101
|
Abstract
Aging is a multidimensional process that leads to an increased risk of developing severe diseases, such as cancer and cardiovascular, neurodegenerative, and immunological diseases. Recently, small non-coding RNAs known as microRNAs (miRNAs) have been shown to regulate gene expression, which contributes to many physiological and pathophysiological processes in humans. Increasing evidence suggests that changes in miRNA expression profiles contribute to cellular senescence, aging and aging-related diseases. However, only a few miRNAs whose functions have been elucidated have been associated with aging and/or aging-related diseases. This article reviews the currently available findings regarding the roles of aging-related miRNAs, with a focus on cardiac and cardiovascular aging.
Collapse
|
102
|
Fritz HK, Gustafsson A, Ljungberg B, Ceder Y, Axelson H, Dahlbäck B. The Axl-Regulating Tumor Suppressor miR-34a Is Increased in ccRCC but Does Not Correlate with Axl mRNA or Axl Protein Levels. PLoS One 2015; 10:e0135991. [PMID: 26287733 PMCID: PMC4546115 DOI: 10.1371/journal.pone.0135991] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 07/28/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND High expression of the receptor tyrosine kinase Axl is associated with poor prognosis in patients with Renal Cell Carcinoma (RCC), the most common malignancy of the kidney. The miR-34a has been shown to directly regulate Axl in cancer cells. The miR-34a is a mediator of p53-dependent tumor suppression, and low expression of miR-34a has been associated with worse prognosis in several cancers. Our aim was to elucidate whether miR-34a or the other members of the miR-34 family (miR-34b/c) regulate Axl in RCC. METHODOLOGY AND RESULTS Using western blot, flow cytometry, and RT-qPCR, we showed that Axl mRNA and protein are downregulated in 786-O cells by miR-34a and miR-34c but not by miR-34b. A luciferase reporter assay demonstrated direct interaction between the Axl 3' UTR and miR-34a and miR-34c. The levels of miR-34a/b/c were measured in tumor tissue in a cohort of 198 RCC patients, and the levels of miR-34a were found to be upregulated in clear cell RCC (ccRCC) tumors, but not associated with patient outcome. Neither of the miR-34 family members correlated with Axl mRNA, soluble Axl protein in serum, nor with immunohistochemistry of Axl in tumor tissue. In addition, we measured mRNA levels of a known miR-34a target, HNF4A, and found the HNF4A levels to be decreased in ccRCC tumors, but unexpectedly correlated positively rather than negatively with miR-34a. CONCLUSIONS Although miR-34a and miR-34c can regulate Axl expression in vitro, our data indicates that the miR-34 family members are not the primary regulators of Axl expression in RCC.
Collapse
Affiliation(s)
- Helena K. Fritz
- Lund University, Department of Translational Medicine, Section of Clinical Chemistry, University Hospital Malmö, Malmö, Sweden
| | - Anna Gustafsson
- Lund University, Department of Translational Medicine, Section of Clinical Chemistry, University Hospital Malmö, Malmö, Sweden
| | - Börje Ljungberg
- Umeå University, Departments of Surgical and Perioperative Sciences, Urology and Andrology, Umeå, Sweden
| | - Yvonne Ceder
- Lund University, Department of Laboratory Medicine, Division of Translational Cancer Research, Medicon Village, Lund, Sweden
| | - Håkan Axelson
- Lund University, Department of Laboratory Medicine, Division of Translational Cancer Research, Medicon Village, Lund, Sweden
| | - Björn Dahlbäck
- Lund University, Department of Translational Medicine, Section of Clinical Chemistry, University Hospital Malmö, Malmö, Sweden
- * E-mail:
| |
Collapse
|
103
|
Navarro F, Lieberman J. miR-34 and p53: New Insights into a Complex Functional Relationship. PLoS One 2015; 10:e0132767. [PMID: 26177460 PMCID: PMC4503669 DOI: 10.1371/journal.pone.0132767] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/19/2015] [Indexed: 12/13/2022] Open
Abstract
miR-34, a tumor suppressor miRNA family transcriptionally activated by p53, is considered a critical mediator of p53 function. However, knockout of the mouse miR-34 family has little or no effect on the p53 response. The relative contribution of different miR-34 family members to p53 function or how much p53 relies on miR-34 in human cells is unclear. Here we show that miR-34a has a complex effect on the p53 response in human cells. In HCT116 cells miR-34a overexpression enhances p53 transcriptional activity, but the closely related family members, miR-34b and miR-34c, even when over-expressed, have little effect. Both TP53 itself and MDM4, a strong p53 transactivation inhibitor, are direct targets of miR-34a. The genes regulated by miR-34a also include four other post-translational inhibitors of p53. miR-34a overexpression leads to variable effects on p53 levels in p53-sufficient human cancer cell lines. In HCT116, miR-34a overexpression increases p53 protein levels and stability. About a quarter of all mRNAs that participate in the human p53 network bind to biotinylated miR-34a, suggesting that many are direct miR-34a targets. However, only about a fifth of the mRNAs that bind to miR-34a also bind to miR-34b or miR-34c. Two human cell lines knocked out for miR-34a have unimpaired p53-mediated responses to genotoxic stress, like mouse cells. The complex positive and negative effects of miR-34 on the p53 network suggest that rather than simply promoting the p53 response, miR-34a might act at a systems level to stabilize the robustness of the p53 response to genotoxic stress.
Collapse
Affiliation(s)
- Francisco Navarro
- Cellular and Molecular Medicine Program, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- * E-mail: (FN); (JL)
| | - Judy Lieberman
- Cellular and Molecular Medicine Program, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (FN); (JL)
| |
Collapse
|
104
|
Tu CC, Zhong Y, Nguyen L, Tsai A, Sridevi P, Tarn WY, Wang JYJ. The kinase ABL phosphorylates the microprocessor subunit DGCR8 to stimulate primary microRNA processing in response to DNA damage. Sci Signal 2015; 8:ra64. [PMID: 26126715 DOI: 10.1126/scisignal.aaa4468] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The DNA damage response network stimulates microRNA (miRNA) biogenesis to coordinate repair, cell cycle checkpoints, and apoptosis. The multistep process of miRNA biogenesis involves the cleavage of primary miRNAs by the microprocessor complex composed of the ribonuclease Drosha and the RNA binding protein DGCR8. We found that the tyrosine kinase ABL phosphorylated DGCR8, a modification that was required for the induction of a subset of miRNAs after DNA damage. Focusing on the miR-34 family, ABL stimulated the production of miR-34c, but not miR-34a, through Drosha/DGCR8-dependent processing of primary miR-34c (pri-miR-34c). This miRNA-selective effect of ABL required the sequences flanking the precursor miR-34c (pre-miR-34c) stem-loop. In pri-miRNA processing, DGCR8 binds the pre-miR stem-loop and recruits Drosha to the miRNA. RNA cross-linking assays showed that DGCR8 and Drosha interacted with pri-miR-34c, but we found an inverse correlation between ABL-stimulated processing and DGCR8 association with pri-miR-34c. When coexpressed in HEK293T cells, ABL phosphorylated DGCR8 at Tyr(267). Ectopic expression of a Y267F-DGCR8 mutant reduced the recruitment of Drosha to pri-miR-34c and prevented ABL or Drosha from stimulating the processing of pri-miR-34c. In mice engineered to express a nuclear import-defective mutant of ABL, miR-34c, but not miR-34a, expression was reduced in the kidney, and apoptosis of the renal epithelial cells was impaired in response to cisplatin. These results reveal a new pathway in the DNA damage response wherein ABL-dependent tyrosine phosphorylation of DGCR8 stimulates the processing of selective primary miRNAs.
Collapse
Affiliation(s)
- Chi-Chiang Tu
- Moores Cancer Center and Division of Hematology-Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0644, USA. Institute of Biomedical Sciences, Academia Sinica, Taipei 11529 Taiwan
| | - Yan Zhong
- Moores Cancer Center and Division of Hematology-Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0644, USA
| | - Louis Nguyen
- Moores Cancer Center and Division of Hematology-Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0644, USA
| | - Aaron Tsai
- Moores Cancer Center and Division of Hematology-Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0644, USA
| | - Priya Sridevi
- Moores Cancer Center and Division of Hematology-Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0644, USA
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529 Taiwan
| | - Jean Y J Wang
- Moores Cancer Center and Division of Hematology-Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0644, USA.
| |
Collapse
|
105
|
MiR-34a suppresses ovarian cancer proliferation and motility by targeting AXL. Tumour Biol 2015; 36:7277-83. [PMID: 25895459 DOI: 10.1007/s13277-015-3445-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 04/08/2015] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence has suggested that dysregulation of microRNAs (miRNAs) could contribute to tumor progression. The miR-34 family is directly transactivated by tumor suppressor p53 which is frequently mutated in various cancers; however, the effect of miR-34a on the ovarian cancer cells remains unclear. The aim of the paper was to study the expression of miR-34a in ovarian cancer and miR-34a's relation to the cell proliferation and metastasis in ovarian cancer in vitro. miR-34a expression was determined by quantitative RT-PCR in a panel of 60 human ovarian cancer samples. Functional characterization of miR-34a was accomplished by reconstitution of miR-34a expression in ovarian cancer cells by determining changes in proliferation, migration, and invasion. Our results showed that miR-34a is downregulated in ovarian cancer tissues compared with the corresponding adjacent non-neoplastic tissues, and the expression level of miR-34a was significantly lower in ovarian cancer cell lines in comparison with normal human fallopian tube epithelial cell line. The 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide (MTT) assay revealed significant cell proliferation inhibition in miR-34a transfectant compared with the control from HO8910 and SKOV3 cells, which displayed lowest expressions of miR-34a. Furthermore, the transwell assay also showed significant cell migration inhibition in miR-34a transfectant, compared with cell lines transfected with NC. Overexpression of miR-34a led to the inhibition of AXL expression, indicating that AXL is a target gene for miR-34a. Our data suggest that miR-34a may function as a tumor suppressor through repression of oncogenic AXL in ovarian cancer.
Collapse
|
106
|
Hiyoshi Y, Schetter AJ, Okayama H, Inamura K, Anami K, Nguyen GH, Horikawa I, Hawkes JE, Bowman ED, Leung SY, Harris CC. Increased microRNA-34b and -34c predominantly expressed in stromal tissues is associated with poor prognosis in human colon cancer. PLoS One 2015; 10:e0124899. [PMID: 25894979 PMCID: PMC4404052 DOI: 10.1371/journal.pone.0124899] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/08/2015] [Indexed: 12/15/2022] Open
Abstract
The microRNA-34 family (miR-34a, -34b and -34c) have been reported to be tumor suppressor microRNAs (miRNAs) that are regulated by the TP53 and DNA hypermethylation. However, the expression, regulation, and prognostic value of the miR-34 family have not been systematically studied in colon cancer. To elucidate the roles of miR-34 family in colon carcinogenesis, miR-34a/b/c were measured in tumors and adjacent noncancerous tissues from 159 American and 113 Chinese colon cancer patients using quantitative RT-PCR, and we examined associations between miR-34a/b/c expression with TNM staging, cancer-specific mortality, TP53 mutation status and Affymetrix microarray data. All miR-34 family members were significantly increased in colon tumors, counter to the proposed tumor suppressor role for these miRNAs. Increased miR-34b/c were observed in more advanced tumors in two independent cohorts and increased expression of miR-34b/c was associated with poor cancer-specific mortality. While the expression of miR-34 family was not associated with TP53 mutation status, TP53 transcriptional activity was associated with miR-34a/b/c expression that is consistent with the proposed regulation of miR-34a/b/c by TP53. To examine where the miR-34 family is expressed, the expression of miR-34 family was compared between epitheliums and stromal tissues using laser microdissection technique. The expression of miR-34b/c was increased significantly in stromal tissues, especially in cancer stroma, compared with epithelial tissue. In conclusion, increased miR-34b/c predominantly expressed in stromal tissues is associated with poor prognosis in colon cancer. MiR-34 may contribute to cancer-stromal interaction associated with colon cancer progression.
Collapse
Affiliation(s)
- Yukiharu Hiyoshi
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Aaron J. Schetter
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Hirokazu Okayama
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Kentaro Inamura
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Katsuhiro Anami
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Giang H. Nguyen
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Izumi Horikawa
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jason E. Hawkes
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Elise D. Bowman
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Suet Yi Leung
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Curtis C. Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- * E-mail:
| |
Collapse
|
107
|
|
108
|
Olive V, Minella AC, He L. Outside the coding genome, mammalian microRNAs confer structural and functional complexity. Sci Signal 2015; 8:re2. [PMID: 25783159 PMCID: PMC4425368 DOI: 10.1126/scisignal.2005813] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) comprise a class of small, regulatory noncoding RNAs (ncRNAs) with pivotal roles in posttranscriptional gene regulation. Since their initial discovery in 1993, numerous miRNAs have been identified in mammalian genomes, many of which play important roles in diverse cellular processes in development and disease. These small ncRNAs regulate the expression of many protein-coding genes posttranscriptionally, thus adding a substantial complexity to the molecular networks underlying physiological development and disease. In part, this complexity arises from the distinct gene structures, the extensive genomic redundancy, and the complex regulation of the expression and biogenesis of miRNAs. These characteristics contribute to the functional robustness and versatility of miRNAs and provide important clues to the functional significance of these small ncRNAs. The unique structure and function of miRNAs will continue to inspire many to explore the vast noncoding genome and to elucidate the molecular basis for the functional complexity of mammalian genomes.
Collapse
Affiliation(s)
- Virginie Olive
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94705, USA
| | - Alex C Minella
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA
| | - Lin He
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94705, USA.
| |
Collapse
|
109
|
Marcel V, Catez F, Diaz JJ. p53, a translational regulator: contribution to its tumour-suppressor activity. Oncogene 2015; 34:5513-23. [DOI: 10.1038/onc.2015.25] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 12/14/2022]
|
110
|
Vidigal JA, Ventura A. The biological functions of miRNAs: lessons from in vivo studies. Trends Cell Biol 2015; 25:137-147. [PMID: 25484347 PMCID: PMC4344861 DOI: 10.1016/j.tcb.2014.11.004] [Citation(s) in RCA: 396] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 12/12/2022]
Abstract
Despite their clear importance as a class of regulatory molecules, pinpointing the relevance of individual miRNAs has been challenging. Studies querying miRNA functions by overexpressing or silencing specific miRNAs have yielded data that are often at odds with those collected from loss-of-functions models. In addition, knockout studies suggest that many conserved miRNAs are dispensable for animal development or viability. In this review, we discuss these observations in the context of our current knowledge of miRNA biology and review the evidence implicating miRNA-mediated gene regulation in the mechanisms that ensure biological robustness.
Collapse
Affiliation(s)
- Joana A Vidigal
- Memorial Sloan Kettering Cancer Center, Cancer Biology and Genetics Program, 1275 York Avenue, New York, NY 10065, USA
| | - Andrea Ventura
- Memorial Sloan Kettering Cancer Center, Cancer Biology and Genetics Program, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
111
|
Abstract
The mir-34 family was originally cloned and characterized in 2007 as a p53 target gene. Almost immediately it became clear that its major role is as a master regulator of tumor suppression. Indeed, when overexpressed, it directly and indirectly represses several oncogenes, resulting in an increase of cancer cell death (including cancer stem cells), and in an inhibition of metastasis. Moreover, its expression is deregulated in several human cancers. In 2013, a miR-34 mimic has become the first microRNA to reach phase 1 clinical trials. Here we review the miR-34 family and their role in tumor biology, and discuss the potential therapeutic applications of miR-34a mimic.
Collapse
|
112
|
miR-34a regulates cell proliferation, morphology and function of newborn neurons resulting in improved behavioural outcomes. Cell Death Dis 2015; 6:e1622. [PMID: 25633291 PMCID: PMC4669781 DOI: 10.1038/cddis.2014.589] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/05/2014] [Accepted: 12/10/2014] [Indexed: 12/16/2022]
Abstract
miR-34a is involved in the regulation of the fate of different cell types. However, the mechanism by which it controls the differentiation programme of neural cells remains largely unknown. Here, we investigated the role of miR-34a in neurogenesis and maturation of developing neurons and identified Doublecortin as a new miR-34a target. We found that the overexpression of miR-34a in vitro significantly increases precursor proliferation and influences morphology and function of developing neurons. Indeed, miR-34a overexpressing neurons showed a decreased expression of several synaptic proteins and receptor subunits, a decrement of NMDA-evoked current density and, interestingly, a more efficient response to synaptic stimulus. In vivo, miR-34a overexpression showed stage-specific effects. In neural progenitors, miR-34a overexpression promoted cell proliferation, in migratory neuroblasts reduced the migration and in differentiating newborn neurons modulated process outgrowth and complexity. Importantly, we found that rats overexpressing miR-34a in the brain have better learning abilities and reduced emotionality.
Collapse
|
113
|
Speidel D. The role of DNA damage responses in p53 biology. Arch Toxicol 2015; 89:501-17. [PMID: 25618545 DOI: 10.1007/s00204-015-1459-z] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/08/2015] [Indexed: 12/16/2022]
Abstract
The tumour suppressor p53 is a central player in cellular DNA damage responses. P53 is upregulated and activated by genotoxic stress and induces a transcriptional programme with effectors promoting apoptosis, cell cycle arrest, senescence and DNA repair. For the best part of the last three decades, these DNA damage-related programmes triggered by p53 were unequivocally regarded as the major if not sole mechanism by which p53 exerts its tumour suppressor function. However, this interpretation has been challenged by a number of recent in vivo studies, demonstrating that mice which are defective in inducing p53-dependent apoptosis, cell cycle arrest and senescence suppress thymic lymphoma as well as wild-type p53 expressing animals. Consequently, the importance of DNA damage responses for p53-mediated tumour suppression has been questioned. In this review, I summarize current knowledge on p53-controlled DNA damage responses and argue that these activities, while their role has certainly changed, remain an important feature of p53 biology with relevance for cancer therapy and tumour suppression.
Collapse
Affiliation(s)
- Daniel Speidel
- Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, NSW, 2145, Australia,
| |
Collapse
|
114
|
Aoi W. Frontier impact of microRNAs in skeletal muscle research: a future perspective. Front Physiol 2015; 5:495. [PMID: 25601837 PMCID: PMC4283715 DOI: 10.3389/fphys.2014.00495] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/01/2014] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that can regulate the expression of mRNAs and proteins by degrading mRNA molecules or by inhibiting their translation. It has been predicted that miRNAs regulate approximately 60% of protein-coding genes that could be involved in a wide range of biological processes. Research over the last 5 years suggests that miRNAs play important roles in skeletal muscle function and several miRNAs have been identified as modulators of myogenesis, muscle mass, and nutrient metabolism in physiological and pathological states. In addition, some miRNAs can be incorporated into intracellular vesicles, released into the circulation, transported to other cells, and possibly function in other organs in an endocrine manner. This phenomenon might explain the interactions between skeletal muscles and other organs. Thus, far, several muscle-secreted miRNAs have been identified and their involvement in muscle biology has been debated. Based on the recent understanding, this perspective article describes the potential valuable role of miRNAs in skeletal muscle function, delineates its limitations, and outlines its future perspectives.
Collapse
Affiliation(s)
- Wataru Aoi
- Laboratory of Health Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University Kyoto, Japan
| |
Collapse
|
115
|
Abstract
The tumor-suppressor protein p53 belongs to a family of proteins that play pivotal roles in multiple cellular functions including cell proliferation, cell death, genome stability, and regulation of inflammation. Neuroinflammation is a common feature of central nervous system (CNS) pathology, and microglia are the specialized resident population of CNS myeloid cells that initiate innate immune responses. Microglia maintain CNS homeostasis through pathogen containment, phagocytosis of debris, and initiation of tissue-repair cascades. However, an unregulated pro-inflammatory response can lead to tissue injury and dysfunction in both acute and chronic inflammatory states. Therefore, regulation of the molecular signals that control the induction, magnitude, and resolution of inflammation are necessary for optimal CNS health. We and others have described a novel mechanism by which p53 transcriptional activity modulates microglia behaviors in vitro and in vivo. Activation of p53 induces expression of microRNAs (miRNAs) that support microglia pro-inflammatory functions and suppress anti-inflammatory and tissue repair behaviors. In this review, we introduce the previously described roles of the p53 signaling network and discuss novel functions of p53 in the microglia-mediated inflammatory response in CNS health and disease. Ultimately, improved understanding of the molecular regulators modulated by p53 transcriptional activity in microglia will enhance the development of rational therapeutic strategies to harness the homeostatic and tissue repair functions of microglia.
Collapse
Affiliation(s)
- Macarena S. Aloi
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Wei Su
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Gwenn A. Garden
- Department of Pathology, University of Washington, Seattle, Washington, USA
- Department of Neurology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
116
|
Wronska A, Kurkowska-Jastrzebska I, Santulli G. Application of microRNAs in diagnosis and treatment of cardiovascular disease. Acta Physiol (Oxf) 2015; 213:60-83. [PMID: 25362848 DOI: 10.1111/apha.12416] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/08/2014] [Accepted: 10/24/2014] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease (CVD) is a major cause of morbidity and mortality worldwide. Innovative, more stringent diagnostic and prognostic biomarkers and effective treatment options are needed to lessen its burden. In recent years, microRNAs have emerged as master regulators of gene expression - they bind to complementary sequences within the mRNAs of their target genes and inhibit their expression by either mRNA degradation or translational repression. microRNAs have been implicated in all major cellular processes, including cell cycle, differentiation and metabolism. Their unique mode of action, fine-tuning gene expression rather than turning genes on/off, and their ability to simultaneously regulate multiple elements of relevant pathways makes them enticing potential biomarkers and therapeutic targets. Indeed, cardiovascular patients have specific patterns of circulating microRNA levels, often early in the disease process. This article provides a systematic overview of the role of microRNAs in the pathophysiology, diagnosis and treatment of CVD.
Collapse
Affiliation(s)
- A. Wronska
- Helen and Clyde Wu Center for Molecular Cardiology; Department of Physiology and Cellular Biophysics; College of Physicians and Surgeons of Columbia University; New York NY USA
| | - I. Kurkowska-Jastrzebska
- Department of Experimental and Clinical Pharmacology; Medical University of Warsaw; Warsaw Poland
- 2nd Department of Neurology; National Institute of Psychiatry and Neurology; Warsaw Poland
| | - G. Santulli
- Helen and Clyde Wu Center for Molecular Cardiology; Department of Physiology and Cellular Biophysics; College of Physicians and Surgeons of Columbia University; New York NY USA
| |
Collapse
|
117
|
Thor T, Künkele A, Pajtler KW, Wefers AK, Stephan H, Mestdagh P, Heukamp L, Hartmann W, Vandesompele J, Sadowski N, Becker L, Garrett L, Hölter SM, Horsch M, Calzada-Wack J, Klein-Rodewald T, Racz I, Zimmer A, Beckers J, Neff F, Klopstock T, De Antonellis P, Zollo M, Wurst W, Fuchs H, Gailus-Durner V, Schüller U, de Angelis MH, Eggert A, Schramm A, Schulte JH. MiR-34a deficiency accelerates medulloblastoma formation in vivo. Int J Cancer 2014; 136:2293-303. [PMID: 25348795 DOI: 10.1002/ijc.29294] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 08/13/2014] [Indexed: 01/07/2023]
Abstract
Previous studies have evaluated the role of miRNAs in cancer initiation and progression. MiR-34a was found to be downregulated in several tumors, including medulloblastomas. Here we employed targeted transgenesis to analyze the function of miR-34a in vivo. We generated mice with a constitutive deletion of the miR-34a gene. These mice were devoid of mir-34a expression in all analyzed tissues, but were viable and fertile. A comprehensive standardized phenotypic analysis including more than 300 single parameters revealed no apparent phenotype. Analysis of miR-34a expression in human medulloblastomas and medulloblastoma cell lines revealed significantly lower levels than in normal human cerebellum. Re-expression of miR-34a in human medulloblastoma cells reduced cell viability and proliferation, induced apoptosis and downregulated the miR-34a target genes, MYCN and SIRT1. Activation of the Shh pathway by targeting SmoA1 transgene overexpression causes medulloblastoma in mice, which is dependent on the presence and upregulation of Mycn. Analysis of miR-34a in medulloblastomas derived from ND2:SmoA1(tg) mice revealed significant suppression of miR-34a compared to normal cerebellum. Tumor incidence was significantly increased and tumor formation was significantly accelerated in mice transgenic for SmoA1 and lacking miR-34a. Interestingly, Mycn and Sirt1 were strongly expressed in medulloblastomas derived from these mice. We here demonstrate that miR-34a is dispensable for normal development, but that its loss accelerates medulloblastomagenesis. Strategies aiming to re-express miR-34a in tumors could, therefore, represent an efficient therapeutic option.
Collapse
Affiliation(s)
- Theresa Thor
- Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Hufelandstr. 55 45147, Essen, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Badi I, Burba I, Ruggeri C, Zeni F, Bertolotti M, Scopece A, Pompilio G, Raucci A. MicroRNA-34a Induces Vascular Smooth Muscle Cells Senescence by SIRT1 Downregulation and Promotes the Expression of Age-Associated Pro-inflammatory Secretory Factors. J Gerontol A Biol Sci Med Sci 2014; 70:1304-11. [PMID: 25352462 DOI: 10.1093/gerona/glu180] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 09/03/2014] [Indexed: 02/06/2023] Open
Abstract
Arterial aging is a major risk factor for the occurrence of cardiovascular diseases. The aged artery is characterized by endothelial dysfunction and vascular smooth muscle cells altered physiology together with low-grade chronic inflammation. MicroRNA-34a (miR-34a) has been recently implicated in cardiac, endothelial, and endothelial progenitor cell senescence; however, its contribution to aging-associated vascular smooth muscle cells phenotype has not been explored so far. We found that miR-34a was highly expressed in aortas isolated from old mice. Moreover, its well-known target, the longevity-associated protein SIRT1, was significantly downregulated during aging in both endothelial cells and vascular smooth muscle cells. Increased miR-34a as well as decreased SIRT1 expression was also observed in replicative-senescent human aortic smooth muscle cells. miR-34a overexpression in proliferative human aortic smooth muscle cells caused cell cycle arrest along with enhanced p21 protein levels and evidence of cell senescence. Furthermore, miR-34a ectopic expression induced pro-inflammatory senescence-associated secretory phenotype molecules. Finally, SIRT1 protein significantly decreased upon miR-34a overexpression and restoration of its levels rescued miR-34a-dependent human aortic smooth muscle cells senescence, but not senescence-associated secretory phenotype factors upregulation. Taken together, our findings suggest that aging-associated increase of miR-34a expression levels, by promoting vascular smooth muscle cells senescence and inflammation through SIRT1 downregulation and senescence-associated secretory phenotype factors induction, respectively, may lead to arterial dysfunctions.
Collapse
Affiliation(s)
- Ileana Badi
- Unit of Vascular Biology and Regenerative Medicine and Unit of Cardiovascular Regeneration and Aging, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Ilaria Burba
- Unit of Vascular Biology and Regenerative Medicine and
| | - Clarissa Ruggeri
- Unit of Vascular Biology and Regenerative Medicine and Unit of Cardiovascular Regeneration and Aging, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Filippo Zeni
- Unit of Vascular Biology and Regenerative Medicine and Unit of Cardiovascular Regeneration and Aging, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Matteo Bertolotti
- Unit of Vascular Biology and Regenerative Medicine and Unit of Cardiovascular Regeneration and Aging, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | | | | | - Angela Raucci
- Unit of Vascular Biology and Regenerative Medicine and Unit of Cardiovascular Regeneration and Aging, Centro Cardiologico Monzino-IRCCS, Milan, Italy.
| |
Collapse
|
119
|
Comazzetto S, Di Giacomo M, Rasmussen KD, Much C, Azzi C, Perlas E, Morgan M, O'Carroll D. Oligoasthenoteratozoospermia and infertility in mice deficient for miR-34b/c and miR-449 loci. PLoS Genet 2014; 10:e1004597. [PMID: 25329700 PMCID: PMC4199480 DOI: 10.1371/journal.pgen.1004597] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/10/2014] [Indexed: 11/17/2022] Open
Abstract
Male fertility requires the continuous production of high quality motile spermatozoa in abundance. Alterations in all three metrics cause oligoasthenoteratozoospermia, the leading cause of human sub/infertility. Post-mitotic spermatogenesis inclusive of several meiotic stages and spermiogenesis (terminal spermatozoa differentiation) are transcriptionally inert, indicating the potential importance for the post-transcriptional microRNA (miRNA) gene-silencing pathway therein. We found the expression of miRNA generating enzyme Dicer within spermatogenesis peaks in meiosis with critical functions in spermatogenesis. In an expression screen we identified two miRNA loci of the miR-34 family (miR-34b/c and miR-449) that are specifically and highly expressed in post-mitotic male germ cells. A reduction in several miRNAs inclusive of miR-34b/c in spermatozoa has been causally associated with reduced fertility in humans. We found that deletion of both miR34b/c and miR-449 loci resulted in oligoasthenoteratozoospermia in mice. MiR-34bc/449-deficiency impairs both meiosis and the final stages of spermatozoa maturation. Analysis of miR-34bc−/−;449−/− pachytene spermatocytes revealed a small cohort of genes deregulated that were highly enriched for miR-34 family target genes. Our results identify the miR-34 family as the first functionally important miRNAs for spermatogenesis whose deregulation is causal to oligoasthenoteratozoospermia and infertility. The sustained production of functional motile sperm is critical for male fertility. In recent years, a dramatic increase of cases of male infertility were reported, with the most common cause represented by the production of morphologically abnormal spermatozoa with low motility. Several genetic and environmental factors have been proven to impact on sperm development. In particular, preliminary studies on samples from fertile and sterile individuals suggested that the deregulation of a class of small noncoding RNAs, called microRNAs, might be detrimental for sperm formation. To this end, we investigated the expression of Dicer, a core microRNA pathway component, in male germ cells and observed a peak of expression during meiosis. We performed a microRNA-expression screening and identified 5 members of the miR-34 family (miR-34bc and miR-449abc) as highly expressed from late meiosis to the sperm stage. Deletion of miR-34bc and miR-449 leads to sterility due to the production of abnormal spermatozoa with reduced motility. Thus our work proves for the first time the importance of a microRNA family in sperm formation and male fertility.
Collapse
Affiliation(s)
- Stefano Comazzetto
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Monterotondo Scalo, Italy
| | - Monica Di Giacomo
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Monterotondo Scalo, Italy
| | | | - Christian Much
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Monterotondo Scalo, Italy
| | - Chiara Azzi
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Monterotondo Scalo, Italy
| | - Emerald Perlas
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Monterotondo Scalo, Italy
| | - Marcos Morgan
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Monterotondo Scalo, Italy
| | - Dónal O'Carroll
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Monterotondo Scalo, Italy
| |
Collapse
|
120
|
Abstract
Sperm RNA has been linked recently to trans-generational, non-Mendelian patterns of inheritance. Originally dismissed as “residual” to spermatogenesis, some sperm RNA may have postfertilization functions including the transmission of acquired characteristics. Sperm RNA may help explain how trans-generational effects are transmitted and it may also have implications for assisted reproductive technologies (ART) where sperm are subjected to considerable, ex vivo manual handling. The presence of sperm RNA was originally a controversial topic because nuclear gene expression is switched off in the mature mammalian spermatozoon. With the recent application of next generation sequencing (NGS), an unexpectedly rich and complex repertoire of RNAs has been revealed in the sperm of several species that makes its residual presence counterintuitive. What follows is a personal survey of the science behind our understanding of sperm RNA and its functional significance based on experimental observations from my laboratory as well as many others who have contributed to the field over the years and are continuing to contribute today. The narrative begins with a historical perspective and ends with some educated speculation on where research into sperm RNA is likely to lead us in the next 10 years or so.
Collapse
|
121
|
Maroof H, Salajegheh A, Smith RA, Lam AKY. Role of microRNA-34 family in cancer with particular reference to cancer angiogenesis. Exp Mol Pathol 2014; 97:298-304. [PMID: 25102298 DOI: 10.1016/j.yexmp.2014.08.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 02/07/2023]
Abstract
MicroRNA-34 is involved in pathogenesis in cancer by targeting different tumor-related genes. It could be a biomarker for predicting the prognosis of patients with cancer. In addition, miR-34 is involved in the tumor angiogenesis. Understanding the mechanism of the miR-34 in cancer and tumor angiogenesis will open horizons for development of anti-cancer and anti-angiogenesis drugs.
Collapse
Affiliation(s)
- Hamidreza Maroof
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Ali Salajegheh
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Robert Anthony Smith
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
122
|
Abstract
The protein encoded by the TP53 gene is one of the most important suppressors of tumor formation, which is also frequently inactivated in gastrointestinal cancer. MicroRNAs (miRNAs) are small noncoding RNAs that inhibit translation and/or promote degradation of their target messenger RNAs. In recent years, several miRNAs have been identified as mediators and regulators of p53’s tumor suppressing functions. p53 induces expression and/or maturation of several miRNAs, which leads to the repression of critical effector proteins. Furthermore, certain miRNAs regulate the expression and activity of p53 through direct repression of p53 or its regulators. Experimental findings indicate that miRNAs are important components of the p53 network. In addition, the frequent genetic and epigenetic alterations of p53-regulated miRNAs in tumors indicate that they play an important role in cancer initiation and/or progression. Therefore, p53-regulated miRNAs may represent attractive diagnostic and/or prognostic biomarkers. Moreover, restoration of p53-induced miRNAs results in suppression of tumor growth and metastasis in mouse models of cancer. Thus, miRNA-based therapeutics may represent a feasible strategy for future cancer treatment. Here we summarize the current published state-of-the-art on the role of the p53-miRNA connection in gastrointestinal cancer.
Collapse
Affiliation(s)
- Matjaz Rokavec
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Huihui Li
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Longchang Jiang
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
123
|
Krzeszinskia JY, Wei W, Huynh H, Jin Z, Wang X, Chang TC, Xie XJ, He L, Mangala LS, Lopez-Berestein G, Sood AK, Mendell JT, Wan Y. miR-34a blocks osteoporosis and bone metastasis by inhibiting osteoclastogenesis and Tgif2. Nature 2014; 512:431-5. [PMID: 25043055 PMCID: PMC4149606 DOI: 10.1038/nature13375] [Citation(s) in RCA: 276] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 04/08/2014] [Indexed: 02/06/2023]
Abstract
Bone-resorbing osteoclasts significantly contribute to osteoporosis and bone metastases of cancer. MicroRNAs play important roles in physiology and disease, and present tremendous therapeutic potential. Nonetheless, how microRNAs regulate skeletal biology is underexplored. Here we identify miR-34a as a novel and critical suppressor of osteoclastogenesis, bone resorption and the bone metastatic niche. miR-34a is downregulated during osteoclast differentiation. Osteoclastic miR-34a-overexpressing transgenic mice exhibit lower bone resorption and higher bone mass. Conversely, miR-34a knockout and heterozygous mice exhibit elevated bone resorption and reduced bone mass. Consequently, ovariectomy-induced osteoporosis, as well as bone metastasis of breast and skin cancers, are diminished in osteoclastic miR-34a transgenic mice, and can be effectively attenuated by miR-34a nanoparticle treatment. Mechanistically, we identify transforming growth factor-β-induced factor 2 (Tgif2) as an essential direct miR-34a target that is pro-osteoclastogenic. Tgif2 deletion reduces bone resorption and abolishes miR-34a regulation. Together, using mouse genetic, pharmacological and disease models, we reveal miR-34a as a key osteoclast suppressor and a potential therapeutic strategy to confer skeletal protection and ameliorate bone metastasis of cancers.
Collapse
Affiliation(s)
- Jing Y. Krzeszinskia
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Wei Wei
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - HoangDinh Huynh
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Zixue Jin
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Xunde Wang
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Tsung-Cheng Chang
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Xian-Jin Xie
- Simmons Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Clinical Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Lin He
- Division of Cellular and Developmental Biology, Molecular and Cell Biology Department, University of California at Berkeley, Berkeley, California 94705, USA
| | - Lingegowda S. Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Center for RNA Interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Gabriel Lopez-Berestein
- Center for RNA Interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Center for RNA Interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Joshua T. Mendell
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Simmons Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yihong Wan
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Simmons Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
124
|
Abstract
At fertilization, the gametes endow the embryo with a genomic blueprint, the integrity of which is affected by the age and environmental exposures of both parents. Recent studies reveal that parental history and experiences also exert effects through epigenomic information not contained in the DNA sequence, including variations in sperm and oocyte cytosine methylation and chromatin patterning, noncoding RNAs, and mitochondria. Transgenerational epigenetic effects interact with conditions at conception to program the developmental trajectory of the embryo and fetus, ultimately affecting the lifetime health of the child. These insights compel us to revise generally held notions to accommodate the prospect that biological parenting commences well before birth, even prior to conception.
Collapse
Affiliation(s)
- Michelle Lane
- The Robinson Research Institute and School of Paediatrics and Reproductive Health, The University of Adelaide, Level 3, Medical School, South Adelaide, SA, 5005 Australia
| | - Rebecca L Robker
- The Robinson Research Institute and School of Paediatrics and Reproductive Health, The University of Adelaide, Level 3, Medical School, South Adelaide, SA, 5005 Australia
| | - Sarah A Robertson
- The Robinson Research Institute and School of Paediatrics and Reproductive Health, The University of Adelaide, Level 3, Medical School, South Adelaide, SA, 5005 Australia.
| |
Collapse
|
125
|
Roshan R, Shridhar S, Sarangdhar MA, Banik A, Chawla M, Garg M, Singh VPAL, Pillai B. Brain-specific knockdown of miR-29 results in neuronal cell death and ataxia in mice. RNA (NEW YORK, N.Y.) 2014; 20:1287-1297. [PMID: 24958907 PMCID: PMC4105753 DOI: 10.1261/rna.044008.113] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/14/2014] [Indexed: 06/03/2023]
Abstract
Several microRNAs have been implicated in neurogenesis, neuronal differentiation, neurodevelopment, and memory. Development of miRNA-based therapeutics, however, needs tools for effective miRNA modulation, tissue-specific delivery, and in vivo evidence of functional effects following the knockdown of miRNA. Expression of miR-29a is reduced in patients and animal models of several neurodegenerative disorders, including Alzheimer's disease, Huntington's disease, and spinocerebellar ataxias. The temporal expression pattern of miR-29b during development also correlates with its protective role in neuronal survival. Here, we report the cellular and behavioral effect of in vivo, brain-specific knockdown of miR-29. We delivered specific anti-miRNAs to the mouse brain using a neurotropic peptide, thus overcoming the blood-brain-barrier and restricting the effect of knockdown to the neuronal cells. Large regions of the hippocampus and cerebellum showed massive cell death, reiterating the role of miR-29 in neuronal survival. The mice showed characteristic features of ataxia, including reduced step length. However, the apoptotic targets of miR-29, such as Puma, Bim, Bak, or Bace1, failed to show expected levels of up-regulation in mice, following knockdown of miR-29. In contrast, another miR-29 target, voltage-dependent anion channel1 (VDAC1), was found to be induced several fold in the hippocampus, cerebellum, and cortex of mice following miRNA knockdown. Partial restoration of apoptosis was achieved by down-regulation of VDAC1 in miR-29 knockdown cells. Our study suggests that regulation of VDAC1 expression by miR-29 is an important determinant of neuronal cell survival in the brain. Loss of miR-29 results in dysregulation of VDAC1, neuronal cell death, and an ataxic phenotype.
Collapse
Affiliation(s)
- Reema Roshan
- CSIR-Institute of Genomics and Integrative Biology, Delhi-110020, India
| | - Shruti Shridhar
- CSIR-Institute of Genomics and Integrative Biology, Delhi-110020, India
| | | | - Arpita Banik
- CSIR-Institute of Genomics and Integrative Biology, Delhi-110020, India
| | - Mrinal Chawla
- CSIR-Institute of Genomics and Integrative Biology, Delhi-110020, India
| | - Manali Garg
- CSIR-Institute of Genomics and Integrative Biology, Delhi-110020, India
| | - Vijay P A L Singh
- CSIR-Institute of Genomics and Integrative Biology, Delhi-110020, India
| | - Beena Pillai
- CSIR-Institute of Genomics and Integrative Biology, Delhi-110020, India
| |
Collapse
|
126
|
MicroRNA-34a: a potential therapeutic target in human cancer. Cell Death Dis 2014; 5:e1327. [PMID: 25032850 PMCID: PMC4123066 DOI: 10.1038/cddis.2014.270] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/22/2014] [Accepted: 05/27/2014] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRs) are small noncoding RNAs that negatively regulate gene expression by binding to the three untranslated regions of their target mRNAs. Deregulations of miRs were shown to play pivotal roles in tumorigenesis and progression. Recent research efforts have been devoted to translating these basic discoveries into applications that could improve the therapeutic outcome of patients with cancer. MiR-34a is a highly conserved miR throughout many different species. In humans, there are three homologs (hsa-miR34a, hsa-miR-34b and hsa-miR-34c). Early studies have shown that miR-34a acts as a tumor-suppressor gene by targeting many oncogenes related to proliferation, apoptosis and invasion. In this review, we provide a complex overview of miR-34a, including regulating its expression, its known functions in cancer and future challenges as a potential therapeutic target in human cancers.
Collapse
|
127
|
Two miRNA clusters, miR-34b/c and miR-449, are essential for normal brain development, motile ciliogenesis, and spermatogenesis. Proc Natl Acad Sci U S A 2014; 111:E2851-7. [PMID: 24982181 DOI: 10.1073/pnas.1407777111] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ablation of a single miRNA gene rarely leads to a discernable developmental phenotype in mice, in some cases because of compensatory effects by other functionally related miRNAs. Here, we report that simultaneous inactivation of two functionally related miRNA clusters (miR-34b/c and miR-449) encoding five miRNAs (miR-34b, miR-34c, miR-449a, miR-449b, and miR-449c) led to sexually dimorphic, partial perinatal lethality, growth retardation, and infertility. These developmental defects correlated with the dysregulation of ∼ 240 target genes, which are mainly involved in three major cellular functions, including cell-fate control, brain development and microtubule dynamics. Our data demonstrate an essential role of a miRNA family in brain development, motile ciliogenesis, and spermatogenesis.
Collapse
|
128
|
Rokavec M, Li H, Jiang L, Hermeking H. The p53/miR-34 axis in development and disease. J Mol Cell Biol 2014; 6:214-30. [DOI: 10.1093/jmcb/mju003] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
129
|
Herbert KJ, Cook AL, Snow ET. SIRT1 inhibition restores apoptotic sensitivity in p53-mutated human keratinocytes. Toxicol Appl Pharmacol 2014; 277:288-97. [PMID: 24726431 DOI: 10.1016/j.taap.2014.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/17/2014] [Accepted: 04/01/2014] [Indexed: 12/27/2022]
Abstract
Mutations to the p53 gene are common in UV-exposed keratinocytes and contribute to apoptotic resistance in skin cancer. P53-dependent activity is modulated, in part, by a complex, self-limiting feedback loop imposed by miR-34a-mediated regulation of the lysine deacetylase, SIRT1. Expression of numerous microRNAs is dysregulated in squamous and basal cell carcinomas; however the contribution of specific microRNAs to the pathogenesis of skin cancer remains untested. Through use of RNAi, miRNA target site blocking oligonucleotides and small molecule inhibitors, this study explored the influence of p53 mutational status, SIRT1 activity and miR-34a levels on apoptotic sensitivity in primary (NHEK) and p53-mutated (HaCaT) keratinocyte cell lines. SIRT1 and p53 are overexpressed in p53-mutated keratinocytes, whilst miR-34a levels are 90% less in HaCaT cells. HaCaTs have impaired responses to p53/SIRT1/miR-34a axis manipulation which enhanced survival during exposure to the chemotherapeutic agent, camptothecin. Inhibition of SIRT1 activity in this cell line increased p53 acetylation and doubled camptothecin-induced cell death. Our results demonstrate that p53 mutations increase apoptotic resistance in keratinocytes by interfering with miR-34a-mediated regulation of SIRT1 expression. Thus, SIRT1 inhibitors may have a therapeutic potential for overcoming apoptotic resistance during skin cancer treatment.
Collapse
Affiliation(s)
- Katharine J Herbert
- School of Health Sciences, University of Tasmania, Launceston, TAS 7250, Australia
| | - Anthony L Cook
- School of Health Sciences, University of Tasmania, Launceston, TAS 7250, Australia.
| | - Elizabeth T Snow
- School of Health Sciences, University of Tasmania, Launceston, TAS 7250, Australia.
| |
Collapse
|
130
|
Palanichamy JK, Rao DS. miRNA dysregulation in cancer: towards a mechanistic understanding. Front Genet 2014; 5:54. [PMID: 24672539 PMCID: PMC3957189 DOI: 10.3389/fgene.2014.00054] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/02/2014] [Indexed: 12/17/2022] Open
Abstract
It is now well known that gene expression is intricately regulated inside each cell especially in mammals. There are multiple layers of gene regulation active inside a cell at a given point of time. Gene expression is regulated post-transcriptionally by microRNAs and other factors. Mechanistically, microRNAs are known to bind to the 3’ UTR of mRNAs and cause repression of gene expression and the number of known microRNAs continues to increase every day. Dysregulated microRNA signatures in different types of cancer are being uncovered consistently implying their importance in cellular homeostasis. However when studied in isolation in mouse models, clear-cut cellular and molecular mechanisms have been described only for a select few microRNAs. What is the reason behind this discrepancy? Are microRNAs small players in gene regulation helping only to fine tune gene expression? Or are their roles tissue and cell type-specific with single-cell level effects on mRNA expression and microRNA threshold levels? Or does it all come down to the technical limitations of high-throughput techniques, resulting in false positive results? In this review, we will assess the challenges facing the field and potential avenues for resolving the cellular and molecular mechanisms of these small but important regulators of gene expression.
Collapse
Affiliation(s)
| | - Dinesh S Rao
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, CA, USA ; Jonsson Comprehensive Cancer Center, University of California Los Angeles, CA, USA ; Broad Stem Cell Research Center, University of California Los Angeles, CA, USA ; Division of Biology, California Institute of Technology Pasadena, CA, USA
| |
Collapse
|
131
|
Quantitative proteomic analysis of gene regulation by miR-34a and miR-34c. PLoS One 2014; 9:e92166. [PMID: 24637697 PMCID: PMC3956911 DOI: 10.1371/journal.pone.0092166] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/19/2014] [Indexed: 12/16/2022] Open
Abstract
microRNAs (miRNAs) repress target genes by destabilizing mRNAs and/or by inhibiting translation. The best known factor for target recognition is the so called seed--a short continuous region of Watson-Crick base pairing between nucleotides 2-7 of the miRNA and complementary sequences in 3' untranslated regions of target mRNAs. The miR-34 family consists of three conserved members with important tumor suppressor functions linked to the p53 pathway. The family members share the same seed, raising the question if they also have the same targets. Here, we analyse the effect of miR-34a and miR-34c on protein synthesis by pSILAC. Despite significant overlap, we observe that the impact of both family members on protein synthesis differs. The ability to identify specific targets of a family member is complicated by the occurrence of * strand mediated repression. Transfection of miR-34 chimeras indicates that the 3'end of the miRNA might be responsible for differential regulation in case of targets without a perfect seed site. Pathway analysis of regulated proteins indicates overlapping functions related to cell cycle and the p53 pathway and preferential targeting of several anti-apoptotic proteins by miR-34a. We used luciferase assays to confirm that Vcl and Fkbp8, an important anti-apoptotic protein, are specifically repressed by miR-34a. In summary, we find that miR-34a and miR-34c down-regulate distinct subsets of targets which might mediate different cellular outcomes. Our data provides a rich resource of miR-34 targets that might be relevant for clinical trials that want to implement the miR-34 family in cancer therapy.
Collapse
|
132
|
Cheng CY, Hwang CI, Corney DC, Flesken-Nikitin A, Jiang L, Öner GM, Munroe RJ, Schimenti JC, Hermeking H, Nikitin AY. miR-34 cooperates with p53 in suppression of prostate cancer by joint regulation of stem cell compartment. Cell Rep 2014; 6:1000-1007. [PMID: 24630988 DOI: 10.1016/j.celrep.2014.02.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/27/2014] [Accepted: 02/14/2014] [Indexed: 01/26/2023] Open
Abstract
The miR-34 family was originally found to be a direct target of p53 and is a group of putative tumor suppressors. Surprisingly, mice lacking all mir-34 genes show no increase in cancer formation by 18 months of age, hence placing the physiological relevance of previous studies in doubt. Here, we report that mice with prostate epithelium-specific inactivation of mir-34 and p53 show expansion of the prostate stem cell compartment and develop early invasive adenocarcinomas and high-grade prostatic intraepithelial neoplasia, whereas no such lesions are observed after inactivation of either the mir-34 or p53 genes alone by 15 months of age. Consistently, combined deficiency of p53 and miR-34 leads to acceleration of MET-dependent growth, self-renewal, and motility of prostate stem/progenitor cells. Our study provides direct genetic evidence that mir-34 genes are bona fide tumor suppressors and identifies joint control of MET expression by p53 and miR-34 as a key component of prostate stem cell compartment regulation, aberrations in which may lead to cancer.
Collapse
Affiliation(s)
- Chieh-Yang Cheng
- Department of Biomedical Sciences and Cornell Stem Cell Program, Cornell University, Ithaca, NY 14853, USA
| | - Chang-Il Hwang
- Department of Biomedical Sciences and Cornell Stem Cell Program, Cornell University, Ithaca, NY 14853, USA
| | - David C Corney
- Department of Biomedical Sciences and Cornell Stem Cell Program, Cornell University, Ithaca, NY 14853, USA
| | - Andrea Flesken-Nikitin
- Department of Biomedical Sciences and Cornell Stem Cell Program, Cornell University, Ithaca, NY 14853, USA
| | - Longchang Jiang
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität, 80337 Munich, Germany
| | - Gülfem Meryem Öner
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität, 80337 Munich, Germany
| | - Robert J Munroe
- Department of Biomedical Sciences and Cornell Stem Cell Program, Cornell University, Ithaca, NY 14853, USA
| | - John C Schimenti
- Department of Biomedical Sciences and Cornell Stem Cell Program, Cornell University, Ithaca, NY 14853, USA
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität, 80337 Munich, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Alexander Yu Nikitin
- Department of Biomedical Sciences and Cornell Stem Cell Program, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
133
|
MicroRNA-34a is dispensable for p53 function as teratogenesis inducer. Arch Toxicol 2014; 88:1749-63. [PMID: 24623309 DOI: 10.1007/s00204-014-1223-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/03/2014] [Indexed: 12/19/2022]
Abstract
The tumor suppressor protein p53 is a powerful regulator of the embryo's susceptibility to diverse teratogenic stimuli, functioning both as a teratogenesis inducer and suppressor. However, the targets that p53 engages to fulfill its functions remain largely undefined. We asked whether the microRNA (miRNA) miR-34 family, identified as one of the main targets of p53, mediates its function as a teratogenesis inducer. For this, pregnant ICR-, p53- and miR-34a-deficient mice, as well as rats, were exposed to 5-aza-2'-deoxycytidine (5-aza), a teratogen inducing limb reduction anomalies (LRA) of the hindlimbs in mice and either the hindlimbs or forelimbs in rats. Using hind- and forelimb buds of 5-aza-exposed embryos, we identified that the miR-34 family members are the most upregulated miRNAs in mouse and rat limb buds, with their increase level being significantly higher in limb buds destined for LRA. We showed that p53 mediates the 5-aza-induced miR-34 transcription followed by met proto-oncogene and growth-arrest-specific 1 target suppression in embryonic limb buds. We demonstrated that p53 regulates the teratogenic response to 5-aza acting as a teratogenesis inducer albeit miR-34a deletion does not affect the susceptibility of mice to 5-aza. Overall, our study thoroughly characterizes the expression and regulation of miR-34 family in teratogen-resistant and teratogen-sensitive embryonic structures and discusses the involvement of epigenetic miRNA-mediated pathway(s) in induced teratogenesis.
Collapse
|
134
|
Rothschild SI. microRNA therapies in cancer. MOLECULAR AND CELLULAR THERAPIES 2014; 2:7. [PMID: 26056576 PMCID: PMC4452061 DOI: 10.1186/2052-8426-2-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/29/2014] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs or miRs) are a family of small non-coding RNA species that have been implicated in the control of many fundamental cellular and physiological processes such as cellular differentiation, proliferation, apoptosis and stem cell maintenance. miRNAs regulate gene expression by the sequence-selective targeting of mRNAs, leading to translational repression or mRNA degradation. Some microRNAs have been categorized as “oncomiRs” as opposed to “tumor suppressor miRs” Modulating the miRNA activities may provide exciting opportunities for cancer therapy. This review highlights the latest discovery of miRNAs involved in carcinogenesis as well as the potential applications of miRNA regulations in cancer treatment. Several studies have demonstrated the feasibility of restoring tumor suppressive miRNAs and targeting oncogenic miRNAs for cancer therapy using in vivo model systems.
Collapse
Affiliation(s)
- Sacha I Rothschild
- Department Internal Medicine, Medical Oncology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
135
|
Rothschild SI. microRNA therapies in cancer. MOLECULAR AND CELLULAR THERAPIES 2014; 2:7. [PMID: 26056576 PMCID: PMC4452061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/29/2014] [Indexed: 11/21/2023]
Abstract
MicroRNAs (miRNAs or miRs) are a family of small non-coding RNA species that have been implicated in the control of many fundamental cellular and physiological processes such as cellular differentiation, proliferation, apoptosis and stem cell maintenance. miRNAs regulate gene expression by the sequence-selective targeting of mRNAs, leading to translational repression or mRNA degradation. Some microRNAs have been categorized as "oncomiRs" as opposed to "tumor suppressor miRs" Modulating the miRNA activities may provide exciting opportunities for cancer therapy. This review highlights the latest discovery of miRNAs involved in carcinogenesis as well as the potential applications of miRNA regulations in cancer treatment. Several studies have demonstrated the feasibility of restoring tumor suppressive miRNAs and targeting oncogenic miRNAs for cancer therapy using in vivo model systems.
Collapse
Affiliation(s)
- Sacha I Rothschild
- Department Internal Medicine, Medical Oncology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
136
|
Bernardo BC, Gao XM, Tham YK, Kiriazis H, Winbanks CE, Ooi JYY, Boey EJH, Obad S, Kauppinen S, Gregorevic P, Du XJ, Lin RCY, McMullen JR. Silencing of miR-34a attenuates cardiac dysfunction in a setting of moderate, but not severe, hypertrophic cardiomyopathy. PLoS One 2014; 9:e90337. [PMID: 24587330 PMCID: PMC3937392 DOI: 10.1371/journal.pone.0090337] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 01/29/2014] [Indexed: 01/13/2023] Open
Abstract
Therapeutic inhibition of the miR-34 family (miR-34a,-b,-c), or miR-34a alone, have emerged as promising strategies for the treatment of cardiac pathology. However, before advancing these approaches further for potential entry into the clinic, a more comprehensive assessment of the therapeutic potential of inhibiting miR-34a is required for two key reasons. First, miR-34a has ∼40% fewer predicted targets than the miR-34 family. Hence, in cardiac stress settings in which inhibition of miR-34a provides adequate protection, this approach is likely to result in less potential off-target effects. Secondly, silencing of miR-34a alone may be insufficient in settings of established cardiac pathology. We recently demonstrated that inhibition of the miR-34 family, but not miR-34a alone, provided benefit in a chronic model of myocardial infarction. Inhibition of miR-34 also attenuated cardiac remodeling and improved heart function following pressure overload, however, silencing of miR-34a alone was not examined. The aim of this study was to assess whether inhibition of miR-34a could attenuate cardiac remodeling in a mouse model with pre-existing pathological hypertrophy. Mice were subjected to pressure overload via constriction of the transverse aorta for four weeks and echocardiography was performed to confirm left ventricular hypertrophy and systolic dysfunction. After four weeks of pressure overload (before treatment), two distinct groups of animals became apparent: (1) mice with moderate pathology (fractional shortening decreased ∼20%) and (2) mice with severe pathology (fractional shortening decreased ∼37%). Mice were administered locked nucleic acid (LNA)-antimiR-34a or LNA-control with an eight week follow-up. Inhibition of miR-34a in mice with moderate cardiac pathology attenuated atrial enlargement and maintained cardiac function, but had no significant effect on fetal gene expression or cardiac fibrosis. Inhibition of miR-34a in mice with severe pathology provided no therapeutic benefit. Thus, therapies that inhibit miR-34a alone may have limited potential in settings of established cardiac pathology.
Collapse
Affiliation(s)
| | - Xiao-Ming Gao
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Yow Keat Tham
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Helen Kiriazis
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Jenny Y. Y. Ooi
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Esther J. H. Boey
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Sakari Kauppinen
- Department of Haematology, Aalborg University Hospital, Copenhagen, Denmark
| | - Paul Gregorevic
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Xiao-Jun Du
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Ruby C. Y. Lin
- Ramaciotti Centre for Genomics, School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Julie R. McMullen
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Departments of Medicine Monash University, Clayton, Victoria, Australia
- Departments of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
137
|
Okada N, Lin CP, Ribeiro MC, Biton A, Lai G, He X, Bu P, Vogel H, Jablons DM, Keller AC, Wilkinson JE, He B, Speed TP, He L. A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes Dev 2014; 28:438-50. [PMID: 24532687 PMCID: PMC3950342 DOI: 10.1101/gad.233585.113] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
As bona fide p53 transcriptional targets, miR-34 microRNAs (miRNAs) exhibit frequent alterations in many human tumor types and elicit multiple p53 downstream effects upon overexpression. Unexpectedly, miR-34 deletion alone fails to impair multiple p53-mediated tumor suppressor effects in mice, possibly due to the considerable redundancy in the p53 pathway. Here, we demonstrate that miR-34a represses HDM4, a potent negative regulator of p53, creating a positive feedback loop acting on p53. In a Kras-induced mouse lung cancer model, miR-34a deficiency alone does not exhibit a strong oncogenic effect. However, miR-34a deficiency strongly promotes tumorigenesis when p53 is haploinsufficient, suggesting that the defective p53-miR-34 feedback loop can enhance oncogenesis in a specific context. The importance of the p53/miR-34/HDM4 feedback loop is further confirmed by an inverse correlation between miR-34 and full-length HDM4 in human lung adenocarcinomas. In addition, human lung adenocarcinomas generate an elevated level of a short HDM4 isoform through alternative polyadenylation. This short HDM4 isoform lacks miR-34-binding sites in the 3' untranslated region (UTR), thereby evading miR-34 regulation to disable the p53-miR-34 positive feedback. Taken together, our results elucidated the intricate cross-talk between p53 and miR-34 miRNAs and revealed an important tumor suppressor effect generated by this positive feedback loop.
Collapse
Affiliation(s)
- Nobuhiro Okada
- Molecular and Cell Biology Department, University of California at Berkeley, Berkeley, California 94705, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Huynh K, Bernardo BC, McMullen JR, Ritchie RH. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther 2014; 142:375-415. [PMID: 24462787 DOI: 10.1016/j.pharmthera.2014.01.003] [Citation(s) in RCA: 429] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease is the primary cause of morbidity and mortality among the diabetic population. Both experimental and clinical evidence suggest that diabetic subjects are predisposed to a distinct cardiomyopathy, independent of concomitant macro- and microvascular disorders. 'Diabetic cardiomyopathy' is characterized by early impairments in diastolic function, accompanied by the development of cardiomyocyte hypertrophy, myocardial fibrosis and cardiomyocyte apoptosis. The pathophysiology underlying diabetes-induced cardiac damage is complex and multifactorial, with elevated oxidative stress as a key contributor. We now review the current evidence of molecular disturbances present in the diabetic heart, and their role in the development of diabetes-induced impairments in myocardial function and structure. Our focus incorporates both the contribution of increased reactive oxygen species production and reduced antioxidant defenses to diabetic cardiomyopathy, together with modulation of protein signaling pathways and the emerging role of protein O-GlcNAcylation and miRNA dysregulation in the progression of diabetic heart disease. Lastly, we discuss both conventional and novel therapeutic approaches for the treatment of left ventricular dysfunction in diabetic patients, from inhibition of the renin-angiotensin-aldosterone-system, through recent evidence favoring supplementation of endogenous antioxidants for the treatment of diabetic cardiomyopathy. Novel therapeutic strategies, such as gene therapy targeting the phosphoinositide 3-kinase PI3K(p110α) signaling pathway, and miRNA dysregulation, are also reviewed. Targeting redox stress and protective protein signaling pathways may represent a future strategy for combating the ever-increasing incidence of heart failure in the diabetic population.
Collapse
Affiliation(s)
- Karina Huynh
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia
| | | | - Julie R McMullen
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia; Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | - Rebecca H Ritchie
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
139
|
c-Jun N-terminal kinase 1/c-Jun activation of the p53/microRNA 34a/sirtuin 1 pathway contributes to apoptosis induced by deoxycholic acid in rat liver. Mol Cell Biol 2014; 34:1100-20. [PMID: 24421392 DOI: 10.1128/mcb.00420-13] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRs) are increasingly associated with metabolic liver diseases. We have shown that ursodeoxycholic acid, a hydrophilic bile acid, counteracts the miR-34a/sirtuin 1 (SIRT1)/p53 pathway, activated in the liver of nonalcoholic steatohepatitis (NASH) patients. In contrast, hydrophobic bile acids, particularly deoxycholic acid (DCA), activate apoptosis and are increased in NASH. We evaluated whether DCA-induced apoptosis of rat hepatocytes occurs via miR-34a-dependent pathways and whether they connect with c-Jun N-terminal kinase (JNK) induction. DCA enhanced miR-34a/SIRT1/p53 proapoptotic signaling in a dose- and time-dependent manner. In turn, miR-34a inhibition and SIRT1 overexpression significantly rescued targeting of the miR-34a pathway and apoptosis by DCA. In addition, p53 overexpression activated the miR-34a/SIRT1/p53 pathway, further induced by DCA. DCA increased p53 expression as well as p53 transcriptional activation of PUMA and miR-34a itself, providing a functional mechanism for miR-34a activation. JNK1 and c-Jun were shown to be major targets of DCA, upstream of p53, in engaging the miR-34a pathway and apoptosis. Finally, activation of this JNK1/miR-34a proapoptotic circuit was also shown to occur in vivo in the rat liver. These results suggest that the JNK1/p53/miR-34a/SIRT1 pathway may represent an attractive pharmacological target for the development of new drugs to arrest metabolism- and apoptosis-related liver pathologies.
Collapse
|
140
|
Iqbal N, Mei J, Liu J, Skapek SX. miR-34a is essential for p19(Arf)-driven cell cycle arrest. Cell Cycle 2014; 13:792-800. [PMID: 24401748 DOI: 10.4161/cc.27725] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Arf tumor suppressor gene product, p19(Arf), regulates cell proliferation in incipient cancer cells and during embryo development. Beyond its commonly accepted p53-dependent actions, p19(Arf) also acts independently of p53 in both contexts. One such p53-independent effect with in vivo relevance includes its repression of Pdgfrβ, a process that is essential for vision in the mouse. We have utilized cell culture-based and mouse models to define a new role for miR-34a in this process. Ectopic expression of Arf in cultured cells enhanced the expression of several microRNAs predicted to target Pdgfrß synthesis, including the miR-34 family. Because miR-34a has been implicated as a p53-dependent effector, we investigated whether it also contributed to p53-independent effects of p19(Arf). Indeed, in mouse embryo fibroblasts (MEFs) lacking p53, Arf-driven repression of Pdgfrβ and its blockade of Pdgf-B stimulated DNA synthesis were both completely interrupted by anti-microRNA against miR-34a. Ectopic miR-34a directly targeted Pdgfrβ and a plasmid reporter containing wild-type Pdgfrβ 3'UTR sequence, but not one in which the miR-34a target sequence was mutated. Although miR-34a expression has been linked to p53-a well-known effector of p19(Arf)-Arf expression and its knockdown correlated with miR-34a level in MEFs lacking p53. Finally, analysis of the mouse embryonic eye demonstrated that Arf controlled expression of miR-34a, and the related miR-34b and c, in vivo during normal mouse development. Our findings indicate that miR-34a provides an essential link between p19(Arf) and its p53-independent capacity to block cell proliferation driven by Pdgfrβ. This has ramifications for developmental and tumor suppressor roles of Arf.
Collapse
Affiliation(s)
- Nida Iqbal
- Division of Hematology/Oncology; Department of Pediatrics; University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Jie Mei
- Division of Hematology/Oncology; Department of Pediatrics; University of Texas Southwestern Medical Center; Dallas, TX USA; College of Fisheries; Key Laboratory of Freshwater Animal Breeding; Ministry of Agriculture; Huazhong Agricultural University; Wuhan, China
| | - Jing Liu
- Division of Hematology/Oncology; Department of Pediatrics; University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Stephen X Skapek
- Division of Hematology/Oncology; Department of Pediatrics; University of Texas Southwestern Medical Center; Dallas, TX USA; Center for Cancer and Blood Disorders; Children's Medical Center; Dallas, TX USA
| |
Collapse
|
141
|
Melis JPM, Derks KWJ, Pronk TE, Wackers P, Schaap MM, Zwart E, van Ijcken WFJ, Jonker MJ, Breit TM, Pothof J, van Steeg H, Luijten M. In vivo murine hepatic microRNA and mRNA expression signatures predicting the (non-)genotoxic carcinogenic potential of chemicals. Arch Toxicol 2014; 88:1023-34. [PMID: 24390151 DOI: 10.1007/s00204-013-1189-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/18/2013] [Indexed: 01/06/2023]
Abstract
There is a high need to improve the assessment of, especially non-genotoxic, carcinogenic features of chemicals. We therefore explored a toxicogenomics-based approach using genome-wide microRNA and mRNA expression profiles upon short-term exposure in mice. For this, wild-type mice were exposed for seven days to three different classes of chemicals, i.e., four genotoxic carcinogens (GTXC), seven non-genotoxic carcinogens (NGTXC), and five toxic non-carcinogens. Hepatic expression patterns of mRNA and microRNA transcripts were determined after exposure and used to assess the discriminative power of the in vivo transcriptome for GTXC and NGTXC. A final classifier set, discriminative for GTXC and NGTXC, was generated from the transcriptomic data using a tiered approach. This appeared to be a valid approach, since the predictive power of the final classifier set in three different classifier algorithms was very high for the original training set of chemicals. Subsequent validation in an additional set of chemicals revealed that the predictive power for GTXC remained high, in contrast to NGTXC, which appeared to be more troublesome. Our study demonstrated that the in vivo microRNA-ome has less discriminative power to correctly identify (non-)genotoxic carcinogen classes. The results generally indicate that single mRNA transcripts do have the potential to be applied in risk assessment, but that additional (genomic) strategies are necessary to correctly predict the non-genotoxic carcinogenic potential of a chemical.
Collapse
Affiliation(s)
- Joost P M Melis
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Fischer M, Steiner L, Engeland K. The transcription factor p53: not a repressor, solely an activator. Cell Cycle 2014; 13:3037-58. [PMID: 25486564 PMCID: PMC4612452 DOI: 10.4161/15384101.2014.949083] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 12/12/2022] Open
Abstract
The predominant function of the tumor suppressor p53 is transcriptional regulation. It is generally accepted that p53-dependent transcriptional activation occurs by binding to a specific recognition site in promoters of target genes. Additionally, several models for p53-dependent transcriptional repression have been postulated. Here, we evaluate these models based on a computational meta-analysis of genome-wide data. Surprisingly, several major models of p53-dependent gene regulation are implausible. Meta-analysis of large-scale data is unable to confirm reports on directly repressed p53 target genes and falsifies models of direct repression. This notion is supported by experimental re-analysis of representative genes reported as directly repressed by p53. Therefore, p53 is not a direct repressor of transcription, but solely activates its target genes. Moreover, models based on interference of p53 with activating transcription factors as well as models based on the function of ncRNAs are also not supported by the meta-analysis. As an alternative to models of direct repression, the meta-analysis leads to the conclusion that p53 represses transcription indirectly by activation of the p53-p21-DREAM/RB pathway.
Collapse
Key Words
- CDE, cell cycle-dependent element
- CDKN1A
- CHR, cell cycle genes homology region
- ChIP, chromatin immunoprecipitation
- DREAM complex
- DREAM, DP, RB-like, E2F4, and MuvB complex
- E2F/RB complex
- HPV, human papilloma virus
- NF-Y, Nuclear factor Y
- cdk, cyclin-dependent kinase
- genome-wide meta-analysis
- p53
Collapse
Affiliation(s)
- Martin Fischer
- Molecular Oncology; Medical School; University of Leipzig; Leipzig, Germany
| | - Lydia Steiner
- Center for Complexity & Collective Computation; Wisconsin Institute for Discovery; Madison, WI USA
- Computational EvoDevo Group & Bioinformatics Group; Department of Computer Science and Interdisciplinary Center for Bioinformatics; University of Leipzig; Leipzig, Germany
| | - Kurt Engeland
- Molecular Oncology; Medical School; University of Leipzig; Leipzig, Germany
| |
Collapse
|
143
|
Stahlhut C, Slack FJ. MicroRNAs and the cancer phenotype: profiling, signatures and clinical implications. Genome Med 2013; 5:111. [PMID: 24373327 PMCID: PMC3978829 DOI: 10.1186/gm516] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) have emerged as key genetic regulators of a wide variety of biological processes, including growth, proliferation, and survival. Recent advances have led to the recognition that miRNAs can act as potent oncogenes and tumor suppressors, playing crucial roles in the initiation, maintenance, and progression of the oncogenic state in a variety of cancers. Determining how miRNA expression and function is altered in cancer is an important goal, and a necessary prerequisite to the development and adoption of miRNA-based therapeutics in the clinic. Highly promising clinical applications of miRNAs are the use of miRNA signatures as biomarkers for cancer (for example, for early detection or diagnosis), and therapeutic supplementation or inhibition of specific miRNAs to alter the cancer phenotype. In this review, we discuss the main methods used for miRNA profiling, and examine key miRNAs that are commonly altered in a variety of tumors. Current studies underscore the functional versatility and potency of miRNAs in various aspects of the cancer phenotype, pointing to their potential clinical applications. Consequently, we discuss the application of miRNAs as biomarkers, clinical agents, and therapeutic targets, highlighting both the enormous potential and major challenges in this field.
Collapse
Affiliation(s)
- Carlos Stahlhut
- Department of Molecular, Cellular and Developmental Biology, Yale University, PO Box 208103, New Haven, CT 06520, USA
| | - Frank J Slack
- Department of Molecular, Cellular and Developmental Biology, Yale University, PO Box 208103, New Haven, CT 06520, USA
| |
Collapse
|
144
|
Singh DK, Prasanth KV. Functional insights into the role of nuclear-retained long noncoding RNAs in gene expression control in mammalian cells. Chromosome Res 2013; 21:695-711. [PMID: 24233053 PMCID: PMC3951185 DOI: 10.1007/s10577-013-9391-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mammalian genome harbors thousands of long noncoding RNA (lncRNA) genes. Recent studies have indicated the involvement of several of these lncRNAs in the regulation of gene expression. lncRNAs play crucial roles in various biological processes ranging from epigenetic gene regulation, transcriptional control,to post-transcriptional regulation. lncRNAs are localized in various subcellular compartments, and major proportion of these are retained in the cell nucleus and could be broadly classified as nuclear-retained lncRNAs (nrRNAs). Based on the identified functions,members of the nrRNAs execute diverse roles, including providing architectural support to the hierarchical subnuclear organization and influencing the recruitment of chromatin modifier factors to specific chromatin sites. In this review, we will summarize the recently described roles of mammalian nrRNAs in controlling gene expression by influencing chromatin organization, transcription,pre-mRNA processing, nuclear organization, and their involvement in disease.
Collapse
Affiliation(s)
- Deepak K. Singh
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL-61801, USA
| | - Kannanganattu V. Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL-61801, USA
| |
Collapse
|
145
|
Nadal E, Chen G, Gallegos M, Lin L, Ferrer-Torres D, Truini A, Wang Z, Lin J, Reddy RM, Llatjos R, Escobar I, Moya J, Chang AC, Cardenal F, Capellà G, Beer DG. Epigenetic inactivation of microRNA-34b/c predicts poor disease-free survival in early-stage lung adenocarcinoma. Clin Cancer Res 2013; 19:6842-52. [PMID: 24130071 DOI: 10.1158/1078-0432.ccr-13-0736] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The microRNA-34b/c (miR-34b/c) is considered a tumor suppressor in different tumor types and a transcriptional target of TP53. The main objectives of this study were to investigate the clinical implications of miR-34b/c methylation in patients with early-stage lung adenocarcinoma and to determine the functional role of miR-34b/c re-expression in lung adenocarcinoma cell lines. EXPERIMENTAL DESIGN Aberrant methylation and expression of miR-34b/c were assessed in 15 lung adenocarcinoma cell lines and a cohort of 140 early-stage lung adenocarcinoma. Lung adenocarcinoma cell lines were transfected with miR-34b/c and the effects upon cell proliferation, migration, invasion, and apoptosis were investigated. RESULTS Aberrant methylation of miR-34b/c was detected in 6 (40%) of 15 lung adenocarcinoma cell lines and 64 of 140 (46%) primary lung adenocarcinoma. Expression of miR-34b/c was significantly reduced in all methylated cell lines and primary tumors, especially with TP53 mutations. Patients with increased miR-34b/c methylation had significantly shorter disease-free and overall survival as compared to patients with unmethylated or low level of miR-34b/c methylation. Ectopic expression of miR-34b/c in lung adenocarcinoma cell lines decreased cell proliferation, migration, and invasion. CONCLUSIONS Epigenetic inactivation of miR-34b/c by DNA methylation has independent prognostic value in patients with early-stage lung adenocarcinoma. Reexpression of miR-34b/c leads to a less aggressive phenotype in lung adenocarcinoma cell lines.
Collapse
Affiliation(s)
- Ernest Nadal
- Authors' Affiliations: Thoracic Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan; and Translational Research Laboratory and Departments of Pathology, Thoracic Surgery, and Medical Oncology, Thoracic Oncology Multidisciplinary Unit, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
de Yébenes VG, Bartolomé-Izquierdo N, Ramiro AR. Regulation of B-cell development and function by microRNAs. Immunol Rev 2013; 253:25-39. [PMID: 23550636 DOI: 10.1111/imr.12046] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) have emerged as a new class of gene expression regulators whose functions influence a myriad of biological processes, from developmental decisions through immune responses and numerous pathologies, including cancer and autoimmunity. miRNAs are small RNA molecules that drive post-transcriptional negative regulation of gene expression by promoting the degradation or translational block of their target mRNAs. Here, we review some of the data relating to the role of miRNAs in the regulation of the B-cell lineage, with a special focus on results obtained in vivo. We start by giving a general overview of miRNA activity, including the issue of target specificity and the experimental approaches more widely used to analyze the function of these molecules. We then go on to discuss the function of miRNAs during B-cell differentiation in the bone marrow and in the periphery as well as during the humoral immune response. Finally, we describe a few examples of the contribution of miRNAs, both as oncogenes and tumor suppressors, to the development of B-cell neoplasias.
Collapse
Affiliation(s)
- Virginia G de Yébenes
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | | |
Collapse
|
147
|
Thomas MP, Lieberman J. Live or let die: posttranscriptional gene regulation in cell stress and cell death. Immunol Rev 2013; 253:237-52. [PMID: 23550650 DOI: 10.1111/imr.12052] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Studies of the regulation of gene expression historically focused on transcription. However, during stress and apoptosis, profound gene expression changes occur more rapidly and globally than is possible by regulating transcription. Posttranscriptional changes in mRNA processing and translation in response to diverse stresses shut down most protein translation to conserve energy and lead to rapid remodeling of the proteome to promote repair. Pre-mRNA splicing and mRNA stability are fundamentally altered under some stress conditions. Stress pathways coordinate a cytoprotective repair response, while simultaneously initiating signaling that can ultimately trigger cell death. How the cell mediates the decision between repair and apoptosis is largely not understood. In some stresses, microRNAs may tip the balance. Here, we review what is known about posttranscriptional gene regulation during stress, focusing on what is still unknown and how new technologies might be used to understand what changes are most physiologically important in different forms of stress and death.
Collapse
Affiliation(s)
- Marshall P Thomas
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
148
|
Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2013. [PMID: 24079833 DOI: 10.1146/annurev-pathol- 012513-104715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that typically inhibit the translation and stability of messenger RNAs (mRNAs), controlling genes involved in cellular processes such as inflammation, cell-cycle regulation, stress response, differentiation, apoptosis, and migration. Thus, miRNAs have been implicated in the regulation of virtually all signaling circuits within a cell, and their dysregulation has been shown to play an essential role in the development and progression of cancer. Here, after a brief description of miRNA genomics, biogenesis, and function, we discuss the effects of miRNA dysregulation in the cellular pathways that lead to the progressive conversion of normal cells into cancer cells and the potential to develop new molecular miRNA-targeted therapies.
Collapse
Affiliation(s)
- Gianpiero Di Leva
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210; ,
| | | | | |
Collapse
|
149
|
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that typically inhibit the translation and stability of messenger RNAs (mRNAs), controlling genes involved in cellular processes such as inflammation, cell-cycle regulation, stress response, differentiation, apoptosis, and migration. Thus, miRNAs have been implicated in the regulation of virtually all signaling circuits within a cell, and their dysregulation has been shown to play an essential role in the development and progression of cancer. Here, after a brief description of miRNA genomics, biogenesis, and function, we discuss the effects of miRNA dysregulation in the cellular pathways that lead to the progressive conversion of normal cells into cancer cells and the potential to develop new molecular miRNA-targeted therapies.
Collapse
Affiliation(s)
- Gianpiero Di Leva
- Department of Molecular Virology Immunology and Medical Genetics, The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| | - Michela Garofalo
- Department of Molecular Virology Immunology and Medical Genetics, The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| | - Carlo M. Croce
- Department of Molecular Virology Immunology and Medical Genetics, The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
150
|
Mok Y, Schwierzeck V, Thomas DC, Vigorito E, Rayner TF, Jarvis LB, Prosser HM, Bradley A, Withers DR, Mårtensson IL, Corcoran LM, Blenkiron C, Miska EA, Lyons PA, Smith KGC. MiR-210 is induced by Oct-2, regulates B cells, and inhibits autoantibody production. THE JOURNAL OF IMMUNOLOGY 2013; 191:3037-3048. [PMID: 23960236 DOI: 10.4049/jimmunol.1301289] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs (MiRs) are small, noncoding RNAs that regulate gene expression posttranscriptionally. In this study, we show that MiR-210 is induced by Oct-2, a key transcriptional mediator of B cell activation. Germline deletion of MiR-210 results in the development of autoantibodies from 5 mo of age. Overexpression of MiR-210 in vivo resulted in cell autonomous expansion of the B1 lineage and impaired fitness of B2 cells. Mice overexpressing MiR-210 exhibited impaired class-switched Ab responses, a finding confirmed in wild-type B cells transfected with a MiR-210 mimic. In vitro studies demonstrated defects in cellular proliferation and cell cycle entry, which were consistent with the transcriptomic analysis demonstrating downregulation of genes involved in cellular proliferation and B cell activation. These findings indicate that Oct-2 induction of MiR-210 provides a novel inhibitory mechanism for the control of B cells and autoantibody production.
Collapse
Affiliation(s)
- Yingting Mok
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | - Vera Schwierzeck
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | - David C Thomas
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | - Elena Vigorito
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Tim F Rayner
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | - Lorna B Jarvis
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | - Haydn M Prosser
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - David R Withers
- MRC Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, B15 2TT, UK
| | - Inga-Lill Mårtensson
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | - Lynn M Corcoran
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Cherie Blenkiron
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Eric A Miska
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Paul A Lyons
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | - Kenneth G C Smith
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| |
Collapse
|