101
|
Pavlaki I, Docquier F, Chernukhin I, Kita G, Gretton S, Clarkson CT, Teif VB, Klenova E. Poly(ADP-ribosyl)ation associated changes in CTCF-chromatin binding and gene expression in breast cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:718-730. [PMID: 29981477 PMCID: PMC6074063 DOI: 10.1016/j.bbagrm.2018.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/23/2018] [Accepted: 06/23/2018] [Indexed: 12/11/2022]
Abstract
CTCF is an evolutionarily conserved and ubiquitously expressed architectural protein regulating a plethora of cellular functions via different molecular mechanisms. CTCF can undergo a number of post-translational modifications which change its properties and functions. One such modifications linked to cancer is poly(ADP-ribosyl)ation (PARylation). The highly PARylated CTCF form has an apparent molecular mass of 180 kDa (referred to as CTCF180), which can be distinguished from hypo- and non-PARylated CTCF with the apparent molecular mass of 130 kDa (referred to as CTCF130). The existing data accumulated so far have been mainly related to CTCF130. However, the properties of CTCF180 are not well understood despite its abundance in a number of primary tissues. In this study we performed ChIP-seq and RNA-seq analyses in human breast cells 226LDM, which display predominantly CTCF130 when proliferating, but CTCF180 upon cell cycle arrest. We observed that in the arrested cells the majority of sites lost CTCF, whereas fewer sites gained CTCF or remain bound (i.e. common sites). The classical CTCF binding motif was found in the lost and common, but not in the gained sites. The changes in CTCF occupancies in the lost and common sites were associated with increased chromatin densities and altered expression from the neighboring genes. Based on these results we propose a model integrating the CTCF130/180 transition with CTCF-DNA binding and gene expression changes. This study also issues an important cautionary note concerning the design and interpretation of any experiments using cells and tissues where CTCF180 may be present.
Collapse
Affiliation(s)
- Ioanna Pavlaki
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - France Docquier
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Igor Chernukhin
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Georgia Kita
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Svetlana Gretton
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Christopher T Clarkson
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Vladimir B Teif
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK.
| | - Elena Klenova
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK.
| |
Collapse
|
102
|
|
103
|
CCCTC-Binding Factor Acts as a Heterochromatin Barrier on Herpes Simplex Viral Latent Chromatin and Contributes to Poised Latent Infection. mBio 2018; 9:mBio.02372-17. [PMID: 29437926 PMCID: PMC5801469 DOI: 10.1128/mbio.02372-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) establishes latent infection in neurons via a variety of epigenetic mechanisms that silence its genome. The cellular CCCTC-binding factor (CTCF) functions as a mediator of transcriptional control and chromatin organization and has binding sites in the HSV-1 genome. We constructed an HSV-1 deletion mutant that lacked a pair of CTCF-binding sites (CTRL2) within the latency-associated transcript (LAT) coding sequences and found that loss of these CTCF-binding sites did not alter lytic replication or levels of establishment of latent infection, but their deletion reduced the ability of the virus to reactivate from latent infection. We also observed increased heterochromatin modifications on viral chromatin over the LAT promoter and intron. We therefore propose that CTCF binding at the CTRL2 sites acts as a chromatin insulator to keep viral chromatin in a form that is poised for reactivation, a state which we call poised latency. Herpes simplex virus 1 (HSV-1) is a human pathogen that persists for the lifetime of the host as a result of its ability to establish latent infection within sensory neurons. The mechanism by which HSV-1 transitions from the lytic to latent infection program is largely unknown; however, HSV-1 is able to coopt cellular silencing mechanisms to facilitate the suppression of lytic gene expression. Here, we demonstrate that the cellular CCCTC-binding factor (CTCF)-binding site within the latency associated transcript (LAT) region is critical for the maintenance of a specific local chromatin structure. Additionally, loss of CTCF binding has detrimental effects on the ability to reactivate from latent infection. These results argue that CTCF plays a critical role in epigenetic regulation of viral gene expression to establish and/or maintain a form of latent infection that can reactivate efficiently.
Collapse
|
104
|
Zhang H, Li F, Jia Y, Xu B, Zhang Y, Li X, Zhang Z. Characteristic arrangement of nucleosomes is predictive of chromatin interactions at kilobase resolution. Nucleic Acids Res 2018; 45:12739-12751. [PMID: 29036650 PMCID: PMC5727446 DOI: 10.1093/nar/gkx885] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 09/24/2017] [Indexed: 01/29/2023] Open
Abstract
High-throughput chromosome conformation capture (3C) technologies, such as Hi-C, have made it possible to survey 3D genome structure. However, obtaining 3D profiles at kilobase resolution at low cost remains a major challenge. Therefore, we herein present an algorithm for precise identification of chromatin interaction sites at kilobase resolution from MNase-seq data, termed chromatin interaction site detector (CISD), and a CISD-based chromatin loop predictor (CISD_loop) that predicts chromatin–chromatin interactions (CCIs) from low-resolution Hi-C data. We show that the predictions of CISD and CISD_loop overlap closely with chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) anchors and loops, respectively. The validity of CISD/CISD_loop was further supported by a 3C assay at about 5 kb resolution. Finally, we demonstrate that only modest amounts of MNase-seq and Hi-C data are sufficient to achieve ultrahigh resolution CCI maps. Our results suggest that CCIs may result in characteristic nucleosomes arrangement patterns flanking the interaction sites, and our algorithms may facilitate precise and systematic investigations of CCIs on a larger scale than hitherto have been possible.
Collapse
Affiliation(s)
- Hui Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Jia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bingxiang Xu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiqun Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoli Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
105
|
DNase-capture reveals differential transcription factor binding modalities. PLoS One 2017; 12:e0187046. [PMID: 29284001 PMCID: PMC5746236 DOI: 10.1371/journal.pone.0187046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 10/12/2017] [Indexed: 11/19/2022] Open
Abstract
We describe DNase-capture, an assay that increases the analytical resolution of DNase-seq by focusing its sequencing phase on selected genomic regions. We introduce a new method to compensate for capture bias called BaseNormal that allows for accurate recovery of transcription factor protection profiles from DNase-capture data. We show that these normalized data allow for nuanced detection of transcription factor binding heterogeneity with as few as dozens of sites.
Collapse
|
106
|
Hsu SC, Blobel GA. The Role of Bromodomain and Extraterminal Motif (BET) Proteins in Chromatin Structure. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:37-43. [PMID: 29196562 DOI: 10.1101/sqb.2017.82.033829] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bromodomain and extraterminal motif (BET) proteins have been widely investigated for their roles in gene regulation and their potential as therapeutic targets in cancer. Pharmacologic BET inhibitors target the conserved bromodomain-acetyllysine interaction and do not distinguish between BRD2, BRD3, and BRD4. Thus, comparatively little is known regarding the distinct roles played by individual family members, as well as the underlying mechanisms that drive the transcriptional effects of BET inhibitors. Here we review studies regarding the contributions of BET proteins to genome structure and function, including recent work identifying a role for BRD2 as a component of functional and physical chromatin domain boundaries. We also discuss directions of future studies aimed at providing insights into broader architectural functions of BET proteins and their roles in chromatin domain boundary formation.
Collapse
Affiliation(s)
- Sarah C Hsu
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Gerd A Blobel
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| |
Collapse
|
107
|
Lyons DB, Zilberman D. DDM1 and Lsh remodelers allow methylation of DNA wrapped in nucleosomes. eLife 2017; 6:e30674. [PMID: 29140247 PMCID: PMC5728721 DOI: 10.7554/elife.30674] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022] Open
Abstract
Cytosine methylation regulates essential genome functions across eukaryotes, but the fundamental question of whether nucleosomal or naked DNA is the preferred substrate of plant and animal methyltransferases remains unresolved. Here, we show that genetic inactivation of a single DDM1/Lsh family nucleosome remodeler biases methylation toward inter-nucleosomal linker DNA in Arabidopsis thaliana and mouse. We find that DDM1 enables methylation of DNA bound to the nucleosome, suggesting that nucleosome-free DNA is the preferred substrate of eukaryotic methyltransferases in vivo. Furthermore, we show that simultaneous mutation of DDM1 and linker histone H1 in Arabidopsis reproduces the strong linker-specific methylation patterns of species that diverged from flowering plants and animals over a billion years ago. Our results indicate that in the absence of remodeling, nucleosomes are strong barriers to DNA methyltransferases. Linker-specific methylation can evolve simply by breaking the connection between nucleosome remodeling and DNA methylation.
Collapse
Affiliation(s)
- David B Lyons
- Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Daniel Zilberman
- Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyUnited States
- Department of Cell and Developmental BiologyJohn Innes CentreNorwichUnited Kingdom
| |
Collapse
|
108
|
Zamanighomi M, Lin Z, Wang Y, Jiang R, Wong WH. Predicting transcription factor binding motifs from DNA-binding domains, chromatin accessibility and gene expression data. Nucleic Acids Res 2017; 45:5666-5677. [PMID: 28472398 PMCID: PMC5449588 DOI: 10.1093/nar/gkx358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 04/20/2017] [Indexed: 01/08/2023] Open
Abstract
Transcription factors (TFs) play crucial roles in regulating gene expression through interactions with specific DNA sequences. Recently, the sequence motif of almost 400 human TFs have been identified using high-throughput SELEX sequencing. However, there remain a large number of TFs (∼800) with no high-throughput-derived binding motifs. Computational methods capable of associating known motifs to such TFs will avoid tremendous experimental efforts and enable deeper understanding of transcriptional regulatory functions. We present a method to associate known motifs to TFs (MATLAB code is available in Supplementary Materials). Our method is based on a probabilistic framework that not only exploits DNA-binding domains and specificities, but also integrates open chromatin, gene expression and genomic data to accurately infer monomeric and homodimeric binding motifs. Our analysis resulted in the assignment of motifs to 200 TFs with no SELEX-derived motifs, roughly a 50% increase compared to the existing coverage.
Collapse
Affiliation(s)
- Mahdi Zamanighomi
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Zhixiang Lin
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Yong Wang
- Academy of Mathematics and Systems Science, National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Rui Jiang
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic & Systems Biology, TNLIST, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Wing Hung Wong
- Department of Statistics, Stanford University, Stanford, CA 94305, USA.,Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
109
|
Abstract
How eukaryotic chromosomes fold inside the nucleus is an age-old question that remains unanswered today. Early biochemical and microscopic studies revealed the existence of chromatin domains and loops as a pervasive feature of interphase chromosomes, but the biological implications of such organizational features were obscure. Genome-wide analysis of pair-wise chromatin interactions using chromatin conformation capture (3C)-based techniques has shed new light on the organization of chromosomes in interphase nuclei. Particularly, the finding of cell-type invariant, evolutionarily conserved topologically associating domains (TADs) in a broad spectrum of cell types has provided a new molecular framework for the study of animal development and human diseases. Here, we review recent progress in characterization of such chromatin domains and delineation of mechanisms of their formation in animal cells.
Collapse
Affiliation(s)
- Jesse R Dixon
- Peptide Biology Lab and the Helmsley Center for Genomic Medicine, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - David U Gorkin
- Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA; University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, and Moores Cancer Center, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA.
| |
Collapse
|
110
|
Canela A, Maman Y, Jung S, Wong N, Callen E, Day A, Kieffer-Kwon KR, Pekowska A, Zhang H, Rao SSP, Huang SC, Mckinnon PJ, Aplan PD, Pommier Y, Aiden EL, Casellas R, Nussenzweig A. Genome Organization Drives Chromosome Fragility. Cell 2017; 170:507-521.e18. [PMID: 28735753 PMCID: PMC6133249 DOI: 10.1016/j.cell.2017.06.034] [Citation(s) in RCA: 280] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/22/2017] [Accepted: 06/21/2017] [Indexed: 01/06/2023]
Abstract
In this study, we show that evolutionarily conserved chromosome loop anchors bound by CCCTC-binding factor (CTCF) and cohesin are vulnerable to DNA double strand breaks (DSBs) mediated by topoisomerase 2B (TOP2B). Polymorphisms in the genome that redistribute CTCF/cohesin occupancy rewire DNA cleavage sites to novel loop anchors. While transcription- and replication-coupled genomic rearrangements have been well documented, we demonstrate that DSBs formed at loop anchors are largely transcription-, replication-, and cell-type-independent. DSBs are continuously formed throughout interphase, are enriched on both sides of strong topological domain borders, and frequently occur at breakpoint clusters commonly translocated in cancer. Thus, loop anchors serve as fragile sites that generate DSBs and chromosomal rearrangements. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Andres Canela
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yaakov Maman
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Seolkyoung Jung
- Genomics and Immunity, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Nancy Wong
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Amanda Day
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Kyong-Rim Kieffer-Kwon
- Genomics and Immunity, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Aleksandra Pekowska
- Genomics and Immunity, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Hongliang Zhang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, NIH, Bethesda, MD, USA
| | - Suhas S P Rao
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Su-Chen Huang
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA
| | - Peter J Mckinnon
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter D Aplan
- Genetics Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, NIH, Bethesda, MD, USA
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA
| | - Rafael Casellas
- Genomics and Immunity, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
111
|
Identification of the elementary structural units of the DNA damage response. Nat Commun 2017; 8:15760. [PMID: 28604675 PMCID: PMC5472794 DOI: 10.1038/ncomms15760] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/26/2017] [Indexed: 02/07/2023] Open
Abstract
Histone H2AX phosphorylation is an early signalling event triggered by DNA double-strand breaks (DSBs). To elucidate the elementary units of phospho-H2AX-labelled chromatin, we integrate super-resolution microscopy of phospho-H2AX during DNA repair in human cells with genome-wide sequencing analyses. Here we identify phospho-H2AX chromatin domains in the nanometre range with median length of ∼75 kb. Correlation analysis with over 60 genomic features shows a time-dependent euchromatin-to-heterochromatin repair trend. After X-ray or CRISPR-Cas9-mediated DSBs, phospho-H2AX-labelled heterochromatin exhibits DNA decondensation while retaining heterochromatic histone marks, indicating that chromatin structural and molecular determinants are uncoupled during repair. The phospho-H2AX nano-domains arrange into higher-order clustered structures of discontinuously phosphorylated chromatin, flanked by CTCF. CTCF knockdown impairs spreading of the phosphorylation throughout the 3D-looped nano-domains. Co-staining of phospho-H2AX with phospho-Ku70 and TUNEL reveals that clusters rather than nano-foci represent single DSBs. Hence, each chromatin loop is a nano-focus, whose clusters correspond to previously known phospho-H2AX foci.
Collapse
|
112
|
A comparison of nucleosome organization in Drosophila cell lines. PLoS One 2017; 12:e0178590. [PMID: 28570602 PMCID: PMC5453549 DOI: 10.1371/journal.pone.0178590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 05/16/2017] [Indexed: 01/25/2023] Open
Abstract
Changes in the distribution of nucleosomes along the genome influence chromatin structure and impact gene expression by modulating the accessibility of DNA to transcriptional machinery. However, the role of genome-wide nucleosome positioning in gene expression and in maintaining differentiated cell states remains poorly understood. Drosophila melanogaster cell lines represent distinct tissue types and exhibit cell-type specific gene expression profiles. They thus could provide a useful tool for investigating cell-type specific nucleosome organization of an organism's genome. To evaluate this possibility, we compared genome-wide nucleosome positioning and occupancy in five different Drosophila tissue-specific cell lines, and in reconstituted chromatin, and then tested for correlations between nucleosome positioning, transcription factor binding motifs, and gene expression. Nucleosomes in all cell lines were positioned in accordance with previously known DNA-nucleosome interactions, with helically repeating A/T di-nucleotide pairs arranged within nucleosomal DNAs and AT-rich pentamers generally excluded from nucleosomal DNA. Nucleosome organization in all cell lines differed markedly from in vitro reconstituted chromatin, with highly expressed genes showing strong nucleosome organization around transcriptional start sites. Importantly, comparative analysis identified genomic regions that exhibited cell line-specific nucleosome enrichment or depletion. Further analysis of these regions identified 91 out of 16,384 possible heptamer sequences that showed differential nucleosomal occupation between cell lines, and 49 of the heptamers matched one or more known transcription factor binding sites. These results demonstrate that there is differential nucleosome positioning between these Drosophila cell lines and therefore identify a system that could be used to investigate the functional significance of differential nucleosomal positioning in cell type specification.
Collapse
|
113
|
Long-range control of gene expression via RNA-directed DNA methylation. PLoS Genet 2017; 13:e1006749. [PMID: 28475589 PMCID: PMC5438180 DOI: 10.1371/journal.pgen.1006749] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 05/19/2017] [Accepted: 04/07/2017] [Indexed: 01/14/2023] Open
Abstract
RNA-mediated transcriptional silencing, in plants known as RNA-directed DNA methylation (RdDM), is a conserved process where small interfering RNA (siRNA) and long non-coding RNA (lncRNA) help establish repressive chromatin modifications. This process represses transposons and affects the expression of protein-coding genes. We found that in Arabidopsis thaliana AGO4 binding sites are often located distant from genes differentially expressed in ago4. Using Hi-C to compare interactions between genotypes, we show that RdDM-targeted loci have the potential to engage in chromosomal interactions, but these interactions are inhibited in wild-type conditions. In mutants defective in RdDM, the frequency of chromosomal interactions at RdDM targets is increased. This includes increased frequency of interactions between Pol V methylated sites and distal genes that are repressed by RdDM. We propose a model, where RdDM prevents the formation of chromosomal interactions between genes and their distant regulatory elements.
Collapse
|
114
|
Collings CK, Anderson JN. Links between DNA methylation and nucleosome occupancy in the human genome. Epigenetics Chromatin 2017; 10:18. [PMID: 28413449 PMCID: PMC5387343 DOI: 10.1186/s13072-017-0125-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/03/2017] [Indexed: 12/20/2022] Open
Abstract
Background DNA methylation is an epigenetic modification that is enriched in heterochromatin but depleted at active promoters and enhancers. However, the debate on whether or not DNA methylation is a reliable indicator of high nucleosome occupancy has not been settled. For example, the methylation levels of DNA flanking CTCF sites are higher in linker DNA than in nucleosomal DNA, while other studies have shown that the nucleosome core is the preferred site of methylation. In this study, we make progress toward understanding these conflicting phenomena by implementing a bioinformatics approach that combines MNase-seq and NOMe-seq data and by comprehensively profiling DNA methylation and nucleosome occupancy throughout the human genome. Results The results demonstrated that increasing methylated CpG density is correlated with nucleosome occupancy in the total genome and within nearly all subgenomic regions. Features with elevated methylated CpG density such as exons, SINE-Alu sequences, H3K36-trimethylated peaks, and methylated CpG islands are among the highest nucleosome occupied elements in the genome, while some of the lowest occupancies are displayed by unmethylated CpG islands and unmethylated transcription factor binding sites. Additionally, outside of CpG islands, the density of CpGs within nucleosomes was shown to be important for the nucleosomal location of DNA methylation with low CpG frequencies favoring linker methylation and high CpG frequencies favoring core particle methylation. Prominent exceptions to the correlations between methylated CpG density and nucleosome occupancy include CpG islands marked by H3K27me3 and CpG-poor heterochromatin marked by H3K9me3, and these modifications, along with DNA methylation, distinguish the major silencing mechanisms of the human epigenome. Conclusions Thus, the relationship between DNA methylation and nucleosome occupancy is influenced by the density of methylated CpG dinucleotides and by other epigenomic components in chromatin. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0125-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clayton K Collings
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior Street, Chicago, IL 60611 USA
| | - John N Anderson
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907 USA
| |
Collapse
|
115
|
McNair C, Urbanucci A, Comstock CES, Augello MA, Goodwin JF, Launchbury R, Zhao SG, Schiewer MJ, Ertel A, Karnes J, Davicioni E, Wang L, Wang Q, Mills IG, Feng FY, Li W, Carroll JS, Knudsen KE. Cell cycle-coupled expansion of AR activity promotes cancer progression. Oncogene 2017; 36:1655-1668. [PMID: 27669432 PMCID: PMC5364060 DOI: 10.1038/onc.2016.334] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/03/2016] [Indexed: 12/13/2022]
Abstract
The androgen receptor (AR) is required for prostate cancer (PCa) survival and progression, and ablation of AR activity is the first line of therapeutic intervention for disseminated disease. While initially effective, recurrent tumors ultimately arise for which there is no durable cure. Despite the dependence of PCa on AR activity throughout the course of disease, delineation of the AR-dependent transcriptional network that governs disease progression remains elusive, and the function of AR in mitotically active cells is not well understood. Analyzing AR activity as a function of cell cycle revealed an unexpected and highly expanded repertoire of AR-regulated gene networks in actively cycling cells. New AR functions segregated into two major clusters: those that are specific to cycling cells and retained throughout the mitotic cell cycle ('Cell Cycle Common'), versus those that were specifically enriched in a subset of cell cycle phases ('Phase Restricted'). Further analyses identified previously unrecognized AR functions in major pathways associated with clinical PCa progression. Illustrating the impact of these unmasked AR-driven pathways, dihydroceramide desaturase 1 was identified as an AR-regulated gene in mitotically active cells that promoted pro-metastatic phenotypes, and in advanced PCa proved to be highly associated with development of metastases, recurrence after therapeutic intervention and reduced overall survival. Taken together, these findings delineate AR function in mitotically active tumor cells, thus providing critical insight into the molecular basis by which AR promotes development of lethal PCa and nominate new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- C McNair
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - A Urbanucci
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospitals, Oslo, Norway
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospitals, Oslo, Norway
| | - C E S Comstock
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - M A Augello
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - J F Goodwin
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - R Launchbury
- Cambridge Research Institute, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - S G Zhao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - M J Schiewer
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - A Ertel
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - J Karnes
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | - L Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Q Wang
- Ohio State University College of Medicine, Columbus, OH, USA
| | - I G Mills
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospitals, Oslo, Norway
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospitals, Oslo, Norway
- Prostate Cancer UK/Movember Centre of Excellence for Prostate Cancer Research, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - F Y Feng
- Department of Radiation Oncology, Urology, and Medicine and Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - W Li
- Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - J S Carroll
- Cambridge Research Institute, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - K E Knudsen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
116
|
Vainshtein Y, Rippe K, Teif VB. NucTools: analysis of chromatin feature occupancy profiles from high-throughput sequencing data. BMC Genomics 2017; 18:158. [PMID: 28196481 PMCID: PMC5309995 DOI: 10.1186/s12864-017-3580-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 02/10/2017] [Indexed: 12/21/2022] Open
Abstract
Background Biomedical applications of high-throughput sequencing methods generate a vast amount of data in which numerous chromatin features are mapped along the genome. The results are frequently analysed by creating binary data sets that link the presence/absence of a given feature to specific genomic loci. However, the nucleosome occupancy or chromatin accessibility landscape is essentially continuous. It is currently a challenge in the field to cope with continuous distributions of deep sequencing chromatin readouts and to integrate the different types of discrete chromatin features to reveal linkages between them. Results Here we introduce the NucTools suite of Perl scripts as well as MATLAB- and R-based visualization programs for a nucleosome-centred downstream analysis of deep sequencing data. NucTools accounts for the continuous distribution of nucleosome occupancy. It allows calculations of nucleosome occupancy profiles averaged over several replicates, comparisons of nucleosome occupancy landscapes between different experimental conditions, and the estimation of the changes of integral chromatin properties such as the nucleosome repeat length. Furthermore, NucTools facilitates the annotation of nucleosome occupancy with other chromatin features like binding of transcription factors or architectural proteins, and epigenetic marks like histone modifications or DNA methylation. The applications of NucTools are demonstrated for the comparison of several datasets for nucleosome occupancy in mouse embryonic stem cells (ESCs) and mouse embryonic fibroblasts (MEFs). Conclusions The typical workflows of data processing and integrative analysis with NucTools reveal information on the interplay of nucleosome positioning with other features such as for example binding of a transcription factor CTCF, regions with stable and unstable nucleosomes, and domains of large organized chromatin K9me2 modifications (LOCKs). As potential limitations and problems we discuss how inter-replicate variability of MNase-seq experiments can be addressed. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3580-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yevhen Vainshtein
- Functional Genomics Group, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569, Stuttgart, Germany.
| | - Karsten Rippe
- Research Group Genome Organization & Function, German Cancer Research Center (DKFZ) and Bioquant, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Vladimir B Teif
- School of Biological Sciences, University of Essex, Wivenhoe Park, CO4 3SQ, Colchester, UK.
| |
Collapse
|
117
|
Testis-specific transcriptional regulators selectively occupy BORIS-bound CTCF target regions in mouse male germ cells. Sci Rep 2017; 7:41279. [PMID: 28145452 PMCID: PMC5286509 DOI: 10.1038/srep41279] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/19/2016] [Indexed: 12/14/2022] Open
Abstract
Despite sharing the same sequence specificity in vitro and in vivo, CCCTC-binding factor (CTCF) and its paralog brother of the regulator of imprinted sites (BORIS) are simultaneously expressed in germ cells. Recently, ChIP-seq analysis revealed two classes of CTCF/BORIS-bound regions: single CTCF target sites (1xCTSes) that are bound by CTCF alone (CTCF-only) or double CTCF target sites (2xCTSes) simultaneously bound by CTCF and BORIS (CTCF&BORIS) or BORIS alone (BORIS-only) in germ cells and in BORIS-positive somatic cancer cells. BORIS-bound regions (CTCF&BORIS and BORIS-only sites) are, on average, enriched for RNA polymerase II (RNAPII) binding and histone retention in mature spermatozoa relative to CTCF-only sites, but little else is known about them. We show that subsets of CTCF&BORIS and BORIS-only sites are occupied by several testis-specific transcriptional regulators (TSTRs) and associated with highly expressed germ cell-specific genes and histone retention in mature spermatozoa. We also demonstrate a physical interaction between BORIS and one of the analyzed TSTRs, TATA-binding protein (TBP)-associated factor 7-like (TAF7L). Our data suggest that CTCF and BORIS cooperate with additional TSTRs to regulate gene expression in developing male gametes and histone retention in mature spermatozoa, potentially priming certain regions of the genome for rapid activation following fertilization.
Collapse
|
118
|
Kang Y, Kim YW, Kang J, Yun WJ, Kim A. Erythroid specific activator GATA-1-dependent interactions between CTCF sites around the β-globin locus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:416-426. [PMID: 28161276 DOI: 10.1016/j.bbagrm.2017.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/22/2017] [Accepted: 01/30/2017] [Indexed: 11/24/2022]
Abstract
CTCF sites (binding motifs for CCCTC-binding factor, an insulator protein) are located considerable distances apart on genomes but are closely positioned in organized chromatin. The close positioning of CTCF sites is often cell type or tissue specific. Here we analyzed chromatin organization in eight CTCF sites around the β-globin locus by 3C assay and explored the roles of erythroid specific transcription activator GATA-1 and KLF1 in it. It was found five CTCF sites convergent to the locus interact with each other in erythroid K562 cells but not in non-erythroid 293 cells. The interaction was decreased by depletion of GATA-1 or KLF1. It accompanied reductions of CTCF and Rad21 occupancies and loss of active chromatin structure at the CTCF sites. Furthermore Rad21 occupancy was reduced in the β-globin locus control region (LCR) hypersensitive sites (HSs) by the depletion of GATA-1 or KLF1. The role of GATA-1 in interaction between CTCF sites was revealed by its ectopic expression in 293 cells and by deletion of a GATA-1 site in the LCR HS2. These findings indicate that erythroid specific activator GATA-1 acts at CTCF sites around the β-globin locus to establish tissue-specific chromatin organization.
Collapse
Affiliation(s)
- Yujin Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Yea Woon Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Jin Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Won Ju Yun
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - AeRi Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
119
|
Schuyler RP, Merkel A, Raineri E, Altucci L, Vellenga E, Martens JHA, Pourfarzad F, Kuijpers TW, Burden F, Farrow S, Downes K, Ouwehand WH, Clarke L, Datta A, Lowy E, Flicek P, Frontini M, Stunnenberg HG, Martín-Subero JI, Gut I, Heath S. Distinct Trends of DNA Methylation Patterning in the Innate and Adaptive Immune Systems. Cell Rep 2016; 17:2101-2111. [PMID: 27851971 PMCID: PMC5889099 DOI: 10.1016/j.celrep.2016.10.054] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/17/2016] [Accepted: 09/12/2016] [Indexed: 01/15/2023] Open
Abstract
DNA methylation and the localization and post-translational modification of nucleosomes are interdependent factors that contribute to the generation of distinct phenotypes from genetically identical cells. With 112 whole-genome bisulfite sequencing datasets from the BLUEPRINT Epigenome Project, we analyzed the global development of DNA methylation patterns during lineage commitment and maturation of a range of immune system effector cells and the cancers that arise from them. We show clear trends in methylation patterns that are distinct in the innate and adaptive arms of the human immune system, both globally and in relation to consistently positioned nucleosomes. Most notable are a progressive loss of methylation in developing lymphocytes and the consistent occurrence of non-CG methylation in specific cell types. Cancer samples from the two lineages are further polarized, suggesting the involvement of distinct lineage-specific epigenetic mechanisms. We anticipate broad utility for this resource as a basis for further comparative epigenetic analyses.
Collapse
Affiliation(s)
- Ronald P Schuyler
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Angelika Merkel
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Emanuele Raineri
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Lucia Altucci
- Dipartimento di Biochimica Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, Vico Luigi de Crecchio 7, Napoli 80138, Italy
| | - Edo Vellenga
- Department of Hematology, University of Groningen and University Medical Center Groningen, PO Box 30001, 9700 RB Groningen, the Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Radboud University, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Farzin Pourfarzad
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, the Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, the Netherlands; Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Frances Burden
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, CB2 0PT Cambridge, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, CB2 0PT Cambridge, UK
| | - Samantha Farrow
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, CB2 0PT Cambridge, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, CB2 0PT Cambridge, UK
| | - Kate Downes
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, CB2 0PT Cambridge, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, CB2 0PT Cambridge, UK
| | - Willem H Ouwehand
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, CB2 0PT Cambridge, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, CB2 0PT Cambridge, UK; British Heart Foundation Centre of Excellence, University of Cambridge, Cambridge Biomedical Campus, Long Road, CB2 0QQ Cambridge, UK; Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1HH Cambridge, UK
| | - Laura Clarke
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD Cambridge, UK
| | - Avik Datta
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD Cambridge, UK
| | - Ernesto Lowy
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD Cambridge, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD Cambridge, UK
| | - Mattia Frontini
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, CB2 0PT Cambridge, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, CB2 0PT Cambridge, UK; British Heart Foundation Centre of Excellence, University of Cambridge, Cambridge Biomedical Campus, Long Road, CB2 0QQ Cambridge, UK
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Radboud University, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - José I Martín-Subero
- Department of Anatomic Pathology, Pharmacology and Microbiology, University of Barcelona, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
| | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Simon Heath
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain.
| |
Collapse
|
120
|
Gomez NC, Hepperla AJ, Dumitru R, Simon JM, Fang F, Davis IJ. Widespread Chromatin Accessibility at Repetitive Elements Links Stem Cells with Human Cancer. Cell Rep 2016; 17:1607-1620. [PMID: 27806299 PMCID: PMC5267842 DOI: 10.1016/j.celrep.2016.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 06/02/2016] [Accepted: 10/02/2016] [Indexed: 11/15/2022] Open
Abstract
Chromatin regulation is critical for differentiation and disease. However, features linking the chromatin environment of stem cells with disease remain largely unknown. We explored chromatin accessibility in embryonic and multipotent stem cells and unexpectedly identified widespread chromatin accessibility at repetitive elements. Integrating genomic and biochemical approaches, we demonstrate that these sites of increased accessibility are associated with well-positioned nucleosomes marked by distinct histone modifications. Differentiation is accompanied by chromatin remodeling at repetitive elements associated with altered expression of genes in relevant developmental pathways. Remarkably, we found that the chromatin environment of Ewing sarcoma, a mesenchymally derived tumor, is shared with primary mesenchymal stem cells (MSCs). Accessibility at repetitive elements in MSCs offers a permissive environment that is exploited by the critical oncogene responsible for this cancer. Our data demonstrate that stem cells harbor a unique chromatin landscape characterized by accessibility at repetitive elements, a feature associated with differentiation and oncogenesis.
Collapse
Affiliation(s)
- Nicholas C Gomez
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Austin J Hepperla
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Raluca Dumitru
- Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Human Pluripotent Stem Cell Core Facility, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeremy M Simon
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Fang Fang
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ian J Davis
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pediatrics, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
121
|
Hanghøj K, Seguin-Orlando A, Schubert M, Madsen T, Pedersen JS, Willerslev E, Orlando L. Fast, Accurate and Automatic Ancient Nucleosome and Methylation Maps with epiPALEOMIX. Mol Biol Evol 2016; 33:3284-3298. [PMID: 27624717 PMCID: PMC5100044 DOI: 10.1093/molbev/msw184] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The first epigenomes from archaic hominins (AH) and ancient anatomically modern humans (AMH) have recently been characterized, based, however, on a limited number of samples. The extent to which ancient genome-wide epigenetic landscapes can be reconstructed thus remains contentious. Here, we present epiPALEOMIX, an open-source and user-friendly pipeline that exploits post-mortem DNA degradation patterns to reconstruct ancient methylomes and nucleosome maps from shotgun and/or capture-enrichment data. Applying epiPALEOMIX to the sequence data underlying 35 ancient genomes including AMH, AH, equids and aurochs, we investigate the temporal, geographical and preservation range of ancient epigenetic signatures. We first assess the quality of inferred ancient epigenetic signatures within well-characterized genomic regions. We find that tissue-specific methylation signatures can be obtained across a wider range of DNA preparation types than previously thought, including when no particular experimental procedures have been used to remove deaminated cytosines prior to sequencing. We identify a large subset of samples for which DNA associated with nucleosomes is protected from post-mortem degradation, and nucleosome positioning patterns can be reconstructed. Finally, we describe parameters and conditions such as DNA damage levels and sequencing depth that limit the preservation of epigenetic signatures in ancient samples. When such conditions are met, we propose that epigenetic profiles of CTCF binding regions can be used to help data authentication. Our work, including epiPALEOMIX, opens for further investigations of ancient epigenomes through time especially aimed at tracking possible epigenetic changes during major evolutionary, environmental, socioeconomic, and cultural shifts.
Collapse
Affiliation(s)
- Kristian Hanghøj
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.,Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse, Université de Toulouse, University Paul Sabatier, Toulouse, France
| | - Andaine Seguin-Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.,Danish National High-Throughput DNA Sequencing Center, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Schubert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Tobias Madsen
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus, Denmark.,Bioinformatics Research Centre (BiRC), Aarhus University, Aarhus, Denmark
| | - Jakob Skou Pedersen
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus, Denmark.,Bioinformatics Research Centre (BiRC), Aarhus University, Aarhus, Denmark
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.,Department of Zoology, University of Cambridge, Cambridge, United Kingdom.,Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark .,Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse, Université de Toulouse, University Paul Sabatier, Toulouse, France
| |
Collapse
|
122
|
Uusküla-Reimand L, Hou H, Samavarchi-Tehrani P, Rudan MV, Liang M, Medina-Rivera A, Mohammed H, Schmidt D, Schwalie P, Young EJ, Reimand J, Hadjur S, Gingras AC, Wilson MD. Topoisomerase II beta interacts with cohesin and CTCF at topological domain borders. Genome Biol 2016; 17:182. [PMID: 27582050 PMCID: PMC5006368 DOI: 10.1186/s13059-016-1043-8] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 08/10/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Type II DNA topoisomerases (TOP2) regulate DNA topology by generating transient double stranded breaks during replication and transcription. Topoisomerase II beta (TOP2B) facilitates rapid gene expression and functions at the later stages of development and differentiation. To gain new insight into the genome biology of TOP2B, we used proteomics (BioID), chromatin immunoprecipitation, and high-throughput chromosome conformation capture (Hi-C) to identify novel proximal TOP2B protein interactions and characterize the genomic landscape of TOP2B binding at base pair resolution. RESULTS Our human TOP2B proximal protein interaction network included members of the cohesin complex and nucleolar proteins associated with rDNA biology. TOP2B associates with DNase I hypersensitivity sites, allele-specific transcription factor (TF) binding, and evolutionarily conserved TF binding sites on the mouse genome. Approximately half of all CTCF/cohesion-bound regions coincided with TOP2B binding. Base pair resolution ChIP-exo mapping of TOP2B, CTCF, and cohesin sites revealed a striking structural ordering of these proteins along the genome relative to the CTCF motif. These ordered TOP2B-CTCF-cohesin sites flank the boundaries of topologically associating domains (TADs) with TOP2B positioned externally and cohesin internally to the domain loop. CONCLUSIONS TOP2B is positioned to solve topological problems at diverse cis-regulatory elements and its occupancy is a highly ordered and prevalent feature of CTCF/cohesin binding sites that flank TADs.
Collapse
Affiliation(s)
- Liis Uusküla-Reimand
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON Canada
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Huayun Hou
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | | | - Matteo Vietri Rudan
- Research Department of Cancer Biology, Cancer Institute, University College London, London, UK
| | - Minggao Liang
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | - Alejandra Medina-Rivera
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON Canada
- Present address: International Laboratory for Research in Human Genomics, Universidad Nacional Autónoma de México, Juriquilla, Querétaro Mexico
| | - Hisham Mohammed
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
- Present address: The Babraham Institute, Cambridge, UK
| | - Dominic Schmidt
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
- Present address: Syncona Partners LLP, London, UK
| | - Petra Schwalie
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
- Present address: Laboratory of Systems Biology and Genetics, Lausanne, Switzerland
| | - Edwin J. Young
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON Canada
| | - Jüri Reimand
- Ontario Institute for Cancer Research, Toronto, ON Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
| | - Suzana Hadjur
- Research Department of Cancer Biology, Cancer Institute, University College London, London, UK
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | - Michael D. Wilson
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| |
Collapse
|
123
|
A high-resolution transcriptome map of cell cycle reveals novel connections between periodic genes and cancer. Cell Res 2016; 26:946-62. [PMID: 27364684 DOI: 10.1038/cr.2016.84] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 12/16/2015] [Accepted: 03/22/2016] [Indexed: 12/16/2022] Open
Abstract
Progression through the cell cycle is largely dependent on waves of periodic gene expression, and the regulatory networks for these transcriptome dynamics have emerged as critical points of vulnerability in various aspects of tumor biology. Through RNA-sequencing of human cells during two continuous cell cycles (>2.3 billion paired reads), we identified over 1 000 mRNAs, non-coding RNAs and pseudogenes with periodic expression. Periodic transcripts are enriched in functions related to DNA metabolism, mitosis, and DNA damage response, indicating these genes likely represent putative cell cycle regulators. Using our set of periodic genes, we developed a new approach termed "mitotic trait" that can classify primary tumors and normal tissues by their transcriptome similarity to different cell cycle stages. By analyzing >4 000 tumor samples in The Cancer Genome Atlas (TCGA) and other expression data sets, we found that mitotic trait significantly correlates with genetic alterations, tumor subtype and, notably, patient survival. We further defined a core set of 67 genes with robust periodic expression in multiple cell types. Proteins encoded by these genes function as major hubs of protein-protein interaction and are mostly required for cell cycle progression. The core genes also have unique chromatin features including increased levels of CTCF/RAD21 binding and H3K36me3. Loss of these features in uterine and kidney cancers is associated with altered expression of the core 67 genes. Our study suggests new chromatin-associated mechanisms for periodic gene regulation and offers a predictor of cancer patient outcomes.
Collapse
|
124
|
The genetic regulatory signature of type 2 diabetes in human skeletal muscle. Nat Commun 2016; 7:11764. [PMID: 27353450 PMCID: PMC4931250 DOI: 10.1038/ncomms11764] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 04/27/2016] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes (T2D) results from the combined effects of genetic and environmental factors on multiple tissues over time. Of the >100 variants associated with T2D and related traits in genome-wide association studies (GWAS), >90% occur in non-coding regions, suggesting a strong regulatory component to T2D risk. Here to understand how T2D status, metabolic traits and genetic variation influence gene expression, we analyse skeletal muscle biopsies from 271 well-phenotyped Finnish participants with glucose tolerance ranging from normal to newly diagnosed T2D. We perform high-depth strand-specific mRNA-sequencing and dense genotyping. Computational integration of these data with epigenome data, including ATAC-seq on skeletal muscle, and transcriptome data across diverse tissues reveals that the tissue-specific genetic regulatory architecture of skeletal muscle is highly enriched in muscle stretch/super enhancers, including some that overlap T2D GWAS variants. In one such example, T2D risk alleles residing in a muscle stretch/super enhancer are linked to increased expression and alternative splicing of muscle-specific isoforms of ANK1.
Collapse
|
125
|
Hernández-Hernández A, Lilienthal I, Fukuda N, Galjart N, Höög C. CTCF contributes in a critical way to spermatogenesis and male fertility. Sci Rep 2016; 6:28355. [PMID: 27345455 PMCID: PMC4921845 DOI: 10.1038/srep28355] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/01/2016] [Indexed: 11/21/2022] Open
Abstract
The CCCTC-binding factor (CTCF) is an architectural protein that governs chromatin organization and gene expression in somatic cells. Here, we show that CTCF regulates chromatin compaction necessary for packaging of the paternal genome into mature sperm. Inactivation of Ctcf in male germ cells in mice (Ctcf-cKO mice) resulted in impaired spermiogenesis and infertility. Residual spermatozoa in Ctcf-cKO mice displayed abnormal head morphology, aberrant chromatin compaction, impaired protamine 1 incorporation into chromatin and accelerated histone depletion. Thus, CTCF regulates chromatin organization during spermiogenesis, contributing to the functional organization of mature sperm.
Collapse
Affiliation(s)
| | - Ingrid Lilienthal
- Karolinska Institutet, Department of Cell and Molecular Biology, Berzelius väg 35, 171 77 Stockholm, Sweden
| | - Nanaho Fukuda
- Karolinska Institutet, Department of Cell and Molecular Biology, Berzelius väg 35, 171 77 Stockholm, Sweden
| | - Niels Galjart
- Department of Cell Biology and Genetics, Erasmus MC, 2040 CA Rotterdam, The Netherlands
| | - Christer Höög
- Karolinska Institutet, Department of Cell and Molecular Biology, Berzelius väg 35, 171 77 Stockholm, Sweden
| |
Collapse
|
126
|
Petrakis TG, Komseli ES, Papaioannou M, Vougas K, Polyzos A, Myrianthopoulos V, Mikros E, Trougakos IP, Thanos D, Branzei D, Townsend P, Gorgoulis VG. Exploring and exploiting the systemic effects of deregulated replication licensing. Semin Cancer Biol 2016; 37-38:3-15. [PMID: 26707000 DOI: 10.1016/j.semcancer.2015.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/10/2015] [Accepted: 12/15/2015] [Indexed: 02/07/2023]
Abstract
Maintenance and accurate propagation of the genetic material are key features for physiological development and wellbeing. The replication licensing machinery is crucial for replication precision as it ensures that replication takes place once per cell cycle. Thus, the expression status of the components comprising the replication licensing apparatus is tightly regulated to avoid re-replication; a form of replication stress that leads to genomic instability, a hallmark of cancer. In the present review we discuss the mechanistic basis of replication licensing deregulation, which leads to systemic effects, exemplified by its role in carcinogenesis and a variety of genetic syndromes. In addition, new insights demonstrate that above a particular threshold, the replication licensing factor Cdc6 acts as global transcriptional regulator, outlining new lines of exploration. The role of the putative replication licensing factor ChlR1/DDX11, mutated in the Warsaw Breakage Syndrome, in cancer is also considered. Finally, future perspectives focused on the potential therapeutic advantage by targeting replication licensing factors, and particularly Cdc6, are discussed.
Collapse
Affiliation(s)
- Theodoros G Petrakis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | - Eirini-Stavroula Komseli
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | - Marilena Papaioannou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | - Kostas Vougas
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | | | - Emmanuel Mikros
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Athens, Athens, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens, Greece
| | - Dimitris Thanos
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dana Branzei
- FIRC (Fondazione Italiana per la Ricerca sul Cancro) Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Paul Townsend
- Faculty Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece; Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Faculty Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
127
|
Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J. Cell-free DNA Comprises an In Vivo Nucleosome Footprint that Informs Its Tissues-Of-Origin. Cell 2016; 164:57-68. [PMID: 26771485 DOI: 10.1016/j.cell.2015.11.050] [Citation(s) in RCA: 1005] [Impact Index Per Article: 111.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/03/2015] [Accepted: 11/18/2015] [Indexed: 01/22/2023]
Abstract
Nucleosome positioning varies between cell types. By deep sequencing cell-free DNA (cfDNA), isolated from circulating blood plasma, we generated maps of genome-wide in vivo nucleosome occupancy and found that short cfDNA fragments harbor footprints of transcription factors. The cfDNA nucleosome occupancies correlate well with the nuclear architecture, gene structure, and expression observed in cells, suggesting that they could inform the cell type of origin. Nucleosome spacing inferred from cfDNA in healthy individuals correlates most strongly with epigenetic features of lymphoid and myeloid cells, consistent with hematopoietic cell death as the normal source of cfDNA. We build on this observation to show how nucleosome footprints can be used to infer cell types contributing to cfDNA in pathological states such as cancer. Since this strategy does not rely on genetic differences to distinguish between contributing tissues, it may enable the noninvasive monitoring of a much broader set of clinical conditions than currently possible.
Collapse
Affiliation(s)
- Matthew W Snyder
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Martin Kircher
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Andrew J Hill
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Riza M Daza
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA.
| |
Collapse
|
128
|
Johnson GD, Jodar M, Pique-Regi R, Krawetz SA. Nuclease Footprints in Sperm Project Past and Future Chromatin Regulatory Events. Sci Rep 2016; 6:25864. [PMID: 27184706 PMCID: PMC4869110 DOI: 10.1038/srep25864] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/22/2016] [Indexed: 01/08/2023] Open
Abstract
Nuclear remodeling to a condensed state is a hallmark of spermatogenesis. This is achieved by replacement of histones with protamines. Regions retaining nucleosomes may be of functional significance. To determine their potential roles, sperm from wild type and transgenic mice harboring a single copy insert of the human protamine cluster were subjected to Micrococcal Nuclease-seq. CENTIPEDE, a hierarchical Bayesian model, was used to identify multiple spatial patterns, "footprints", of MNase-seq reads along the sperm genome. Regions predicted by CENTIPEDE analysis to be bound by a regulatory factor in sperm were correlated with genomic landmarks and higher order chromatin structure datasets to identify potential roles for these factors in regulating either prior or post spermatogenic, i.e., early embryonic events. This approach linked robust endogenous protamine transcription and transgene suppression to its chromatin environment within topologically associated domains. Of the candidate enhancer-bound regulatory proteins, Ctcf, was associated with chromatin domain boundaries in testes and embryonic stem cells. The continuity of Ctcf binding through the murine germline may permit rapid reconstitution of chromatin organization following fertilization. This likely reflects its preparation for early zygotic genome activation and comparatively accelerated preimplantation embryonic development program observed in mouse as compared to human and bull.
Collapse
Affiliation(s)
- Graham D Johnson
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Meritxell Jodar
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Stephen A Krawetz
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
129
|
Kazanets A, Shorstova T, Hilmi K, Marques M, Witcher M. Epigenetic silencing of tumor suppressor genes: Paradigms, puzzles, and potential. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1865:275-88. [PMID: 27085853 DOI: 10.1016/j.bbcan.2016.04.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/08/2016] [Indexed: 12/20/2022]
Abstract
Cancer constitutes a set of diseases with heterogeneous molecular pathologies. However, there are a number of universal aberrations common to all cancers, one of these being the epigenetic silencing of tumor suppressor genes (TSGs). The silencing of TSGs is thought to be an early, driving event in the oncogenic process. With this in consideration, great efforts have been made to develop small molecules aimed at the restoration of TSGs in order to limit tumor cell proliferation and survival. However, the molecular forces that drive the broad epigenetic reprogramming and transcriptional repression of these genes remain ill-defined. Undoubtedly, understanding the molecular underpinnings of transcriptionally silenced TSGs will aid us in our ability to reactivate these key anti-cancer targets. Here, we describe what we consider to be the five most logical molecular mechanisms that may account for this widely observed phenomenon: 1) ablation of transcription factor binding, 2) overexpression of DNA methyltransferases, 3) disruption of CTCF binding, 4) elevation of EZH2 activity, 5) aberrant expression of long non-coding RNAs. The strengths and weaknesses of each proposed mechanism is highlighted, followed by an overview of clinical efforts to target these processes.
Collapse
Affiliation(s)
- Anna Kazanets
- The Lady Davis Institute of the Jewish General Hospital, Department of Oncology, McGill University, Montreal, Canada.
| | - Tatiana Shorstova
- The Lady Davis Institute of the Jewish General Hospital, Department of Oncology, McGill University, Montreal, Canada.
| | - Khalid Hilmi
- The Lady Davis Institute of the Jewish General Hospital, Department of Oncology, McGill University, Montreal, Canada.
| | - Maud Marques
- The Lady Davis Institute of the Jewish General Hospital, Department of Oncology, McGill University, Montreal, Canada.
| | - Michael Witcher
- The Lady Davis Institute of the Jewish General Hospital, Department of Oncology, McGill University, Montreal, Canada.
| |
Collapse
|
130
|
Wiechens N, Singh V, Gkikopoulos T, Schofield P, Rocha S, Owen-Hughes T. The Chromatin Remodelling Enzymes SNF2H and SNF2L Position Nucleosomes adjacent to CTCF and Other Transcription Factors. PLoS Genet 2016; 12:e1005940. [PMID: 27019336 PMCID: PMC4809547 DOI: 10.1371/journal.pgen.1005940] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 02/25/2016] [Indexed: 12/22/2022] Open
Abstract
Within the genomes of metazoans, nucleosomes are highly organised adjacent to the binding sites for a subset of transcription factors. Here we have sought to investigate which chromatin remodelling enzymes are responsible for this. We find that the ATP-dependent chromatin remodelling enzyme SNF2H plays a major role organising arrays of nucleosomes adjacent to the binding sites for the architectural transcription factor CTCF sites and acts to promote CTCF binding. At many other factor binding sites SNF2H and the related enzyme SNF2L contribute to nucleosome organisation. The action of SNF2H at CTCF sites is functionally important as depletion of CTCF or SNF2H affects transcription of a common group of genes. This suggests that chromatin remodelling ATPase's most closely related to the Drosophila ISWI protein contribute to the function of many human gene regulatory elements.
Collapse
Affiliation(s)
- Nicola Wiechens
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Vijender Singh
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Triantaffyllos Gkikopoulos
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Pieta Schofield
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sonia Rocha
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Tom Owen-Hughes
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
131
|
Exploration of nucleosome positioning patterns in transcription factor function. Sci Rep 2016; 6:19620. [PMID: 26790608 PMCID: PMC4726364 DOI: 10.1038/srep19620] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 12/14/2015] [Indexed: 12/24/2022] Open
Abstract
The binding of transcription factors (TFs) triggers activation of specific chromatin regions through the recruitment and activation of RNA polymerase. Unique nucleosome positioning (NP) occurs during gene expression and has been suggested to be involved in various other chromatin functions. However, the diversity of NP that can occur for each function has not been clarified. Here we used MNase-Seq data to evaluate NP around 258 cis-regulatory elements in the mouse genome. Principal component analysis of the 258 elements revealed that NP consisted of five major patterns. Furthermore, the five NP patterns had predictive power for the level of gene expression. We also demonstrated that selective NP patterns appeared around TF binding sites. These results suggest that the NP patterns are correlated to specific functions on chromatin.
Collapse
|
132
|
H2A.Z.1 Monoubiquitylation Antagonizes BRD2 to Maintain Poised Chromatin in ESCs. Cell Rep 2016; 14:1142-1155. [PMID: 26804911 DOI: 10.1016/j.celrep.2015.12.100] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 10/16/2015] [Accepted: 12/22/2015] [Indexed: 12/13/2022] Open
Abstract
Histone variant H2A.Z occupies the promoters of active and poised, bivalent genes in embryonic stem cells (ESCs) to regulate developmental programs, yet how it contributes to these contrasting states is poorly understood. Here, we investigate the function of H2A.Z.1 monoubiquitylation (H2A.Z.1ub) by mutation of the PRC1 target residues (H2A.Z.1(K3R3)). We show that H2A.Z.1(K3R3) is properly incorporated at target promoters in murine ESCs (mESCs), but loss of monoubiquitylation leads to de-repression of bivalent genes, loss of Polycomb binding, and faulty lineage commitment. Using quantitative proteomics, we find that tandem bromodomain proteins, including the BET family member BRD2, are enriched in H2A.Z.1 chromatin. We further show that BRD2 is gained at de-repressed promoters in H2A.Z.1(K3R3) mESCs, whereas BRD2 inhibition restores gene silencing at these sites. Together, our study reveals an antagonistic relationship between H2A.Z.1ub and BRD2 to regulate the transcriptional balance at bivalent genes to enable proper execution of developmental programs.
Collapse
|
133
|
McKnight RA, Yost CC, Yu X, Wiedmeier JE, Callaway CW, Brown AS, Lane RH, Fung CM. Intrauterine growth restriction perturbs nucleosome depletion at a growth hormone-responsive element in the mouse IGF-1 gene. Physiol Genomics 2015; 47:634-43. [DOI: 10.1152/physiolgenomics.00082.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/13/2015] [Indexed: 01/08/2023] Open
Abstract
Intrauterine growth restriction (IUGR) is a common human pregnancy complication. IUGR offspring carry significant postnatal risk for early-onset metabolic syndrome, which is associated with persistent reduction in IGF-1 protein expression. We have previously shown that preadolescent IUGR male mice have decreased hepatic IGF-1 mRNA and circulating IGF-1 protein at postnatal day 21, the age when growth hormone (GH) normally upregulates hepatic IGF-1 expression. Here we studied nucleosome occupancy and CpG methylation at a putative growth hormone-responsive element in intron 2 (in2GHRE) of the hepatic IGF-1 gene in normal, sham-operated, and IUGR mice. Nucleosome occupancy and CpG methylation were determined in embryonic stem cells (ESCs) and in liver at postnatal days 14, 21, and 42. For CpG methylation, additional time points out to 2 yr were analyzed. We confirmed the putative mouse in2GHRE was GH-responsive, and in normal mice, a single nucleosome was displaced from the hepatic in2GHRE by postnatal day 21, which exposed two STAT5b DNA binding sites. Nucleosome displacement correlated with developmentally programmed CpG demethylation. Finally, IUGR significantly altered the nucleosome-depleted region (NDR) at the in2GHRE of IGF-1 on postnatal day 21, with either complete absence of the NDR or with a shifted NDR exposing only one of two STAT5b DNA binding sites. An NDR shift was also seen in offspring of sham-operated mothers. We conclude that prenatal insult such as IUGR or anesthesia/surgery could perturb the proper formation of a well-positioned NDR at the mouse hepatic IGF-1 in2GHRE necessary for transitioning to an open chromatin state.
Collapse
Affiliation(s)
- Robert A. McKnight
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Christian C. Yost
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Xing Yu
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Julia E. Wiedmeier
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Christopher W. Callaway
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Ashley S. Brown
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Robert H. Lane
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Camille M. Fung
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| |
Collapse
|
134
|
Dubois-Chevalier J, Staels B, Lefebvre P, Eeckhoute J. The ubiquitous transcription factor CTCF promotes lineage-specific epigenomic remodeling and establishment of transcriptional networks driving cell differentiation. Nucleus 2015; 6:15-8. [PMID: 25565413 DOI: 10.1080/19491034.2015.1004258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cell differentiation relies on tissue-specific transcription factors (TFs) that cooperate to establish unique transcriptomes and phenotypes. However, the role of ubiquitous TFs in these processes remains poorly defined. Recently, we have shown that the CCCTC-binding factor (CTCF) is required for adipocyte differentiation through epigenomic remodelling of adipose tissue-specific enhancers and transcriptional activation of Peroxisome proliferator-activated receptor gamma (PPARG), the main driver of the adipogenic program (PPARG), and its target genes. Here, we discuss how these findings, together with the recent literature, illuminate a functional role for ubiquitous TFs in lineage-determining transcriptional networks.
Collapse
Key Words
- 5hmC, 5-hydroxymethylcytosine
- 5mC, 5-methylcytosine
- CCCTC-binding factor (CTCF)
- CEBP, CCAAT/enhancer binding protein
- CTCF, CCCTC-binding factor
- DNA hydroxymethylation
- H3K27ac, acetylation of histone H3 lysine 27
- H3K4me1, monomethylation of histone H3 lysine 4
- KLF, Krüppel-like factors
- PPARG, Peroxisome proliferator-activated receptor gamma
- TET methylcytosine dioxygenase
- TET, Ten-eleven translocation methylcytosine dioxygenase
- TF, Transcription factor
- cell differentiation
- cistrome
- enhancer
- epigenome
- transcriptome
- ubiquitous transcription factor
Collapse
|
135
|
Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions. Genome Res 2015; 25:1757-70. [PMID: 26314830 PMCID: PMC4617971 DOI: 10.1101/gr.192294.115] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/21/2015] [Indexed: 01/12/2023]
Abstract
Transcription factors canonically bind nucleosome-free DNA, making the positioning of nucleosomes within regulatory regions crucial to the regulation of gene expression. Using the assay of transposase accessible chromatin (ATAC-seq), we observe a highly structured pattern of DNA fragment lengths and positions around nucleosomes in Saccharomyces cerevisiae, and use this distinctive two-dimensional nucleosomal “fingerprint” as the basis for a new nucleosome-positioning algorithm called NucleoATAC. We show that NucleoATAC can identify the rotational and translational positions of nucleosomes with up to base-pair resolution and provide quantitative measures of nucleosome occupancy in S. cerevisiae, Schizosaccharomyces pombe, and human cells. We demonstrate the application of NucleoATAC to a number of outstanding problems in chromatin biology, including analysis of sequence features underlying nucleosome positioning, promoter chromatin architecture across species, identification of transient changes in nucleosome occupancy and positioning during a dynamic cellular response, and integrated analysis of nucleosome occupancy and transcription factor binding.
Collapse
|
136
|
Nalabothula N, Al-jumaily T, Eteleeb AM, Flight RM, Xiaorong S, Moseley H, Rouchka EC, Fondufe-Mittendorf YN. Genome-Wide Profiling of PARP1 Reveals an Interplay with Gene Regulatory Regions and DNA Methylation. PLoS One 2015; 10:e0135410. [PMID: 26305327 PMCID: PMC4549251 DOI: 10.1371/journal.pone.0135410] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 07/21/2015] [Indexed: 12/22/2022] Open
Abstract
Poly (ADP-ribose) polymerase-1 (PARP1) is a nuclear enzyme involved in DNA repair, chromatin remodeling and gene expression. PARP1 interactions with chromatin architectural multi-protein complexes (i.e. nucleosomes) alter chromatin structure resulting in changes in gene expression. Chromatin structure impacts gene regulatory processes including transcription, splicing, DNA repair, replication and recombination. It is important to delineate whether PARP1 randomly associates with nucleosomes or is present at specific nucleosome regions throughout the cell genome. We performed genome-wide association studies in breast cancer cell lines to address these questions. Our studies show that PARP1 associates with epigenetic regulatory elements genome-wide, such as active histone marks, CTCF and DNase hypersensitive sites. Additionally, the binding of PARP1 to chromatin genome-wide is mutually exclusive with DNA methylation pattern suggesting a functional interplay between PARP1 and DNA methylation. Indeed, inhibition of PARylation results in genome-wide changes in DNA methylation patterns. Our results suggest that PARP1 controls the fidelity of gene transcription and marks actively transcribed gene regions by selectively binding to transcriptionally active chromatin. These studies provide a platform for developing our understanding of PARP1’s role in gene regulation.
Collapse
Affiliation(s)
- Narasimharao Nalabothula
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Taha Al-jumaily
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Abdallah M. Eteleeb
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, Kentucky, United States of America
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Robert M. Flight
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Shao Xiaorong
- Division of Epidemiology, School of Public Health, University of California, Berkeley, California, United States of America
| | - Hunter Moseley
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Eric C. Rouchka
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, Kentucky, United States of America
| | - Yvonne N. Fondufe-Mittendorf
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
137
|
Expression of the CTCFL Gene during Mouse Embryogenesis Causes Growth Retardation, Postnatal Lethality, and Dysregulation of the Transforming Growth Factor β Pathway. Mol Cell Biol 2015; 35:3436-45. [PMID: 26169830 DOI: 10.1128/mcb.00381-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 07/06/2015] [Indexed: 12/12/2022] Open
Abstract
CTCFL, a paralog of CTCF, also known as BORIS (brother of regulator of imprinted sites), is a testis-expressed gene whose function is largely unknown. Its product is a cancer testis antigen (CTA), and it is often expressed in tumor cells and also seen in two benign human vascular malformations, juvenile angiofibromas and infantile hemangiomas. To understand the function of Ctcfl, we created tetracycline-inducible Ctcfl transgenic mice. We show that Ctcfl expression during embryogenesis results in growth retardation, eye malformations, multiorgan pathologies, vascular defects, and neonatal death. This phenotype resembles prior mouse models that perturb the transforming growth factor β (TGFB) pathway. Embryonic stem (ES) cells with the Ctcfl transgene reproduce the phenotype in ES cell-tetraploid chimeras. Transcriptome sequencing of the Ctcfl ES cells revealed 14 genes deregulated by Ctcfl expression. Bioinformatic analysis revealed the TGFB pathway as most affected by embryonic Ctcfl expression. Understanding the consequence of Ctcfl expression in nontesticular cells and elucidating downstream targets of Ctcfl could explain the role of its product as a CTA and its involvement in two, if not more, human vascular malformations.
Collapse
|
138
|
MPE-seq, a new method for the genome-wide analysis of chromatin structure. Proc Natl Acad Sci U S A 2015; 112:E3457-65. [PMID: 26080409 DOI: 10.1073/pnas.1424804112] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The analysis of chromatin structure is essential for the understanding of transcriptional regulation in eukaryotes. Here we describe methidiumpropyl-EDTA sequencing (MPE-seq), a method for the genome-wide characterization of chromatin that involves the digestion of nuclei withMPE-Fe(II) followed by massively parallel sequencing. Like micrococcal nuclease (MNase), MPE-Fe(II) preferentially cleaves the linker DNA between nucleosomes. However, there are differences in the cleavage of nuclear chromatin by MPE-Fe(II) relative to MNase. Most notably, immediately upstream of the transcription start site of active promoters, we frequently observed nucleosome-sized (141-190 bp) and subnucleosome-sized (such as 101-140 bp) peaks of digested chromatin fragments with MPE-seq but not with MNase-seq. These peaks also correlate with the presence of core histones and could thus be due, at least in part, to noncanonical chromatin structures such as labile nucleosome-like particles that have been observed in other contexts. The subnucleosome-sized MPE-seq peaks exhibit a particularly distinct association with active promoters. In addition, unlike MNase, MPE-Fe(II) cleaves nuclear DNA with little sequence bias. In this regard, we found that DNA sequences at RNA splice sites are hypersensitive to digestion by MNase but not by MPE-Fe(II). This phenomenon may have affected the analysis of nucleosome occupancy over exons. These findings collectively indicate that MPE-seq provides a unique and straightforward means for the genome-wide analysis of chromatin structure with minimal DNA sequence bias. In particular, the combined use of MPE-seq and MNase-seq enables the identification of noncanonical chromatin structures that are likely to be important for the regulation of gene expression.
Collapse
|
139
|
Azpurua J, Eaton BA. Neuronal epigenetics and the aging synapse. Front Cell Neurosci 2015; 9:208. [PMID: 26074775 PMCID: PMC4444820 DOI: 10.3389/fncel.2015.00208] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/13/2015] [Indexed: 11/13/2022] Open
Abstract
Two of the most salient phenotypes of aging are cognitive decline and loss of motor function, both of which are controlled by the nervous system. Cognition and muscle contraction require that neuronal synapses develop and maintain proper structure and function. We review the literature on how normal physiological aging disrupts central and peripheral synapse function including the degradation of structure and/or control of neurotransmission. Here we also attempt to connect the work done on the epigenetics of aging to the growing literature of how epigenetic mechanisms control synapse structure and function. Lastly, we address possible roles of epigenetic mechanisms to explain why the basal rates of age-related dysfunction vary so widely across individuals.
Collapse
Affiliation(s)
- Jorge Azpurua
- Department of Physiology, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| | - Benjamin A Eaton
- Department of Physiology, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| |
Collapse
|
140
|
Shen W, Wang D, Ye B, Shi M, Zhang Y, Zhao Z. A possible role of Drosophila CTCF in mitotic bookmarking and maintaining chromatin domains during the cell cycle. Biol Res 2015; 48:27. [PMID: 26013116 PMCID: PMC4485355 DOI: 10.1186/s40659-015-0019-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/20/2015] [Indexed: 11/10/2022] Open
Abstract
Background The CCCTC-binding factor (CTCF) is a highly conserved insulator protein that plays various roles in many cellular processes. CTCF is one of the main architecture proteins in higher eukaryotes, and in combination with other architecture proteins and regulators, also shapes the three-dimensional organization of a genome. Experiments show CTCF partially remains associated with chromatin during mitosis. However, the role of CTCF in the maintenance and propagation of genome architectures throughout the cell cycle remains elusive. Results We performed a comprehensive bioinformatics analysis on public datasets of Drosophila CTCF (dCTCF). We characterized dCTCF-binding sites according to their occupancy status during the cell cycle, and identified three classes: interphase-mitosis-common (IM), interphase-only (IO) and mitosis-only (MO) sites. Integrated function analysis showed dCTCF-binding sites of different classes might be involved in different biological processes, and IM sites were more conserved and more intensely bound. dCTCF-binding sites of the same class preferentially localized closer to each other, and were highly enriched at chromatin syntenic and topologically associating domains boundaries. Conclusions Our results revealed different functions of dCTCF during the cell cycle and suggested that dCTCF might contribute to the establishment of the three-dimensional architecture of the Drosophila genome by maintaining local chromatin compartments throughout the whole cell cycle. Electronic supplementary material The online version of this article (doi:10.1186/s40659-015-0019-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenlong Shen
- Beijing Institute of Biotechnology, No. 20, Dongdajie Street, Beijing, Fengtai District, 100071, China.
| | - Dong Wang
- Beijing Institute of Biotechnology, No. 20, Dongdajie Street, Beijing, Fengtai District, 100071, China.
| | - Bingyu Ye
- Beijing Institute of Biotechnology, No. 20, Dongdajie Street, Beijing, Fengtai District, 100071, China. .,College of Life Science, Capital Normal University, 105 Xisihuanbei Road, Beijing, Haidian District, 100048, China.
| | - Minglei Shi
- Beijing Institute of Biotechnology, No. 20, Dongdajie Street, Beijing, Fengtai District, 100071, China.
| | - Yan Zhang
- Beijing Institute of Biotechnology, No. 20, Dongdajie Street, Beijing, Fengtai District, 100071, China.
| | - Zhihu Zhao
- Beijing Institute of Biotechnology, No. 20, Dongdajie Street, Beijing, Fengtai District, 100071, China.
| |
Collapse
|
141
|
An integrative analysis of TFBS-clustered regions reveals new transcriptional regulation models on the accessible chromatin landscape. Sci Rep 2015; 5:8465. [PMID: 25682954 PMCID: PMC4329551 DOI: 10.1038/srep08465] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/21/2015] [Indexed: 12/12/2022] Open
Abstract
DNase I hypersensitive sites (DHSs) define the accessible chromatin landscape and have revolutionised the discovery of distinct cis-regulatory elements in diverse organisms. Here, we report the first comprehensive map of human transcription factor binding site (TFBS)-clustered regions using Gaussian kernel density estimation based on genome-wide mapping of the TFBSs in 133 human cell and tissue types. Approximately 1.6 million distinct TFBS-clustered regions, collectively spanning 27.7% of the human genome, were discovered. The TFBS complexity assigned to each TFBS-clustered region was highly correlated with genomic location, cell selectivity, evolutionary conservation, sequence features, and functional roles. An integrative analysis of these regions using ENCODE data revealed transcription factor occupancy, transcriptional activity, histone modification, DNA methylation, and chromatin structures that varied based on TFBS complexity. Furthermore, we found that we could recreate lineage-branching relationships by simple clustering of the TFBS-clustered regions from terminally differentiated cells. Based on these findings, a model of transcriptional regulation determined by TFBS complexity is proposed.
Collapse
|
142
|
Sun Z, Dai N, Borgaro JG, Quimby A, Sun D, Corrêa IR, Zheng Y, Zhu Z, Guan S. A sensitive approach to map genome-wide 5-hydroxymethylcytosine and 5-formylcytosine at single-base resolution. Mol Cell 2015; 57:750-761. [PMID: 25639471 DOI: 10.1016/j.molcel.2014.12.035] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/17/2014] [Accepted: 12/19/2014] [Indexed: 01/22/2023]
Abstract
Mapping genome-wide 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC) at single-base resolution is important to understand their biological functions. We present a cost-efficient mapping method that combines 5hmC-specific restriction enzyme PvuRts1I with a 5hmC chemical labeling enrichment method. The sensitive method enables detection of low-abundance 5hmC sites, providing a more complete 5hmC landscape than available bisulfite-based methods. This method generated a genome-wide 5fC map at single-base resolution. Parallel analyses revealed that 5hmC and 5fC in non-CpG context exhibit lower abundance, more dynamically, than those in CpG context. In the genic region, distribution of 5hmCpG and 5fCpG differed from 5hmCH and 5fCH (H = A, T, C). 5hmC and 5fC were distributed distinctly at regulatory protein-DNA binding sites, depleted in permissive transcription factor binding sites, and enriched at active and poised enhancers. This sensitive bisulfite conversion-free method can be applied to biological samples with limited starting material or low-abundance cytosine modifications.
Collapse
Affiliation(s)
- Zhiyi Sun
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Nan Dai
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Janine G Borgaro
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Aine Quimby
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Dapeng Sun
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Ivan R Corrêa
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Yu Zheng
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Zhenyu Zhu
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA.
| | - Shengxi Guan
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA.
| |
Collapse
|
143
|
Abstract
DNA methylation and histone modification are epigenetic mechanisms that result in altered gene expression and cellular phenotype. The exact role of methylation in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) remains unclear. However, aberrations (e.g. loss-/gain-of-function or up-/down-regulation) in components of epigenetic transcriptional regulation in general, and of the methylation machinery in particular, have been implicated in the pathogenesis of these diseases. In addition, many of these components have been identified as therapeutic targets for patients with MDS/AML, and are also being assessed as potential biomarkers of response or resistance to hypomethylating agents (HMAs). The HMAs 5-azacitidine (AZA) and 2'-deoxy-5-azacitidine (decitabine, DAC) inhibit DNA methylation and have shown significant clinical benefits in patients with myeloid malignancies. Despite being viewed as mechanistically similar drugs, AZA and DAC have differing mechanisms of action. DAC is incorporated 100% into DNA, whereas AZA is incorporated into RNA (80-90%) as well as DNA (10-20%). As such, both drugs inhibit DNA methyltransferases (DNMTs; dependently or independently of DNA replication) resulting in the re-expression of tumor-suppressor genes; however, AZA also has an impact on mRNA and protein metabolism via its inhibition of ribonucleotide reductase, resulting in apoptosis. Herein, we first give an overview of transcriptional regulation, including DNA methylation, post-translational histone-tail modifications, the role of micro-RNA and long-range epigenetic gene silencing. We place special emphasis on epigenetic transcriptional regulation and discuss the implication of various components in the pathogenesis of MDS/AML, their potential as therapeutic targets, and their therapeutic modulation by HMAs and other substances (if known). The main focus of this review is laid on dissecting the rapidly evolving knowledge of AZA and DAC with a special focus on their differing mechanisms of action, and the effect of HMAs on transcriptional regulation.
Collapse
Affiliation(s)
- Lisa Pleyer
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Hospital Salzburg, Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute , Salzburg , Austria
| | | |
Collapse
|
144
|
Wang L, Huang H, Dougherty G, Zhao Y, Hossain A, Kocher JPA. Epidaurus: aggregation and integration analysis of prostate cancer epigenome. Nucleic Acids Res 2015; 43:e7. [PMID: 25378314 PMCID: PMC4333365 DOI: 10.1093/nar/gku1079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 01/27/2023] Open
Abstract
Integrative analyses of epigenetic data promise a deeper understanding of the epigenome. Epidaurus is a bioinformatics tool used to effectively reveal inter-dataset relevance and differences through data aggregation, integration and visualization. In this study, we demonstrated the utility of Epidaurus in validating hypotheses and generating novel biological insights. In particular, we described the use of Epidaurus to (i) integrate epigenetic data from prostate cancer cell lines to validate the activation function of EZH2 in castration-resistant prostate cancer and to (ii) study the mechanism of androgen receptor (AR) binding deregulation induced by the knockdown of FOXA1. We found that EZH2's noncanonical activation function was reaffirmed by its association with active histone markers and the lack of association with repressive markers. More importantly, we revealed that the binding of AR was selectively reprogramed to promoter regions, leading to the up-regulation of hundreds of cancer-associated genes including EGFR. The prebuilt epigenetic dataset from commonly used cell lines (LNCaP, VCaP, LNCaP-Abl, MCF7, GM12878, K562, HeLa-S3, A549, HePG2) makes Epidaurus a useful online resource for epigenetic research. As standalone software, Epidaurus is specifically designed to process user customized datasets with both efficiency and convenience.
Collapse
Affiliation(s)
- Liguo Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, MN 55905, USA
| | - Gregory Dougherty
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Yu Zhao
- Department of Biochemistry and Molecular Biology, Mayo Clinic, MN 55905, USA
| | - Asif Hossain
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jean-Pierre A Kocher
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
145
|
Wang J, Liu S, Fu W. Nucleosome Positioning with Set of Key Positions and Nucleosome Affinity. Open Biomed Eng J 2014; 8:166-70. [PMID: 26322141 PMCID: PMC4549903 DOI: 10.2174/1874120701408010166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/08/2015] [Accepted: 06/28/2015] [Indexed: 02/07/2023] Open
Abstract
The formation and precise positioning of nucleosome in chromatin occupies a very important role in studying life process. Today, there are many researchers who discovered that the positioning where the location of a DNA sequence fragment wraps around a histone octamer in genome is not random but regular. However, the positioning is closely relevant to the concrete sequence of core DNA. So in this paper, we analyzed the relation between the affinity and sequence structure of core DNA, and extracted the set of key positions. In these positions, the nucleotide sequences probably occupy mainly action in the binding. First, we simplified and formatted the experimental data with the affinity. Then, to find the key positions in the wrapping, we used neural network to analyze the positive and negative effects of nucleosome generation for each position in core DNA sequences. However, we reached a class of weights with every position to describe this effect. Finally, based on the positions with high weights, we analyzed the reason why the chosen positions are key positions, and used these positions to construct a model for nucleosome positioning prediction. Experimental results show the effectiveness of our method.
Collapse
Affiliation(s)
- Jia Wang
- Experimental Instrument Center, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Shuai Liu
- College of Computer Science, Inner Mongolia University, Hohhot, Inner Mongolia, 010012, China ; School of Physical Science and Technology, Inner Mongolia University, Inner Mongolia, 010012, China
| | - Weina Fu
- College of Computer Science, Inner Mongolia University, Hohhot, Inner Mongolia, 010012, China
| |
Collapse
|
146
|
Chen PB, Zhu LJ, Hainer SJ, McCannell KN, Fazzio TG. Unbiased chromatin accessibility profiling by RED-seq uncovers unique features of nucleosome variants in vivo. BMC Genomics 2014; 15:1104. [PMID: 25494698 PMCID: PMC4378318 DOI: 10.1186/1471-2164-15-1104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 12/10/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Differential accessibility of DNA to nuclear proteins underlies the regulation of numerous cellular processes. Although DNA accessibility is primarily determined by the presence or absence of nucleosomes, differences in nucleosome composition or dynamics may also regulate accessibility. Methods for mapping nucleosome positions and occupancies genome-wide (MNase-seq) have uncovered the nucleosome landscapes of many different cell types and organisms. Conversely, methods specialized for the detection of large nucleosome-free regions of chromatin (DNase-seq, FAIRE-seq) have uncovered numerous gene regulatory elements. However, these methods are less successful in measuring the accessibility of DNA sequences within nucelosome arrays. RESULTS Here we probe the genome-wide accessibility of multiple cell types in an unbiased manner using restriction endonuclease digestion of chromatin coupled to deep sequencing (RED-seq). Using this method, we identified differences in chromatin accessibility between populations of cells, not only in nucleosome-depleted regions of the genome (e.g., enhancers and promoters), but also within the majority of the genome that is packaged into nucleosome arrays. Furthermore, we identified both large differences in chromatin accessibility in distinct cell lineages and subtle but significant changes during differentiation of mouse embryonic stem cells (ESCs). Most significantly, using RED-seq, we identified differences in accessibility among nucleosomes harboring well-studied histone variants, and show that these differences depend on factors required for their deposition. CONCLUSIONS Using an unbiased method to probe chromatin accessibility genome-wide, we uncover unique features of chromatin structure that are not observed using more widely-utilized methods. We demonstrate that different types of nucleosomes within mammalian cells exhibit different degrees of accessibility. These findings provide significant insight into the regulation of DNA accessibility.
Collapse
Affiliation(s)
| | | | | | | | - Thomas G Fazzio
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
147
|
Wang L, Chen J, Wang C, Uusküla-Reimand L, Chen K, Medina-Rivera A, Young EJ, Zimmermann MT, Yan H, Sun Z, Zhang Y, Wu ST, Huang H, Wilson MD, Kocher JPA, Li W. MACE: model based analysis of ChIP-exo. Nucleic Acids Res 2014; 42:e156. [PMID: 25249628 PMCID: PMC4227761 DOI: 10.1093/nar/gku846] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/31/2014] [Accepted: 09/06/2014] [Indexed: 11/14/2022] Open
Abstract
Understanding the role of a given transcription factor (TF) in regulating gene expression requires precise mapping of its binding sites in the genome. Chromatin immunoprecipitation-exo, an emerging technique using λ exonuclease to digest TF unbound DNA after ChIP, is designed to reveal transcription factor binding site (TFBS) boundaries with near-single nucleotide resolution. Although ChIP-exo promises deeper insights into transcription regulation, no dedicated bioinformatics tool exists to leverage its advantages. Most ChIP-seq and ChIP-chip analytic methods are not tailored for ChIP-exo, and thus cannot take full advantage of high-resolution ChIP-exo data. Here we describe a novel analysis framework, termed MACE (model-based analysis of ChIP-exo) dedicated to ChIP-exo data analysis. The MACE workflow consists of four steps: (i) sequencing data normalization and bias correction; (ii) signal consolidation and noise reduction; (iii) single-nucleotide resolution border peak detection using the Chebyshev Inequality and (iv) border matching using the Gale-Shapley stable matching algorithm. When applied to published human CTCF, yeast Reb1 and our own mouse ONECUT1/HNF6 ChIP-exo data, MACE is able to define TFBSs with high sensitivity, specificity and spatial resolution, as evidenced by multiple criteria including motif enrichment, sequence conservation, direct sequence pileup, nucleosome positioning and open chromatin states. In addition, we show that the fundamental advance of MACE is the identification of two boundaries of a TFBS with high resolution, whereas other methods only report a single location of the same event. The two boundaries help elucidate the in vivo binding structure of a given TF, e.g. whether the TF may bind as dimers or in a complex with other co-factors.
Collapse
Affiliation(s)
- Liguo Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA Division of Biostatistics, Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Junsheng Chen
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Chen Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Liis Uusküla-Reimand
- Genetics & Genome Biology Program, SickKids Research Institute, 686 Bay St. Toronto, ON, M5G 0A4, Canada
| | - Kaifu Chen
- Division of Biostatistics, Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alejandra Medina-Rivera
- Genetics & Genome Biology Program, SickKids Research Institute, 686 Bay St. Toronto, ON, M5G 0A4, Canada
| | - Edwin J Young
- Genetics & Genome Biology Program, SickKids Research Institute, 686 Bay St. Toronto, ON, M5G 0A4, Canada
| | - Michael T Zimmermann
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Huihuang Yan
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhifu Sun
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Yuji Zhang
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephen T Wu
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, MN 55905, USA
| | - Michael D Wilson
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Jean-Pierre A Kocher
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Wei Li
- Division of Biostatistics, Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
148
|
Schoborg T, Labrador M. Expanding the roles of chromatin insulators in nuclear architecture, chromatin organization and genome function. Cell Mol Life Sci 2014; 71:4089-113. [PMID: 25012699 PMCID: PMC11113341 DOI: 10.1007/s00018-014-1672-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/31/2014] [Accepted: 06/23/2014] [Indexed: 01/08/2023]
Abstract
Of the numerous classes of elements involved in modulating eukaryotic chromosome structure and function, chromatin insulators arguably remain the most poorly understood in their contribution to these processes in vivo. Indeed, our view of chromatin insulators has evolved dramatically since their chromatin boundary and enhancer blocking properties were elucidated roughly a quarter of a century ago as a result of recent genome-wide, high-throughput methods better suited to probing the role of these elements in their native genomic contexts. The overall theme that has emerged from these studies is that chromatin insulators function as general facilitators of higher-order chromatin loop structures that exert both physical and functional constraints on the genome. In this review, we summarize the result of recent work that supports this idea as well as a number of other studies linking these elements to a diverse array of nuclear processes, suggesting that chromatin insulators exert master control over genome organization and behavior.
Collapse
Affiliation(s)
- Todd Schoborg
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, M407 Walters Life Sciences, 1414 Cumberland Avenue, Knoxville, TN 37996 USA
- Present Address: Laboratory of Molecular Machines and Tissue Architecture, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, 50 South Dr Rm 2122, Bethesda, MD 20892 USA
| | - Mariano Labrador
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, M407 Walters Life Sciences, 1414 Cumberland Avenue, Knoxville, TN 37996 USA
| |
Collapse
|
149
|
Abstract
Gene expression frequently requires chromatin-remodeling complexes, and it is assumed that these complexes have common gene targets across cell types. Contrary to this belief, we show by genome-wide expression profiling that Bptf, an essential and unique subunit of the nucleosome-remodeling factor (NURF), predominantly regulates the expression of a unique set of genes between diverse cell types. Coincident with its functions in gene expression, we observed that Bptf is also important for regulating nucleosome occupancy at nucleosome-free regions (NFRs), many of which are located at sites occupied by the multivalent factors Ctcf and cohesin. NURF function at Ctcf binding sites could be direct, because Bptf occupies Ctcf binding sites in vivo and has physical interactions with CTCF and the cohesin subunit SA2. Assays of several Ctcf binding sites using reporter assays showed that their regulatory activity requires Bptf in two different cell types. Focused studies at H2-K1 showed that Bptf regulates the ability of Klf4 to bind near an upstream Ctcf site, possibly influencing gene expression. In combination, these studies demonstrate that gene expression as regulated by NURF occurs partly through physical and functional interactions with the ubiquitous and multivalent factors Ctcf and cohesin.
Collapse
|
150
|
Franco MM, Prickett AR, Oakey RJ. The role of CCCTC-binding factor (CTCF) in genomic imprinting, development, and reproduction. Biol Reprod 2014; 91:125. [PMID: 25297545 DOI: 10.1095/biolreprod.114.122945] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
CCCTC-binding factor (CTCF) is the major protein involved in insulator activity in vertebrates, with widespread DNA binding sites in the genome. CTCF participates in many processes related to global chromatin organization and remodeling, contributing to the repression or activation of gene transcription. It is also involved in epigenetic reprogramming and is essential during gametogenesis and embryo development. Abnormal DNA methylation patterns at CTCF motifs may impair CTCF binding to DNA, and are related to fertility disorders in mammals. Therefore, CTCF and its binding sites are important candidate regions to be investigated as molecular markers for gamete and embryo quality. This article reviews the role of CTCF in genomic imprinting, gametogenesis, and early embryo development and, moreover, highlights potential opportunities for environmental influences associated with assisted reproductive techniques (ARTs) to affect CTCF-mediated processes. We discuss the potential use of CTCF as a molecular marker for assessing gamete and embryo quality in the context of improving the efficiency and safety of ARTs.
Collapse
Affiliation(s)
- Maurício M Franco
- Embrapa Genetic Resources & Biotechnology, Laboratory of Animal Reproduction, Parque Estação Biológica, Brasília, Brazil
| | - Adam R Prickett
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, United Kingdom
| | - Rebecca J Oakey
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, United Kingdom
| |
Collapse
|