101
|
Ramani M, Mylvaganam S, Krawczyk M, Wang L, Zoidl C, Brien J, Reynolds JN, Kapur B, Poulter MO, Zoidl G, Carlen PL. Differential expression of astrocytic connexins in a mouse model of prenatal alcohol exposure. Neurobiol Dis 2016; 91:83-93. [DOI: 10.1016/j.nbd.2016.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 01/11/2016] [Accepted: 02/29/2016] [Indexed: 11/24/2022] Open
|
102
|
Alcohol-induced suppression of KDM6B dysregulates the mineralization potential in dental pulp stem cells. Stem Cell Res 2016; 17:111-21. [PMID: 27286573 DOI: 10.1016/j.scr.2016.05.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/25/2016] [Accepted: 05/25/2016] [Indexed: 12/22/2022] Open
Abstract
Epigenetic changes, such as alteration of DNA methylation patterns, have been proposed as a molecular mechanism underlying the effect of alcohol on the maintenance of adult stem cells. We have performed genome-wide gene expression microarray and DNA methylome analysis to identify molecular alterations via DNA methylation changes associated with exposure of human dental pulp stem cells (DPSCs) to ethanol (EtOH). By combined analysis of the gene expression and DNA methylation, we have found a significant number of genes that are potentially regulated by EtOH-induced DNA methylation. As a focused approach, we have also performed a pathway-focused RT-PCR array analysis to examine potential molecular effects of EtOH on genes involved in epigenetic chromatin modification enzymes, fibroblastic markers, and stress and toxicity pathways in DPSCs. We have identified and verified that lysine specific demethylase 6B (KDM6B) was significantly dysregulated in DPSCs upon EtOH exposure. EtOH treatment during odontogenic/osteogenic differentiation of DPSCs suppressed the induction of KDM6B with alterations in the expression of differentiation markers. Knockdown of KDM6B resulted in a marked decrease in mineralization from implanted DPSCs in vivo. Furthermore, an ectopic expression of KDM6B in EtOH-treated DPSCs restored the expression of differentiation-related genes. Our study has demonstrated that EtOH-induced inhibition of KDM6B plays a role in the dysregulation of odontogenic/osteogenic differentiation in the DPSC model. This suggests a potential molecular mechanism for cellular insults of heavy alcohol consumption that can lead to decreased mineral deposition potentially associated with abnormalities in dental development and also osteopenia/osteoporosis, hallmark features of fetal alcohol spectrum disorders.
Collapse
|
103
|
Chater-Diehl EJ, Laufer BI, Castellani CA, Alberry BL, Singh SM. Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure. PLoS One 2016; 11:e0154836. [PMID: 27136348 PMCID: PMC4852908 DOI: 10.1371/journal.pone.0154836] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/20/2016] [Indexed: 11/18/2022] Open
Abstract
The molecular basis of Fetal Alcohol Spectrum Disorders (FASD) is poorly understood; however, epigenetic and gene expression changes have been implicated. We have developed a mouse model of FASD characterized by learning and memory impairment and persistent gene expression changes. Epigenetic marks may maintain expression changes over a mouse's lifetime, an area few have explored. Here, mice were injected with saline or ethanol on postnatal days four and seven. At 70 days of age gene expression microarray, methylated DNA immunoprecipitation microarray, H3K4me3 and H3K27me3 chromatin immunoprecipitation microarray were performed. Following extensive pathway analysis of the affected genes, we identified the top affected gene expression pathway as "Free radical scavenging". We confirmed six of these changes by droplet digital PCR including the caspase Casp3 and Wnt transcription factor Tcf7l2. The top pathway for all methylation-affected genes was "Peroxisome biogenesis"; we confirmed differential DNA methylation in the Acca1 thiolase promoter. Altered methylation and gene expression in oxidative stress pathways in the adult hippocampus suggests a novel interface between epigenetic and oxidative stress mechanisms in FASD.
Collapse
Affiliation(s)
- Eric J. Chater-Diehl
- Molecular Genetics Unit, Department of Biology, Western University, London, Ontario, Canada
| | - Benjamin I. Laufer
- Molecular Genetics Unit, Department of Biology, Western University, London, Ontario, Canada
| | | | - Bonnie L. Alberry
- Molecular Genetics Unit, Department of Biology, Western University, London, Ontario, Canada
| | - Shiva M. Singh
- Molecular Genetics Unit, Department of Biology, Western University, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
104
|
Hypomethylation of ERVs in the sperm of mice haploinsufficient for the histone methyltransferase Setdb1 correlates with a paternal effect on phenotype. Sci Rep 2016; 6:25004. [PMID: 27112447 PMCID: PMC4845014 DOI: 10.1038/srep25004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 04/07/2016] [Indexed: 01/09/2023] Open
Abstract
The number of reports of paternal epigenetic influences on the phenotype of offspring in rodents is increasing but the molecular events involved remain unclear. Here, we show that haploinsufficiency for the histone 3 lysine 9 methyltransferase Setdb1 in the sire can influence the coat colour phenotype of wild type offspring. This effect occurs when the allele that directly drives coat colour is inherited from the dam, inferring that the effect involves an “in trans” step. The implication of this finding is that epigenetic state of the sperm can alter the expression of genes inherited on the maternally derived chromosomes. Whole genome bisulphite sequencing revealed that Setdb1 mutant mice show DNA hypomethylation at specific classes of transposable elements in the sperm. Our results identify Setdb1 as a paternal effect gene in the mouse and suggest that epigenetic inheritance may be more likely in individuals with altered levels of epigenetic modifiers.
Collapse
|
105
|
Poon K, Leibowitz SF. Consumption of Substances of Abuse during Pregnancy Increases Consumption in Offspring: Possible Underlying Mechanisms. Front Nutr 2016; 3:11. [PMID: 27148536 PMCID: PMC4837147 DOI: 10.3389/fnut.2016.00011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/04/2016] [Indexed: 12/16/2022] Open
Abstract
Correlative human observational studies on substances of abuse have been highly dependent on the use of rodent models to determine the neuronal and molecular mechanisms that control behavioral outcomes. This is particularly true for gestational exposure to non-illicit substances of abuse, such as excessive dietary fat, ethanol, and nicotine, which are commonly consumed in our society. Exposure to these substances during the prenatal period has been shown in offspring to increase their intake of these substances, induce other behavioral changes, and affect neurochemical systems in several brain areas that are known to control behavior. More importantly, emerging studies are linking the function of the immune system to these neurochemicals and ingestion of these abused substances. This review article will summarize the prenatal rodent models used to study developmental changes in offspring caused by prenatal exposure to dietary fat, ethanol, or nicotine. We will discuss the various techniques used for the administration of these substances into rodents and summarize the published outcomes induced by prenatal exposure to these substances. Finally, this review will cover some of the recent evidence for the role of immune factors in causing these behavioral and neuronal changes.
Collapse
Affiliation(s)
- Kinning Poon
- Laboratory of Behavioral Neurobiology, The Rockefeller University , New York, NY , USA
| | - Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University , New York, NY , USA
| |
Collapse
|
106
|
Epigenetic Mechanisms in Developmental Alcohol-Induced Neurobehavioral Deficits. Brain Sci 2016; 6:brainsci6020012. [PMID: 27070644 PMCID: PMC4931489 DOI: 10.3390/brainsci6020012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/17/2016] [Accepted: 04/05/2016] [Indexed: 12/22/2022] Open
Abstract
Alcohol consumption during pregnancy and its damaging consequences on the developing infant brain are significant public health, social, and economic issues. The major distinctive features of prenatal alcohol exposure in humans are cognitive and behavioral dysfunction due to damage to the central nervous system (CNS), which results in a continuum of disarray that is collectively called fetal alcohol spectrum disorder (FASD). Many rodent models have been developed to understand the mechanisms of and to reproduce the human FASD phenotypes. These animal FASD studies have provided several molecular pathways that are likely responsible for the neurobehavioral abnormalities that are associated with prenatal alcohol exposure of the developing CNS. Recently, many laboratories have identified several immediate, as well as long-lasting, epigenetic modifications of DNA methylation, DNA-associated histone proteins and microRNA (miRNA) biogenesis by using a variety of epigenetic approaches in rodent FASD models. Because DNA methylation patterns, DNA-associated histone protein modifications and miRNA-regulated gene expression are crucial for synaptic plasticity and learning and memory, they can therefore offer an answer to many of the neurobehavioral abnormalities that are found in FASD. In this review, we briefly discuss the current literature of DNA methylation, DNA-associated histone proteins modification and miRNA and review recent developments concerning epigenetic changes in FASD.
Collapse
|
107
|
Timms JA, Relton CL, Rankin J, Strathdee G, McKay JA. DNA methylation as a potential mediator of environmental risks in the development of childhood acute lymphoblastic leukemia. Epigenomics 2016; 8:519-36. [PMID: 27035209 PMCID: PMC4928498 DOI: 10.2217/epi-2015-0011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/22/2016] [Indexed: 11/21/2022] Open
Abstract
5-year survival rate for childhood acute lymphoblastic leukemia (ALL) has risen to approximately 90%, yet the causal disease pathway is still poorly understood. Evidence suggests multiple 'hits' are required for disease progression; an initial genetic abnormality followed by additional secondary 'hits'. It is plausible that environmental influences may trigger these secondary hits, and with the peak incidence of diagnosis between 2 and 5 years of age, early life exposures are likely to be key. DNA methylation can be modified by many environmental exposures and is dramatically altered in cancers, including childhood ALL. Here we explore the potential that DNA methylation may be involved in the causal pathway toward disease by acting as a mediator between established environmental factors and childhood ALL development.
Collapse
Affiliation(s)
- Jessica A Timms
- Institute of Health & Society, Newcastle University, Newcastle, UK
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, School of Social & Community Medicine, University of Bristol, UK
| | - Judith Rankin
- Institute of Health & Society, Newcastle University, Newcastle, UK
| | - Gordon Strathdee
- Northern Institute for Cancer Research, Newcastle University, UK
| | - Jill A McKay
- Institute of Health & Society, Newcastle University, Newcastle, UK
| |
Collapse
|
108
|
Rogic S, Wong A, Pavlidis P. Meta-Analysis of Gene Expression Patterns in Animal Models of Prenatal Alcohol Exposure Suggests Role for Protein Synthesis Inhibition and Chromatin Remodeling. Alcohol Clin Exp Res 2016; 40:717-27. [PMID: 26996386 PMCID: PMC5310543 DOI: 10.1111/acer.13007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 01/11/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) can result in an array of morphological, behavioral, and neurobiological deficits that can range in their severity. Despite extensive research in the field and a significant progress made, especially in understanding the range of possible malformations and neurobehavioral abnormalities, the molecular mechanisms of alcohol responses in development are still not well understood. There have been multiple transcriptomic studies looking at the changes in gene expression after PAE in animal models; however, there is a limited apparent consensus among the reported findings. In an effort to address this issue, we performed a comprehensive re-analysis and meta-analysis of all suitable, publically available expression data sets. METHODS We assembled 10 microarray data sets of gene expression after PAE in mouse and rat models consisting of samples from a total of 63 ethanol (EtOH)-exposed and 80 control animals. We re-analyzed each data set for differential expression and then used the results to perform meta-analyses considering all data sets together or grouping them by time or duration of exposure (pre- and postnatal, acute and chronic, respectively). We performed network and Gene Ontology enrichment analysis to further characterize the identified signatures. RESULTS For each subanalysis, we identified signatures of differential expressed genes that show support from multiple studies. Overall, the changes in gene expression were more extensive after acute EtOH treatment during prenatal development than in other models. Considering the analysis of all the data together, we identified a robust core signature of 104 genes down-regulated after PAE, with no up-regulated genes. Functional analysis reveals over representation of genes involved in protein synthesis, mRNA splicing, and chromatin organization. CONCLUSIONS Our meta-analysis shows that existing studies, despite superficial dissimilarity in findings, share features that allow us to identify a common core signature set of transcriptome changes in PAE. This is an important step to identifying the biological processes that underlie the etiology of fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Sanja Rogic
- Department of Psychiatry and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Albertina Wong
- Department of Psychiatry and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Paul Pavlidis
- Department of Psychiatry and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
109
|
Krawczyk M, Ramani M, Dian J, Florez CM, Mylvaganam S, Brien J, Reynolds J, Kapur B, Zoidl G, Poulter MO, Carlen PL. Hippocampal hyperexcitability in fetal alcohol spectrum disorder: Pathological sharp waves and excitatory/inhibitory synaptic imbalance. Exp Neurol 2016; 280:70-9. [PMID: 26996134 DOI: 10.1016/j.expneurol.2016.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 02/29/2016] [Accepted: 03/13/2016] [Indexed: 01/01/2023]
Abstract
Prenatal alcohol exposure (PAE) can lead to long-lasting neurological alterations that may predispose individuals to seizures and neurobehavioral dysfunction. To date, there exists limited information regarding the underlying pathophysiological mechanisms. The hippocampal CA3 region generates excitatory population activity, called sharp waves (SPWs), that provide an ideal model to study perturbations in neuronal excitability at the network and cellular levels. In the present study, we utilized a mouse model of PAE and used dual extracellular and whole-cell patch-clamp recordings from CA3 hippocampal pyramidal cells to evaluate the effect of 1st trimester-equivalent ethanol exposure (10% v/v) on SPW activity and excitatory/inhibitory balance. We observed that PAE significantly altered in vitro SPW waveforms, with an increased duration and amplitude, when compared to controls. In addition, PAE slices exhibited reduced pharmacological inhibition by the GABA-A receptor antagonist bicuculline (BMI) on SPW activity, and increased population spike paired-pulse ratios, all indicative of network disinhibition within the PAE hippocampus. Evaluation of PAE CA3 pyramidal cell activity associated with SPWs, revealed increased action potential cell firing, which was accompanied by an imbalance of excitatory/inhibitory synaptic drive, shifted in favor of excitation. Moreover, we observed intrinsic changes in CA3 pyramidal activity in PAE animals, including increased burst firing and instantaneous firing rate. This is the first study to provide evidence for hippocampal dysfunction in the ability to maintain network homeostasis and underlying cellular hyperexcitability in a model of PAE. These circuit and cellular level alterations may contribute to the increased propensity for seizures and neurobehavioral dysfunction observed in patients with a history of PAE.
Collapse
Affiliation(s)
- Michal Krawczyk
- Division of Fundamental Neurobiology, Toronto Western Research Institute, UHN, Toronto, ON, Canada.
| | - Meera Ramani
- Division of Fundamental Neurobiology, Toronto Western Research Institute, UHN, Toronto, ON, Canada
| | - Josh Dian
- Division of Fundamental Neurobiology, Toronto Western Research Institute, UHN, Toronto, ON, Canada
| | - Carlos M Florez
- Division of Fundamental Neurobiology, Toronto Western Research Institute, UHN, Toronto, ON, Canada
| | - Shanthini Mylvaganam
- Division of Fundamental Neurobiology, Toronto Western Research Institute, UHN, Toronto, ON, Canada
| | - James Brien
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - James Reynolds
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Bhushan Kapur
- Division of Clinical Pharmacology & Toxicology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Georg Zoidl
- Department of Biology, York University, Toronto, ON, Canada; Department of Psychology, York University, Toronto, ON, Canada
| | - Michael O Poulter
- Robarts Research Institute and Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Peter L Carlen
- Division of Fundamental Neurobiology, Toronto Western Research Institute, UHN, Toronto, ON, Canada; Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
110
|
Maga AM. Postnatal Development of the Craniofacial Skeleton in Male C57BL/6J Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2016; 55:131-6. [PMID: 27025802 PMCID: PMC4783629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/01/2015] [Accepted: 07/29/2015] [Indexed: 06/05/2023]
Abstract
C57BL/6J is one of the most commonly used inbred mouse strains in biomedical research, including studies of craniofacial development and teratogenic studies of craniofacial malformation. The current study quantitatively assessed the development of the skull in male C57BL/6J mice by using high-resolution 3D imaging of 55 landmarks from 48 male mice over 10 developmental time points from postnatal day 0 to 90. The growth of the skull plateaued at approximately postnatal day 60, and the shape of the skull did not change markedly thereafter. The amount of asymmetry in the craniofacial skeleton seemed to peak at birth, but considerable variation persisted in all age groups. For C57BL/6J male mice, postnatal day 60 is the earliest time point at which the skull achieves its adult shape and proportions. In addition, C57BL/6J male mice appear to have an inherent susceptibility to craniofacial malformation.
Collapse
Affiliation(s)
- A Murat Maga
- Division of Craniofacial Medicine, Department of Pediatrics, and Department of Oral Biology, University of Washington, and Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA.
| |
Collapse
|
111
|
Sarkar DK. Male germline transmits fetal alcohol epigenetic marks for multiple generations: a review. Addict Biol 2016; 21:23-34. [PMID: 25581210 DOI: 10.1111/adb.12186] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alcohol exposure during fetal and early postnatal development can lead to an increased incidence of later life adult-onset diseases. Examples include central nervous system dysfunction, depression, anxiety, hyperactivity, and an inability to deal with stressful situations, increased infection and cancer. Direct effects of alcohol leading to developmental abnormalities often involve epigenetic modifications of genes that regulate cellular functions. Epigenetic marks carried over from the parents are known to undergo molecular programming events that happen early in embryonic development by a wave of DNA demethylation, which leaves the embryo with a fresh genomic composition. The proopiomelanocortin (Pomc) gene controls neuroendocrine-immune functions and is imprinted by fetal alcohol exposure. Recently, this gene has been shown to be hypermethylated through three generations. Additionally, the alcohol epigenetic marks on the Pomc gene are maintained in the male but not in the female germline during this transgenerational transmission. These data suggest that the male-specific chromosome might be involved in transmitting alcohol epigenetic marks through multiple generations.
Collapse
Affiliation(s)
- Dipak K. Sarkar
- Rutgers Endocrine Program; Department of Animal Sciences; Rutgers, The State University of New Jersey; Piscataway Township NJ USA
| |
Collapse
|
112
|
Mitchell C, Schneper LM, Notterman DA. DNA methylation, early life environment, and health outcomes. Pediatr Res 2016; 79:212-9. [PMID: 26466079 PMCID: PMC4798238 DOI: 10.1038/pr.2015.193] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/27/2015] [Indexed: 11/09/2022]
Abstract
Epigenetics, and especially DNA methylation, have recently become provocative biological explanations for early-life environmental effects on later health. Despite the large increase in papers on the topic over the last few years, many questions remain with regards to the biological feasibility of this mechanism and the strength of the evidence to date. In this review, we examine the literature on early-life effects on epigenetic patterns, with special emphasis on social environmental influences. First, we review the basic biology of epigenetic modification of DNA and debate the role of early-life stressful, protective, and positive environments on gene-specific, system-specific, and whole-genome epigenetic patterns later in life. Second, we compare the epigenetic literatures of both humans and other animals and review the research linking epigenetic patterns to health in order to complete the mechanistic pathway. Third, we discuss physical environmental and social environmental effects, which have to date, generally not been jointly considered. Finally, we close with a discussion of the current state of the area's research, its future direction, and its potential use in pediatric health.
Collapse
Affiliation(s)
- Colter Mitchell
- Survey Research Center and Population Studies Center, University of Michigan, Ann Arbor, Michigan
| | - Lisa M. Schneper
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Daniel A. Notterman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| |
Collapse
|
113
|
Oey H, Isbel L, Hickey P, Ebaid B, Whitelaw E. Genetic and epigenetic variation among inbred mouse littermates: identification of inter-individual differentially methylated regions. Epigenetics Chromatin 2015; 8:54. [PMID: 26692901 PMCID: PMC4676890 DOI: 10.1186/s13072-015-0047-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/23/2015] [Indexed: 05/06/2023] Open
Abstract
Background Phenotypic variability among inbred littermates reared in controlled environments remains poorly understood. Metastable epialleles refer to loci that intrinsically behave in this way and a few examples have been described. They display differential methylation in association with differential expression. For example, inbred mice carrying the agouti viable yellow (Avy) allele show a range of coat colours associated with different DNA methylation states at the locus. The availability of next-generation sequencing, in particular whole genome sequencing of bisulphite converted DNA, allows us, for the first time, to search for metastable epialleles at base pair resolution. Results Using whole genome bisulphite sequencing of DNA from the livers of five mice from the Avy colony, we searched for sites at which DNA methylation differed among the mice. A small number of loci, 356, were detected and we call these inter-individual Differentially Methylated Regions, iiDMRs, 55 of which overlap with endogenous retroviral elements (ERVs). Whole genome resequencing of two mice from the colony identified very few differences and these did not occur at or near the iiDMRs. Further work suggested that the majority of ERV iiDMRs are metastable epialleles; the level of methylation was maintained in tissue from other germ layers and the level of mRNA from the neighbouring gene inversely correlated with methylation state. Most iiDMRs that were not overlapping ERV insertions occurred at tissue-specific DMRs and it cannot be ruled out that these are driven by changes in the ratio of cell types in the tissues analysed. Conclusions Using the most thorough genome-wide profiling technologies for differentially methylated regions, we find very few intrinsically epigenetically variable regions that we term iiDMRs. The most robust of these are at retroviral elements and appear to be metastable epialleles. The non-ERV iiDMRs cannot be described as metastable epialleles at this stage but provide a novel class of variably methylated elements for further study. Electronic supplementary material The online version of this article (doi:10.1186/s13072-015-0047-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Harald Oey
- Department of Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC 3086 Australia.,University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Brisbane, QLD 4102 Australia
| | - Luke Isbel
- Department of Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC 3086 Australia
| | - Peter Hickey
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia
| | - Basant Ebaid
- Department of Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC 3086 Australia
| | - Emma Whitelaw
- Department of Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC 3086 Australia
| |
Collapse
|
114
|
Laufer BI, Kapalanga J, Castellani CA, Diehl EJ, Yan L, Singh SM. Associative DNA methylation changes in children with prenatal alcohol exposure. Epigenomics 2015; 7:1259-74. [DOI: 10.2217/epi.15.60] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: Prenatal alcohol exposure (PAE) can cause fetal alcohol spectrum disorders (FASD). Previously, we assessed PAE in brain tissue from mouse models, however whether these changes are present in humans remains unknown. Materials & methods: In this report, we show some identical changes in DNA methylation in the buccal swabs of six children with FASD using the 450K array. Results: The changes occur in genes related to protocadherins, glutamatergic synapses, and hippo signaling. The results were found to be similar in another heterogeneous replication group of six FASD children. Conclusion: The replicated results suggest that children born with FASD have unique DNA methylation defects that can be influenced by sex and medication exposure. Ultimately, with future clinical development, assessment of DNA methylation from buccal swabs can provide a novel strategy for the diagnosis of FASD.
Collapse
Affiliation(s)
- Benjamin I Laufer
- Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Joachim Kapalanga
- Department of Pediatrics, The University of Western Ontario, London, ON, Canada
| | - Christina A Castellani
- Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Eric J Diehl
- Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | | | - Shiva M Singh
- Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
- Department of Pediatrics, The University of Western Ontario, London, ON, Canada
- Program in Neuroscience, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
115
|
Young R, Maga AM. Performance of single and multi-atlas based automated landmarking methods compared to expert annotations in volumetric microCT datasets of mouse mandibles. Front Zool 2015; 12:33. [PMID: 26628903 PMCID: PMC4666065 DOI: 10.1186/s12983-015-0127-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/19/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Here we present an application of advanced registration and atlas building framework DRAMMS to the automated annotation of mouse mandibles through a series of tests using single and multi-atlas segmentation paradigms and compare the outcomes to the current gold standard, manual annotation. RESULTS Our results showed multi-atlas annotation procedure yields landmark precisions within the human observer error range. The mean shape estimates from gold standard and multi-atlas annotation procedure were statistically indistinguishable for both Euclidean Distance Matrix Analysis (mean form matrix) and Generalized Procrustes Analysis (Goodall F-test). Further research needs to be done to validate the consistency of variance-covariance matrix estimates from both methods with larger sample sizes. CONCLUSION Multi-atlas annotation procedure shows promise as a framework to facilitate truly high-throughput phenomic analyses by channeling investigators efforts to annotate only a small portion of their datasets.
Collapse
Affiliation(s)
- Ryan Young
- />Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, 1900 Ninth Ave, 98101 Seattle, WA USA
| | - A. Murat Maga
- />Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, WA USA
- />Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, 1900 Ninth Ave, 98101 Seattle, WA USA
- />Department of Oral Biology, University of Washington, Seattle, WA USA
| |
Collapse
|
116
|
Wang Y, Wu J, Ma X, Liu B, Su R, Jiang Y, Wang W, Dong Y. Single Base-Resolution Methylome of the Dizygotic Sheep. PLoS One 2015; 10:e0142034. [PMID: 26536671 PMCID: PMC4633158 DOI: 10.1371/journal.pone.0142034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/17/2015] [Indexed: 12/12/2022] Open
Abstract
Sheep is an important livestock in the world for meat, dairy and wool production. The third version of sheep reference genome has been recently assembled, but sheep DNA methylome has not been profiled yet. In this study, we report the comprehensive sheep methylome with 94.38% cytosine coverage at single base resolution by sequencing DNA samples from Longissimus dorsi of dizygotic Sunit sheep, which were bred in different habitats. We also compared methylomes between the twin sheep. DNA methylation status at genome-scale differentially methylated regions (DMRs), functional genomic regions and 248 DMR-containing genes were identified between the twin sheep. Gene ontology (GO) and KEGG annotations of these genes were performed to discover computationally predicted function. Lipid metabolism, sexual maturity and tumor-associated categories were observed to significantly enrich DMR-containing genes. These findings could be used to illustrate the relationship between phenotypic variations and gene methylation patterns.
Collapse
Affiliation(s)
- Yangzi Wang
- Kunming University of Science and Technology, Chenggong District, Kunming, China
| | - Jianghong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
- Inner Mongolia Prataculture Research Center, Chinese Academy of Science, Hohhot, China
| | - Xiao Ma
- Yunnan Agricultural University, Kunming, China
| | - Bin Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
| | - Rui Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yu Jiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- * E-mail: (WW); (YD)
| | - Yang Dong
- Kunming University of Science and Technology, Chenggong District, Kunming, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- * E-mail: (WW); (YD)
| |
Collapse
|
117
|
Birch SM, Lenox MW, Kornegay JN, Shen L, Ai H, Ren X, Goodlett CR, Cudd TA, Washburn SE. Computed tomography assessment of peripubertal craniofacial morphology in a sheep model of binge alcohol drinking in the first trimester. Alcohol 2015; 49:675-89. [PMID: 26496796 PMCID: PMC4636442 DOI: 10.1016/j.alcohol.2015.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 11/22/2022]
Abstract
Identification of facial dysmorphology is essential for the diagnosis of fetal alcohol syndrome (FAS); however, most children with fetal alcohol spectrum disorders (FASD) do not meet the dysmorphology criterion. Additional objective indicators are needed to help identify the broader spectrum of children affected by prenatal alcohol exposure. Computed tomography (CT) was used in a sheep model of prenatal binge alcohol exposure to test the hypothesis that quantitative measures of craniofacial bone volumes and linear distances could identify alcohol-exposed lambs. Pregnant sheep were randomly assigned to four groups: heavy binge alcohol, 2.5 g/kg/day (HBA); binge alcohol, 1.75 g/kg/day (BA); saline control (SC); and normal control (NC). Intravenous alcohol (BA; HBA) or saline (SC) infusions were given three consecutive days per week from gestation day 4-41, and a CT scan was performed on postnatal day 182. The volumes of eight skull bones, cranial circumference, and 19 linear measures of the face and skull were compared among treatment groups. Lambs from both alcohol groups showed significant reduction in seven of the eight skull bones and total skull bone volume, as well as cranial circumference. Alcohol exposure also decreased four of the 19 craniofacial measures. Discriminant analysis showed that alcohol-exposed and control lambs could be classified with high accuracy based on total skull bone volume, frontal, parietal, or mandibular bone volumes, cranial circumference, or interorbital distance. Total skull volume was significantly more sensitive than cranial circumference in identifying the alcohol-exposed lambs when alcohol-exposed lambs were classified using the typical FAS diagnostic cutoff of ≤10th percentile. This first demonstration of the usefulness of CT-derived craniofacial measures in a sheep model of FASD following binge-like alcohol exposure during the first trimester suggests that volumetric measurement of cranial bones may be a novel biomarker for binge alcohol exposure during the first trimester to help identify non-dysmorphic children with FASD.
Collapse
Affiliation(s)
- Sharla M. Birch
- Department of Veterinary Pathobiology, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX 77843, USA
| | - Mark W. Lenox
- Texas A&M Institute for Preclinical Studies (TIPS), Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX 77843, USA
| | - Joe N. Kornegay
- Department of Veterinary Pathobiology, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX 77843, USA
- Texas A&M Institute for Preclinical Studies (TIPS), Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX 77843, USA
- Department of Veterinary Integrative Biosciences, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX 77843, USA
| | - Li Shen
- Department of Radiology and Imaging Sciences, IU School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, IU School of Medicine, Indianapolis, IN 46202, USA
| | - Huisi Ai
- Department of Radiology and Imaging Sciences, IU School of Medicine, Indianapolis, IN 46202, USA
| | - Xiaowei Ren
- Department of Radiology and Imaging Sciences, IU School of Medicine, Indianapolis, IN 46202, USA
- Department of Biostatistics, IU School of Medicine, Indianapolis, IN 46202, USA
| | - Charles R. Goodlett
- Stark Neurosciences Research Institute, IU School of Medicine, Indianapolis, IN 46202, USA
- Department of Psychology, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, IN 46202, USA
| | - Tim A. Cudd
- Department of Physiology and Pharmacology, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX 77843, USA
| | - Shannon E. Washburn
- Department of Physiology and Pharmacology, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX 77843, USA
| |
Collapse
|
118
|
Mukhopadhyay P, Greene RM, Pisano MM. Cigarette smoke induces proteasomal-mediated degradation of DNA methyltransferases and methyl CpG-/CpG domain-binding proteins in embryonic orofacial cells. Reprod Toxicol 2015; 58:140-8. [PMID: 26482727 DOI: 10.1016/j.reprotox.2015.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 08/18/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
Orofacial clefts, the most prevalent of developmental anomalies, occur with a frequency of 1 in 700 live births. Maternal cigarette smoking during pregnancy represents a risk factor for having a child with a cleft lip and/or cleft palate. Using primary cultures of first branchial arch-derived cells (1-BA cells), which contribute to the formation of the lip and palate, the present study addressed the hypothesis that components of cigarette smoke alter global DNA methylation, and/or expression of DNA methyltransferases (Dnmts) and various methyl CpG-binding proteins. Primary cultures of 1-BA cells, exposed to 80μg/mL cigarette smoke extract (CSE) for 24h, exhibited a >13% decline in global DNA methylation and triggered proteasomal-mediated degradation of Dnmts (DNMT-1 and -3a), methyl CpG binding protein 2 (MeCP2) and methyl-CpG binding domain protein 3 (MBD-3). Pretreatment of 1-BA cells with the proteasomal inhibitor MG-132 completely reversed such degradation. Collectively, these data allow the suggestion of a potential epigenetic mechanism underlying maternal cigarette smoke exposure-induced orofacial clefting.
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- University of Louisville Birth Defects Center, Department of Molecular, Cellular and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY 40202, United States
| | - Robert M Greene
- University of Louisville Birth Defects Center, Department of Molecular, Cellular and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY 40202, United States.
| | - M Michele Pisano
- University of Louisville Birth Defects Center, Department of Molecular, Cellular and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY 40202, United States
| |
Collapse
|
119
|
Dasmahapatra AK, Khan IA. DNA methyltransferase expressions in Japanese rice fish (Oryzias latipes) embryogenesis is developmentally regulated and modulated by ethanol and 5-azacytidine. Comp Biochem Physiol C Toxicol Pharmacol 2015; 176-177:1-9. [PMID: 26183885 DOI: 10.1016/j.cbpc.2015.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 12/18/2022]
Abstract
We aimed to investigate the impact of the epigenome in inducting fetal alcohol spectrum disorder (FASD) phenotypes in Japanese rice fish embryogenesis. One of the significant events in epigenome is DNA methylation which is catalyzed by DNA methyltransferase (DNMT) enzymes. We analyzed DNMT enzyme mRNA expressions in Japanese rice fish development starting from fertilized eggs to hatching and also in embryos exposed for first 48h of development either to ethanol (300mM) or to 5-azacytidine (5-azaC; 2mM), an inhibitor of DNMT enzyme activity. As observed in FASD phenotypes, 5-azaC exposure was able to induce microcephaly and craniofacial cartilage deformities in Japanese rice fish. Moreover, we have observed that expression of DNMTs (dnmt1, dnmt3aa, and dnmt3bb.1) are developmentally regulated; high mRNA copies were found in early stages (1-2day-post-fertilization, dpf), followed by gradual reduction until hatched. In ethanol-treated embryos, compared to controls, dnmt1 mRNA is in reduced level in 2dpf and in enhanced level in 6dpf embryos. While dnmt3aa and 3bb.1 remained unaltered. In contrast, embryos exposed to 5-azaC have an enhanced level of dnmt1 and dnmt3bb.1 mRNAs both in 2 and 6dpf embryos while dnmt3aa is enhanced only in 6dpf embryos. Moreover, endocannabinoid receptor 1a (cnr1a) mRNA which was found to be reduced by ethanol remained unaltered and cnr1b and cnr2 mRNAs, which were remained unaltered by ethanol, were increased significantly by 5-azaC in 6dpf embryos. This study indicates that the craniofacial defects observed in FASD phenotypes are the results of dysregulations in DNMT expressions.
Collapse
MESH Headings
- Abnormalities, Drug-Induced/enzymology
- Abnormalities, Drug-Induced/etiology
- Abnormalities, Drug-Induced/genetics
- Animals
- Azacitidine/toxicity
- DNA (Cytosine-5-)-Methyltransferase 1
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Methylation
- DNA Methyltransferase 3A
- Disease Models, Animal
- Epigenesis, Genetic/drug effects
- Ethanol/toxicity
- Fetal Alcohol Spectrum Disorders/enzymology
- Fetal Alcohol Spectrum Disorders/etiology
- Fetal Alcohol Spectrum Disorders/genetics
- Fish Proteins/genetics
- Fish Proteins/metabolism
- Gene Expression Regulation, Enzymologic
- Oryzias/embryology
- Oryzias/genetics
- Oryzias/metabolism
- RNA, Messenger/metabolism
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/drug effects
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Time Factors
- DNA Methyltransferase 3B
Collapse
Affiliation(s)
- Asok K Dasmahapatra
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA; Department of BioMolecular Sciences, Division of Pharmacology, University of Mississippi, University, MS, USA.
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA; Department of BioMolecular Sciences, Division of Pharmacology, University of Mississippi, University, MS, USA
| |
Collapse
|
120
|
Cecil CAM, Walton E, Viding E. DNA Methylation, Substance Use and Addiction: a Systematic Review of Recent Animal and Human Research from a Developmental Perspective. CURRENT ADDICTION REPORTS 2015. [DOI: 10.1007/s40429-015-0072-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
121
|
Ibeagha-Awemu EM, Zhao X. Epigenetic marks: regulators of livestock phenotypes and conceivable sources of missing variation in livestock improvement programs. Front Genet 2015; 6:302. [PMID: 26442116 PMCID: PMC4585011 DOI: 10.3389/fgene.2015.00302] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 09/11/2015] [Indexed: 12/30/2022] Open
Abstract
Improvement in animal productivity has been achieved over the years through careful breeding and selection programs. Today, variations in the genome are gaining increasing importance in livestock improvement strategies. Genomic information alone, however, explains only a part of the phenotypic variance in traits. It is likely that a portion of the unaccounted variance is embedded in the epigenome. The epigenome encompasses epigenetic marks such as DNA methylation, histone tail modifications, chromatin remodeling, and other molecules that can transmit epigenetic information such as non-coding RNA species. Epigenetic factors respond to external or internal environmental cues such as nutrition, pathogens, and climate, and have the ability to change gene expression leading to emergence of specific phenotypes. Accumulating evidence shows that epigenetic marks influence gene expression and phenotypic outcome in livestock species. This review examines available evidence of the influence of epigenetic marks on livestock (cattle, sheep, goat, and pig) traits and discusses the potential for consideration of epigenetic markers in livestock improvement programs. However, epigenetic research activities on farm animal species are currently limited partly due to lack of recognition, funding and a global network of researchers. Therefore, considerable less attention has been given to epigenetic research in livestock species in comparison to extensive work in humans and model organisms. Elucidating therefore the epigenetic determinants of animal diseases and complex traits may represent one of the principal challenges to use epigenetic markers for further improvement of animal productivity.
Collapse
Affiliation(s)
- Eveline M. Ibeagha-Awemu
- Dairy and Swine Research and Development Centre, Agriculture and Agri-Food CanadaSherbrooke, QC, Canada
| | - Xin Zhao
- Department of Animal Science, McGill University, Ste-Anne-De-BellevueQC, Canada
| |
Collapse
|
122
|
Zhang CR, Ho MF, Vega MCS, Burne THJ, Chong S. Prenatal ethanol exposure alters adult hippocampal VGLUT2 expression with concomitant changes in promoter DNA methylation, H3K4 trimethylation and miR-467b-5p levels. Epigenetics Chromatin 2015; 8:40. [PMID: 26421062 PMCID: PMC4587775 DOI: 10.1186/s13072-015-0032-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/16/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Maternal consumption of alcohol during pregnancy is associated with a range of physical, cognitive and behavioural outcomes in the offspring which are collectively called foetal alcohol spectrum disorders. We and others have proposed that epigenetic modifications, such as DNA methylation and post-translational histone modifications, mediate the effects of prenatal alcohol exposure on gene expression and, ultimately, phenotype. Here we use an inbred C57BL/6J mouse model of early gestational ethanol exposure equivalent, developmentally, to the first 3-4 weeks of pregnancy in humans to examine the long-term effects on gene expression and epigenetic state in the hippocampus. RESULTS Gene expression analysis in the hippocampus revealed sex- and age-specific up-regulation of solute carrier family 17 member 6 (Slc17a6), which encodes vesicular glutamate transporter 2 (VGLUT2). Transcriptional up-regulation correlated with decreased DNA methylation and enrichment of histone H3 lysine 4 trimethylation, an active chromatin mark, at the Slc17a6 promoter. In contrast to Slc17a6 mRNA levels, hippocampal VGLUT2 protein levels were significantly decreased in adult ethanol-exposed offspring, suggesting an additional level of post-transcriptional control. MicroRNA expression profiling in the hippocampus identified four ethanol-sensitive microRNAs, of which miR-467b-5p was predicted to target Slc17a6. In vitro reporter assays showed that miR-467b-5p specifically interacted with the 3'UTR of Slc17a6, suggesting that it contributes to the reduction of hippocampal VGLUT2 in vivo. A significant correlation between microRNA expression in the hippocampus and serum of ethanol-exposed offspring was also observed. CONCLUSIONS Prenatal ethanol exposure has complex transcriptional and post-transcriptional effects on Slc17a6 (VGLUT2) expression in the mouse hippocampus. These effects are observed following a relatively moderate exposure that is restricted to early pregnancy, modelling human consumption of alcohol before pregnancy is confirmed, and are only apparent in male offspring in adulthood. Our findings are consistent with the idea that altered epigenetic and/or microRNA-mediated regulation of glutamate neurotransmission in the hippocampus contributes to the cognitive and behavioural phenotypes observed in foetal alcohol spectrum disorders. Although further work is needed in both mice and humans, the results also suggest that circulating microRNAs could be used as biomarkers of early gestational ethanol exposure and hippocampal dysfunction.
Collapse
Affiliation(s)
- Christine R Zhang
- Mater Research Institute, The University of Queensland, Translational Research Institute, Level 4, 37 Kent St, Woolloongabba, QLD 4102 Australia
| | - Mei-Fong Ho
- Mater Research Institute, The University of Queensland, Translational Research Institute, Level 4, 37 Kent St, Woolloongabba, QLD 4102 Australia
| | | | - Thomas H J Burne
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072 Australia
| | - Suyinn Chong
- Mater Research Institute, The University of Queensland, Translational Research Institute, Level 4, 37 Kent St, Woolloongabba, QLD 4102 Australia
| |
Collapse
|
123
|
Veazey KJ, Parnell SE, Miranda RC, Golding MC. Dose-dependent alcohol-induced alterations in chromatin structure persist beyond the window of exposure and correlate with fetal alcohol syndrome birth defects. Epigenetics Chromatin 2015; 8:39. [PMID: 26421061 PMCID: PMC4587584 DOI: 10.1186/s13072-015-0031-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/15/2015] [Indexed: 01/16/2023] Open
Abstract
Background In recent years, we have come to recognize that a multitude of in utero exposures have the capacity to induce the development of congenital and metabolic defects. As most of these encounters manifest their effects beyond the window of exposure, deciphering the mechanisms of teratogenesis is incredibly difficult. For many agents, altered epigenetic programming has become suspect in transmitting the lasting signature of exposure leading to dysgenesis. However, while several chemicals can perturb chromatin structure acutely, for many agents (particularly alcohol) it remains unclear if these modifications represent transient responses to exposure or heritable lesions leading to pathology. Results Here, we report that mice encountering an acute exposure to alcohol on gestational Day-7 exhibit significant alterations in chromatin structure (histone 3 lysine 9 dimethylation, lysine 9 acetylation, and lysine 27 trimethylation) at Day-17, and that these changes strongly correlate with the development of craniofacial and central nervous system defects. Using a neural cortical stem cell model, we find that the epigenetic changes arising as a consequence of alcohol exposure are heavily dependent on the gene under investigation, the dose of alcohol encountered, and that the signatures arising acutely differ significantly from those observed after a 4-day recovery period. Importantly, the changes observed post-recovery are consistent with those modeled in vivo, and associate with alterations in transcripts encoding multiple homeobox genes directing neurogenesis. Unexpectedly, we do not observe a correlation between alcohol-induced changes in chromatin structure and alterations in transcription. Interestingly, the majority of epigenetic changes observed occur in marks associated with repressive chromatin structure, and we identify correlative disruptions in transcripts encoding Dnmt1, Eed, Ehmt2 (G9a), EzH2, Kdm1a, Kdm4c, Setdb1, Sod3, Tet1 and Uhrf1. Conclusions These observations suggest that the immediate and long-term impacts of alcohol exposure on chromatin structure are distinct, and hint at the existence of a possible coordinated
epigenetic response to ethanol during development. Collectively, our results indicate that alcohol-induced modifications to chromatin structure persist beyond the window of exposure, and likely contribute to the development of fetal alcohol syndrome-associated congenital abnormalities. Electronic supplementary material The online version of this article (doi:10.1186/s13072-015-0031-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kylee J Veazey
- Room 338 VMA, 4466 TAMU, Department of Veterinary Physiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466 USA
| | - Scott E Parnell
- Bowles Center for Alcohol Studies and Department of Cell Biology and Physiology, School of Medicine, CB# 7178, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Rajesh C Miranda
- Texas A&M Health Sciences Center, Texas A&M University, 8441 State Highway 47, Clinical Building 1, Suite 3100, Bryan, TX 77807 USA
| | - Michael C Golding
- Room 338 VMA, 4466 TAMU, Department of Veterinary Physiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466 USA
| |
Collapse
|
124
|
Varadinova M, Boyadjieva N. Epigenetic mechanisms: A possible link between autism spectrum disorders and fetal alcohol spectrum disorders. Pharmacol Res 2015; 102:71-80. [PMID: 26408203 DOI: 10.1016/j.phrs.2015.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/12/2015] [Accepted: 09/13/2015] [Indexed: 01/26/2023]
Abstract
The etiology of autism spectrum disorders (ASDs) still remains unclear and seems to involve a considerable overlap between polygenic, epigenetic and environmental factors. We have summarized the current understanding of the interplay between gene expression dysregulation via epigenetic modifications and the potential epigenetic impact of environmental factors in neurodevelopmental deficits. Furthermore, we discuss the scientific controversies of the relationship between prenatal exposure to alcohol and alcohol-induced epigenetic dysregulations, and gene expression alterations which are associated with disrupted neural plasticity and causal pathways for ASDs. The review of the literature suggests that a better understanding of developmental epigenetics should contribute to furthering our comprehension of the etiology and pathogenesis of ASDs and fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Miroslava Varadinova
- Department of Pharmacology and Toxicology, Medical Faculty, Medical University, Sofia, Bulgaria.
| | - Nadka Boyadjieva
- Department of Pharmacology and Toxicology, Medical Faculty, Medical University, Sofia, Bulgaria.
| |
Collapse
|
125
|
Tachibana M. Epigenetics of sex determination in mammals. Reprod Med Biol 2015; 15:59-67. [PMID: 29259422 DOI: 10.1007/s12522-015-0223-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 09/02/2015] [Indexed: 10/23/2022] Open
Abstract
Epigenetics is the study of changes in gene function that cannot be explained by changes in DNA sequence. A mammalian body contains more than two hundred types of cells. Since all of them are derived from a single fertilized egg, their genotypes are identical. However, the gene expression patterns are different between the cell types, indicating that each cell type has unique own "epigenotype". Epigenetic gene regulation mechanisms essentially contribute to various processes of mammalian development. The essence of epigenetic regulation is the structural change of chromatin to modulate gene activity in a spatiotemporal manner. DNA methylation and histone modifications are the major epigenetic mechanisms. Sex determination is the process for gender establishment. There are two types of sex-determining mechanisms in animals, environmental sex determination (ESD) and genotypic sex determination (GSD). Recent studies have provided some evidence that epigenetic mechanisms play indispensable roles in ESD and GSD. Some fishes undergo ESD, in which DNA methylation is essentially involved. GSD is employed in therian mammals, where Sry (sex-determining region on the Y chromosome) triggers testis differentiation from undifferentiated gonads. Sry expression is tightly regulated in a spatiotemporal manner. A recent study demonstrated that histone modification is involved in Sry regulation. In this review, we discuss the role of epigenetic mechanisms for sex determination in mammals and other vertebrates.
Collapse
Affiliation(s)
- Makoto Tachibana
- Department of Enzyme Chemistry, Institute for Enzyme Research Tokushima University 18-15-3 Kuramoto-cho 770-8503 Tokushima Japan
| |
Collapse
|
126
|
Abstract
Rapidly growing evidences link maternal lifestyle and prenatal factors with serious health consequences and diseases later in life. Extensive epidemiological studies have identified a number of factors such as diet, stress, gestational diabetes, exposure to tobacco and alcohol during gestation as influencing normal fetal development. In light of recent discoveries, epigenetic mechanisms such as alteration of DNA methylation, chromatin modifications and modulation of gene expression during gestation are believed to possibly account for various types of plasticity such as neural tube defects, autism spectrum disorder, congenital heart defects, oral clefts, allergies and cancer. The purpose of this article is to review a number of published studies to fill the gap in our understanding of how maternal lifestyle and intrauterine environment influence molecular modifications in the offspring, with an emphasis on epigenetic alterations. To support these associations, we highlighted laboratory studies of rodents and epidemiological studies of human based on sampling population cohorts.
Collapse
Affiliation(s)
- Subit Barua
- Structural Neurobiology Laboratory, Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | | |
Collapse
|
127
|
Ngai YF, Sulistyoningrum DC, O'Neill R, Innis SM, Weinberg J, Devlin AM. Prenatal alcohol exposure alters methyl metabolism and programs serotonin transporter and glucocorticoid receptor expression in brain. Am J Physiol Regul Integr Comp Physiol 2015; 309:R613-22. [PMID: 26180184 PMCID: PMC4591382 DOI: 10.1152/ajpregu.00075.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/10/2015] [Indexed: 11/22/2022]
Abstract
Prenatal alcohol exposure (PAE) programs the fetal hypothalamic-pituitary-adrenal (HPA) axis, resulting in HPA dysregulation and hyperresponsiveness to stressors in adulthood. Molecular mechanisms mediating these alterations are not fully understood. Disturbances in one-carbon metabolism, a source of methyl donors for epigenetic processes, contributes to alcoholic liver disease. We assessed whether PAE affects one-carbon metabolism (including Mtr, Mat2a, Mthfr, and Cbs mRNA) and programming of HPA function genes (Nr3c1, Nr3c2, and Slc6a4) in offspring from ethanol-fed (E), pair-fed (PF), and ad libitum-fed control (C) dams. At gestation day 21, plasma total homocysteine and methionine concentrations were higher in E compared with C dams, and E fetuses had higher plasma methionine concentrations and lower whole brain Mtr and Mat2a mRNA compared with C fetuses. In adulthood (55 days), hippocampal Mtr and Cbs mRNA was lower in E compared with C males, whereas Mtr, Mat2a, Mthfr, and Cbs mRNA were higher in E compared with C females. We found lower Nr3c1 mRNA and lower nerve growth factor inducible protein A (NGFI-A) protein in the hippocampus of E compared with PF females, whereas hippocampal Slc6a4 mRNA was higher in E than C males. By contrast, hypothalamic Slc6a4 mRNA was lower in E males and females compared with C offspring. This was accompanied by higher hypothalamic Slc6a4 mean promoter methylation in E compared with PF females. These findings demonstrate that PAE is associated with alterations in one-carbon metabolism and has long-term and region-specific effects on gene expression in the brain. These findings advance our understanding of mechanisms of HPA dysregulation associated with PAE.
Collapse
Affiliation(s)
- Ying Fai Ngai
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Dian C Sulistyoningrum
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Ryan O'Neill
- Department of Cellular and Physiological Sciences, University of British Columbia; and
| | - Sheila M Innis
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, University of British Columbia; and Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Angela M Devlin
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Child and Family Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
128
|
Jirtle RL. The Agouti mouse: a biosensor for environmental epigenomics studies investigating the developmental origins of health and disease. Epigenomics 2015; 6:447-50. [PMID: 25431934 DOI: 10.2217/epi.14.58] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Randy L Jirtle
- Department of Sport & Exercise Sciences, University of Bedfordshire, Bedford, UK
| |
Collapse
|
129
|
Jilek JL, Sant KE, Cho KH, Reed MS, Pohl J, Hansen JM, Harris C. Ethanol Attenuates Histiotrophic Nutrition Pathways and Alters the Intracellular Redox Environment and Thiol Proteome during Rat Organogenesis. Toxicol Sci 2015; 147:475-89. [PMID: 26185205 DOI: 10.1093/toxsci/kfv145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ethanol (EtOH) is a reactive oxygen-generating teratogen involved in the etiology of structural and functional developmental defects. Embryonic nutrition, redox environment, and changes in the thiol proteome following EtOH exposures (1.56.0 mg/ml) were studied in rat whole embryo culture. Glutathione (GSH) and cysteine (Cys) concentrations with their respective intracellular redox potentials (Eh) were determined using high-performance liquid chromatography. EtOH reduced GSH and Cys concentrations in embryo (EMB) and visceral yolk sac (VYS) tissues, and also in yolk sac and amniotic fluids. These changes produced greater oxidation as indicated by increasingly positive Eh values. EtOH reduced histiotrophic nutrition pathway activities as measured by the clearance of fluorescin isothiocyanate (FITC)-albumin from culture media. A significant decrease in total FITC clearance was observed at all concentrations, reaching approximately 50% at the highest dose. EtOH-induced changes to the thiol proteome were measured in EMBs and VYSs using isotope-coded affinity tags. Decreased concentrations for specific proteins from cytoskeletal dynamics and endocytosis pathways (α-actinin, α-tubulin, cubilin, and actin-related protein 2); nuclear translocation (Ran and RanBP1); and maintenance of receptor-mediated endocytosis (cubilin) were observed. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis also identified a decrease in ribosomal proteins in both EMB and VYS. Results show that EtOH interferes with nutrient uptake to reduce availability of amino acids and micronutrients required by the conceptus. Intracellular antioxidants such as GSH and Cys are depleted following EtOH and Eh values increase. Thiol proteome analysis in the EMB and VYS show selectively altered actin/cytoskeleton, endocytosis, ribosome biogenesis and function, nuclear transport, and stress-related responses.
Collapse
Affiliation(s)
- Joseph L Jilek
- *Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109
| | - Karilyn E Sant
- *Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109
| | - Katherine H Cho
- *Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109
| | - Matthew S Reed
- Biotechnology Core Facility Branch, Centers for Disease Control, Atlanta, Georgia 30333; and
| | - Jan Pohl
- Biotechnology Core Facility Branch, Centers for Disease Control, Atlanta, Georgia 30333; and
| | - Jason M Hansen
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, Utah 84602
| | - Craig Harris
- *Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109;
| |
Collapse
|
130
|
Reizel Y, Spiro A, Sabag O, Skversky Y, Hecht M, Keshet I, Berman BP, Cedar H. Gender-specific postnatal demethylation and establishment of epigenetic memory. Genes Dev 2015; 29:923-33. [PMID: 25934504 PMCID: PMC4421981 DOI: 10.1101/gad.259309.115] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
DNA methylation patterns are set up in a relatively fixed programmed manner during normal embryonic development and are then stably maintained. Using genome-wide analysis, we discovered a postnatal pathway involving gender-specific demethylation that occurs exclusively in the male liver. This demodification is programmed to take place at tissue-specific enhancer sequences, and our data show that the methylation state at these loci is associated with and appears to play a role in the transcriptional regulation of nearby genes. This process is mediated by the secretion of testosterone at the time of sexual maturity, but the resulting methylation profile is stable and therefore can serve as an epigenetic memory even in the absence of this inducer. These findings add a new dimension to our understanding of the role of DNA methylation in vivo and provide the foundations for deciphering how environment can impact on the epigenetic regulation of genes in general.
Collapse
Affiliation(s)
- Yitzhak Reizel
- Department of Developmental Biology and Cancer Research, Hebrew University Medical School, Jerusalem 91120, Israel
| | - Adam Spiro
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ofra Sabag
- Department of Developmental Biology and Cancer Research, Hebrew University Medical School, Jerusalem 91120, Israel
| | - Yael Skversky
- Department of Developmental Biology and Cancer Research, Hebrew University Medical School, Jerusalem 91120, Israel
| | - Merav Hecht
- Department of Developmental Biology and Cancer Research, Hebrew University Medical School, Jerusalem 91120, Israel
| | - Ilana Keshet
- Department of Developmental Biology and Cancer Research, Hebrew University Medical School, Jerusalem 91120, Israel
| | - Benjamin P Berman
- Bioinformatics and Computational Biology Research Center, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | - Howard Cedar
- Department of Developmental Biology and Cancer Research, Hebrew University Medical School, Jerusalem 91120, Israel;
| |
Collapse
|
131
|
Stegemann R, Buchner DA. Transgenerational inheritance of metabolic disease. Semin Cell Dev Biol 2015; 43:131-140. [PMID: 25937492 PMCID: PMC4626440 DOI: 10.1016/j.semcdb.2015.04.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 02/05/2023]
Abstract
Metabolic disease encompasses several disorders including obesity, type 2 diabetes, and dyslipidemia. Recently, the incidence of metabolic disease has drastically increased, driven primarily by a worldwide obesity epidemic. Transgenerational inheritance remains controversial, but has been proposed to contribute to human metabolic disease risk based on a growing number of proof-of-principle studies in model organisms ranging from Caenorhabditis elegans to Mus musculus to Sus scrofa. Collectively, these studies demonstrate that heritable risk is epigenetically transmitted from parent to offspring over multiple generations in the absence of a continued exposure to the triggering stimuli. A diverse assortment of initial triggers can induce transgenerational inheritance including high-fat or high-sugar diets, low-protein diets, various toxins, and ancestral genetic variants. Although the mechanistic basis underlying the transgenerational inheritance of disease risk remains largely unknown, putative molecules mediating transmission include small RNAs, histone modifications, and DNA methylation. Due to the considerable impact of metabolic disease on human health, it is critical to better understand the role of transgenerational inheritance of metabolic disease risk to open new avenues for therapeutic intervention and improve upon the current methods for clinical diagnoses and treatment.
Collapse
Affiliation(s)
- Rachel Stegemann
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, United States
| | - David A Buchner
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, United States; Department of Biological Chemistry, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|
132
|
Moussaieff A, Kogan NM, Aberdam D. Concise Review: Energy Metabolites: Key Mediators of the Epigenetic State of Pluripotency. Stem Cells 2015; 33:2374-80. [DOI: 10.1002/stem.2041] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 03/26/2015] [Accepted: 03/31/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Arieh Moussaieff
- Institute for Drug Research, Hebrew University of Jerusalem; Jerusalem Israel
| | - Natalya M. Kogan
- Institute for Drug Research, Hebrew University of Jerusalem; Jerusalem Israel
| | - Daniel Aberdam
- INSERM U976; Paris France
- Université Paris-Diderot; Paris France
| |
Collapse
|
133
|
Marjonen H, Sierra A, Nyman A, Rogojin V, Gröhn O, Linden AM, Hautaniemi S, Kaminen-Ahola N. Early maternal alcohol consumption alters hippocampal DNA methylation, gene expression and volume in a mouse model. PLoS One 2015; 10:e0124931. [PMID: 25970770 PMCID: PMC4430308 DOI: 10.1371/journal.pone.0124931] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/08/2015] [Indexed: 11/19/2022] Open
Abstract
The adverse effects of alcohol consumption during pregnancy are known, but the molecular events that lead to the phenotypic characteristics are unclear. To unravel the molecular mechanisms, we have used a mouse model of gestational ethanol exposure, which is based on maternal ad libitum ingestion of 10% (v/v) ethanol for the first 8 days of gestation (GD 0.5-8.5). Early neurulation takes place by the end of this period, which is equivalent to the developmental stage early in the fourth week post-fertilization in human. During this exposure period, dynamic epigenetic reprogramming takes place and the embryo is vulnerable to the effects of environmental factors. Thus, we hypothesize that early ethanol exposure disrupts the epigenetic reprogramming of the embryo, which leads to alterations in gene regulation and life-long changes in brain structure and function. Genome-wide analysis of gene expression in the mouse hippocampus revealed altered expression of 23 genes and three miRNAs in ethanol-exposed, adolescent offspring at postnatal day (P) 28. We confirmed this result by using two other tissues, where three candidate genes are known to express actively. Interestingly, we found a similar trend of upregulated gene expression in bone marrow and main olfactory epithelium. In addition, we observed altered DNA methylation in the CpG islands upstream of the candidate genes in the hippocampus. Our MRI study revealed asymmetry of brain structures in ethanol-exposed adult offspring (P60): we detected ethanol-induced enlargement of the left hippocampus and decreased volume of the left olfactory bulb. Our study indicates that ethanol exposure in early gestation can cause changes in DNA methylation, gene expression, and brain structure of offspring. Furthermore, the results support our hypothesis of early epigenetic origin of alcohol-induced disorders: changes in gene regulation may have already taken place in embryonic stem cells and therefore can be seen in different tissue types later in life.
Collapse
Affiliation(s)
- Heidi Marjonen
- Department of Medical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alejandra Sierra
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Anna Nyman
- Department of Medical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vladimir Rogojin
- Institute of Biomedicine & Genome-Scale Biology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Gröhn
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Anni-Maija Linden
- Institute of Biomedicine, Pharmacology, University of Helsinki, Helsinki, Finland
| | - Sampsa Hautaniemi
- Institute of Biomedicine & Genome-Scale Biology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nina Kaminen-Ahola
- Department of Medical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
134
|
Jiménez-Chillarón JC, Nijland MJ, Ascensão AA, Sardão VA, Magalhães J, Hitchler MJ, Domann FE, Oliveira PJ. Back to the future: transgenerational transmission of xenobiotic-induced epigenetic remodeling. Epigenetics 2015; 10:259-73. [PMID: 25774863 DOI: 10.1080/15592294.2015.1020267] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Epigenetics, or regulation of gene expression independent of DNA sequence, is the missing link between genotype and phenotype. Epigenetic memory, mediated by histone and DNA modifications, is controlled by a set of specialized enzymes, metabolite availability, and signaling pathways. A mostly unstudied subject is how sub-toxic exposure to several xenobiotics during specific developmental stages can alter the epigenome and contribute to the development of disease phenotypes later in life. Furthermore, it has been shown that exposure to low-dose xenobiotics can also result in further epigenetic remodeling in the germ line and contribute to increase disease risk in the next generation (multigenerational and transgenerational effects). We here offer a perspective on current but still incomplete knowledge of xenobiotic-induced epigenetic alterations, and their possible transgenerational transmission. We also propose several molecular mechanisms by which the epigenetic landscape may be altered by environmental xenobiotics and hypothesize how diet and physical activity may counteract epigenetic alterations.
Collapse
|
135
|
Masemola ML, van der Merwe L, Lombard Z, Viljoen D, Ramsay M. Reduced DNA methylation at the PEG3 DMR and KvDMR1 loci in children exposed to alcohol in utero: a South African Fetal Alcohol Syndrome cohort study. Front Genet 2015; 6:85. [PMID: 25806045 PMCID: PMC4354390 DOI: 10.3389/fgene.2015.00085] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 02/17/2015] [Indexed: 11/22/2022] Open
Abstract
Fetal alcohol syndrome (FAS) is a devastating developmental disorder resulting from alcohol exposure during fetal development. It is a considerable public health problem worldwide and is characterized by central nervous system abnormalities, dysmorphic facial features, and growth retardation. Imprinted genes are known to play an important role in growth and development and therefore four imprinting control regions (ICRs), H19 ICR, IG-DMR, KvDMR1 and PEG3 DMR were examined. It is proposed that DNA methylation changes may contribute to developmental abnormalities seen in FAS and which persist into adulthood. The participants included FAS children and controls from the Western and Northern Cape Provinces. DNA samples extracted from blood and buccal cells were bisulfite modified, the ICRs were amplified by PCR and pyrosequencing was used to derive a quantitative estimate of methylation at selected CpG dinucleotides: H19 ICR (six CpG sites; 50 controls and 73 cases); KvDMR1 (7, 55, and 86); IG-DMR (10, 56, and 84); and PEG3 DMR (7, 50, and 79). The most profound effects of alcohol exposure are on neuronal development. In this study we report on epigenetic effects observed in blood which may not directly reflect tissue-specific alterations in the developing brain. After adjusting for age and sex (known confounders for DNA methylation), there was a significant difference at KvDMR1 and PEG3 DMR, but not the H19 ICR, with only a small effect (0.84% lower in cases; p = 0.035) at IG-DMR. The two maternally imprinted loci, KvDMR1 and PEG3 DMR, showed lower average locus-wide methylation in the FAS cases (1.49%; p < 0.001 and 7.09%; p < 0.001, respectively). The largest effect was at the PEG3 DMR though the functional impact is uncertain. This study supports the role of epigenetic modulation as a mechanism for the teratogenic effects of alcohol by altering the methylation profiles of imprinted loci in a locus-specific manner.
Collapse
Affiliation(s)
- Matshane L Masemola
- Division of Human Genetics, National Health Laboratory Service, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, South Africa
| | - Lize van der Merwe
- Department of Statistics, Faculty of Natural Sciences, University of the Western Cape , Cape Town, South Africa ; Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town, South Africa
| | - Zané Lombard
- Division of Human Genetics, National Health Laboratory Service, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, South Africa ; Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand , Johannesburg, South Africa ; School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand , Johannesburg, South Africa
| | - Denis Viljoen
- Foundation for Alcohol Related Research , Cape Town, South Africa
| | - Michèle Ramsay
- Division of Human Genetics, National Health Laboratory Service, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, South Africa ; Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand , Johannesburg, South Africa
| |
Collapse
|
136
|
Nagre NN, Subbanna S, Shivakumar M, Psychoyos D, Basavarajappa BS. CB1-receptor knockout neonatal mice are protected against ethanol-induced impairments of DNMT1, DNMT3A, and DNA methylation. J Neurochem 2015; 132:429-442. [PMID: 25487288 DOI: 10.1111/jnc.13006] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 12/21/2022]
Abstract
The significant consequences of ethanol use during pregnancy are neurobehavioral abnormalities involving hippocampal and neocortex malfunctions that cause learning and memory deficits collectively named fetal alcohol spectrum disorder. However, the molecular mechanisms underlying these abnormalities are still poorly understood and therefore warrant systematic research. Here, we document novel epigenetic abnormalities in the mouse model of fetal alcohol spectrum disorder. Ethanol treatment of P7 mice, which induces activation of caspase 3, impaired DNA methylation through reduced DNA methyltransferases (DNMT1 and DNMT3A) levels. Inhibition of caspase 3 activity, before ethanol treatment, rescued DNMT1, DNMT3A proteins as well as DNA methylation levels. Blockade of histone methyltransferase (G9a) activity or cannabinoid receptor type-1 (CB1R), prior to ethanol treatment, which, respectively, inhibits or prevents activation of caspase 3, rescued the DNMT1 and DNMT3A proteins and DNA methylation. No reduction of DNMT1 and DNMT3A proteins and DNA methylation was found in P7 CB1R null mice, which exhibit no ethanol-induced activation of caspase 3. Together, these data demonstrate that ethanol-induced activation of caspase 3 impairs DNA methylation through DNMT1 and DNMT3A in the neonatal mouse brain, and such impairments are absent in CB1R null mice. Epigenetic events mediated by DNA methylation may be one of the essential mechanisms of ethanol teratogenesis. Schematic mechanism of action by which ethanol impairs DNA methylation. Studies have demonstrated that ethanol has the capacity to bring epigenetic changes to contribute to the development of fetal alcohol spectrum disorder (FASD). However, the mechanisms are not well studied. P7 ethanol induces the activation of caspase 3 and impairs DNA methylation through reduced DNA methyltransferases (DNMT1 and DNMT3A) proteins (→). The inhibition or genetic ablation of cannabinoid receptor type-1 or inhibition of histone methyltransferase (G9a) by Bix (-----) or inhibition of caspase 3 activation by Q- quinoline-Val-Asp(Ome)-CH2-O-phenoxy (Q-VD-OPh) () rescue loss of DNMT1, DNMT3A as well as DNA methylation. Hence, the putative DNMT1/DNMT3A/DNA methylation mechanism may have a potential regulatory role in FASD.
Collapse
Affiliation(s)
- Nagaraja N Nagre
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Shivakumar Subbanna
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Madhu Shivakumar
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Delphine Psychoyos
- Institute of Biosciences and Technology, Houston, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Balapal S Basavarajappa
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.,New York State Psychiatric Institute, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA.,Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
137
|
Jensen P. Adding ‘epi-’ to behaviour genetics: implications for animal domestication. J Exp Biol 2015; 218:32-40. [DOI: 10.1242/jeb.106799] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this review, it is argued that greatly improved understanding of domestication may be gained from extending the field of behaviour genetics to also include epigenetics. Domestication offers an interesting framework of rapid evolutionary changes caused by well-defined selection pressures. Behaviour is an important phenotype in this context, as it represents the primary means of response to environmental challenges. An overview is provided of the evidence for genetic involvement in behavioural control and the presently used methods for finding so-called behaviour genes. This shows that evolutionary changes in behaviour are to a large extent correlated to changes in patterns of gene expression, which brings epigenetics into the focus. This area is concerned with the mechanisms controlling the timing and extent of gene expression, and a lot of focus has been placed on methylation of cytosine in promoter regions, usually associated with genetic downregulation. The review considers the available evidence that environmental input, for example stress, can modify methylation and other epigenetic marks and subsequently affect behaviour. Furthermore, several studies are reviewed, demonstrating that acquired epigenetic modifications can be inherited and cause trans-generational behaviour changes. In conclusion, epigenetics may signify a new paradigm in this respect, as it shows that genomic modifications can be caused by environmental signals, and random mutations in DNA sequence are therefore not the only sources of heritable genetic variation.
Collapse
Affiliation(s)
- Per Jensen
- Linköping University, IFM Biology, AVIAN Behaviour Genomics and Physiology Group, 58183 Linköping, Sweden
| |
Collapse
|
138
|
Tachibana K, Takayanagi K, Akimoto A, Ueda K, Shinkai Y, Umezawa M, Takeda K. Prenatal diesel exhaust exposure disrupts the DNA methylation profile in the brain of mouse offspring. J Toxicol Sci 2015; 40:1-11. [DOI: 10.2131/jts.40.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
139
|
Subbanna S, Nagre NN, Umapathy NS, Pace BS, Basavarajappa BS. Ethanol exposure induces neonatal neurodegeneration by enhancing CB1R Exon1 histone H4K8 acetylation and up-regulating CB1R function causing neurobehavioral abnormalities in adult mice. Int J Neuropsychopharmacol 2014; 18:pyu028. [PMID: 25609594 PMCID: PMC4376538 DOI: 10.1093/ijnp/pyu028] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Ethanol exposure to rodents during postnatal day 7 (P7), which is comparable to the third trimester of human pregnancy, induces long-term potentiation and memory deficits. However, the molecular mechanisms underlying these deficits are still poorly understood. METHODS In the present study, we explored the potential role of epigenetic changes at cannabinoid type 1 (CB1R) exon1 and additional CB1R functions, which could promote memory deficits in animal models of fetal alcohol spectrum disorder. RESULTS We found that ethanol treatment of P7 mice enhances acetylation of H4 on lysine 8 (H4K8ace) at CB1R exon1, CB1R binding as well as the CB1R agonist-stimulated GTPγS binding in the hippocampus and neocortex, two brain regions that are vulnerable to ethanol at P7 and are important for memory formation and storage, respectively. We also found that ethanol inhibits cyclic adenosine monophosphate response element-binding protein (CREB) phosphorylation and activity-regulated cytoskeleton-associated protein (Arc) expression in neonatal and adult mice. The blockade or genetic deletion of CB1Rs prior to ethanol treatment at P7 rescued CREB phosphorylation and Arc expression. CB1R knockout mice exhibited neither ethanol-induced neurodegeneration nor inhibition of CREB phosphorylation or Arc expression. However, both neonatal and adult mice did exhibit enhanced CREB phosphorylation and Arc protein expression. P7 ethanol-treated adult mice exhibited impaired spatial and social recognition memory, which were prevented by the pharmacological blockade or deletion of CB1Rs at P7. CONCLUSIONS Together, these findings suggest that P7 ethanol treatment induces CB1R expression through epigenetic modification of the CB1R gene, and that the enhanced CB1R function induces pCREB, Arc, spatial, and social memory deficits in adult mice.
Collapse
MESH Headings
- AIDS-Related Complex/metabolism
- Acetylation/drug effects
- Age Factors
- Animals
- Animals, Newborn/metabolism
- Animals, Newborn/psychology
- CREB-Binding Protein/metabolism
- Central Nervous System Depressants/toxicity
- Epigenesis, Genetic/drug effects
- Ethanol/toxicity
- Exons/drug effects
- Female
- Gene Expression Regulation/drug effects
- Hippocampus/drug effects
- Hippocampus/metabolism
- Histones/genetics
- Male
- Memory Disorders/chemically induced
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neocortex/drug effects
- Neocortex/metabolism
- Neurodegenerative Diseases/chemically induced
- Neurodegenerative Diseases/metabolism
- Neurodegenerative Diseases/psychology
- Phosphorylation/drug effects
- Receptor, Cannabinoid, CB1/deficiency
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Social Behavior
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Shivakumar Subbanna
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY (Drs Subbanna, Nagre, and Basavarajappa); Vascular Biology Center, Georgia Regents University, Augusta, GA (Dr Umapathy); Department of Pediatrics, Georgia Regents University, Augusta, GA (Dr Pace); New York State Psychiatric Institute, New York, NY (Dr Basavarajappa); Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY (Dr Basavarajappa)
| | - Nagaraja N Nagre
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY (Drs Subbanna, Nagre, and Basavarajappa); Vascular Biology Center, Georgia Regents University, Augusta, GA (Dr Umapathy); Department of Pediatrics, Georgia Regents University, Augusta, GA (Dr Pace); New York State Psychiatric Institute, New York, NY (Dr Basavarajappa); Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY (Dr Basavarajappa)
| | - Nagavedi S Umapathy
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY (Drs Subbanna, Nagre, and Basavarajappa); Vascular Biology Center, Georgia Regents University, Augusta, GA (Dr Umapathy); Department of Pediatrics, Georgia Regents University, Augusta, GA (Dr Pace); New York State Psychiatric Institute, New York, NY (Dr Basavarajappa); Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY (Dr Basavarajappa)
| | - Betty S Pace
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY (Drs Subbanna, Nagre, and Basavarajappa); Vascular Biology Center, Georgia Regents University, Augusta, GA (Dr Umapathy); Department of Pediatrics, Georgia Regents University, Augusta, GA (Dr Pace); New York State Psychiatric Institute, New York, NY (Dr Basavarajappa); Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY (Dr Basavarajappa)
| | - Balapal S Basavarajappa
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY (Drs Subbanna, Nagre, and Basavarajappa); Vascular Biology Center, Georgia Regents University, Augusta, GA (Dr Umapathy); Department of Pediatrics, Georgia Regents University, Augusta, GA (Dr Pace); New York State Psychiatric Institute, New York, NY (Dr Basavarajappa); Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY (Dr Basavarajappa).
| |
Collapse
|
140
|
Saffery R. Epigenetic change as the major mediator of fetal programming in humans: Are we there yet? ANNALS OF NUTRITION AND METABOLISM 2014; 64:203-7. [PMID: 25300261 DOI: 10.1159/000365020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The developmental origins of health and disease (DOHaD) hypothesis predicts that environmental exposures experienced early in life have the potential to modify the risk associated with later-onset disease. The DOHaD hypothesis is supported by a large number of direct animal studies and a smaller number of compelling observational studies in humans, but the mechanism(s) underlying the 'programming' effects of DOHaD remain largely unclear. Given the inherent property of environmental sensitivity, the demonstrated role in gene regulation, and the capacity for stable maintenance over time once established, epigenetic variation has rapidly emerged as a candidate mediator of such effects. However, little direct evidence exists in humans, primarily due to the inherent problems associated with unraveling the relative contributions of genetic and environmental influences to phenotypic outcomes. Robust evidence is required in several domains to establish epigenetic variation in the causal pathway to DoHAD-associated disease. Firstly, interindividual epigenetic variability in response to specific early-life environmental exposures needs to be demonstrated. Further, compelling data linking specific epigenetic variants to specific disease(s) is needed. Epigenetic variation should be apparent in a tissue relevant to the disease of interest prior to phenotypic onset in order to avoid confounding and the potential for reverse causation. Finally, the functional relevance of specific epigenetic change must be demonstrated. Compelling evidence is mounting in each of these domains but remains somewhat fragmented, providing small pieces of the overall complex puzzle. It is likely that only large longitudinal life course studies commencing prior to birth, with extensive environmental exposure data and biospecimens, can provide direct evidence in support of a role of epigenetic processes as drivers of the DOHaD in humans.
Collapse
Affiliation(s)
- Richard Saffery
- Cancer and Disease Epigenetics, Murdoch Childrens Research Institute, and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Parkville, Vic., Australia
| |
Collapse
|
141
|
Muggli E, O'Leary C, Forster D, Anderson P, Lewis S, Nagle C, Craig JM, Donath S, Elliott E, Halliday J. Study protocol: Asking QUestions about Alcohol in pregnancy (AQUA): a longitudinal cohort study of fetal effects of low to moderate alcohol exposure. BMC Pregnancy Childbirth 2014; 14:302. [PMID: 25187010 PMCID: PMC4168250 DOI: 10.1186/1471-2393-14-302] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/01/2014] [Indexed: 02/08/2023] Open
Abstract
Background Despite extensive research, a direct correlation between low to moderate prenatal alcohol exposure (PAE) and Fetal Alcohol Spectrum Disorders has been elusive. Conflicting results are attributed to a lack of accurate and detailed data on PAE and incomplete information on contributing factors. The public health effectiveness of policies recommending complete abstinence from alcohol during pregnancy is challenged by the high frequency of unplanned pregnancies, where many women consumed some alcohol prior to pregnancy recognition. There is a need for research evidence emphasizing timing and dosage of PAE and its effects on child development. Methods/Design Asking QUestions about Alcohol (AQUA) is a longitudinal cohort aiming to clarify the complex effects of low to moderate PAE using specifically developed and tested questions incorporating dose, pattern and timing of exposure. From 2011, 2146 pregnant women completed a questionnaire at 8-18 weeks of pregnancy. Further prenatal data collection took place via a questionnaire at 26-28 weeks and 35 weeks gestation. Extensive information was obtained on a large number of risk factors to assist in understanding the heterogeneous nature of PAE effects. 1571 women (73%) completed all three pregnancy questionnaires. A biobank of DNA from maternal and infant buccal cells, placental biopsies and cord blood mononuclear cells will be used to examine epigenetic state at birth as well as genetic factors in the mother and child. Participants will be followed up at 12 and 24 months after birth to assess child health and measure infant behavioural and sensory difficulties, as well as family environment and parenting styles. A subgroup of the cohort will have 3D facial photography of their child at 12 months and a comprehensive developmental assessment (Bayley Scales of Infant & Toddler Development, Bayley-III) at two years of age. Discussion Using detailed, prospective methods of data collection, the AQUA study will comprehensively examine the effects of low to moderate alcohol consumption throughout pregnancy on child health and development, including the role of key mediators and confounders. These data will ultimately contribute to policy review and development, health professional education and information about alcohol consumption for pregnant women in the future.
Collapse
Affiliation(s)
- Evelyne Muggli
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, 3052, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Resendiz M, Mason S, Lo CL, Zhou FC. Epigenetic regulation of the neural transcriptome and alcohol interference during development. Front Genet 2014; 5:285. [PMID: 25206361 PMCID: PMC4144008 DOI: 10.3389/fgene.2014.00285] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/02/2014] [Indexed: 01/07/2023] Open
Abstract
Alcohol intoxicated cells broadly alter their metabolites – among them methyl and acetic acid can alter the DNA and histone epigenetic codes. Together with the promiscuous effect of alcohol on enzyme activities (including DNA methyltransferases) and the downstream effect on microRNA and transposable elements, alcohol is well placed to affect intrinsic transcriptional programs of developing cells. Considering that the developmental consequences of early alcohol exposure so profoundly affect neural systems, it is not unfounded to reason that alcohol exploits transcriptional regulators to challenge canonical gene expression and in effect, intrinsic developmental pathways to achieve widespread damage in the developing nervous system. To fully evaluate the role of epigenetic regulation in alcohol-related developmental disease, it is important to first gather the targets of epigenetic players in neurodevelopmental models. Here, we attempt to review the cellular and genomic windows of opportunity for alcohol to act on intrinsic neurodevelopmental programs. We also discuss some established targets of fetal alcohol exposure and propose pathways for future study. Overall, this review hopes to illustrate the known epigenetic program and its alterations in normal neural stem cell development and further, aims to depict how alcohol, through neuroepigenetics, may lead to neurodevelopmental deficits observed in fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Marisol Resendiz
- Stark Neuroscience Research Institute Indianapolis, IN, USA ; Indiana Alcohol Research Center, Indiana University School of Medicine Indianapolis, IN, USA
| | - Stephen Mason
- Department of Anatomy and Cell Biology, Indiana University School of Medicine Indianapolis, IN, USA
| | - Chiao-Ling Lo
- Indiana Alcohol Research Center, Indiana University School of Medicine Indianapolis, IN, USA ; Department of Anatomy and Cell Biology, Indiana University School of Medicine Indianapolis, IN, USA
| | - Feng C Zhou
- Stark Neuroscience Research Institute Indianapolis, IN, USA ; Indiana Alcohol Research Center, Indiana University School of Medicine Indianapolis, IN, USA ; Department of Anatomy and Cell Biology, Indiana University School of Medicine Indianapolis, IN, USA
| |
Collapse
|
143
|
Abstract
Rodents, particularly rats, are used in the majority of intrauterine growth restriction (IUGR) research. An important tool that is lacking in this field is the ability to impose IUGR on transgenic mice. We therefore developed a novel mouse model of chronic IUGR using U-46619, a thromboxane A2 (TXA2) analog, infusion. TXA2 overproduction is prevalent in human pregnancies complicated by cigarette smoking, diabetes mellitus and preeclampsia. In this model, U-46619 micro-osmotic pump infusion in the last week of C57BL/6J mouse gestation caused maternal hypertension. IUGR pups weighed 15% less, had lighter brain, lung, liver and kidney weights, but had similar nose-to-anus lengths compared with sham pups at birth. Metabolically, IUGR pups showed increased essential branched-chain amino acids. They were normoglycemic yet hypoinsulinemic. They showed decreased hepatic mRNA levels of total insulin-like growth factor-1 and its variants, but increased level of peroxisome proliferator-activated receptor-gamma coactivator-1 alpha. IUGR offspring were growth restricted from birth (P1) through postnatal day 21 (P21). IUGR males caught up with sham males in weight by P28, whereas IUGR females caught up with sham females by P77. IUGR males surpassed sham males in weight by P238. In summary, we have a non-brain sparing IUGR mouse model that has a relative ease of surgical IUGR induction and exhibits features similar to the chronic IUGR offspring of humans and other animal models. As transgenic technology predominates in mice, this model now permits the imposition of IUGR on transgenic mice to interrogate mechanisms of fetal origins of adult disease.
Collapse
|
144
|
Goddard ME, Whitelaw E. The use of epigenetic phenomena for the improvement of sheep and cattle. Front Genet 2014; 5:247. [PMID: 25191337 PMCID: PMC4139735 DOI: 10.3389/fgene.2014.00247] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/08/2014] [Indexed: 01/31/2023] Open
Abstract
This review considers the evidence for inheritance across generations of epigenetic marks and how this phenomenon could be exploited in the cattle and sheep industries. Epigenetic marks are chemical changes in the chromosomes that affect the expression of genes and hence the phenotype of the cell and are passed on during mitosis so that the daughter cells have the same chemical changes or epigenetic marks as the parent cell. Although most epigenetic marks are wiped clean in the process of forming a new zygote, some epigenetic marks (epimutations) may be passed on from parent to offspring. The inheritance of epigenetic marks across generations is difficult to prove as there are usually alternative explanations possible. There are few well documented cases, mainly using inbred strains of mice. The epimutations are unstable and revert to wild type after a few generations. Although, there are no known cases in sheep or cattle, it is likely that inherited epimutations occur in these species but it is unlikely that they explain a large part of the inherited or genetic variation. There is limited evidence in mice and rats that an environmental treatment can cause a change in the epigenetic marks of an animal and that this change can be passed on the next generation. If inherited epimutations occur in sheep and cattle, they will already be utilized to some extent by existing genetic improvement programs. It would be possible to modify the statistical models used in the calculation of estimated breeding values to better recognize the variance controlled by epimutations, but it would probably have, at best, a small effect on the rate on genetic (inherited) gain achieved. Although not a genetic improvement, the inheritance of epigenetic marks caused by the environment experienced by the sire offers a new opportunity in sheep and cattle breeding. However, at present we do not know if this occurs or, if it does, what environmental treatment might have a beneficial effect.
Collapse
Affiliation(s)
- Michael E Goddard
- Department of Food and Agricultural Systems, University of Melbourne Parkville, VIC, Australia ; Department of Environment and Primary Industries Melbourne, VIC, Australia
| | - Emma Whitelaw
- Institute of Molecular Sciences, Latrobe University Melbourne, VIC, Australia
| |
Collapse
|
145
|
Tunc-Ozcan E, Sittig LJ, Harper KM, Graf EN, Redei EE. Hypothesis: genetic and epigenetic risk factors interact to modulate vulnerability and resilience to FASD. Front Genet 2014; 5:261. [PMID: 25140173 PMCID: PMC4122175 DOI: 10.3389/fgene.2014.00261] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/15/2014] [Indexed: 12/26/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD) presents a collection of symptoms representing physiological and behavioral phenotypes caused by maternal alcohol consumption. Symptom severity is modified by genetic differences in fetal susceptibility and resistance as well as maternal genetic factors such as maternal alcohol sensitivity. Animal models demonstrate that both maternal and paternal genetics contribute to the variation in the fetus' vulnerability to alcohol exposure. Maternal and paternal genetics define the variations in these phenotypes even without the effect of alcohol in utero, as most of these traits are polygenic, non-Mendelian, in their inheritance. In addition, the epigenetic alterations that instigate the alcohol induced neurodevelopmental deficits can interact with the polygenic inheritance of respective traits. Here, based on specific examples, we present the hypothesis that the principles of non-Mendelian inheritance, or "exceptions" to Mendelian genetics, can be the driving force behind the severity of the prenatal alcohol-exposed individual's symptomology. One such exception is when maternal alleles lead to an altered intrauterine hormonal environment and, therefore, produce variations in the long-term consequences on the development of the alcohol-exposed fetus. Another exception is when epigenetic regulation of allele-specific gene expression generates disequilibrium between the maternal vs. paternal genetic contributions, and thereby, modifies the effect of prenatal alcohol exposure on the fetus. We propose that these situations in which one parent has an exaggerated influence over the offspring's vulnerability to prenatal alcohol are major contributing mechanisms responsible for the variations in the symptomology of FASD in the exposed generation and beyond.
Collapse
Affiliation(s)
- Elif Tunc-Ozcan
- Department of Psychiatry and Behavioral Sciences, Northwestern University Chicago, IL, USA
| | - Laura J Sittig
- Department of Psychiatry and Behavioral Sciences, Northwestern University Chicago, IL, USA
| | - Kathryn M Harper
- Department of Psychiatry and Behavioral Sciences, Northwestern University Chicago, IL, USA
| | - Evan N Graf
- Department of Psychiatry and Behavioral Sciences, Northwestern University Chicago, IL, USA
| | - Eva E Redei
- Department of Psychiatry and Behavioral Sciences, Northwestern University Chicago, IL, USA
| |
Collapse
|
146
|
Subbanna S, Basavarajappa BS. Pre-administration of G9a/GLP inhibitor during synaptogenesis prevents postnatal ethanol-induced LTP deficits and neurobehavioral abnormalities in adult mice. Exp Neurol 2014; 261:34-43. [PMID: 25017367 DOI: 10.1016/j.expneurol.2014.07.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/10/2014] [Accepted: 07/02/2014] [Indexed: 01/01/2023]
Abstract
It has been widely accepted that deficits in neuronal plasticity underlie the cognitive abnormalities observed in fetal alcohol spectrum disorder (FASD). Exposure of rodents to acute ethanol on postnatal day 7 (P7), which is equivalent to the third trimester of fetal development in human, induces long-term potentiation (LTP) and memory deficits in adult animals. However, the molecular mechanisms underlying these deficits are not well understood. Recently, we found that histone H3 dimethylation (H3K9me2), which is mediated by G9a (lysine dimethyltransferase), is responsible for the neurodegeneration caused by ethanol exposure in P7 mice. In addition, pharmacological inhibition of G9a prior to ethanol treatment at P7 normalized H3K9me2 proteins to basal levels and prevented neurodegeneration in neonatal mice. Here, we tested the hypothesis that pre-administration of G9a/GLP inhibitor (Bix-01294, Bix) in conditions in which ethanol induces neurodegeneration would be neuroprotective against P7 ethanol-induced deficits in LTP, memory and social recognition behavior in adult mice. Ethanol treatment at P7 induces deficits in LTP, memory and social recognition in adult mice and these deficits were prevented by Bix pretreatment at P7. Together, these findings provide physiological and behavioral evidence that the long-term harmful consequences on brain function after ethanol exposure with a third trimester equivalent have an epigenetic origin.
Collapse
Affiliation(s)
- Shivakumar Subbanna
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Balapal S Basavarajappa
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
147
|
Cullen CL, Burne THJ, Lavidis NA, Moritz KM. Low dose prenatal alcohol exposure does not impair spatial learning and memory in two tests in adult and aged rats. PLoS One 2014; 9:e101482. [PMID: 24978807 PMCID: PMC4076304 DOI: 10.1371/journal.pone.0101482] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 06/06/2014] [Indexed: 11/18/2022] Open
Abstract
Consumption of alcohol during pregnancy can have detrimental impacts on the developing hippocampus, which can lead to deficits in learning and memory function. Although high levels of alcohol exposure can lead to severe deficits, there is a lack of research examining the effects of low levels of exposure. This study used a rat model to determine if prenatal exposure to chronic low dose ethanol would result in deficits in learning and memory performance and if this was associated with morphological changes within the hippocampus. Sprague Dawley rats were fed a liquid diet containing 6% (vol/vol) ethanol (EtOH) or an isocaloric control diet throughout gestation. Male and Female offspring underwent behavioural testing at 8 (Adult) or 15 months (Aged) of age. Brains from these animals were collected for stereological analysis of pyramidal neuron number and dendritic morphology within the CA1 and CA3 regions of the dorsal hippocampus. Prenatal ethanol exposed animals did not differ in spatial learning or memory performance in the Morris water maze or Y maze tasks compared to Control offspring. There was no effect of prenatal ethanol exposure on pyramidal cell number or density within the dorsal hippocampus. Overall, this study indicates that chronic low dose prenatal ethanol exposure in this model does not have long term detrimental effects on pyramidal cells within the dorsal hippocampus or impair spatial learning and memory performance.
Collapse
Affiliation(s)
- Carlie L. Cullen
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| | - Thomas H. J. Burne
- Queensland Brain Institute, The University of Queensland, St. Lucia, Australia
| | - Nickolas A. Lavidis
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| | - Karen M. Moritz
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
148
|
Saffery R, Novakovic B. Epigenetics as the mediator of fetal programming of adult onset disease: what is the evidence? Acta Obstet Gynecol Scand 2014; 93:1090-8. [DOI: 10.1111/aogs.12431] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 05/12/2014] [Indexed: 01/04/2023]
Affiliation(s)
- Richard Saffery
- Cancer and Disease Epigenetics; Murdoch Childrens Research Institute; Royal Children's Hospital; Parkville Victoria Australia
- Department of Paediatrics; University of Melbourne; Parkville Victoria Australia
| | - Boris Novakovic
- Cancer and Disease Epigenetics; Murdoch Childrens Research Institute; Royal Children's Hospital; Parkville Victoria Australia
| |
Collapse
|
149
|
Finegersh A, Homanics GE. Paternal alcohol exposure reduces alcohol drinking and increases behavioral sensitivity to alcohol selectively in male offspring. PLoS One 2014; 9:e99078. [PMID: 24896617 PMCID: PMC4045990 DOI: 10.1371/journal.pone.0099078] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 05/09/2014] [Indexed: 11/18/2022] Open
Abstract
Alcohol use disorder (AUD) is heritable, but the genetic basis for this disease remains poorly understood. Although numerous gene variants have been associated with AUD, these variants account for only a small fraction of the total risk. The idea of inheritance of acquired characteristics, i.e. “epigenetic inheritance,” is re-emerging as a proven adjunct to traditional modes of genetic inheritance. We hypothesized that alcohol drinking and neurobiological sensitivity to alcohol are influenced by ancestral alcohol exposure. To test this hypothesis, we exposed male mice to chronic vapor ethanol or control conditions, mated them to ethanol-naïve females, and tested adult offspring for ethanol drinking, ethanol-induced behaviors, gene expression, and DNA methylation. We found that ethanol-sired male offspring had reduced ethanol preference and consumption, enhanced sensitivity to the anxiolytic and motor-enhancing effects of ethanol, and increased Bdnf expression in the ventral tegmental area (VTA) compared to control-sired male offspring. There were no differences among ethanol- and control-sired female offspring on these assays. Ethanol exposure also decreased DNA methylation at the BdnfÆpromoter of sire's germ cells and hypomethylation was maintained in the VTA of both male and female ethanol-sired offspring. Our findings show that paternal alcohol exposure is a previously unrecognized regulator of alcohol drinking and behavioral sensitivity to alcohol in male, but not female, offspring. Paternal alcohol exposure also induces epigenetic alterations (DNA hypomethylation) and gene expression changes that persist in the VTA of offspring. These results provide new insight into the inheritance and development of alcohol drinking behaviors.
Collapse
Affiliation(s)
- Andrey Finegersh
- Departments of Anesthesiology and Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Gregg E. Homanics
- Departments of Anesthesiology and Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
150
|
Kleiber ML, Diehl EJ, Laufer BI, Mantha K, Chokroborty-Hoque A, Alberry B, Singh SM. Long-term genomic and epigenomic dysregulation as a consequence of prenatal alcohol exposure: a model for fetal alcohol spectrum disorders. Front Genet 2014; 5:161. [PMID: 24917881 PMCID: PMC4040446 DOI: 10.3389/fgene.2014.00161] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/15/2014] [Indexed: 01/02/2023] Open
Abstract
There is abundant evidence that prenatal alcohol exposure leads to a range of behavioral and cognitive impairments, categorized under the term fetal alcohol spectrum disorders (FASDs). These disorders are pervasive in Western cultures and represent the most common preventable source of neurodevelopmental disabilities. The genetic and epigenetic etiology of these phenotypes, including those factors that may maintain these phenotypes throughout the lifetime of an affected individual, has become a recent topic of investigation. This review integrates recent data that has progressed our understanding FASD as a continuum of molecular events, beginning with cellular stress response and ending with a long-term “footprint” of epigenetic dysregulation across the genome. It reports on data from multiple ethanol-treatment paradigms in mouse models that identify changes in gene expression that occur with respect to neurodevelopmental timing of exposure and ethanol dose. These studies have identified patterns of genomic alteration that are dependent on the biological processes occurring at the time of ethanol exposure. This review also adds to evidence that epigenetic processes such as DNA methylation, histone modifications, and non-coding RNA regulation may underlie long-term changes to gene expression patterns. These may be initiated by ethanol-induced alterations to DNA and histone methylation, particularly in imprinted regions of the genome, affecting transcription which is further fine-tuned by altered microRNA expression. These processes are likely complex, genome-wide, and interrelated. The proposed model suggests a potential for intervention, given that epigenetic changes are malleable and may be altered by postnatal environment. This review accentuates the value of mouse models in deciphering the molecular etiology of FASD, including those processes that may provide a target for the ammelioration of this common yet entirely preventable disorder.
Collapse
Affiliation(s)
- Morgan L Kleiber
- Molecular Genetics Unit, Department of Biology, University of Western Ontario , London, ON, Canada
| | - Eric J Diehl
- Molecular Genetics Unit, Department of Biology, University of Western Ontario , London, ON, Canada
| | - Benjamin I Laufer
- Molecular Genetics Unit, Department of Biology, University of Western Ontario , London, ON, Canada
| | - Katarzyna Mantha
- Molecular Genetics Unit, Department of Biology, University of Western Ontario , London, ON, Canada
| | | | - Bonnie Alberry
- Molecular Genetics Unit, Department of Biology, University of Western Ontario , London, ON, Canada
| | - Shiva M Singh
- Molecular Genetics Unit, Department of Biology, University of Western Ontario , London, ON, Canada
| |
Collapse
|