101
|
Snetselaar K, McCann M. Ustilago maydis, the corn smut fungus, has an unusual diploid mitotic stage. Mycologia 2017; 109:140-152. [DOI: 10.1080/00275514.2016.1274597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Karen Snetselaar
- Department of Biology, Saint Joseph’s University, 5600 City Avenue, Philadelphia, Pennsylvania 19131
| | - Michael McCann
- Department of Biology, Saint Joseph’s University, 5600 City Avenue, Philadelphia, Pennsylvania 19131
| |
Collapse
|
102
|
Chatterton Z, Hartley BJ, Seok MH, Mendelev N, Chen S, Milekic M, Rosoklija G, Stankov A, Trencevsja-Ivanovska I, Brennand K, Ge Y, Dwork AJ, Haghighi F. In utero exposure to maternal smoking is associated with DNA methylation alterations and reduced neuronal content in the developing fetal brain. Epigenetics Chromatin 2017; 10:4. [PMID: 28149327 PMCID: PMC5270321 DOI: 10.1186/s13072-017-0111-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/09/2017] [Indexed: 12/31/2022] Open
Abstract
Background Intrauterine exposure to maternal smoking is linked to impaired executive function and behavioral problems in the offspring. Maternal smoking is associated with reduced fetal brain growth and smaller volume of cortical gray matter in childhood, indicating that prenatal exposure to tobacco may impact cortical development and manifest as behavioral problems. Cellular development is mediated by changes in epigenetic modifications such as DNA methylation, which can be affected by exposure to tobacco. Results In this study, we sought to ascertain how maternal smoking during pregnancy affects global DNA methylation profiles of the developing dorsolateral prefrontal cortex (DLPFC) during the second trimester of gestation. When DLPFC methylation profiles (assayed via Illumina, HM450) of smoking-exposed and unexposed fetuses were compared, no differentially methylated regions (DMRs) passed the false discovery correction (FDR ≤ 0.05). However, the most significant DMRs were hypomethylated CpG Islands within the promoter regions of GNA15 and SDHAP3 of smoking-exposed fetuses. Interestingly, the developmental up-regulation of SDHAP3 mRNA was delayed in smoking-exposed fetuses. Interaction analysis between gestational age and smoking exposure identified significant DMRs annotated to SYCE3, C21orf56/LSS, SPAG1 and RNU12/POLDIP3 that passed FDR. Furthermore, utilizing established methods to estimate cell proportions by DNA methylation, we found that exposed DLPFC samples contained a lower proportion of neurons in samples from fetuses exposed to maternal smoking. We also show through in vitro experiments that nicotine impedes the differentiation of neurons independent of cell death. Conclusions We found evidence that intrauterine smoking exposure alters the developmental patterning of DNA methylation and gene expression and is associated with reduced mature neuronal content, effects that are likely driven by nicotine. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0111-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zac Chatterton
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Floor 10, Room 10-70D, New York, NY 10029 USA.,Medical Epigenetics, James J. Peters VA Medical Center, Bronx, NY 10468 USA
| | - Brigham J Hartley
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Floor 10, Room 10-70D, New York, NY 10029 USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA
| | - Man-Ho Seok
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Floor 10, Room 10-70D, New York, NY 10029 USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA
| | - Natalia Mendelev
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Floor 10, Room 10-70D, New York, NY 10029 USA.,Medical Epigenetics, James J. Peters VA Medical Center, Bronx, NY 10468 USA
| | - Sean Chen
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Floor 10, Room 10-70D, New York, NY 10029 USA.,Medical Epigenetics, James J. Peters VA Medical Center, Bronx, NY 10468 USA
| | - Maria Milekic
- Department of Psychiatry, Columbia University, New York, NY 10032 USA
| | - Gorazd Rosoklija
- Department of Psychiatry, Columbia University, New York, NY 10032 USA.,Macedonian Academy of Sciences and Arts, Skopje, Macedonia.,School of Medicine, Skopje, Macedonia
| | | | | | - Kristen Brennand
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Floor 10, Room 10-70D, New York, NY 10029 USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA
| | - Andrew J Dwork
- Department of Psychiatry, Columbia University, New York, NY 10032 USA.,Department of Pathology and Cell Biology, Columbia University, New York, NY 10032 USA.,Macedonian Academy of Sciences and Arts, Skopje, Macedonia
| | - Fatemeh Haghighi
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Floor 10, Room 10-70D, New York, NY 10029 USA.,Medical Epigenetics, James J. Peters VA Medical Center, Bronx, NY 10468 USA
| |
Collapse
|
103
|
Modular transcriptional repertoire and MicroRNA target analyses characterize genomic dysregulation in the thymus of Down syndrome infants. Oncotarget 2016; 7:7497-533. [PMID: 26848775 PMCID: PMC4884935 DOI: 10.18632/oncotarget.7120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/23/2016] [Indexed: 12/25/2022] Open
Abstract
Trisomy 21-driven transcriptional alterations in human thymus were characterized through gene coexpression network (GCN) and miRNA-target analyses. We used whole thymic tissue--obtained at heart surgery from Down syndrome (DS) and karyotipically normal subjects (CT)--and a network-based approach for GCN analysis that allows the identification of modular transcriptional repertoires (communities) and the interactions between all the system's constituents through community detection. Changes in the degree of connections observed for hierarchically important hubs/genes in CT and DS networks corresponded to community changes. Distinct communities of highly interconnected genes were topologically identified in these networks. The role of miRNAs in modulating the expression of highly connected genes in CT and DS was revealed through miRNA-target analysis. Trisomy 21 gene dysregulation in thymus may be depicted as the breakdown and altered reorganization of transcriptional modules. Leading networks acting in normal or disease states were identified. CT networks would depict the "canonical" way of thymus functioning. Conversely, DS networks represent a "non-canonical" way, i.e., thymic tissue adaptation under trisomy 21 genomic dysregulation. This adaptation is probably driven by epigenetic mechanisms acting at chromatin level and through the miRNA control of transcriptional programs involving the networks' high-hierarchy genes.
Collapse
|
104
|
Abstract
Meiosis, the mechanism of creating haploid gametes, is a complex cellular process observed across sexually reproducing organisms. Fundamental to meiosis is the process of homologous recombination, whereby DNA double-strand breaks are introduced into the genome and are subsequently repaired to generate either noncrossovers or crossovers. Although homologous recombination is essential for chromosome pairing during prophase I, the resulting crossovers are critical for maintaining homolog interactions and enabling accurate segregation at the first meiotic division. Thus, the placement, timing, and frequency of crossover formation must be exquisitely controlled. In this review, we discuss the proteins involved in crossover formation, the process of their formation and designation, and the rules governing crossovers, all within the context of the important landmarks of prophase I. We draw together crossover designation data across organisms, analyze their evolutionary divergence, and propose a universal model for crossover regulation.
Collapse
Affiliation(s)
- Stephen Gray
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, New York 14853; ,
| | - Paula E Cohen
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, New York 14853; ,
| |
Collapse
|
105
|
Gómez-H L, Felipe-Medina N, Sánchez-Martín M, Davies OR, Ramos I, García-Tuñón I, de Rooij DG, Dereli I, Tóth A, Barbero JL, Benavente R, Llano E, Pendas AM. C14ORF39/SIX6OS1 is a constituent of the synaptonemal complex and is essential for mouse fertility. Nat Commun 2016; 7:13298. [PMID: 27796301 PMCID: PMC5095591 DOI: 10.1038/ncomms13298] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/19/2016] [Indexed: 11/16/2022] Open
Abstract
Meiotic recombination generates crossovers between homologous chromosomes that are essential for genome haploidization. The synaptonemal complex is a ‘zipper'-like protein assembly that synapses homologue pairs together and provides the structural framework for processing recombination sites into crossovers. Humans show individual differences in the number of crossovers generated across the genome. Recently, an anonymous gene variant in C14ORF39/SIX6OS1 was identified that influences the recombination rate in humans. Here we show that C14ORF39/SIX6OS1 encodes a component of the central element of the synaptonemal complex. Yeast two-hybrid analysis reveals that SIX6OS1 interacts with the well-established protein synaptonemal complex central element 1 (SYCE1). Mice lacking SIX6OS1 are defective in chromosome synapsis at meiotic prophase I, which provokes an arrest at the pachytene-like stage and results in infertility. In accordance with its role as a modifier of the human recombination rate, SIX6OS1 is essential for the appropriate processing of intermediate recombination nodules before crossover formation. The synaptonemal complex is a meiosis-specific proteinaceous structure that supports homologous chromosome pairs during meiosis. Here, the authors show that SIX6OS1 (of previously unknown function) is part of the synaptonemal complex central element and upon deletion in mice, causes defective chromosome synapsis and infertility.
Collapse
Affiliation(s)
- Laura Gómez-H
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), 37007 Salamanca, Spain
| | - Natalia Felipe-Medina
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), 37007 Salamanca, Spain
| | - Manuel Sánchez-Martín
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain.,Transgenic Facility, Nucleus platform, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Owen R Davies
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Isabel Ramos
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), 37007 Salamanca, Spain
| | - Ignacio García-Tuñón
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), 37007 Salamanca, Spain
| | - Dirk G de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3584CM Utrecht, The Netherlands
| | - Ihsan Dereli
- Institute of Physiological Chemistry, Medical Faculty of TU Dresden, Fiedlerstrasse 42, 01307 Dresden, Germany
| | - Attila Tóth
- Institute of Physiological Chemistry, Medical Faculty of TU Dresden, Fiedlerstrasse 42, 01307 Dresden, Germany
| | - José Luis Barbero
- Departamento de Biología Celular y Molecular, Centro de Investigaciones Biológicas (CSIC), Madrid 28040, Spain
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, D-97074 Würzburg, Germany
| | - Elena Llano
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), 37007 Salamanca, Spain.,Departamento de Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Alberto M Pendas
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), 37007 Salamanca, Spain
| |
Collapse
|
106
|
Finsterbusch F, Ravindranathan R, Dereli I, Stanzione M, Tränkner D, Tóth A. Alignment of Homologous Chromosomes and Effective Repair of Programmed DNA Double-Strand Breaks during Mouse Meiosis Require the Minichromosome Maintenance Domain Containing 2 (MCMDC2) Protein. PLoS Genet 2016; 12:e1006393. [PMID: 27760146 PMCID: PMC5070785 DOI: 10.1371/journal.pgen.1006393] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/28/2016] [Indexed: 02/06/2023] Open
Abstract
Orderly chromosome segregation during the first meiotic division requires meiotic recombination to form crossovers between homologous chromosomes (homologues). Members of the minichromosome maintenance (MCM) helicase family have been implicated in meiotic recombination. In addition, they have roles in initiation of DNA replication, DNA mismatch repair and mitotic DNA double-strand break repair. Here, we addressed the function of MCMDC2, an atypical yet conserved MCM protein, whose function in vertebrates has not been reported. While we did not find an important role for MCMDC2 in mitotically dividing cells, our work revealed that MCMDC2 is essential for fertility in both sexes due to a crucial function in meiotic recombination. Meiotic recombination begins with the introduction of DNA double-strand breaks into the genome. DNA ends at break sites are resected. The resultant 3-prime single-stranded DNA overhangs recruit RAD51 and DMC1 recombinases that promote the invasion of homologous duplex DNAs by the resected DNA ends. Multiple strand invasions on each chromosome promote the alignment of homologous chromosomes, which is a prerequisite for inter-homologue crossover formation during meiosis. We found that although DNA ends at break sites were evidently resected, and they recruited RAD51 and DMC1 recombinases, these recombinases were ineffective in promoting alignment of homologous chromosomes in the absence of MCMDC2. Consequently, RAD51 and DMC1 foci, which are thought to mark early recombination intermediates, were abnormally persistent in Mcmdc2-/- meiocytes. Importantly, the strand invasion stabilizing MSH4 protein, which marks more advanced recombination intermediates, did not efficiently form foci in Mcmdc2-/- meiocytes. Thus, our work suggests that MCMDC2 plays an important role in either the formation, or the stabilization, of DNA strand invasion events that promote homologue alignment and provide the basis for inter-homologue crossover formation during meiotic recombination.
Collapse
Affiliation(s)
| | - Ramya Ravindranathan
- Institute of Physiological Chemistry, Medical Faculty of TU Dresden, Dresden, Germany
| | - Ihsan Dereli
- Institute of Physiological Chemistry, Medical Faculty of TU Dresden, Dresden, Germany
| | - Marcello Stanzione
- Institute of Physiological Chemistry, Medical Faculty of TU Dresden, Dresden, Germany
| | - Daniel Tränkner
- Institute of Physiological Chemistry, Medical Faculty of TU Dresden, Dresden, Germany
| | - Attila Tóth
- Institute of Physiological Chemistry, Medical Faculty of TU Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
107
|
Li B, Luo H, Weng Q, Wang S, Pan Z, Xie Z, Wu W, Liu H, Li Q. Differential DNA methylation of the meiosis-specific geneFKBP6in testes of yak and cattle-yak hybrids. Reprod Domest Anim 2016; 51:1030-1038. [DOI: 10.1111/rda.12794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/17/2016] [Indexed: 12/15/2022]
Affiliation(s)
- B Li
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - H Luo
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Q Weng
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - S Wang
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Z Pan
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Z Xie
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - W Wu
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - H Liu
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Q Li
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| |
Collapse
|
108
|
Yan Z, Fan D, Meng Q, Yang J, Zhao W, Guo F, Song D, Guo R, Sun K, Wang J. Transcription factor ZFP38 is essential for meiosis prophase I in male mice. Reproduction 2016; 152:431-7. [PMID: 27492080 DOI: 10.1530/rep-16-0225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/04/2016] [Indexed: 11/08/2022]
Abstract
The production of haploid gametes by meiosis is a cornerstone of sexual reproduction and maintenance of genome integrity. Zfp38 mRNA is expressed in spermatocytes, indicating that transcription factor ZFP38 has the potential to regulate transcription during meiosis. In this study, we generated Zfp38 conditional knockout mice (Zfp38(flox/flox), Stra8-Cre, hereafter called Zfp38 cKO) and found that spermatogenesis did not progress beyond meiosis prophase I in Zfp38 cKO mice. Using a chromosomal spread technique, we observed that Zfp38 cKO spermatocytes exhibited a failure in chromosomal synapsis observed by SYCP1/SYCP3 double staining. Progression of DNA double-strand breaks (DSB) repair is disrupted in Zfp38 cKO spermatocytes, as revealed by γ-H2AX, RAD51 and MLH1 staining. Furthermore, the mRNA and protein levels of DSB repair enzymes and factors that guide their loading onto sites of DSBs, such as RAD51, DMC1, RAD51, TEX15 and PALB2, were significantly reduced in Zfp38 cKO spermatocytes. Taken together, our data suggest that ZFP38 is critical for the chromosomal synapsis and DSB repairs partially via its regulation of DSB repair-associated protein expression during meiotic progression in mouse.
Collapse
Affiliation(s)
- Zechen Yan
- Department of SurgeryThe First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dandan Fan
- Henan Academy of Medical and Pharmaceutical ScienceZhengzhou, Henan, China
| | - Qingjun Meng
- Department of SurgeryThe First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jinjian Yang
- Department of SurgeryThe First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Zhao
- Department of SurgeryThe First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fei Guo
- Department of SurgeryThe First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongjian Song
- Department of SurgeryThe First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruiming Guo
- Department of SurgeryThe First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ke Sun
- Department of SurgeryThe First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiaxiang Wang
- Department of SurgeryThe First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
109
|
Agostinho A, Manneberg O, van Schendel R, Hernández-Hernández A, Kouznetsova A, Blom H, Brismar H, Höög C. High density of REC8 constrains sister chromatid axes and prevents illegitimate synaptonemal complex formation. EMBO Rep 2016; 17:901-13. [PMID: 27170622 PMCID: PMC5278604 DOI: 10.15252/embr.201642030] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/29/2016] [Accepted: 04/07/2016] [Indexed: 11/09/2022] Open
Abstract
During meiosis, cohesin complexes mediate sister chromatid cohesion (SCC), synaptonemal complex (SC) assembly and synapsis. Here, using super-resolution microscopy, we imaged sister chromatid axes in mouse meiocytes that have normal or reduced levels of cohesin complexes, assessing the relationship between localization of cohesin complexes, SCC and SC formation. We show that REC8 foci are separated from each other by a distance smaller than 15% of the total chromosome axis length in wild-type meiocytes. Reduced levels of cohesin complexes result in a local separation of sister chromatid axial elements (LSAEs), as well as illegitimate SC formation at these sites. REC8 but not RAD21 or RAD21L cohesin complexes flank sites of LSAEs, whereas RAD21 and RAD21L appear predominantly along the separated sister-chromatid axes. Based on these observations and a quantitative distribution analysis of REC8 along sister chromatid axes, we propose that the high density of randomly distributed REC8 cohesin complexes promotes SCC and prevents illegitimate SC formation.
Collapse
Affiliation(s)
- Ana Agostinho
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Otto Manneberg
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, Sweden
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Anna Kouznetsova
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hans Blom
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, Sweden
| | - Hjalmar Brismar
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, Sweden
| | - Christer Höög
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
110
|
Ortiz R, Kouznetsova A, Echeverría-Martínez OM, Vázquez-Nin GH, Hernández-Hernández A. The width of the lateral element of the synaptonemal complex is determined by a multilayered organization of its components. Exp Cell Res 2016; 344:22-29. [PMID: 27090018 DOI: 10.1016/j.yexcr.2016.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/22/2016] [Accepted: 03/27/2016] [Indexed: 01/22/2023]
Abstract
The synaptonemal complex (SC) is a proteinaceous structure that holds the homologous chromosomes in close proximity while they exchange genetic material in a process known as meiotic recombination. This meiotic recombination leads to genetic variability in sexually reproducing organisms. The ultrastructure of the SC is studied by electron microscopy and it is observed as a tripartite structure. Two lateral elements (LE) separated by a central region (CR) confer its classical tripartite organization. The LEs are the anchoring platform for the replicated homologous chromosomes to properly exchange genetic material with one another. An accurate assembly of the LE is indispensable for the proper completion of meiosis. Ultrastructural studies suggested that the LE is organized as a multilayered unit. However, no validation of this model has been previously provided. In this ultrastructural study, by using mice with different genetic backgrounds that affect the LE width, we provide further evidence that support a multilayered organization of the LE. Additionally, we provide data suggesting additional roles of the different cohesin complex components in the structure of the LEs of the SC.
Collapse
Affiliation(s)
- Rosario Ortiz
- Laboratorio de Microscopía Electrónica, Facultad de Ciencias, Universidad Nacional Autónoma de México, México DF 04510, México.
| | - Anna Kouznetsova
- Department of Cell and Molecular Biology, Karolinska Institutet, Berzelius väg 35, 171 77 Stockholm, Sweden.
| | - Olga M Echeverría-Martínez
- Laboratorio de Microscopía Electrónica, Facultad de Ciencias, Universidad Nacional Autónoma de México, México DF 04510, México.
| | - Gerardo H Vázquez-Nin
- Laboratorio de Microscopía Electrónica, Facultad de Ciencias, Universidad Nacional Autónoma de México, México DF 04510, México.
| | - Abrahan Hernández-Hernández
- Department of Cell and Molecular Biology, Karolinska Institutet, Berzelius väg 35, 171 77 Stockholm, Sweden.
| |
Collapse
|
111
|
Gómez R, Felipe-Medina N, Ruiz-Torres M, Berenguer I, Viera A, Pérez S, Barbero JL, Llano E, Fukuda T, Alsheimer M, Pendás AM, Losada A, Suja JA. Sororin loads to the synaptonemal complex central region independently of meiotic cohesin complexes. EMBO Rep 2016; 17:695-707. [PMID: 26951638 PMCID: PMC5341523 DOI: 10.15252/embr.201541060] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 11/09/2022] Open
Abstract
The distribution and regulation of the cohesin complexes have been extensively studied during mitosis. However, the dynamics of their different regulators in vertebrate meiosis is largely unknown. In this work, we have analyzed the distribution of the regulatory factor Sororin during male mouse meiosis. Sororin is detected at the central region of the synaptonemal complex during prophase I, in contrast with the previously reported localization of other cohesin components in the lateral elements. This localization of Sororin depends on the transverse filaments protein SYCP1, but not on meiosis-specific cohesin subunits REC8 and SMC1β. By late prophase I, Sororin accumulates at centromeres and remains there up to anaphase II The phosphatase activity of PP2A seems to be required for this accumulation. We hypothesize that Sororin function at the central region of the synaptonemal complex could be independent on meiotic cohesin complexes. In addition, we suggest that Sororin participates in the regulation of centromeric cohesion during meiosis in collaboration with SGO2-PP2A.
Collapse
Affiliation(s)
- Rocío Gómez
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Natalia Felipe-Medina
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) Campus Miguel de Unamuno, Salamanca, Spain
| | - Miguel Ruiz-Torres
- Chromosome Dynamics Group, Centro Nacional de Investigaciones Oncológicas CNIO, Madrid, Spain
| | - Inés Berenguer
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Viera
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sara Pérez
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - José Luis Barbero
- Departamento de Biología Celular y Molecular, Centro de Investigaciones Biológicas CSIC, Madrid, Spain
| | - Elena Llano
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) Campus Miguel de Unamuno, Salamanca, Spain
| | - Tomoyuki Fukuda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Manfred Alsheimer
- Department of Cell and Developmental Biology, Biocenter University of Würzburg, Würzburg, Germany
| | - Alberto M Pendás
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) Campus Miguel de Unamuno, Salamanca, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Centro Nacional de Investigaciones Oncológicas CNIO, Madrid, Spain
| | - José A Suja
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
112
|
Hernández-Hernández A, Masich S, Fukuda T, Kouznetsova A, Sandin S, Daneholt B, Höög C. The central element of the synaptonemal complex in mice is organized as a bilayered junction structure. J Cell Sci 2016; 129:2239-49. [PMID: 27103161 DOI: 10.1242/jcs.182477] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 04/14/2016] [Indexed: 01/25/2023] Open
Abstract
The synaptonemal complex transiently stabilizes pairing interactions between homologous chromosomes during meiosis. Assembly of the synaptonemal complex is mediated through integration of opposing transverse filaments into a central element, a process that is poorly understood. We have, here, analyzed the localization of the transverse filament protein SYCP1 and the central element proteins SYCE1, SYCE2 and SYCE3 within the central region of the synaptonemal complex in mouse spermatocytes using immunoelectron microscopy. Distribution of immuno-gold particles in a lateral view of the synaptonemal complex, supported by protein interaction data, suggest that the N-terminal region of SYCP1 and SYCE3 form a joint bilayered central structure, and that SYCE1 and SYCE2 localize in between the two layers. We find that disruption of SYCE2 and TEX12 (a fourth central element protein) localization to the central element abolishes central alignment of the N-terminal region of SYCP1. Thus, our results show that all four central element proteins, in an interdependent manner, contribute to stabilization of opposing N-terminal regions of SYCP1, forming a bilayered transverse-filament-central-element junction structure that promotes synaptonemal complex formation and synapsis.
Collapse
Affiliation(s)
| | - Sergej Masich
- Department of Cell and Molecular Biology, Karolinska Institutet Berzelius väg 35, Stockholm 171 77, Sweden
| | - Tomoyuki Fukuda
- Department of Cell and Molecular Biology, Karolinska Institutet Berzelius väg 35, Stockholm 171 77, Sweden Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Anna Kouznetsova
- Department of Cell and Molecular Biology, Karolinska Institutet Berzelius väg 35, Stockholm 171 77, Sweden
| | - Sara Sandin
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Bertil Daneholt
- Department of Cell and Molecular Biology, Karolinska Institutet Berzelius väg 35, Stockholm 171 77, Sweden
| | - Christer Höög
- Department of Cell and Molecular Biology, Karolinska Institutet Berzelius väg 35, Stockholm 171 77, Sweden
| |
Collapse
|
113
|
Rosario R, Adams IR, Anderson RA. Is there a role for DAZL in human female fertility? Mol Hum Reprod 2016; 22:377-83. [PMID: 26989066 PMCID: PMC4884919 DOI: 10.1093/molehr/gaw024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/14/2016] [Indexed: 12/19/2022] Open
Abstract
The RNA binding protein deleted in azoospermia-like (Dazl) is a key determinant of germ cell maturation and entry into meiosis in rodents and other animal species. Although the complex phenotype of Dazl deficiency in both sexes, with defects at multiple stages of germ cell development and during meiosis, demonstrates its obligate significance in fertility in animal models, its involvement in human fertility is less clear. As an RNA binding protein, identification of the in vivo mRNA targets of DAZL is necessary to understand its influence. Thus far, only a small number of Dazl targets have been identified, which typically have pivotal roles in germ cell development and meiotic progression. However, it is likely that there are a number of additional germ cell and meiosis-relevant transcripts whose translation is affected in the absence of Dazl. Efforts to identify these RNA targets have mainly been focused on spermatogenesis, and restricted to mouse. In women, prophase I occurs in fetal life and it is during this period that the ovarian follicle pool is established, thus factors that have a role in determining the quality and quantity of the ovarian reserve may have significant impact on reproductive outcomes later in adult life. Here, we suggest that DAZL may be one such factor, and there is a need for greater understanding of the role of DAZL in human oogenesis and its contribution to lifelong female fertility.
Collapse
Affiliation(s)
- Roseanne Rosario
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Ian R Adams
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
114
|
Fraune J, Brochier-Armanet C, Alsheimer M, Volff JN, Schücker K, Benavente R. Evolutionary history of the mammalian synaptonemal complex. Chromosoma 2016; 125:355-60. [PMID: 26968413 DOI: 10.1007/s00412-016-0583-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 12/29/2022]
Abstract
The synaptonemal complex (SC), a key structure of meiosis that assembles during prophase I, has been initially described 60 years ago. Since then, the structure has been described in many sexually reproducing organisms. However, the SC protein components were characterized in only few model organisms. Surprisingly, they lacked an apparent evolutionary relationship despite the conserved structural organization of the SC. For better understanding of this obvious discrepancy, the evolutionary history of the SC and its individual components has been investigated in Metazoa in detail. The results are consistent with the notion of a single origin of the metazoan SC and provide evidence for a dynamic evolutionary history of the SC components. In this mini review, we recapitulate and discuss new insights into metazoan SC evolution.
Collapse
Affiliation(s)
- Johanna Fraune
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Céline Brochier-Armanet
- Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, 43 bd du 11 novembre 1918, Villeurbanne, 69622, France
| | - Manfred Alsheimer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS, Université Lyon 1, Lyon, France
| | - Katharina Schücker
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
115
|
Zhou J, Stein P, Leu NA, Chmátal L, Xue J, Ma J, Huang X, Lampson MA, Schultz RM, Wang PJ. Accelerated reproductive aging in females lacking a novel centromere protein SYCP2L. Hum Mol Genet 2015; 24:6505-14. [PMID: 26362258 PMCID: PMC4614708 DOI: 10.1093/hmg/ddv359] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/07/2015] [Accepted: 09/01/2015] [Indexed: 11/13/2022] Open
Abstract
Menopause results from loss of ovarian function and marks the end of a woman's reproductive life. Alleles of the human SYCP2L locus are associated with age at natural menopause (ANM). SYCP2L is a paralogue of the synaptonemal complex protein SYCP2 and is expressed exclusively in oocytes. Here we report that SYCP2L localizes to centromeres of dictyate stage oocytes, which represent the limited pool of primordial oocytes that are formed perinatally and remain arrested till ovulation. Centromere localization of SYCP2L requires its C-terminal portion, which is missing in truncated variants resulting from low-frequency nonsense mutations identified in humans. Female mice lacking SYCP2L undergo a significantly higher progressive loss of oocytes with age compared with wild-type females and are less fertile. Specifically, the pool of primordial oocytes becomes more rapidly depleted in SYCP2L-deficient than in wild-type females, such that with aging, fewer oocytes undergo maturation in developing follicles. We find that a human SYCP2L intronic single nucleotide polymorphism (SNP) rs2153157, which is associated with ANM, changes the splicing efficiency of U12-type minor introns and may therefore regulate the steady-state amount of SYCP2L transcript. Furthermore, the more efficiently spliced allele of this intronic SNP in SYCP2L is associated with increased ANM. Our results suggest that SYCP2L promotes the survival of primordial oocytes and thus provide functional evidence for its association with ANM in humans.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Paula Stein
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA and
| | - N Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Lukáš Chmátal
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA and
| | - Jiangyang Xue
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Jun Ma
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA, Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA and
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Michael A Lampson
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA and
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA and
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA,
| |
Collapse
|
116
|
Casey AE, Daish TJ, Grutzner F. Identification and characterisation of synaptonemal complex genes in monotremes. Gene 2015; 567:146-53. [PMID: 25981592 DOI: 10.1016/j.gene.2015.04.089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/25/2015] [Accepted: 04/27/2015] [Indexed: 11/26/2022]
Abstract
The platypus and echidna are the only extant species belonging to the clade of monotremata, the most basal mammalian lineage. The platypus is particularly well known for its mix of mammalian and reptilian characteristics and work in recent years has revealed this also extends to the genetic level. Amongst the monotreme specific features is the unique multiple sex chromosome system (5X4Y in the echidna and 5X5Y in the platypus), which forms a chain in meiosis. This raises questions about sex chromosome organisation at meiosis, including whether there has been changes in genes coding for synaptonemal complex proteins which are involved in homologous synapsis. Here we investigate the key structural components of the synaptonemal complex in platypus and echidna, synaptonemal complex proteins 1, 2 and 3 (SYCP1, SYCP2 and SYCP3). SYCP1 and SYCP2 orthologues are present, conserved and expressed in platypus testis. SYCP3 in contrast is highly diverged, but key residues required for self-association are conserved, while those required for tetramer stabilisation and DNA binding are missing. We also discovered a second SYCP3-like gene (SYCP3-like) in the same region. Comparison with the recently published Y-borne SYCP3 amino acid sequences revealed that SYCP3Y is more similar to SYCP3 in other mammals than the monotreme autosomal SYCP3. It is currently unclear if these changes in the SYCP3 gene repertoire are related to meiotic organisation of the extraordinary monotreme sex chromosome system.
Collapse
Affiliation(s)
- Aaron E Casey
- The Robinson Institute, School of Molecular and Biomedical Science, University of Adelaide, Gate 8 Victoria Drive, Adelaide, South Australia 5005, Australia.
| | - Tasman J Daish
- The Robinson Institute, School of Molecular and Biomedical Science, University of Adelaide, Gate 8 Victoria Drive, Adelaide, South Australia 5005, Australia
| | - Frank Grutzner
- The Robinson Institute, School of Molecular and Biomedical Science, University of Adelaide, Gate 8 Victoria Drive, Adelaide, South Australia 5005, Australia
| |
Collapse
|
117
|
Resolving complex chromosome structures during meiosis: versatile deployment of Smc5/6. Chromosoma 2015; 125:15-27. [PMID: 25947290 PMCID: PMC4761004 DOI: 10.1007/s00412-015-0518-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/02/2015] [Accepted: 04/20/2015] [Indexed: 12/25/2022]
Abstract
The Smc5/6 complex, along with cohesin and condensin, is a member of the structural maintenance of chromosome (SMC) family, large ring-like protein complexes that are essential for chromatin structure and function. Thanks to numerous studies of the mitotic cell cycle, Smc5/6 has been implicated to have roles in homologous recombination, restart of stalled replication forks, maintenance of ribosomal DNA (rDNA) and heterochromatin, telomerase-independent telomere elongation, and regulation of chromosome topology. The nature of these functions implies that the Smc5/6 complex also contributes to the profound chromatin changes, including meiotic recombination, that characterize meiosis. Only recently, studies in diverse model organisms have focused on the potential meiotic roles of the Smc5/6 complex. Indeed, Smc5/6 appears to be essential for meiotic recombination. However, due to both the complexity of the process of meiosis and the versatility of the Smc5/6 complex, many additional meiotic functions have been described. In this review, we provide a clear overview of the multiple functions found so far for the Smc5/6 complex in meiosis. Additionally, we compare these meiotic functions with the known mitotic functions in an attempt to find a common denominator and thereby create clarity in the field of Smc5/6 research.
Collapse
|
118
|
Deleterious mutation in SYCE1 is associated with non-obstructive azoospermia. J Assist Reprod Genet 2015; 32:887-91. [PMID: 25899990 DOI: 10.1007/s10815-015-0445-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/29/2015] [Indexed: 10/23/2022] Open
Abstract
PURPOSE To determine the molecular basis of familial, autosomal-recessive, non-obstructive azoospermia in a consanguineous Iranian Jewish family. METHODS We investigated the genetic cause of non-obstructive azoospermia in two affected siblings from a consanguineous family. Homozygosity mapping in the DNA samples of the patients and their normospermic brother was followed by exome analysis of one of the patients. Other family members were genotyped for the mutation by Sanger sequencing. The mutation effect was demonstrated by immunostaining of the patients' testicular tissue. RESULTS The two patients were homozygous for a splice site mutation in SYCE1 which resulted in retention of intron three in the cDNA and premature stop codon. SYCE1 encodes a Synaptonemal Complex protein which plays an essential role during meiosis. Immunostaining of patient's testicular tissue with anti-Syce1 antibody revealed an undetectable level of Syce1. Histological examination of the patients' tissue disclosed immature-stages spermatocytes without mature forms, indicating maturation arrest. CONCLUSION The significance of most synaptonemal complex proteins was previously demonstrated in a mutant mouse model. The present report underscores the importance of synaptonemal complex proteins in spermatogenenesis in humans. Our new approach, combining homozygosity mapping and exome sequencing, resulted in one of the first reports of an autosomal-recessive form of NOA.
Collapse
|
119
|
Fraune J, Alsheimer M, Redolfi J, Brochier-Armanet C, Benavente R. Protein SYCP2 Is an Ancient Component of the Metazoan Synaptonemal Complex. Cytogenet Genome Res 2015; 144:299-305. [DOI: 10.1159/000381080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2015] [Indexed: 11/19/2022] Open
|
120
|
Elucidation of synaptonemal complex organization by super-resolution imaging with isotropic resolution. Proc Natl Acad Sci U S A 2015; 112:2029-33. [PMID: 25646409 DOI: 10.1073/pnas.1414814112] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Synaptonemal complexes (SCs) are meiosis-specific multiprotein complexes that are essential for synapsis, recombination, and segregation of homologous chromosomes, but the molecular organization of SCs remains unclear. We used immunofluorescence labeling in combination with super-resolution imaging and average position determination to investigate the molecular architecture of SCs. Combination of 2D super-resolution images recorded from different areas of the helical ladder-like structure allowed us to reconstruct the 3D molecular organization of the mammalian SC with isotropic resolution. The central element is composed of two parallel cables at a distance of ∼ 100 nm, which are oriented perpendicular to two parallel cables of the lateral element arranged at a distance of ∼ 220 nm. The two parallel cable elements form twisted helical structures that are connected by transversal filaments by their N and C termini. A single-cell preparation generates sufficient localizations to compile a 3D model of the SC with nanometer precision.
Collapse
|
121
|
Araya-Jaime C, Serrano ÉA, de Andrade Silva DMZ, Yamashita M, Iwai T, Oliveira C, Foresti F. Surface-spreading technique of meiotic cells and immunodetection of synaptonemal complex proteins in teleostean fishes. Mol Cytogenet 2015; 8:4. [PMID: 25642289 PMCID: PMC4312464 DOI: 10.1186/s13039-015-0108-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/09/2015] [Indexed: 11/20/2022] Open
Abstract
Background Different moderrn methodologies are presently available to analyze meiotic chromosomes. These methods permit investigation of the behavior of chromosomes in the normal complement and of sex and B chromosomes, two special types of chromosomes that are associated with the A complement and are present in many organisms, including fishes. However, meiotic studies are still scarce in fishes, considering the wide number of species in this group.. Here, we describe a new protocol for the visualization of the synaptonemal complex in spermatocytes and oocytes of fishes and to the sequential use of the technique with other procedures and techniques such as immunodetection of the synaptonemal complex protein with a specific antibody and co-detection of DNA sequences by FISH. Results The meiotic surface-spreading protocol used in the present proposal worked well in representative species of four fish orders and was useful in obtaining good results even in small specimens. Fish-specific antibodies and commercial products worked similarly well to detect synaptonemal complex (SC) proteins. The sequential application of fluorescence in situ hybridization using specific probes showed clear signals associated with the SC structures identified by immunostaining. Conclusion Here, we provide a useful and applicable immunofluorescent protocol for the visualization of synaptonemal complex proteins in the meiotic cells of fishes in surface-spreading preparations. Furthermore, this technique allows for the sequential application of other cytogenetic procedures.
Collapse
Affiliation(s)
- Cristian Araya-Jaime
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, s/n, 18618-970 Botucatu, SP Brazil
| | - Érica Alves Serrano
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, s/n, 18618-970 Botucatu, SP Brazil
| | | | - Masakane Yamashita
- Department of Biological Sciences, Faculty of Science Hokkaido University, Sapporo, 060-0810 Japan
| | - Toshiharu Iwai
- South Ehime Fisheries Research Center, Ehime University, Matsuyama, Ehime 798-4292 Japan
| | - Cláudio Oliveira
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, s/n, 18618-970 Botucatu, SP Brazil
| | - Fausto Foresti
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, s/n, 18618-970 Botucatu, SP Brazil
| |
Collapse
|
122
|
The dissection of meiotic chromosome movement in mice using an in vivo electroporation technique. PLoS Genet 2014; 10:e1004821. [PMID: 25502938 PMCID: PMC4263375 DOI: 10.1371/journal.pgen.1004821] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/14/2014] [Indexed: 12/31/2022] Open
Abstract
During meiosis, the rapid movement of telomeres along the nuclear envelope (NE) facilitates pairing/synapsis of homologous chromosomes. In mammals, the mechanical properties of chromosome movement and the cytoskeletal structures responsible for it remain poorly understood. Here, applying an in vivo electroporation (EP) technique in live mouse testis, we achieved the quick visualization of telomere, chromosome axis and microtubule organizing center (MTOC) movements. For the first time, we defined prophase sub-stages of live spermatocytes morphologically according to GFP-TRF1 and GFP-SCP3 signals. We show that rapid telomere movement and subsequent nuclear rotation persist from leptotene/zygotene to pachytene, and then decline in diplotene stage concomitant with the liberation of SUN1 from telomeres. Further, during bouquet stage, telomeres are constrained near the MTOC, resulting in the transient suppression of telomere mobility and nuclear rotation. MTs are responsible for these movements by forming cable-like structures on the NE, and, probably, by facilitating the rail-tacking movements of telomeres on the MT cables. In contrast, actin regulates the oscillatory changes in nuclear shape. Our data provide the mechanical scheme for meiotic chromosome movement throughout prophase I in mammals. Meiosis is a special type of cell division for gametogenesis, errors in which cause several genetic disorders such as infertility and Down syndrome. In meiotic prophase I, chromosomes are tethered to the nuclear envelope (NE) through telomeres, and move rapidly along the NE to get homologs aligned and juxtaposed. Following homologous recombination and synapsis, the bivalent chromosome structure is established, which promotes genetic varieties, and also ensures accurate chromosome segregation in following anaphase I. Although there have been extensive studies addressing meiotic chromosome dynamics in yeast and worms, the same in mammalian meiosis remains largely elusive. Here, we utilized an in vivo electroporation (EP) technique to visualize chromosome movement in live mouse spermatocytes. We, for the first time, define the meiotic sub-stages in live cells based on telomeres and chromosome axis morphologies, and reveal chromosome movements regulated in a stage-specific manner. Putting the live-observations together with our cytological observations in fixed cells, we propose that meiotic chromosome movements in mammals are mediated by the rail-tracking movement of telomeres along the MT cables surrounding the meiotic nucleus.
Collapse
|
123
|
Lu J, Gu Y, Feng J, Zhou W, Yang X, Shen Y. Structural insight into the central element assembly of the synaptonemal complex. Sci Rep 2014; 4:7059. [PMID: 25394919 PMCID: PMC4231325 DOI: 10.1038/srep07059] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/29/2014] [Indexed: 11/25/2022] Open
Abstract
The key step in meiosis is synaptonemal complex formation, which mediates homologous chromosome alignment and synapsis. False pairing between homologous chromosomes produces infertility. Here, we present a crystal structure of the mouse meiosis-specific protein SYCE3, which is a component of the synaptonemal complex central element. Our studies show that functional SYCE3 most likely forms a dimer or higher order oligomer in cells. Furthermore, we demonstrate that the SYCE3 N-helix interacts with the SYCE1 C-helix, which is another central element component. Our results suggest that helical packing may mediate intra- or inter-association of each central element protein component, thereby playing an essential role in forming the synaptonemal complex central elements.
Collapse
Affiliation(s)
- Jing Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yanling Gu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jianrong Feng
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Weihong Zhou
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xue Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yuequan Shen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
- Synergetic Innovation Center of Chemical Science and Engineering, 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
124
|
Viera A, Alsheimer M, Gómez R, Berenguer I, Ortega S, Symonds CE, Santamaría D, Benavente R, Suja JA. CDK2 regulates nuclear envelope protein dynamics and telomere attachment in mouse meiotic prophase. J Cell Sci 2014; 128:88-99. [PMID: 25380821 DOI: 10.1242/jcs.154922] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In most organisms, telomeres attach to the nuclear envelope at the onset of meiosis to promote the crucial processes of pairing, recombination and synapsis during prophase I. This attachment of meiotic telomeres is mediated by the specific distribution of several nuclear envelope components that interact with the attachment plates of the synaptonemal complex. We have determined by immunofluorescence and electron microscopy that the ablation of the kinase CDK2 alters the nuclear envelope in mouse spermatocytes, and that the proteins SUN1, KASH5 (also known as CCDC155) and lamin C2 show an abnormal cap-like distribution facing the centrosome. Strikingly, some telomeres are not attached to the nuclear envelope but remain at the nuclear interior where they are associated with SUN1 and with nuclear-envelope-detached vesicles. We also demonstrate that mouse testis CDK2 phosphorylates SUN1 in vitro. We propose that during mammalian prophase I the kinase CDK2 is a key factor governing the structure of the nuclear envelope and the telomere-led chromosome movements essential for homolog pairing.
Collapse
Affiliation(s)
- Alberto Viera
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Manfred Alsheimer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, D-97074 Würzburg, Germany
| | - Rocío Gómez
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Inés Berenguer
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Sagrario Ortega
- Biotechnology Program, Centro Nacional de Investigaciones Oncológicas, E-28029 Madrid, Spain
| | - Catherine E Symonds
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, E-28029 Madrid, Spain
| | - David Santamaría
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, E-28029 Madrid, Spain
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, D-97074 Würzburg, Germany
| | - José A Suja
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| |
Collapse
|
125
|
Conservation and variability of synaptonemal complex proteins in phylogenesis of eukaryotes. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2014; 2014:856230. [PMID: 25147749 PMCID: PMC4132317 DOI: 10.1155/2014/856230] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 06/02/2014] [Accepted: 06/24/2014] [Indexed: 11/17/2022]
Abstract
The problems of the origin and evolution of meiosis include the enigmatic variability of the synaptonemal complexes (SCs) which, being morphology similar, consist of different proteins in different eukaryotic phyla. Using bioinformatics methods, we monitored all available eukaryotic proteomes to find proteins similar to known SC proteins of model organisms. We found proteins similar to SC lateral element (LE) proteins and possessing the HORMA domain in the majority of the eukaryotic taxa and assume them the most ancient among all SC proteins. Vertebrate LE proteins SYCP2, SYCP3, and SC65 proved to have related proteins in many invertebrate taxa. Proteins of SC central space are most evolutionarily variable. It means that different protein-protein interactions can exist to connect LEs. Proteins similar to the known SC proteins were not found in Euglenophyta, Chrysophyta, Charophyta, Xanthophyta, Dinoflagellata, and primitive Coelomata. We conclude that different proteins whose common feature is the presence of domains with a certain conformation are involved in the formation of the SC in different eukaryotic phyla. This permits a targeted search for orthologs of the SC proteins using phylogenetic trees. Here we consider example of phylogenetic trees for protozoans, fungi, algae, mosses, and flowering plants.
Collapse
|
126
|
Syrjänen JL, Pellegrini L, Davies OR. A molecular model for the role of SYCP3 in meiotic chromosome organisation. eLife 2014; 3. [PMID: 24950965 PMCID: PMC4102245 DOI: 10.7554/elife.02963] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/18/2014] [Indexed: 12/11/2022] Open
Abstract
The synaptonemal complex (SC) is an evolutionarily-conserved protein assembly that holds together homologous chromosomes during prophase of the first meiotic division. Whilst essential for meiosis and fertility, the molecular structure of the SC has proved resistant to elucidation. The SC protein SYCP3 has a crucial but poorly understood role in establishing the architecture of the meiotic chromosome. Here we show that human SYCP3 forms a highly-elongated helical tetramer of 20 nm length. N-terminal sequences extending from each end of the rod-like structure bind double-stranded DNA, enabling SYCP3 to link distant sites along the sister chromatid. We further find that SYCP3 self-assembles into regular filamentous structures that resemble the known morphology of the SC lateral element. Together, our data form the basis for a model in which SYCP3 binding and assembly on meiotic chromosomes leads to their organisation into compact structures compatible with recombination and crossover formation. DOI:http://dx.doi.org/10.7554/eLife.02963.001 When a sperm cell and an egg cell unite, each contributes half of the genetic material needed for the fertilised egg to develop. This creates opportunities for new and beneficial genetic combinations to arise. To ensure that each new sperm or egg has half a set of chromosomes, reproductive cells undergo a special type of division called meiosis. During the early stages of meiosis, copies of each chromosome—one inherited from the mother, the other from the father—are paired up along the midline of the dividing cell. A protein complex known as the synaptonemal complex acts as a ‘zipper’, pulling the chromosomes in each pair closer together. The arms of the maternal chromosome and the paternal chromosome are so close that they sometimes cross over and swap a section of DNA. These crossovers perform two critical functions. First, they recombine the genetic information of a cell, so that offspring can benefit from new gene combinations. Second, they help to hold the chromosomes together at a key point of meiosis, reducing the chances that the wrong number of chromosomes ends up in a sperm or egg cell. The zipper structure is essential for meiosis. Disrupting its formation causes infertility and miscarriage in humans and mice, as well as chromosomal disorders like Down's syndrome. Scientists have known about this zipper structure and its importance since 1956, yet limited information is available about its shape and how it works. Syrjänen et al. used X-ray crystallography to take images of the part of the zipper structure that interacts with the chromosomes. These images, combined with the results of biochemical and biophysical experiments, show that rod-like structures on the zipper link together sites within each chromosome. This not only allows the paired chromosomes to be held together by the zipper, but also compacts them so it's easier for them to cross over and swap genetic information. DOI:http://dx.doi.org/10.7554/eLife.02963.002
Collapse
Affiliation(s)
| | - Luca Pellegrini
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Owen Richard Davies
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
127
|
Fukuda T, Fukuda N, Agostinho A, Hernández-Hernández A, Kouznetsova A, Höög C. STAG3-mediated stabilization of REC8 cohesin complexes promotes chromosome synapsis during meiosis. EMBO J 2014; 33:1243-55. [PMID: 24797475 PMCID: PMC4198027 DOI: 10.1002/embj.201387329] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 11/10/2022] Open
Abstract
Cohesion between sister chromatids in mitotic and meiotic cells is promoted by a ring-shaped protein structure, the cohesin complex. The cohesin core complex is composed of four subunits, including two structural maintenance of chromosome (SMC) proteins, one α-kleisin protein, and one SA protein. Meiotic cells express both mitotic and meiosis-specific cohesin core subunits, generating cohesin complexes with different subunit composition and possibly separate meiotic functions. Here, we have analyzed the in vivo function of STAG3, a vertebrate meiosis-specific SA protein. Mice with a hypomorphic allele of Stag3, which display a severely reduced level of STAG3, are viable but infertile. We show that meiocytes in homozygous mutant Stag3 mice display chromosome axis compaction, aberrant synapsis, impaired recombination and developmental arrest. We find that the three different α-kleisins present in meiotic cells show different dosage-dependent requirements for STAG3 and that STAG3-REC8 cohesin complexes have a critical role in supporting meiotic chromosome structure and functions.
Collapse
Affiliation(s)
- Tomoyuki Fukuda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Nanaho Fukuda
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ana Agostinho
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Anna Kouznetsova
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christer Höög
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
128
|
Link J, Leubner M, Schmitt J, Göb E, Benavente R, Jeang KT, Xu R, Alsheimer M. Analysis of meiosis in SUN1 deficient mice reveals a distinct role of SUN2 in mammalian meiotic LINC complex formation and function. PLoS Genet 2014; 10:e1004099. [PMID: 24586178 PMCID: PMC3937131 DOI: 10.1371/journal.pgen.1004099] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 11/25/2013] [Indexed: 11/30/2022] Open
Abstract
LINC complexes are evolutionarily conserved nuclear envelope bridges, composed of SUN (Sad-1/UNC-84) and KASH (Klarsicht/ANC-1/Syne/homology) domain proteins. They are crucial for nuclear positioning and nuclear shape determination, and also mediate nuclear envelope (NE) attachment of meiotic telomeres, essential for driving homolog synapsis and recombination. In mice, SUN1 and SUN2 are the only SUN domain proteins expressed during meiosis, sharing their localization with meiosis-specific KASH5. Recent studies have shown that loss of SUN1 severely interferes with meiotic processes. Absence of SUN1 provokes defective telomere attachment and causes infertility. Here, we report that meiotic telomere attachment is not entirely lost in mice deficient for SUN1, but numerous telomeres are still attached to the NE through SUN2/KASH5-LINC complexes. In Sun1−/− meiocytes attached telomeres retained the capacity to form bouquet-like clusters. Furthermore, we could detect significant numbers of late meiotic recombination events in Sun1−/− mice. Together, this indicates that even in the absence of SUN1 telomere attachment and their movement within the nuclear envelope per se can be functional. Correct genome haploidization during meiosis requires tightly regulated chromosome movements that follow a highly conserved choreography during prophase I. Errors in these movements cause subsequent meiotic defects, which typically lead to infertility. At the beginning of meiotic prophase, chromosome ends are tethered to the nuclear envelope (NE). This attachment of telomeres appears to be mediated by well-conserved membrane spanning protein complexes within the NE (LINC complexes). In mouse meiosis, the two main LINC components SUN1 and SUN2 were independently described to localize at the sites of telomere attachment. While SUN1 has been demonstrated to be critical for meiotic telomere attachment, the precise role of SUN2 in this context, however, has been discussed controversially in the field. Our current study was targeted to determine the factual capacity of SUN2 in telomere attachment and chromosome movements in SUN1 deficient mice. Remarkably, although telomere attachment is impaired in the absence of SUN1, we could find a yet undescribed SUN1-independent telomere attachment, which presumably is mediated by SUN2 and KASH5. This SUN2 mediated telomere attachment is stable throughout prophase I and functional in moving telomeres within the NE. Thus, our results clearly indicate that SUN1 and SUN2, at least partially, fulfill redundant meiotic functions.
Collapse
Affiliation(s)
- Jana Link
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Monika Leubner
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Johannes Schmitt
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Eva Göb
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Kuan-Teh Jeang
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rener Xu
- Institute of Developmental Biology and Molecular Medicine and School of Life Science, Fudan University, Shanghai, China
| | - Manfred Alsheimer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
129
|
Fraune J, Wiesner M, Benavente R. The synaptonemal complex of basal metazoan hydra: more similarities to vertebrate than invertebrate meiosis model organisms. J Genet Genomics 2014; 41:107-15. [PMID: 24656231 DOI: 10.1016/j.jgg.2014.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/18/2013] [Accepted: 01/20/2014] [Indexed: 11/17/2022]
Abstract
The synaptonemal complex (SC) is an evolutionarily well-conserved structure that mediates chromosome synapsis during prophase of the first meiotic division. Although its structure is conserved, the characterized protein components in the current metazoan meiosis model systems (Drosophila melanogaster, Caenorhabditis elegans, and Mus musculus) show no sequence homology, challenging the question of a single evolutionary origin of the SC. However, our recent studies revealed the monophyletic origin of the mammalian SC protein components. Many of them being ancient in Metazoa and already present in the cnidarian Hydra. Remarkably, a comparison between different model systems disclosed a great similarity between the SC components of Hydra and mammals while the proteins of the ecdysozoan systems (D. melanogaster and C. elegans) differ significantly. In this review, we introduce the basal-branching metazoan species Hydra as a potential novel invertebrate model system for meiosis research and particularly for the investigation of SC evolution, function and assembly. Also, available methods for SC research in Hydra are summarized.
Collapse
Affiliation(s)
- Johanna Fraune
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, D-97074 Würzburg, Germany.
| | - Miriam Wiesner
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, D-97074 Würzburg, Germany
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, D-97074 Würzburg, Germany.
| |
Collapse
|
130
|
Abstract
Tumor cells frequently exhibit widespread epigenetic aberrations that significantly alter the repertoire of expressed proteins. In particular, it has been known for nearly 25 years that tumors frequently reactivate genes whose expression is typically restricted to germ cells. These gene products are classified as cancer/testis antigens (CTAs) owing to their biased expression pattern and their immunogenicity in cancer patients. While these genes have been pursued as targets for anticancer vaccines, whether these reactivated testis proteins have roles in supporting tumorigenic features is less studied. Recent evidence now indicates that these proteins can be directly employed by the tumor cell regulatory environment to support cell-autonomous behaviors. Here, we review the history of the CTA field and present recent findings indicating that CTAs can play functional roles in supporting tumorigenesis.
Collapse
|
131
|
Voelkel-Meiman K, Taylor LF, Mukherjee P, Humphryes N, Tsubouchi H, MacQueen AJ. SUMO localizes to the central element of synaptonemal complex and is required for the full synapsis of meiotic chromosomes in budding yeast. PLoS Genet 2013; 9:e1003837. [PMID: 24098146 PMCID: PMC3789832 DOI: 10.1371/journal.pgen.1003837] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 08/13/2013] [Indexed: 11/29/2022] Open
Abstract
The synaptonemal complex (SC) is a widely conserved structure that mediates the intimate alignment of homologous chromosomes during meiotic prophase and is required for proper homolog segregation at meiosis I. However, fundamental details of SC architecture and assembly remain poorly understood. The coiled-coil protein, Zip1, is the only component whose arrangement within the mature SC of budding yeast has been extensively characterized. It has been proposed that the Small Ubiquitin-like MOdifier, SUMO, plays a role in SC assembly by linking chromosome axes with Zip1's C termini. The role of SUMO in SC structure has not been directly tested, however, because cells lacking SUMO are inviable. Here, we provide direct evidence for SUMO's function in SC assembly. A meiotic smt3 reduction-of-function strain displays reduced sporulation, abnormal levels of crossover recombination, and diminished SC assembly. SC structures are nearly absent when induced at later meiotic time points in the smt3 reduction-of-function background. Using Structured Illumination Microscopy we furthermore determine the position of SUMO within budding yeast SC structure. In contrast to previous models that positioned SUMO near Zip1's C termini, we demonstrate that SUMO lies at the midline of SC central region proximal to Zip1's N termini, within a subdomain called the “central element”. The recently identified SUMOylated SC component, Ecm11, also localizes to the SC central element. Finally, we show that SUMO, Ecm11, and even unSUMOylatable Ecm11 exhibit Zip1-like ongoing incorporation into previously established SCs during meiotic prophase and that the relative abundance of SUMO and Ecm11 correlates with Zip1's abundance within SCs of varying Zip1 content. We discuss a model in which central element proteins are core building blocks that stabilize the architecture of SC near Zip1's N termini, and where SUMOylation may occur subsequent to the incorporation of components like Ecm11 into an SC precursor structure. The meiotic cell cycle enables sexually reproducing organisms to generate reproductive cells with half their chromosome complement. Chromosome ploidy is reduced during meiosis by virtue of prior associations established between homologous chromosomes (homologs). Such associations, which are ultimately secured by crossover recombination events, allow homologs to achieve an opposing orientation and segregate from one another at meiosis I. A multimeric protein structure, the synaptonemal complex (SC), mediates the intimate, lengthwise alignment of homologs during meiotic prophase and forms the context in which crossovers mature. The SC's tripartite structure is widely conserved but its composition and architecture remain incompletely understood in any organism. The Small Ubiquitin-like MOdifier (SUMO) localizes to SC in budding yeast. We show that SUMO is required for assembling mature SC and we furthermore demonstrate that SUMO and the recently identified SUMOylated protein, Ecm11, are components of the central element substructure of the budding yeast SC. Our findings suggest that SUMO and Ecm11 are core building blocks of SC, yet our data also suggest that SUMOylation may occur subsequent to Ecm11's incorporation into the SC structure. Finally, our study highlights Structured Illumination as a powerful tool for mapping the fine structure of budding yeast SC.
Collapse
Affiliation(s)
- Karen Voelkel-Meiman
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Louis F. Taylor
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Pritam Mukherjee
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Neil Humphryes
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Hideo Tsubouchi
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Amy J. MacQueen
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
132
|
Human disease locus discovery and mapping to molecular pathways through phylogenetic profiling. Mol Syst Biol 2013; 9:692. [PMID: 24084807 PMCID: PMC3817400 DOI: 10.1038/msb.2013.50] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 08/29/2013] [Indexed: 12/16/2022] Open
Abstract
By analyzing the conservation of human proteins across 87 species, we sorted proteins into clusters of coevolution. Some clusters are enriched for genes assigned to particular human diseases or molecular pathways; the other genes in the same cluster may function in related pathways and diseases. ![]()
Many genes that were thought to map to different diseases are actually coevolved together and mapped into the same phylogenetic clusters. Many molecular pathways map to the same phylogenetic clusters as genes associated with specific human diseases. Focusing on proteins coevolved with the microphthalmia-associated transcription factor (MITF), we identified the Notch pathway suppressor of hairless (RBP-Jk/SuH) transcription factor, and showed that RBP-Jk functions as an MITF cofactor. Our analysis thus establishes a connectivity between different diseases and pathways, linking diseases phenotypes and functional gene groups.
Genes with common profiles of the presence and absence in disparate genomes tend to function in the same pathway. By mapping all human genes into about 1000 clusters of genes with similar patterns of conservation across eukaryotic phylogeny, we determined that sets of genes associated with particular diseases have similar phylogenetic profiles. By focusing on those human phylogenetic gene clusters that significantly overlap some of the thousands of human gene sets defined by their coexpression or annotation to pathways or other molecular attributes, we reveal the evolutionary map that connects molecular pathways and human diseases. The other genes in the phylogenetic clusters enriched for particular known disease genes or molecular pathways identify candidate genes for roles in those same disorders and pathways. Focusing on proteins coevolved with the microphthalmia-associated transcription factor (MITF), we identified the Notch pathway suppressor of hairless (RBP-Jk/SuH) transcription factor, and showed that RBP-Jk functions as an MITF cofactor.
Collapse
|
133
|
Phylogenies of central element proteins reveal the dynamic evolutionary history of the mammalian synaptonemal complex: ancient and recent components. Genetics 2013; 195:781-93. [PMID: 24026100 DOI: 10.1534/genetics.113.156679] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During meiosis, the stable pairing of the homologous chromosomes is mediated by the assembly of the synaptonemal complex (SC). Its tripartite structure is well conserved in Metazoa and consists of two lateral elements (LEs) and a central region (CR) that in turn is formed by several transverse filaments (TFs) and a central element (CE). In a previous article, we have shown that not only the structure, but also the major structural proteins SYCP1 (TFs) and SYCP3 (LEs) of the mammalian SC are conserved in metazoan evolution. In continuation of this work, we now investigated the evolution of the mammalian CE-specific proteins using phylogenetic and biochemical/cytological approaches. In analogy to the observations made for SYCP1 and SYCP3, we did not detect homologs of the mammalian CE proteins in insects or nematodes, but in several other metazoan clades. We were able to identify homologs of three mammalian CE proteins in several vertebrate and invertebrate species, for two of these proteins down to the basal-branching phylum of Cnidaria. Our approaches indicate that the SC arose only once, but evolved dynamically during diversification of Metazoa. Certain proteins appear to be ancient in animals, but successive addition of further components as well as protein loss and/or replacements have also taken place in some lineages.
Collapse
|
134
|
Merico V, Giménez MD, Vasco C, Zuccotti M, Searle JB, Hauffe HC, Garagna S. Chromosomal speciation in mice: a cytogenetic analysis of recombination. Chromosome Res 2013; 21:523-33. [PMID: 23963733 DOI: 10.1007/s10577-013-9377-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 12/31/2022]
Abstract
Within species, populations differing by chromosomal rearrangements ("chromosomal races") may become reproductively isolated in association with reduced hybrid fertility due to meiotic aberrations. Speciation is also possible if hybridizing chromosomal races accumulate genetic differences because of reduced meiotic recombination in the heterozygous configuration in hybrids. Here, we examine recombination in pure races and hybrids within a model system for chromosomal speciation: the hybridization of the Poschiavo (CHPO) and Upper Valtellina (IUVA) chromosomal races of house mouse in Upper Valtellina, Italy. These races differ by Robertsonian fusions/whole-arm reciprocal translocations, such that hybrids produce a pentavalent meiotic configuration. We determined the number and position of the recombination points (using an antibody against the MutL homolog 1 [MLH1] protein) on synaptonemal complexes at pachytene in laboratory-reared CHPO, IUVA, and hybrid males, analyzing at least 112 spermatocytes per karyotypic group, up to a total of 534 spermatocytes. The mean ± standard deviation numbers of MLH1 foci per spermatocyte were 22.2 ± 3.2, 20.1 ± 2.9, 20.7 ± 2.3, and 21.9 ± 2.9 for CHPO, IUVA, CHPO × IUVA, and IUVA × CHPO, respectively. Altogether, 10,146 chromosome arms were examined, allowing multiple comparisons. Overall, recombination events were more frequently distal than proximal or interstitial. The average number of proximal MLH1 foci per chromosome arm decreased going from telocentric to metacentric bivalents to pentavalents (when present), which (together with other factors) influenced the average number of MLH1 foci per cell between CHPO, IUVA, and hybrid mice. The low frequency of proximal recombination in pentavalents of CHPO-IUVA hybrids may promote reproductive isolation between the CHPO and IUVA races, when coupled with reduced hybrid unfitness.
Collapse
Affiliation(s)
- Valeria Merico
- Dipartimento di Biologia e Biotecnologie Lazzaro Spallanzani, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
135
|
Miao C, Tang D, Zhang H, Wang M, Li Y, Tang S, Yu H, Gu M, Cheng Z. Central region component1, a novel synaptonemal complex component, is essential for meiotic recombination initiation in rice. THE PLANT CELL 2013; 25:2998-3009. [PMID: 23943860 PMCID: PMC3784594 DOI: 10.1105/tpc.113.113175] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/24/2013] [Accepted: 07/25/2013] [Indexed: 05/18/2023]
Abstract
In meiosis, homologous recombination entails programmed DNA double-strand break (DSB) formation and synaptonemal complex (SC) assembly coupled with the DSB repair. Although SCs display extensive structural conservation among species, their components identified are poorly conserved at the sequence level. Here, we identified a novel SC component, designated central region component1 (CRC1), in rice (Oryza sativa). CRC1 colocalizes with ZEP1, the rice SC transverse filament protein, to the central region of SCs in a mutually dependent fashion. Consistent with this colocalization, CRC1 interacts with ZEP1 in yeast two-hybrid assays. CRC1 is orthologous to Saccharomyces cerevisiae pachytene checkpoint2 (Pch2) and Mus musculus THYROID receptor-interacting protein13 (TRIP13) and may be a conserved SC component. Additionally, we provide evidence that CRC1 is essential for meiotic DSB formation. CRC1 interacts with homologous pairing aberration in rice meiosis1 (PAIR1) in vitro, suggesting that these proteins act as a complex to promote DSB formation. PAIR2, the rice ortholog of budding yeast homolog pairing1, is required for homologous chromosome pairing. We found that CRC1 is also essential for the recruitment of PAIR2 onto meiotic chromosomes. The roles of CRC1 identified here have not been reported for Pch2 or TRIP13.
Collapse
Affiliation(s)
- Chunbo Miao
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Honggen Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Mo Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuzhu Tang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Hengxiu Yu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Minghong Gu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Address correspondence to
| |
Collapse
|
136
|
Bassi FM, Kumar A, Zhang Q, Paux E, Huttner E, Kilian A, Dizon R, Feuillet C, Xu SS, Kianian SF. Radiation hybrid QTL mapping of Tdes2 involved in the first meiotic division of wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1977-1990. [PMID: 23715938 DOI: 10.1007/s00122-013-2111-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 04/20/2013] [Indexed: 06/02/2023]
Abstract
Since the dawn of wheat cytogenetics, chromosome 3B has been known to harbor a gene(s) that, when removed, causes chromosome desynapsis and gametic sterility. The lack of natural genetic diversity for this gene(s) has prevented any attempt to fine map and further characterize it. Here, gamma radiation treatment was used to create artificial diversity for this locus. A total of 696 radiation hybrid lines were genotyped with a custom mini array of 140 DArT markers, selected to evenly span the whole 3B chromosome. The resulting map spanned 2,852 centi Ray with a calculated resolution of 0.384 Mb. Phenotyping for the occurrence of meiotic desynapsis was conducted by measuring the level of gametic sterility as seeds produced per spikelet and pollen viability at booting. Composite interval mapping revealed a single QTL with LOD of 16.2 and r (2) of 25.6 % between markers wmc326 and wPt-8983 on the long arm of chromosome 3B. By independent analysis, the location of the QTL was confirmed to be within the deletion bin 3BL7-0.63-1.00 and to correspond to a single gene located ~1.4 Mb away from wPt-8983. The meiotic behavior of lines lacking this gene was characterized cytogenetically to reveal striking similarities with mutants for the dy locus, located on the syntenic chromosome 3 of maize. This represents the first example to date of employing radiation hybrids for QTL analysis. The success achieved by this approach provides an ideal starting point for the final cloning of this interesting gene involved in meiosis of cereals.
Collapse
Affiliation(s)
- F M Bassi
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Gómez R, Jordan PW, Viera A, Alsheimer M, Fukuda T, Jessberger R, Llano E, Pendás AM, Handel MA, Suja JA. Dynamic localization of SMC5/6 complex proteins during mammalian meiosis and mitosis suggests functions in distinct chromosome processes. J Cell Sci 2013; 126:4239-52. [PMID: 23843628 DOI: 10.1242/jcs.130195] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Four members of the structural maintenance of chromosome (SMC) protein family have essential functions in chromosome condensation (SMC2/4) and sister-chromatid cohesion (SMC1/3). The SMC5/6 complex has been implicated in chromosome replication, DNA repair and chromosome segregation in somatic cells, but its possible functions during mammalian meiosis are unknown. Here, we show in mouse spermatocytes that SMC5 and SMC6 are located at the central region of the synaptonemal complex from zygotene until diplotene. During late diplotene both proteins load to the chromocenters, where they colocalize with DNA Topoisomerase IIα, and then accumulate at the inner domain of the centromeres during the first and second meiotic divisions. Interestingly, SMC6 and DNA Topoisomerase IIα colocalize at stretched strands that join kinetochores during the metaphase II to anaphase II transition, and both are observed on stretched lagging chromosomes at anaphase II following treatment with Etoposide. During mitosis, SMC6 and DNA Topoisomerase IIα colocalize at the centromeres and chromatid axes. Our results are consistent with the participation of SMC5 and SMC6 in homologous chromosome synapsis during prophase I, chromosome and centromere structure during meiosis I and mitosis and, with DNA Topoisomerase IIα, in regulating centromere cohesion during meiosis II.
Collapse
Affiliation(s)
- Rocío Gómez
- Departamento de Biología, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Link J, Jahn D, Schmitt J, Göb E, Baar J, Ortega S, Benavente R, Alsheimer M. The meiotic nuclear lamina regulates chromosome dynamics and promotes efficient homologous recombination in the mouse. PLoS Genet 2013; 9:e1003261. [PMID: 23382700 PMCID: PMC3561109 DOI: 10.1371/journal.pgen.1003261] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 12/02/2012] [Indexed: 12/22/2022] Open
Abstract
The nuclear lamina is the structural scaffold of the nuclear envelope and is well known for its central role in nuclear organization and maintaining nuclear stability and shape. In the past, a number of severe human disorders have been identified to be associated with mutations in lamins. Extensive research on this topic has provided novel important clues about nuclear lamina function. These studies have contributed to the knowledge that the lamina constitutes a complex multifunctional platform combining both structural and regulatory functions. Here, we report that, in addition to the previously demonstrated significance for somatic cell differentiation and maintenance, the nuclear lamina is also an essential determinant for germ cell development. Both male and female mice lacking the short meiosis-specific A-type lamin C2 have a severely defective meiosis, which at least in the male results in infertility. Detailed analysis revealed that lamin C2 is required for telomere-driven dynamic repositioning of meiotic chromosomes. Loss of lamin C2 affects precise synapsis of the homologs and interferes with meiotic double-strand break repair. Taken together, our data explain how the nuclear lamina contributes to meiotic chromosome behaviour and accurate genome haploidization on a mechanistic level.
Collapse
Affiliation(s)
- Jana Link
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Daniel Jahn
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Johannes Schmitt
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Eva Göb
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Johannes Baar
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Manfred Alsheimer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
139
|
Humphryes N, Leung WK, Argunhan B, Terentyev Y, Dvorackova M, Tsubouchi H. The Ecm11-Gmc2 complex promotes synaptonemal complex formation through assembly of transverse filaments in budding yeast. PLoS Genet 2013; 9:e1003194. [PMID: 23326245 PMCID: PMC3542071 DOI: 10.1371/journal.pgen.1003194] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/10/2012] [Indexed: 11/19/2022] Open
Abstract
During meiosis, homologous chromosomes pair at close proximity to form the synaptonemal complex (SC). This association is mediated by transverse filament proteins that hold the axes of homologous chromosomes together along their entire length. Transverse filament proteins are highly aggregative and can form an aberrant aggregate called the polycomplex that is unassociated with chromosomes. Here, we show that the Ecm11-Gmc2 complex is a novel SC component, functioning to facilitate assembly of the yeast transverse filament protein, Zip1. Ecm11 and Gmc2 initially localize to the synapsis initiation sites, then throughout the synapsed regions of paired homologous chromosomes. The absence of either Ecm11 or Gmc2 substantially compromises the chromosomal assembly of Zip1 as well as polycomplex formation, indicating that the complex is required for extensive Zip1 polymerization. We also show that Ecm11 is SUMOylated in a Gmc2-dependent manner. Remarkably, in the unSUMOylatable ecm11 mutant, assembly of chromosomal Zip1 remained compromised while polycomplex formation became frequent. We propose that the Ecm11-Gmc2 complex facilitates the assembly of Zip1 and that SUMOylation of Ecm11 is critical for ensuring chromosomal assembly of Zip1, thus suppressing polycomplex formation. Meiosis is central to the life cycle of sexually reproducing organisms. The first round of division (meiosis I) is unique to meiosis in that homologous chromosomes are segregated to opposite poles. The tight association between homologous chromosomes is essential for their faithful segregation. To establish such association, meiosis employs a unique, homologous recombination-dependent mechanism that facilitates the recognition, association, and reciprocal exchange of DNA strands of homologous chromosomes, thus providing physical connections between homologous chromosomes. All these events take place in the context of an intricate structure called the synaptonemal complex (SC). Within this complex, the axis of one chromosome is aligned at close proximity with the axis of its homologue. This alignment stretches along the entire length of the chromosome pair, with zipper-like structures, called transverse filaments, holding axes together. In this work, we identified the Ecm11-Gmc2 complex as a novel component of the SC, promoting the assembly of transverse filaments. Importantly, we demonstrate that post-translational modification of Ecm11 with SUMO (small ubiquitin-like modifier) is critical for ensuring the chromosomal loading of transverse filaments. Thus, our work provides a molecular basis for how homologous chromosomes become tightly associated during meiotic prophase.
Collapse
Affiliation(s)
- Neil Humphryes
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Wing-Kit Leung
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Bilge Argunhan
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Yaroslav Terentyev
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Martina Dvorackova
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Hideo Tsubouchi
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
- * E-mail:
| |
Collapse
|
140
|
Lui DY, Colaiácovo MP. Meiotic development in Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:133-70. [PMID: 22872477 DOI: 10.1007/978-1-4614-4015-4_6] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Caenorhabditis elegans has become a powerful experimental organism with which to study meiotic processes that promote the accurate segregation of chromosomes during the generation of haploid gametes. Haploid reproductive cells are produced through one round of chromosome replication followed by two -successive cell divisions. Characteristic meiotic chromosome structure and dynamics are largely conserved in C. elegans. Chromosomes adopt a meiosis-specific structure by loading cohesin proteins, assembling axial elements, and acquiring chromatin marks. Homologous chromosomes pair and form physical connections though synapsis and recombination. Synaptonemal complex and crossover formation allow for the homologs to stably associate prior to remodeling that facilitates their segregation. This chapter will cover conserved meiotic processes as well as highlight aspects of meiosis that are unique to C. elegans.
Collapse
Affiliation(s)
- Doris Y Lui
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
141
|
Abstract
RanBPM is a multimodular scaffold protein that interacts with a great variety of molecules including nuclear, cytoplasmic, and membrane proteins. By building multiprotein complexes, RanBPM is thought to regulate various signaling pathways, especially in the immune and nervous system. However, the diversity of these interactions does not facilitate the identification of its precise mechanism of action, and therefore the physiological role of RanBPM still remains unclear. Recently, RanBPM has been shown to be critical for the fertility of both genders in mouse. Although mechanistically it is still unclear how RanBPM affects gametogenesis, the data collected so far suggest that it is a key player in this process. Here, we examine the RanBPM sterility phenotype in the context of other genetic mutations affecting mouse gametogenesis to investigate whether this scaffold protein affects the function of other known proteins whose deficiency results in similar sterility phenotypes.
Collapse
Affiliation(s)
- Sandrine Puverel
- Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, Maryland, USA.
| | | |
Collapse
|
142
|
Jordan PW, Karppinen J, Handel MA. Polo-like kinase is required for synaptonemal complex disassembly and phosphorylation in mouse spermatocytes. J Cell Sci 2012; 125:5061-72. [PMID: 22854038 PMCID: PMC3533391 DOI: 10.1242/jcs.105015] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2012] [Indexed: 01/05/2023] Open
Abstract
During meiosis, accurate coordination of the completion of homologous recombination and synaptonemal complex (SC) disassembly during the prophase to metaphase I (G2/MI) transition is essential to avoid aneuploid gametes and infertility. Previous studies have shown that kinase activity is required to promote meiotic prophase exit. The first step of the G2/MI transition is the disassembly of the central element components of the SC; however, the kinase(s) required to trigger this process remains unknown. Here we assess roles of polo-like kinases (PLKs) in mouse spermatocytes, both in vivo and during prophase exit induced ex vivo by the phosphatase inhibitor okadaic acid. All four PLKs are expressed during the first wave of spermatogenesis. Only PLK1 (not PLK2-4) localizes to the SC during the G2/MI transition. The SC central element proteins SYCP1, TEX12 and SYCE1 are phosphorylated during the G2/MI transition. However, treatment of pachytene spermatocytes with the PLK inhibitor BI 2536 prevented the okadaic-acid-induced meiotic prophase exit and inhibited phosphorylation of the central element proteins as well as their removal from the SC. Phosphorylation assays in vitro demonstrated that PLK1, but not PLK2-4, phosphorylates central element proteins SYCP1 and TEX12. These findings provide mechanistic details of the first stage of SC disassembly in mammalian spermatocytes, and reveal that PLK-mediated phosphorylation of central element proteins is required for meiotic prophase exit.
Collapse
Affiliation(s)
| | - Jesse Karppinen
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- College of the Atlantic, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
143
|
Hydra meiosis reveals unexpected conservation of structural synaptonemal complex proteins across metazoans. Proc Natl Acad Sci U S A 2012; 109:16588-93. [PMID: 23012415 DOI: 10.1073/pnas.1206875109] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The synaptonemal complex (SC) is a key structure of meiosis, mediating the stable pairing (synapsis) of homologous chromosomes during prophase I. Its remarkable tripartite structure is evolutionarily well conserved and can be found in almost all sexually reproducing organisms. However, comparison of the different SC protein components in the common meiosis model organisms Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, and Mus musculus revealed no sequence homology. This discrepancy challenged the hypothesis that the SC arose only once in evolution. To pursue this matter we focused on the evolution of SYCP1 and SYCP3, the two major structural SC proteins of mammals. Remarkably, our comparative bioinformatic and expression studies revealed that SYCP1 and SYCP3 are also components of the SC in the basal metazoan Hydra. In contrast to previous assumptions, we therefore conclude that SYCP1 and SYCP3 form monophyletic groups of orthologous proteins across metazoans.
Collapse
|
144
|
Fraune J, Schramm S, Alsheimer M, Benavente R. The mammalian synaptonemal complex: protein components, assembly and role in meiotic recombination. Exp Cell Res 2012; 318:1340-6. [PMID: 22394509 DOI: 10.1016/j.yexcr.2012.02.018] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
Abstract
The synaptonemal complex (SC) is a proteinaceous structure of chromosome bivalents whose assembly is indispensable for the successful progression of the first meiotic division of sexually reproducing organisms. In this mini-review we will focus on recent progress dealing with the composition and assembly of the mammalian SC. These advances mainly resulted from the systematic use of knockout mice for all known mammalian SC proteins as well as from protein polymerization studies performed in heterologous systems.
Collapse
Affiliation(s)
- Johanna Fraune
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, D-97074 Würzburg, Germany
| | | | | | | |
Collapse
|
145
|
Davies OR, Maman JD, Pellegrini L. Structural analysis of the human SYCE2-TEX12 complex provides molecular insights into synaptonemal complex assembly. Open Biol 2012; 2:120099. [PMID: 22870393 PMCID: PMC3411106 DOI: 10.1098/rsob.120099] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 06/26/2012] [Indexed: 11/12/2022] Open
Abstract
The successful completion of meiosis is essential for all sexually reproducing organisms. The synaptonemal complex (SC) is a large proteinaceous structure that holds together homologous chromosomes during meiosis, providing the structural framework for meiotic recombination and crossover formation. Errors in SC formation are associated with infertility, recurrent miscarriage and aneuploidy. The current lack of molecular information about the dynamic process of SC assembly severely restricts our understanding of its function in meiosis. Here, we provide the first biochemical and structural analysis of an SC protein component and propose a structural basis for its function in SC assembly. We show that human SC proteins SYCE2 and TEX12 form a highly stable, constitutive complex, and define the regions responsible for their homotypic and heterotypic interactions. Biophysical analysis reveals that the SYCE2-TEX12 complex is an equimolar hetero-octamer, formed from the association of an SYCE2 tetramer and two TEX12 dimers. Electron microscopy shows that biochemically reconstituted SYCE2-TEX12 complexes assemble spontaneously into filamentous structures that resemble the known physical features of the SC central element (CE). Our findings can be combined with existing biological data in a model of chromosome synapsis driven by growth of SYCE2-TEX12 higher-order structures within the CE of the SC.
Collapse
Affiliation(s)
- Owen R Davies
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Old Addenbrookes Site, Cambridge CB2 1GA, UK.
| | | | | |
Collapse
|
146
|
Lake CM, Hawley RS. The molecular control of meiotic chromosomal behavior: events in early meiotic prophase in Drosophila oocytes. Annu Rev Physiol 2012; 74:425-51. [PMID: 22335798 DOI: 10.1146/annurev-physiol-020911-153342] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We review the critical events in early meiotic prophase in Drosophila melanogaster oocytes. We focus on four aspects of this process: the formation of the synaptonemal complex (SC) and its role in maintaining homologous chromosome pairings, the critical roles of the meiosis-specific process of centromere clustering in the formation of a full-length SC, the mechanisms by which preprogrammed double-strand breaks initiate meiotic recombination, and the checkpoints that govern the progression and coordination of these processes. Central to this discussion are the roles that somatic pairing events play in establishing the necessary conditions for proper SC formation, the roles of centromere pairing in synapsis initiation, and the mechanisms by which oocytes detect failures in SC formation and/or recombination. Finally, we correlate what is known in Drosophila oocytes with our understanding of these processes in other systems.
Collapse
Affiliation(s)
- Cathleen M Lake
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.
| | | |
Collapse
|
147
|
Xie WJ, Shi DY, Cai ZX, Chen XY, Jin WW. [Organization, function and genetic controlling of synaptonemal complex]. YI CHUAN = HEREDITAS 2012; 34:167-76. [PMID: 22382058 DOI: 10.3724/sp.j.1005.2012.00167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The synaptonemal complex (SC) is a super protein lattice that connects paired homologous chromosomes in most meiotic systems. This special organization is related to the meiosis processes such as homologous chromosomes pairing, synapsis, recombination, segregation, etc. Flaws of it would lead the meiocytes to apoptosis, which contributes to sterility. In recent years, the study of this complex has been a hotspot in meiosis research, but little was known about its exact mechanism. This review summarized the organization, function, and genetics of this complex with recent advances. Prospects of its further study were also briefly discussed..
Collapse
Affiliation(s)
- Wen-Jun Xie
- China Agricultural University, Beijing, China.
| | | | | | | | | |
Collapse
|
148
|
Abstract
This commentary provides a summary of existing meiotic mutants affecting the synaptonemal complex and meiotic recombination in order to contextualize the recent discovery of SPATA22/repro42 through ENU mutagenesis.
Collapse
Affiliation(s)
- Gregory M Buchold
- Gamete Biology Group, Laboratory of Reproduction and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
| |
Collapse
|
149
|
La Salle S, Palmer K, O'Brien M, Schimenti JC, Eppig J, Handel MA. Spata22, a novel vertebrate-specific gene, is required for meiotic progress in mouse germ cells. Biol Reprod 2012; 86:45. [PMID: 22011390 DOI: 10.1095/biolreprod.111.095752] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The N-ethyl-N-nitrosourea-induced repro42 mutation, identified by a forward genetics strategy, causes both male and female infertility, with no other apparent phenotypes. Positional cloning led to the discovery of a nonsense mutation in Spata22, a hitherto uncharacterized gene conserved among bony vertebrates. Expression of both transcript and protein is restricted predominantly to germ cells of both sexes. Germ cells of repro42 mutant mice express Spata22 transcript, but not SPATA22 protein. Gametogenesis is profoundly affected by the mutation, and germ cells in repro42 mutant mice do not progress beyond early meiotic prophase, with subsequent germ cell loss in both males and females. The Spata22 gene is essential for one or more key events of early meiotic prophase, as homologous chromosomes of mutant germ cells do not achieve normal synapsis or repair meiotic DNA double-strand breaks. The repro42 mutation thus identifies a novel mammalian germ cell-specific gene required for meiotic progression.
Collapse
|
150
|
Genetics of Meiosis and Recombination in Mice. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY VOLUME 298 2012; 298:179-227. [DOI: 10.1016/b978-0-12-394309-5.00005-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|