PMID: 26189214 PMCID: PMC4662474 DOI: 10.18632/oncotarget.4232] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/13/2015] [Indexed: 01/01/2023] Open
Abstract
In human cancers, dysregulated expression of LIM-homeobox gene 2 (LHX2) and downregulation of miR-1238 has been reported separately. However, the relationship between them remains unclear. We investigated the functional contribution of miR-1238 to the regulation of LHX2 in non-small cell lung cancer (NSCLC). Here, computational algorithms predicted that the 3′-untranslated region (3′-UTR) of LHX2 is a target of miR-1238. Luciferase assays validated that miR-1238 directly bound to 3′-UTR of LHX2. qRT-PCR and western blot analyses further confirmed that overexpression of miR-1238 mimic in NSCLC A549 and LTEP-α-2 cells inhibited endogenous expression of LHX2 mRNA and protein. Moreover, ectopic expression of miR-1238 in NSCLC A549 and LTEP-α-2 cells suppressed cellular viability and proliferation. siRNA-induced knockdown of LHX2 copied the phenotype of miR-1238 overexpression in NSCLC A549 and LTEP-α-2 cells and LHX2 knockdown inhibited cell cycle. In addition, miR-1238 expression was frequently decreased in human NSCLC tissues and reversely correlated with LHX2 expression, which was increased in NSCLC tissues. Collectively, our findings demonstrate that miR-1238 inhibit the proliferation of NSCLC cells at least partly via repression of LHX2, shedding light on the mechanistic interaction of miR-1238 and LHX2 in NSCLC carcinogenesis. Furthermore, our data suggest that expression of miR-1238 could be a promising therapeutic strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Xiangguang Shi
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, China
| | - Lei Zhan
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, China
| | - Can Xiao
- The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, China
| | - Zhe Lei
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, China
| | - Haiping Yang
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, China
| | - Longqiang Wang
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, China
| | - Jun Zhao
- Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, China.,The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, China
| | - Hong-Tao Zhang
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, China
| |
Collapse
|
131
|
Zhu S, He C, Deng S, Li X, Cui S, Zeng Z, Liu M, Zhao S, Chen J, Jin Y, Chen H, Deng S, Liu Y, Wang C, Zhao G. MiR-548an, Transcriptionally Downregulated by HIF1α/HDAC1, Suppresses Tumorigenesis of Pancreatic Cancer by Targeting Vimentin Expression. Mol Cancer Ther 2016; 15:2209-19. [PMID: 27353169 DOI: 10.1158/1535-7163.mct-15-0877] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 06/21/2016] [Indexed: 12/20/2022]
Abstract
Hypoxic microenvironments contribute to the tumorigenesis of numerous cancers by regulating the expression of a subset of miRNAs called "hypoxiamiRs." However, the function and mechanism of these deregulated miRNAs in hypoxic microenvironments within pancreatic cancers remain undefined. This study demonstrates that miR-548an is significantly downregulated in pancreatic cancer tissues and correlates with increased tumor size, advanced TNM stage, distant metastasis, and poor prognosis. Moreover, the overexpression of miR-548an significantly inhibited the proliferation and invasion of pancreatic cancer cells in vitro and in vivo We further revealed that hypoxia-induced factor-1α (HIF-1α) induces the downregulation of miR-548an in pancreatic cancer cells during hypoxia. Our co-IP and ChIP assays revealed that HIF-1α and histone deacetylase 1 (HDAC1) form a complex and bind to the hypoxia response elements (HRE) on the miR-548an promoter. In addition, inhibition of HDAC1 with trichostatin A antagonizes the suppression of miR-548 by hypoxia. Our dual luciferase assay validated that miR-548an directly binds to the 3' untranslated region of vimentin mRNA. The downregulation of vimentin suppresses the proliferation and invasion of pancreatic cancer cells in vitro and in vivo In addition, vimentin was inversely correlated with miR-548an expression in pancreatic cancer samples. In conclusion, our findings suggest that the HIF-1α-HDAC1 complex transcriptionally inhibits miR-548an expression during hypoxia, resulting in the upregulation of vimentin that facilitates the pancreatic tumorigenesis. Mol Cancer Ther; 15(9); 2209-19. ©2016 AACR.
Collapse
Affiliation(s)
- Shuai Zhu
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chi He
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shijiang Deng
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Li
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shipeng Cui
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhu Zeng
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingliang Liu
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shufeng Zhao
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyuan Chen
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Jin
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hengyu Chen
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shichang Deng
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Liu
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyou Wang
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gang Zhao
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
132
|
Deng J, Zhong Q. Advanced research on the microRNA mechanism in heart failure. Int J Cardiol 2016; 220:61-4. [PMID: 27372044 DOI: 10.1016/j.ijcard.2016.06.185] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
Abstract
Heart failure is the end stage of most cardiac diseases and also an important cardiovascular disease. Ventricular remodeling, a complicated pathophysiological process involving multiple molecular pathways, is a crucial mechanism for the occurrence and development of heart failure. A microRNA (miRNA) is a highly conservative noncoding molecule containing 18-25 nucleotides. miRNA is different from other RNAs. It mainly serves as an endogenous gene-regulating factor, and is a member of the complex regulatory network. It induces gene repression of target transcripts by affecting mRNA at the post-transcriptional level Vasudevan et al. (2007) . This study aimed at determining the mechanism of miRNA action in heart failure.
Collapse
Affiliation(s)
- Jianying Deng
- Daping Hospital, Research Institute of Surgery, Third Military Medical University, No.10 Changjiang Zhilu, Daping, Yuzhong District, Chongqing 400042, China
| | - Qianjin Zhong
- Daping Hospital, Research Institute of Surgery, Third Military Medical University, No.10 Changjiang Zhilu, Daping, Yuzhong District, Chongqing 400042, China.
| |
Collapse
|
133
|
Intracellular and extracellular microRNA: An update on localization and biological role. ACTA ACUST UNITED AC 2016; 51:33-49. [PMID: 27396686 DOI: 10.1016/j.proghi.2016.06.001] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 12/12/2022]
Abstract
MicroRNA (miRNA) is a class of small non-coding RNAs which mediate post-transcriptional gene silencing (PTGS) by sequence-specific inhibition of target mRNAs translation and/or lowering their half-lives in the cytoplasm. Together with their binding partners, Argonaute (AGO) proteins, miRNAs form cores of RNA-induced silencing complexes (RISC). Despite a substantial progress in understanding RISC structure, until recently little was known about its localization in the cell. This review is aimed to provide an overview of the emerging picture of miRNA and RISC localization and function both in the intracellular space and outside of the cell. In contrast to the common assumption that PTGS occurs in the cytoplasm, it was found to operate mainly on the membranes of the endoplasmic reticulum (ER). Besides ER membranes miRNAs were found in all main cellular compartments including nucleus, nucleolus and mitochondria where they regulate various processes including transcription, translation, alternative splicing and DNA repair. Moreover, a certain pool of miRNAs may not be associated with RISC and carry completely different functions. Finally, the discovery of cell-free miRNAs in all biological fluids suggests that miRNAs might also act as signaling molecules outside the cell, and may be utilized as biomarkers for a variety of diseases. In this review we discuss miRNA secretion mechanisms and possible pathways of cell-cell communication via miRNA-containing exosomes in vivo.
Collapse
|
134
|
NF-κB-Regulated miR-99a Modulates Endothelial Cell Inflammation. Mediators Inflamm 2016; 2016:5308170. [PMID: 27403035 PMCID: PMC4923609 DOI: 10.1155/2016/5308170] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/15/2016] [Indexed: 11/18/2022] Open
Abstract
Objective. The present study was performed to investigate the effects and mechanisms of miR-99a on LPS-induced endothelial cell inflammation, as well as the regulation of NF-κB on miR-99a production. Methods and Results. ELISA showed that LPS treatment significantly promoted the secretion of inflammatory factors (TNF-α, IL-6, IL-1β, and MCP-1). LPS treatment also inhibited miR-99a production and promoted mTOR expression and NF-κB nuclear translocation. Overexpression of miR-99a suppressed the LPS-induced TNF-α, IL-6, IL-1β, and MCP-1 overproduction, mTOR upregulation, and NF-κB nuclear translocation. The PROMO software analysis indicated NF-κB binding site in the −1643 to −1652 region of miR-99a promoter. Dual luciferase reporter analysis, electrophoretic mobility shift assays (EMSA), and chromosome immunoprecipitation (ChIP) assays demonstrated that NF-κB promoted the transcription of miR-99a by binding to the −1643 to −1652 region of miR-99a promoter. Further studies on HUVECs verified the regulatory effects of NF-κB on miR-99a production. Conclusion. MiR-99a inhibited the LPS-induced HUVECs inflammation via inhibition of the mTOR/NF-κB signal. NF-κB promoted miR-99a production by binding to the −1643 to −1652 region of miR-99a promoter. Considering the importance of endothelial inflammation on cardiovascular diseases, such as atherosclerosis, our results may provide a new insight into the pathogenesis and therapy of atherosclerosis.
Collapse
|
135
|
Wei X, Cheng X, Peng Y, Zheng R, Chai J, Jiang S. STAT5a promotes the transcription of mature mmu-miR-135a in 3T3-L1 cells by binding to both miR-135a-1 and miR-135a-2 promoter elements. Int J Biochem Cell Biol 2016; 77:109-119. [PMID: 27276245 DOI: 10.1016/j.biocel.2016.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/21/2016] [Accepted: 06/03/2016] [Indexed: 01/10/2023]
Abstract
Despite extensive research on the role of miR-135a in biological processes, very little attention has been paid to the regulation of its transcription. We have previously reported that miR-135a suppresses 3T3-L1 preadipocyte differentiation and adipogenesis by directly targeting the adenomatous polyposis coli (APC) gene and activating the canonical Wnt/β-catenin signaling pathway, but the regulatory elements that regulate the expression of the two isoforms of miR-135a (miR-135a-1 and miR-135a-2) remain poorly understood. Here, by using deletion analysis, we predicted two binding sites (-874/-856 and -2020/-2002) for the transcription factor Signal Transducers and Activators of Transcription 5a (STAT5a) within the core promoters of miR-135a-1 and miR-135a-2 (-1128/-556 and -2264/-1773), and the subsequent site-directed mutagenesis indicated that the two STAT5a binding sites regulated the activity of the miR-135a-1 and miR-135a-2 promoters. The binding of STAT5a to the miR-135a-1/2 core promoters in vitro and in cell culture was identified by electrophoretic mobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP) assays. Overexpression and RNAi knockdown of STAT5a showed that the transcription factor regulated the endogenous miR-135a expression. Additionally, The expression time frame of STAT5a and APC indicated a potential negative feedback between them. In sum, the overall results from this study indicate that STAT5a regulates miR-135a transcription by binding to both miR-135a-1 and miR135a-2 promoter elements and the findings provide novel insights into the molecular regulatory mechanisms of miR-135a during adipogenesis.
Collapse
Affiliation(s)
- Xiajie Wei
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiaoyan Cheng
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, China
| | - Yongdong Peng
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004 Hebei, China
| | - Rong Zheng
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jin Chai
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Siwen Jiang
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.
| |
Collapse
|
136
|
Principles of microRNA Regulation Revealed Through Modeling microRNA Expression Quantitative Trait Loci. Genetics 2016; 203:1629-40. [PMID: 27260304 PMCID: PMC4981266 DOI: 10.1534/genetics.116.187153] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/27/2016] [Indexed: 12/23/2022] Open
Abstract
Extensive work has been dedicated to study mechanisms of microRNA-mediated gene regulation. However, the transcriptional regulation of microRNAs themselves is far less well understood, due to difficulties determining the transcription start sites of transient primary transcripts. This challenge can be addressed using expression quantitative trait loci (eQTLs) whose regulatory effects represent a natural source of perturbation of cis-regulatory elements. Here we used previously published cis-microRNA-eQTL data for the human GM12878 cell line, promoter predictions, and other functional annotations to determine the relationship between functional elements and microRNA regulation. We built a logistic regression model that classifies microRNA/SNP pairs into eQTLs or non-eQTLs with 85% accuracy; shows microRNA-eQTL enrichment for microRNA precursors, promoters, enhancers, and transcription factor binding sites; and depletion for repressed chromatin. Interestingly, although there is a large overlap between microRNA eQTLs and messenger RNA eQTLs of host genes, 74% of these shared eQTLs affect microRNA and host expression independently. Considering microRNA-only eQTLs we find a significant enrichment for intronic promoters, validating the existence of alternative promoters for intragenic microRNAs. Finally, in line with the GM12878 cell line derived from B cells, we find genome-wide association (GWA) variants associated to blood-related traits more likely to be microRNA eQTLs than random GWA and non-GWA variants, aiding the interpretation of GWA results.
Collapse
|
137
|
Bavia L, Mosimann ALP, Aoki MN, Duarte Dos Santos CN. A glance at subgenomic flavivirus RNAs and microRNAs in flavivirus infections. Virol J 2016; 13:84. [PMID: 27233361 PMCID: PMC4884392 DOI: 10.1186/s12985-016-0541-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/17/2016] [Indexed: 11/10/2022] Open
Abstract
The family Flaviviridae comprises a wide variety of viruses that are distributed worldwide, some of which are associated with high rates of morbidity and mortality. There are neither vaccines nor antivirals for most flavivirus infections, reinforcing the importance of research on different aspects of the viral life cycle. During infection, cytoplasmic accumulation of RNA fragments mainly originating from the 3' UTRs, which have been designated subgenomic flavivirus RNAs (sfRNAs), has been detected. It has been shown that eukaryotic exoribonucleases are involved in viral sfRNA production. Additionally, viral and human small RNAs (sRNAs) have also been found in flavivirus-infected cells, especially microRNAs (miRNAs). miRNAs were first described in eukaryotic cells and in a mature and functional state present as single-stranded 18-24 nt RNA fragments. Their main function is the repression of translation through base pairing with cellular mRNAs, besides other functions, such as mRNA degradation. Canonical miRNA biogenesis involves Drosha and Dicer, however miRNA can also be generated by alternative pathways. In the case of flaviviruses, alternative pathways have been suggested. Both sfRNAs and miRNAs are involved in viral infection and host cell response modulation, representing interesting targets of antiviral strategies. In this review, we focus on the generation and function of viral sfRNAs, sRNAs and miRNAs in West Nile, dengue, Japanese encephalitis, Murray Valley encephalitis and yellow fever infections, as well as their roles in viral replication, translation and cell immune response evasion. We also give an overview regarding other flaviviruses and the generation of cellular miRNAs during infection.
Collapse
Affiliation(s)
- Lorena Bavia
- Laboratório de Virologia Molecular, Instituto Carlos Chagas (ICC/FIOCRUZ-PR), Rua Prof. Algacyr Munhoz Mader 3775, CIC, CEP: 81350-010, Curitiba, Paraná, Brazil
| | - Ana Luiza Pamplona Mosimann
- Laboratório de Virologia Molecular, Instituto Carlos Chagas (ICC/FIOCRUZ-PR), Rua Prof. Algacyr Munhoz Mader 3775, CIC, CEP: 81350-010, Curitiba, Paraná, Brazil
| | - Mateus Nóbrega Aoki
- Laboratório de Virologia Molecular, Instituto Carlos Chagas (ICC/FIOCRUZ-PR), Rua Prof. Algacyr Munhoz Mader 3775, CIC, CEP: 81350-010, Curitiba, Paraná, Brazil
| | - Claudia Nunes Duarte Dos Santos
- Laboratório de Virologia Molecular, Instituto Carlos Chagas (ICC/FIOCRUZ-PR), Rua Prof. Algacyr Munhoz Mader 3775, CIC, CEP: 81350-010, Curitiba, Paraná, Brazil.
| |
Collapse
|
138
|
Chen SY, Teng SC, Cheng TH, Wu KJ. miR-1236 regulates hypoxia-induced epithelial-mesenchymal transition and cell migration/invasion through repressing SENP1 and HDAC3. Cancer Lett 2016; 378:59-67. [PMID: 27177472 DOI: 10.1016/j.canlet.2016.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 01/08/2023]
Abstract
Intratumoral hypoxia induces epithelial-mesenchymal transition and promotes cancer metastasis. MicroRNAs (miRNAs) are endogenous, single-strand RNA molecules that regulate gene expression. MiRNAs control cell growth, proliferation, differentiation and cell death and may function as oncogenes or tumor suppressors. HDAC3 and SENP1 are two molecules involved in hypoxia-induced EMT and HIF-1α stability, respectively. In this report, we show that miR-1236 plays a critical role in hypoxia-induced EMT and metastasis. MiRNA prediction programs TargetScan and miRanda show that miR-1236 may target HDAC3 and SENP1. MiR-1236 represses the luciferase activity of reporter constructs containing 3'UTR of HDAC3 and SENP1 as well as the expression levels of HDAC3 and SENP1. MiR-1236 abolishes hypoxia-induced EMT and inhibits migration and invasion activity of tumor cells. Hypoxia represses miR-1236 expression. The promoter region of miR-1236 is identified as the NELFE promoter. Twist1, an EMT regulator activated by hypoxia/HIF-1α, is shown to repress the reporter construct driven by the NELFE promoter. The binding site of Twist1 in the NELFE promoter is identified and chromatin immunoprecipitation assays show the direct binding of Twist1 to this site. Overexpression or knockdown of Twist1 in stable cell lines shows the inverse correlation between Twist1 and miR-1236 expression. These results identify a miRNA that regulates hypoxia-induced EMT and metastasis through repressing HDAC3 and SENP1 expression and present a regulatory network that involves many key players in hypoxia-induced EMT.
Collapse
Affiliation(s)
- Sung-Yuan Chen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Shu-Chun Teng
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Tzu-Hao Cheng
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan.
| | - Kou-Juey Wu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan; Research Center for Tumor Medical Science, Graduate Institute of Cancer Biology, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
139
|
França GS, Vibranovski MD, Galante PAF. Host gene constraints and genomic context impact the expression and evolution of human microRNAs. Nat Commun 2016; 7:11438. [PMID: 27109497 PMCID: PMC4848552 DOI: 10.1038/ncomms11438] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/25/2016] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence has shown that recent miRNAs tend to emerge within coding genes. Here we conjecture that human miRNA evolution is tightly influenced by the genomic context, especially by host genes. Our findings show a preferential emergence of intragenic miRNAs within old genes. We found that miRNAs within old host genes are significantly more broadly expressed than those within young ones. Young miRNAs within old genes are more broadly expressed than their intergenic counterparts, suggesting that young miRNAs have an initial advantage by residing in old genes, and benefit from their hosts' expression control and from the exposure to diverse cellular contexts and target genes. Our results demonstrate that host genes may provide stronger expression constraints to intragenic miRNAs in the long run. We also report associated functional implications, highlighting the genomic context and host genes as driving factors for the expression and evolution of human miRNAs. Recent miRNAs tend to emerge within coding genes. Here, by analysing miRNA expression data from six species and comparing genomes from 13 species, the authors report that host genes may provide stronger expression constraints to intragenic miRNAs in the long run.
Collapse
Affiliation(s)
- Gustavo S França
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Rua Daher Cutait 69, 01308-060 São Paulo, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Maria D Vibranovski
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, Rua do Matao 277, 05508-090 São Paulo, Brazil
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Rua Daher Cutait 69, 01308-060 São Paulo, Brazil
| |
Collapse
|
140
|
Long noncoding RNA FTX inhibits hepatocellular carcinoma proliferation and metastasis by binding MCM2 and miR-374a. Oncogene 2016; 35:5422-5434. [PMID: 27065331 DOI: 10.1038/onc.2016.80] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 02/07/2023]
Abstract
It has long been known that males are more susceptible than females to hepatocellular carcinoma (HCC), but the reason remains elusive. In this study, we investigated the expression and function of the long noncoding RNA FTX (lnc-FTX), an X-inactive-specific transcript (XIST) regulator transcribed from the X chromosome inactivation center, in both HCC and HCC gender disparity. lnc-FTX is expressed at higher levels in female livers than in male livers and is significantly downregulated in HCC tissues compared with normal liver tissues. Patients with higher lnc-FTX expression exhibited longer survival, suggesting that lnc-FTX is a useful prognostic factor for HCC patients. lnc-FTX inhibits HCC cell growth and metastasis both in vitro and in vivo. Mechanistically, lnc-FTX represses Wnt/β-catenin signaling activity by competitively sponging miR-374a and inhibits HCC cell epithelial-mesenchymal transition and invasion. In addition, lnc-FTX binds to the DNA replication licensing factor MCM2, thereby impeding DNA replication and inhibiting proliferation in HCC cells. In conclusion, these findings suggest that lnc-FTX may act as a tumor suppressor in HCC through physically binding miR-374a and MCM2. It may also be one of the reasons for HCC gender disparity and may potentially contribute to HCC treatment.
Collapse
|
141
|
Kakimoto Y, Tanaka M, Kamiguchi H, Hayashi H, Ochiai E, Osawa M. MicroRNA deep sequencing reveals chamber-specific miR-208 family expression patterns in the human heart. Int J Cardiol 2016; 211:43-8. [PMID: 26974694 DOI: 10.1016/j.ijcard.2016.02.145] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/10/2016] [Accepted: 02/28/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Heart chamber-specific mRNA expression patterns have been extensively studied, and dynamic changes have been reported in many cardiovascular diseases. MicroRNAs (miRNAs) are also important regulators of normal cardiac development and functions that generally suppress gene expression at the posttranscriptional level. Recent focus has been placed on circulating miRNAs as potential biomarkers for cardiac disorders. However, miRNA expression levels in human normal hearts have not been thoroughly studied, and chamber-specific miRNA expression signatures in particular remain unclear. METHODS AND RESULTS We performed miRNA deep sequencing on human paired left atria (LA) and ventricles (LV) under normal physiologic conditions. Among 438 miRNAs, miR-1 was the most abundant in both chambers, representing 21% of the miRNAs in LA and 26% in LV. A total of 25 miRNAs were differentially expressed between LA and LV; 14 were upregulated in LA, and 11 were highly expressed in LV. Notably, the miR-208 family in particular showed prominent chamber specificity; miR-208a-3p and miR-208a-5p were abundant in LA, whereas miR-208b-3p and miR-208b-5p were preferentially expressed in LV. Subsequent real-time polymerase chain reaction analysis validated the predominant expression of miR-208a in LA and miR-208b in LV. CONCLUSIONS Human atrial and ventricular tissues display characteristic miRNA expression signatures under physiological conditions. Notably, miR-208a and miR-208b show significant chamber-specificity as do their host genes, α-MHC and β-MHC, which are mainly expressed in the atria and ventricles, respectively. These findings might also serve to enhance our understanding of cardiac miRNAs and various heart diseases.
Collapse
Affiliation(s)
- Yu Kakimoto
- Department of Forensic Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Masayuki Tanaka
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Hiroshi Kamiguchi
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Hideki Hayashi
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Eriko Ochiai
- Department of Forensic Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Motoki Osawa
- Department of Forensic Medicine, Tokai University School of Medicine, Kanagawa, Japan.
| |
Collapse
|
142
|
Transcription factor C/EBP-β induces tumor-suppressor phosphatase PHLPP2 through repression of the miR-17-92 cluster in differentiating AML cells. Cell Death Differ 2016; 23:1232-42. [PMID: 26868909 DOI: 10.1038/cdd.2016.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/22/2015] [Accepted: 12/23/2015] [Indexed: 12/14/2022] Open
Abstract
PHLPP2, a member of the PH-domain leucine-rich repeat protein phosphatase (PHLPP) family, which targets oncogenic kinases, has been actively investigated as a tumor suppressor in solid tumors. Little is known, however, regarding its regulation in hematological malignancies. We observed that PHLPP2 protein expression, but not its mRNA, was suppressed in late differentiation stage acute myeloid leukemia (AML) subtypes. MicroRNAs (miR or miRNAs) from the miR-17-92 cluster, oncomir-1, were shown to inhibit PHLPP2 expression and these miRNAs were highly expressed in AML cells that lacked PHLPP2 protein. Studies showed that miR-17-92 cluster regulation was, surprisingly, independent of transcription factors c-MYC and E2F in these cells; instead all-trans-retinoic acid (ATRA), a drug used for terminally differentiating AML subtypes, markedly suppressed miR-17-92 expression and increased PHLPP2 protein levels and phosphatase activity. Finally, we demonstrate that the effect of ATRA on miR-17-92 expression is mediated through its target, transcription factor C/EBPβ, which interacts with the intronic promoter of the miR-17-92 gene to inhibit transactivation of the cluster. These studies reveal a novel mechanism for upregulation of the phosphatase activity of PHLPP2 through C/EBPβ-mediated repression of the miR-17-92 cluster in terminally differentiating myeloid cells.
Collapse
|
143
|
Muscle-specific microRNAs in skeletal muscle development. Dev Biol 2016; 410:1-13. [DOI: 10.1016/j.ydbio.2015.12.013] [Citation(s) in RCA: 281] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 01/19/2023]
|
144
|
Qian J, Tu R, Yuan L, Xie W. Intronic miR-932 targets the coding region of its host gene, Drosophila neuroligin2. Exp Cell Res 2016; 344:183-93. [PMID: 26844630 DOI: 10.1016/j.yexcr.2016.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/21/2016] [Accepted: 01/29/2016] [Indexed: 02/08/2023]
Abstract
Despite great progress for two decades in microRNAs (miRNAs), the direct regulation of host gene by intragenic (mostly intronic) miRNA is conceptually plausible but evidence-limited. Here, we report that intronic miR-932 could target its host gene via binding with coding sequence (CDS) region rather than regular 3'UTR. The conserved miR-932 is embedded in the fourth intron of Drosophila neuroligin2 (dnlg2), which encodes a synaptic cell adhesion molecule, DNlg2. In silico analysis predicted two putative miR-932 target sites locate in the CDS region of dnlg2 instead of regular 3'-UTR miRNA binding sites. Employing luciferase reporter assay, we further proved that the miR-932 regulates expression of its host gene dnlg2 via the binding CDS region of dnlg2. Consistently, we observed miR-932 downregulated expression of dnlg2 in S2 cell, and the repression of dnlg2 by miR-932 at both protein and RNA level. Furthermore, we found CDS-located site1 is dominant for regulating expression of host dnlg2 by miR-932. In addition to providing thorough examination of one intronic miRNA targeting the CDS region of its host gene, our genome-wide analysis indicated that nearly half of fruitfly and human intronic miRNAs may target their own host gene at coding region. This study would be valuable in elucidating the regulation of intronic miRNA on host gene, and provide new information about the biological context of their genomic arrangements and functions.
Collapse
Affiliation(s)
- Jinjun Qian
- The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Renjun Tu
- The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Liudi Yuan
- The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China; Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China.
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China.
| |
Collapse
|
145
|
Ekhteraei-Tousi S, Mohammad-Soltani B, Sadeghizadeh M, Mowla SJ, Parsi S, Soleimani M. Inhibitory effect of hsa-miR-590-5p on cardiosphere-derived stem cells differentiation through downregulation of TGFB signaling. J Cell Biochem 2016; 116:179-91. [PMID: 25163461 DOI: 10.1002/jcb.24957] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 08/22/2014] [Indexed: 11/08/2022]
Abstract
The cardiac cells generation via stem cells differentiation is a promising approach to restore the myocardial infarction. Promoted by our primary bioinformatics analysis as well as some previously published data on potential role of hsa-miR-590-3p in cardiogenesis, we have tried to decipher the role of miR-590-5p during the course of differentiation of cardiosphere-derived cells (CDCs). The differentiation induction of CDCs by TGFB1 was confirmed by real-time PCR, ICC, and flow cytometry. The expression pattern of hsa-miR-590-5p and some related genes were examined during the differentiation process. In order to study the role of miR-590-5p in cardiac differentiation, the effect of miR-590 overexpression in CDCs was studied. Evaluating the expression patterns of miR-590 and its potential targets (TGFBRs) during the course of differentiation, demonstrated a significant downregulation of miR-590 and an upregulation of TGFBR2, following the treatment of CDCs with TGFB1. Therefore, we proposed a model in which TGFB1 exerts its differentiation induction via downregulation of miR-590, and hence the higher transcriptional expression level of TGFBR2. In accordance with our proposed model, transfection of CDCs by a pLenti-III-hsa-mir-590-GFP expression vector before or after the first TGFB1 treatment caused a significant alteration in the expression levels of TGFBRs. Moreover, our data revealed that overexpression of miR-590 before TGFB1 induction was able to attenuate the CDCs differentiation probably via the reduction of TGFBR2 expression level. Altogether, our data suggest an inhibitory role of miR-590 during the cardiac differentiation of CDCs which its suppression might elevate the rate of differentiation.
Collapse
Affiliation(s)
- Samaneh Ekhteraei-Tousi
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
146
|
miRNA and cholesterol homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:2041-2046. [PMID: 26778752 DOI: 10.1016/j.bbalip.2016.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/23/2022]
Abstract
MicroRNAs (miRNAs) have recently emerged as a novel class of epigenetic regulators of gene expression. They are systemically involved in the control of lipid metabolism through a complex interactive mechanism that involves gene regulatory networks. Hence, they can contribute to defective lipid metabolism and metabolic diseases. Here, we review recent advances in the roles of lipid-sensing transcription factors in regulating miRNA gene networks, as well as miRNA expression and function in the regulation of cholesterol metabolism. This article is part of a Special Issue entitled: MicroRNAs and lipid/energy metabolism and related diseases edited by Carlos Fernández-Hernando and Yajaira Suárez.
Collapse
|
147
|
Ghose J, Bhattacharyya NP. Transcriptional regulation of microRNA-100, -146a, and -150 genes by p53 and NFκB p65/RelA in mouse striatal STHdh(Q7)/ Hdh(Q7) cells and human cervical carcinoma HeLa cells. RNA Biol 2016; 12:457-77. [PMID: 25757558 DOI: 10.1080/15476286.2015.1014288] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
MicroRNA (miRNA) genes generally share many features common to those of protein coding genes. Various transcription factors (TFs) and co-regulators are also known to regulate miRNA genes. Here we identify novel p53 and NFκB p65/RelA responsive miRNAs and demonstrate that these 2 TFs bind to the regulatory sequences of miR-100, -146a and -150 in both mouse striatal and human cervical carcinoma cells and regulate their expression. p53 represses the miRNAs while NFκB p65/RelA induces them. Further, we provide evidence that exogenous p53 inhibits NFκB p65/RelA activity by reducing its nuclear content and competing with it for CBP binding. This suggests for the existence of a functional cross-talk between the 2 TFs in regulating miRNA expression. Moreover, promoter occupancy assay reveals that exogenous p53 excludes NFκB p65/RelA from its binding site in the upstream sequence of miR-100 gene thereby causing its repression. Thus, our work identifies novel p53 and NFκB p65/RelA responsive miRNAs in human and mouse and uncovers possible mechanisms of co-regulation of miR-100. It is to be mentioned here that cross-talks between p53 and NFκB p65/RelA have been observed to define the outcome of several biological processes and that the pro-apoptotic effect of p53 and the pro-survival functions of NFκB can be largely mediated via the biological roles of the miRNAs these TFs regulate. Our observation with cell lines thus provides an important platform upon which further work is to be done to establish the biological significance of such co-regulation of miRNAs by p53 and NFκB p65/RelA.
Collapse
Key Words
- ChIP, Chromatin immunoprecipitation
- Co-IP, Co-immunoprecipitation
- NFκB p65/RelA
- NFκB, nuclear factor kappa-light-chain-enhancer of activated B cells
- RLU, Relative light unit
- RNA POL II, RNA Polymerase II
- RNA POL III, RNA Polymerase III
- RT-PCR, Reverse transcription polymerase chain reaction
- TF, Transcriptional factor
- TFBS
- Transcription factor binding site
- WB, Western blot
- miR-100
- miR-146a
- miR-150
- miRNA gene regulation
- miRNAs, microRNAs
- microRNA
- p53
- p53, tumor protein 53
- p65, RELA, RELA
- transcription factor
- v-rel avian reticuloendotheliosis viral oncogene homolog A
Collapse
Affiliation(s)
- Jayeeta Ghose
- a Crystallography and Molecular Biology Division; Saha Institute of Nuclear Physics ; Bidhannagar, Kolkata , India
| | | |
Collapse
|
148
|
Wang J, Li Z, Liu B, Chen G, Shao N, Ying X, Wang Y. Systematic study of cis-antisense miRNAs in animal species reveals miR-3661 to target PPP2CA in human cells. RNA (NEW YORK, N.Y.) 2016; 22:87-95. [PMID: 26577378 PMCID: PMC4691837 DOI: 10.1261/rna.052894.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/03/2015] [Indexed: 05/13/2023]
Abstract
MicroRNAs (miRNAs) suppress targeting gene expression through blocking translation or triggering mRNA degradation and, in general, act in trans, through a partially complementary interaction with the 3' untranslated region (3' UTR) or coding regions of a target gene. Although it has been reported previously that some miRNAs suppress their target genes on the opposite strand with a fully complementary sequence (i.e., natural antisense miRNAs that act in cis), there is no report to systematically study such cis-antisense miRNAs in different animal species. Here we report that cis-antisense miRNAs do exist in different animal species: 48 in Caenorhabditis elegans, 17 in Drosophila, 36 in Mus musculus, and 52 in Homo sapiens using a systematical bioinformatics approach. We show that most of these cis-antisense miRNAs can efficiently reduce the expression levels of their target genes in human cells. We further investigate hsa-miR-3661, one of the predicted cis-antisense miRNAs, in detail and demonstrate that this miRNA directly targets the coding sequence of PPP2CA located on the opposite DNA strand and inhibits the PPP2CA expression. Taken together, these results indicate that cis-antisense miRNAs are conservative and functional in animal species including humans.
Collapse
Affiliation(s)
- Jian Wang
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, Georgia 30322, USA
| | - Zongcheng Li
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Bailong Liu
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, Georgia 30322, USA The First Norman Bethune Hospital of Jilin University, Changchun 130012, China
| | - Guangnan Chen
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, Georgia 30322, USA
| | - Ningsheng Shao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiaomin Ying
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ya Wang
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
149
|
Kiseleva Y, Ptitsyn K, Radko S, Zgoda V, Archakov A. Digital droplet PCR - a prospective technological approach to quantitative profiling of microRNA. ACTA ACUST UNITED AC 2016; 62:403-10. [DOI: 10.18097/pbmc20166204403] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
MicroRNA is a special type of regulatory molecules governing gene expression. Circulating microRNAs found in blood and other biological fluids are considered today as potential biomarkers of human pathology. Presently, quantitative alterations of particular microRNAs are revealed for a large number of oncological diseases and other disorders. The recently emerged method of digital droplet PCR (ddPCR) possesses a number of advantages making this method the most suitable for verification and validation of perspective microRNA markers of human pathologies. Among these advantages are the high accuracy and reproducibility of microRNA quantification as well as the capability to directly measure the absolute number of microRNA copies with the large dynamic range and a high throughput. The paper reviews microRNA biogenesis, the origin of circulating microRNAs, and methods used for their quantification. The special technical features of ddPCR, which make it an attractive method both for studying microRNAs as biomarkers of human pathologies and for basic research devoted to aspects of gene regulation by microRNA molecules, are also discussed.
Collapse
Affiliation(s)
| | - K.G. Ptitsyn
- Institute of Biomedical Chemistry, Moscow, Russia
| | - S.P. Radko
- Institute of Biomedical Chemistry, Moscow, Russia
| | - V.G. Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | | |
Collapse
|
150
|
Tao X, Men X, Xu Z. Bioinformatic analysis of the ssc-miR-146b upstream promoter region. ACTA ACUST UNITED AC 2015; 1:368-372. [PMID: 29766997 PMCID: PMC5940987 DOI: 10.1016/j.aninu.2015.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 12/28/2015] [Indexed: 12/04/2022]
Abstract
Sus Scrofa microRNA-146b-5p (ssc-miR-146b) was found to be one of differentially expressional microRNAs (miRNA) in our previous study. Not only it is highly expressed but also it maintains the largest up-regulated differences on the expressional level at different time points in the small intestinal mucosa of weaned piglets. To further explore the regulation mechanism of microRNA-146b-5p (miR-146b) during the stressful progress in weaned piglets, the present study predicted the functions of the ssc-miR-146b upstream promoter region using biological analysis. The analytical results showed that ssc-miR-146b is an intergenic miRNA. The length of the promoter region of ssc-miR-146b was predicted to be 2,249 bp using the Ensemble database. The length of the CpG island in the ssc-miR-146b promoter region was found to be 167 bp and it was located from 464 to 630 bp. Twenty six binding sites of 9 transcription factors in the upstream promoter region, including the sites of genes such as Sp1, AP-1, MyoD, GATA etc, were discovered using different kinds of analytical software. The predictions of the CpG island and transcription factor binding sites provided significant information for further studying the transcriptional regulation mechanism of ssc-miR-146b on the small intestinal injury due to weaning stress.
Collapse
|