101
|
Coughlin TR, Romero-Moreno R, Mason DE, Nystrom L, Boerckel JD, Niebur GL, Littlepage LE. Bone: A Fertile Soil for Cancer Metastasis. Curr Drug Targets 2017; 18:1281-1295. [PMID: 28025941 PMCID: PMC7932754 DOI: 10.2174/1389450117666161226121650] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/06/2016] [Accepted: 10/26/2016] [Indexed: 02/08/2023]
Abstract
Bone is one of the most common and most dangerous sites for metastatic growth across cancer types, and bone metastasis remains incurable. Unfortunately, the processes by which cancers preferentially metastasize to bone are still not well understood. In this review, we summarize the morphological features, physical properties, and cell signaling events that make bone a unique site for metastasis and bone remodeling. The signaling crosstalk between the tumor cells and bone cells begins a vicious cycle - a self-sustaining feedback loop between the tumor cells and the bone microenvironment composed of osteoclasts, osteoblasts, other bone marrow cells, bone matrix, and vasculature to support both tumor growth and bone destruction. Through this crosstalk, bone provides a fertile microenvironment that can harbor dormant tumor cells, sometimes for long periods, and support their growth by releasing cytokines as the bone matrix is destroyed, similar to providing nutrients for a seed to germinate in soil. However, few models exist to study the late stages of bone colonization by metastatic tumor cells. We describe some of the current methodologies used to study bone metastasis, highlighting the limitations of these methods and alternative future strategies to be used to study bone metastasis. While <i>in vivo</i> animal and patient studies may provide the gold standard for studying metastasis, <i>ex vivo</i> models can be used as an alternative to enable more controlled experiments designed to study the late stages of bone metastasis.
Collapse
Affiliation(s)
- Thomas R. Coughlin
- Harper Cancer Research Institute, South Bend, IN
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN
| | - Ricardo Romero-Moreno
- Harper Cancer Research Institute, South Bend, IN
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN
| | - Devon E. Mason
- Harper Cancer Research Institute, South Bend, IN
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN
| | - Lukas Nystrom
- Department of Orthopaedic Surgery and Rehabilitation, Loyola University Chicago, Stritch School of Medicine, Maywood, IL
| | - Joel D. Boerckel
- Harper Cancer Research Institute, South Bend, IN
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN
| | - Glen L. Niebur
- Harper Cancer Research Institute, South Bend, IN
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN
| | - Laurie E. Littlepage
- Harper Cancer Research Institute, South Bend, IN
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN
| |
Collapse
|
102
|
Al-Jazzar A, Javaheri B, Prideaux M, Boyde A, Scudamore CL, Cherifi C, Hay E, Hopkinson M, Boyd M, Cohen-Solal M, Farquharson C, Pitsillides AA. Dmp1 Promoter-Driven Diphtheria Toxin Receptor Transgene Expression Directs Unforeseen Effects in Multiple Tissues. Int J Mol Sci 2016; 18:E29. [PMID: 28035954 PMCID: PMC5297664 DOI: 10.3390/ijms18010029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 01/16/2023] Open
Abstract
Mice harbouring a dentin matrix protein 1 (Dmp1) promoter-driven human diphtheria toxin (DT) receptor (HDTR) transgene (Tg) have recently been used to attain targeted ablation of osteocytes by diphtheria toxin (DT) treatment in order to define osteocyte function. Use of these Tg mice has asserted mechano- and novel paracrine regulatory osteocyte functions. To explore osteocyte roles fully, we sought to confirm the selectivity of DT effects in these transgenic mice. However, our findings revealed incomplete DT-induced osteocyte ablation, prevalent HDTR misexpression, as well as more prominent histopathological DT-induced changes in multiple organs in Tg than in wild-type (WT) littermate mice. Mechanistic evidence for DT action, via prominent regulation of phosphorylation status of elongation factor-2 (EF-2), was also found in many non-skeletal tissues in Tg mice; indicative of direct "off-target" DT action. Finally, very rapid deterioration in health and welfare status in response to DT treatment was observed in these Tg when compared to WT control mice. Together, these data lead us to conclude that alternative models for osteocyte ablation should be sought and caution be exercised when drawing conclusions from experiments using these Tg mice alone.
Collapse
Affiliation(s)
- Ahmed Al-Jazzar
- Skeletal Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| | - Behzad Javaheri
- Skeletal Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| | - Matt Prideaux
- Orthopaedics & Trauma, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Alan Boyde
- Dental Physical Sciences, Institute of Dentistry, Queen Mary University of London, Mile End Campus, London E1 4NS, UK.
| | - Cheryl L Scudamore
- Mary Lyon Centre, MRC Harwell, Science & Innovation Campus, Oxfordshire OX11 0RD, UK.
| | - Chahrazad Cherifi
- Inserm U1132 & Université Sorbonne Paris Cité-Diderot, Rheumatology, Hôpital Lariboisière, Paris 75010, France.
| | - Eric Hay
- Inserm U1132 & Université Sorbonne Paris Cité-Diderot, Rheumatology, Hôpital Lariboisière, Paris 75010, France.
| | - Mark Hopkinson
- Skeletal Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| | - Michael Boyd
- Skeletal Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| | - Martine Cohen-Solal
- Inserm U1132 & Université Sorbonne Paris Cité-Diderot, Rheumatology, Hôpital Lariboisière, Paris 75010, France.
| | - Colin Farquharson
- Roslin Institute, University of Edinburgh, Division of Developmental Biology, Easter Bush, Midlothian EH25 9RG, UK.
| | - Andrew A Pitsillides
- Skeletal Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| |
Collapse
|
103
|
Roeder E, Matthews BG, Kalajzic I. Visual reporters for study of the osteoblast lineage. Bone 2016; 92:189-195. [PMID: 27616604 PMCID: PMC5056847 DOI: 10.1016/j.bone.2016.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 12/24/2022]
Abstract
Advancing our understanding of osteoblast biology and differentiation is critical to elucidate the pathological mechanisms responsible for skeletal diseases such as osteoporosis. Histology and histomorphometry, the classical methods to study osteoblast biology, identify osteoblasts based on their location and morphology and ability to mineralize matrix, but do not clearly define their stage of differentiation. Introduction of visual transgenes into the cells of osteoblast lineage has revolutionized the field and resulted in a paradigm shift that allowed for specific identification and isolation of subpopulations within the osteoblast lineage. Knowledge acquired from the studies based on GFP transgenes has allowed for more precise interpretation of studies analyzing targeted overexpression or deletion of genes in the osteoblast lineage. Here, we provide a condensed overview of the currently available promoter-fluorescent reporter transgenic mice that have been generated and evaluated to varying extents. We cover different stages of the lineage as transgenes have been utilized to identify osteoprogenitors, pre-osteoblasts, osteoblasts, or osteocytes. We show that each of these promoters present with advantages and disadvantages. The studies based on the use of these reporter mice have improved our understanding of bone biology. They constitute attractive models to target osteoblasts and help to understand their cell biology.
Collapse
Affiliation(s)
- Emilie Roeder
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Brya G Matthews
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Pathophysiology, University of Osijek, Osijek, Croatia.
| |
Collapse
|
104
|
Abstract
Osteocytes are differentiated osteoblasts that become surrounded by matrix during the process of bone formation. Acquisition of the osteocyte phenotype is achieved by profound changes in gene expression that facilitate adaptation to the changing cellular environment and constitute the molecular signature of osteocytes. During osteocytogenesis, the expression of genes that are characteristic of the osteoblast are altered and the expression of genes and/or proteins that impart dendritic cellular morphology, regulate matrix mineralization and control the function of cells at the bone surface are ordely modulated. The discovery of mutations in human osteocytic genes has contributed, in a large part, to our understanding of the role of osteocytes in bone homeostasis. Osteocytes are targets of the mechanical force imposed on the skeleton and have a critical role in integrating mechanosensory pathways with the action of hormones, which thereby leads to the orchestrated response of bone to environmental cues. Current, therapeutic approaches harness this accumulating knowledge by targeting osteocytic signalling pathways and messengers to improve skeletal health.
Collapse
Affiliation(s)
- Lilian I. Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine
- Roudebush Veterans Administration Medical Center, Indianapolis, IN
| | - Teresita Bellido
- Department of Anatomy and Cell Biology, Indiana University School of Medicine
- Department of Medicine, Division of Endocrinology, Indiana University School of Medicine
- Roudebush Veterans Administration Medical Center, Indianapolis, IN
| |
Collapse
|
105
|
Sato AY, Cregor M, Delgado-Calle J, Condon KW, Allen MR, Peacock M, Plotkin LI, Bellido T. Protection From Glucocorticoid-Induced Osteoporosis by Anti-Catabolic Signaling in the Absence of Sost/Sclerostin. J Bone Miner Res 2016; 31:1791-1802. [PMID: 27163932 PMCID: PMC8499032 DOI: 10.1002/jbmr.2869] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/22/2016] [Accepted: 05/07/2016] [Indexed: 12/30/2022]
Abstract
Excess of glucocorticoids, either due to disease or iatrogenic, increases bone resorption and decreases bone formation and is a leading cause of osteoporosis and bone fractures worldwide. Improved therapeutic strategies are sorely needed. We investigated whether activating Wnt/β-catenin signaling protects against the skeletal actions of glucocorticoids, using female mice lacking the Wnt/β-catenin antagonist and bone formation inhibitor Sost. Glucocorticoids decreased the mass, deteriorated the microarchitecture, and reduced the structural and material strength of bone in wild-type (WT), but not in Sost-/- mice. The high bone mass exhibited by Sost-/- mice is due to increased bone formation with unchanged resorption. However, unexpectedly, preservation of bone mass and strength in Sost-/- mice was due to prevention of glucocorticoid-induced bone resorption and not to restoration of bone formation. In WT mice, glucocorticoids increased the expression of Sost and the number of sclerostin-positive osteocytes, and altered the molecular signature of the Wnt/β-catenin pathway by decreasing the expression of genes associated with both anti-catabolism, including osteoprotegerin (OPG), and anabolism/survival, such as cyclin D1. In contrast in Sost-/- mice, glucocorticoids did not decrease OPG but still reduced cyclin D1. Thus, in the context of glucocorticoid excess, activation of Wnt/β-catenin signaling by Sost/sclerostin deficiency sustains bone integrity by opposing bone catabolism despite markedly reduced bone formation and increased apoptosis. This crosstalk between glucocorticoids and Wnt/β-catenin signaling could be exploited therapeutically to halt resorption and bone loss induced by glucocorticoids and to inhibit the exaggerated bone formation in diseases of unwanted hyperactivation of Wnt/β-catenin signaling. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Amy Y Sato
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Meloney Cregor
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jesus Delgado-Calle
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Keith W Condon
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Munro Peacock
- Department of Internal Medicine, Division of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lilian I Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Teresita Bellido
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA. .,Department of Internal Medicine, Division of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, USA. .,Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
106
|
Pellegrini GG, Morales CC, Wallace TC, Plotkin LI, Bellido T. Avenanthramides Prevent Osteoblast and Osteocyte Apoptosis and Induce Osteoclast Apoptosis in Vitro in an Nrf2-Independent Manner. Nutrients 2016; 8:E423. [PMID: 27409635 PMCID: PMC4963899 DOI: 10.3390/nu8070423] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/30/2016] [Accepted: 07/06/2016] [Indexed: 01/11/2023] Open
Abstract
Oats contain unique bioactive compounds known as avenanthramides (AVAs) with antioxidant properties. AVAs might enhance the endogenous antioxidant cellular response by activation of the transcription factor Nrf2. Accumulation of reactive oxygen species plays a critical role in many chronic and degenerative diseases, including osteoporosis. In this disease, there is an imbalance between bone formation by osteoblasts and bone resorption by osteoclasts, which is accompanied by increased osteoblast/osteocyte apoptosis and decreased osteoclast apoptosis. We investigated the ability of the synthethic AVAs 2c, 2f and 2p, to 1-regulate gene expression in bone cells, 2-affect the viability of osteoblasts, osteocytes and osteoclasts, and the generation of osteoclasts from their precursors, and 3-examine the potential involvement of the transcription factor Nrf2 in these actions. All doses of AVA 2c and 1 and 5 µM dose of 2p up-regulated collagen 1A expression. Lower doses of AVAs up-regulated OPG (osteoprotegerin) in OB-6 osteoblastic cells, whereas 100 μM dose of 2f and all concentrations of 2c down-regulated RANKL gene expression in MLO-Y4 osteocytic cells. AVAs did not affect apoptosis of OB-6 osteoblastic cells or MLO-Y4 osteocytic cells; however, they prevented apoptosis induced by the DNA topoisomerase inhibitor etoposide, the glucocorticoid dexamethasone, and hydrogen peroxide. AVAs prevented apoptosis of both wild type (WT) and Nrf2 Knockout (KO) osteoblasts, demonstrating that AVAs-induced survival does not require Nrf2 expression. Further, KO osteoclast precursors produced more mature osteoclasts than WT; and KO cultures exhibited less apoptotic osteoclasts than WT cultures. Although AVAs did not affect WT osteoclasts, AVA 2p reversed the low apoptosis of KO osteoclasts. These in vitro results demonstrate that AVAs regulate, in part, the function of osteoblasts and osteocytes and prevent osteoblast/osteocyte apoptosis and increase osteoclast apoptosis; further, these regulatory actions are independent of Nrf2.
Collapse
Affiliation(s)
- Gretel G Pellegrini
- Department of Anatomy & Cell Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
- Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA.
| | - Cynthya C Morales
- Department of Anatomy & Cell Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| | - Taylor C Wallace
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA 22030, USA.
- Think Healthy Group, LLC, Washington, DC 20001, USA.
- National Osteoporosis Foundation, Arlington, VA 22202, USA.
| | - Lilian I Plotkin
- Department of Anatomy & Cell Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
- Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA.
| | - Teresita Bellido
- Department of Anatomy & Cell Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
- Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA.
- Department of Medicine, Division of Endocrinology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
107
|
Fritz A, Bertin A, Hanna P, Nualart F, Marcellini S. A Single Chance to Contact Multiple Targets: Distinct Osteocyte Morphotypes Shed Light on the Cellular Mechanism Ensuring the Robust Formation of Osteocytic Networks. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 326:280-9. [PMID: 27381191 DOI: 10.1002/jez.b.22683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/03/2016] [Accepted: 06/10/2016] [Indexed: 01/16/2023]
Abstract
The formation of the complex osteocytic network relies on the emission of long cellular processes involved in communication, mechanical strain sensing, and bone turnover control. Newly deposited osteocytic processes rapidly become trapped within the calcifying matrix, and, therefore, they must adopt their definitive conformation and contact their targets in a single morphogenetic event. However, the cellular mechanisms ensuring the robustness of this unique mode of morphogenesis remain unknown. To address this issue, we examined the developing calvaria of the amphibian Xenopus tropicalis by confocal, two-photon, and super-resolution imaging, and described flattened osteocytes lying within a woven bone structured in lamellae of randomly oriented collagen fibers. While most cells emit peripheral and perpendicular processes, we report two osteocytes morphotypes, located at different depth within the bone matrix and exhibiting distinct number and orientation of perpendicular cell processes. We show that this pattern is conserved with the chick Gallus gallus and suggest that the cellular microenvironment, and more particularly cell-cell contact, plays a fundamental role in the induction and stabilization of osteocytic processes. We propose that this intrinsic property might have been evolutionarily selected for its ability to robustly generate self-organizing osteocytic networks harbored by the wide variety of bone shapes and architectures found in extant and extinct vertebrates.
Collapse
Affiliation(s)
- Alan Fritz
- Laboratory of Development and Evolution, Department of Cell Biology, Faculty of Biological Sciences, University of Concepcion, Concepción, Chile
| | - Ariana Bertin
- Laboratory of Development and Evolution, Department of Cell Biology, Faculty of Biological Sciences, University of Concepcion, Concepción, Chile
| | - Patricia Hanna
- Laboratory of Development and Evolution, Department of Cell Biology, Faculty of Biological Sciences, University of Concepcion, Concepción, Chile
| | - Francisco Nualart
- Center for Advanced Microscopy (CMA Bio-Bio), University of Concepcion, Concepción, Chile
| | - Sylvain Marcellini
- Laboratory of Development and Evolution, Department of Cell Biology, Faculty of Biological Sciences, University of Concepcion, Concepción, Chile
| |
Collapse
|
108
|
Matsumoto T, Itamochi S, Hashimoto Y. Effect of Concurrent Use of Whole-Body Vibration and Parathyroid Hormone on Bone Structure and Material Properties of Ovariectomized Mice. Calcif Tissue Int 2016; 98:520-9. [PMID: 26746476 DOI: 10.1007/s00223-015-0104-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
Abstract
This study was designed to determine the effectiveness of whole-body vibration (WBV) and intermittent parathyroid hormone (iPTH) in combination against estrogen deficiency-induced osteoporosis. Female C57BL/6J mice were bilaterally ovariectomized (OVX, n = 40) or sham-operated (sham-OVX, n = 8) at 9 weeks of age. Two weeks later, the OVX mice were randomly divided into four groups (n = 10 each): the control group (c-OVX) and groups treated with iPTH (p-OVX), WBV (w-OVX) and both (pw-OVX). The p-OVX and pw-OVX groups were given human PTH (1-34) at a dose of 30 µg/kg/day. The w-OVX and pw-OVX groups were exposed to WBV at an acceleration of 0.3 g and 45 Hz for 20 min/day. All mice were euthanized after the 18-day treatment, and the left tibiae were harvested. The proximal metaphyseal region was µCT-scanned, and its cortical bone cross-section was analyzed by Fourier transform infrared microspectroscopy and nanoindentation testing. A single application of iPTH or WBV to OVX mice had no effect on bone structure or material properties of cortical bone, which were compromised in comparison to those in sham-OVX mice. The combination of iPTH and WBV improved trabecular bone volume, thickness, and connectivity in OVX mice. Although the combined treatment failed to improve cortical bone structure, its mineral maturity and hardness were restored to the levels observed in sham-OVX mice. There was no evidence of interaction between the two treatments, and the combined effects seemed to be additive. These results suggest combining WBV with iPTH has great potential for treating postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Takeshi Matsumoto
- Department of Mechanical Engineering, Tokushima University Graduate School of Advanced Technology and Science, 2-1 Minamijosanjima, Tokushima, 770-8506, Japan.
- Department of Mechanical Science and Bioengineering, Osaka University Graduate School of Engineering Science, Toyonaka, Japan.
| | - Shinya Itamochi
- Department of Mechanical Science and Bioengineering, Osaka University Graduate School of Engineering Science, Toyonaka, Japan
| | - Yoshihiro Hashimoto
- Department of Mechanical Science and Bioengineering, Osaka University Graduate School of Engineering Science, Toyonaka, Japan
| |
Collapse
|
109
|
Zagrodna A, Jóźków P, Mędraś M, Majda M, Słowińska-Lisowska M. Sclerostin as a novel marker of bone turnover in athletes. Biol Sport 2016; 33:83-7. [PMID: 26929475 PMCID: PMC4763547 DOI: 10.5604/20831862.1194125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/19/2015] [Accepted: 08/21/2015] [Indexed: 11/28/2022] Open
Abstract
Sclerostin is a protein secreted by osteocytes that acts as an inhibitor of bone formation. It has been shown that physical activity affects sclerostin concentration and thus bone remodelling. The aim of the study was to evaluate serum concentrations of sclerostin, selected bone turnover markers (PTH, P1NP), 25(OH)D3 and the intake of calcium and vitamin D in physically active versus sedentary men. A total of 59 healthy men aged 17-37 were enrolled in the study (43 athletes and 16 non-athletes). The mean sclerostin concentration in the group of athletes (A) was significantly higher than in non-athletes (NA) (35.3±8.9 vs 28.0±5.6 pmol·l-1, p= 0.004). A compared with NA had higher concentrations of P1NP (145.6±77.5 vs 61.2±22.3 ng·ml-1, p= <0.0001) and 25(OH)D3 (16.9±8.4 vs 10.3±4.3 ng·ml-1, p= 0.004) and lower concentrations of PTH (25.8±8.3 vs 38.2±11.5 pg·ml-1, p= <0.0001). Vitamin D deficiency was found in 77% of A and 100% of NA. A and NA had similar daily energy intake. They did not differ as to the intake of calcium and vitamin D. We observed a negative correlation between the serum concentrations of sclerostin and calcium in the studied subjects. Our results suggest that regular, long-lasting physical training may be associated with higher concentration of sclerostin. It seems that increased sclerostin is not related to other bone turnover markers (PTH, P1NP).
Collapse
Affiliation(s)
- A Zagrodna
- Department of the Biological Basis of Sport, Wrocław University of Physical Education, Poland
| | - P Jóźków
- Department of the Biological Basis of Sport, Wrocław University of Physical Education, Poland
| | - M Mędraś
- Department of the Biological Basis of Sport, Wrocław University of Physical Education, Poland
| | - M Majda
- Lower Silesia Specialist Hospital, Tadeusz Marciniak Centre For Emergency Medicine, Poland
| | - M Słowińska-Lisowska
- Department of the Biological Basis of Sport, Wrocław University of Physical Education, Poland
| |
Collapse
|
110
|
Delgado-Calle J, Anderson J, Cregor MD, Hiasa M, Chirgwin JM, Carlesso N, Yoneda T, Mohammad KS, Plotkin LI, Roodman GD, Bellido T. Bidirectional Notch Signaling and Osteocyte-Derived Factors in the Bone Marrow Microenvironment Promote Tumor Cell Proliferation and Bone Destruction in Multiple Myeloma. Cancer Res 2016; 76:1089-100. [PMID: 26833121 DOI: 10.1158/0008-5472.can-15-1703] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 12/14/2015] [Indexed: 01/24/2023]
Abstract
In multiple myeloma, an overabundance of monoclonal plasma cells in the bone marrow induces localized osteolytic lesions that rarely heal due to increased bone resorption and suppressed bone formation. Matrix-embedded osteocytes comprise more than 95% of bone cells and are major regulators of osteoclast and osteoblast activity, but their contribution to multiple myeloma growth and bone disease is unknown. Here, we report that osteocytes in a mouse model of human MM physically interact with multiple myeloma cells in vivo, undergo caspase-3-dependent apoptosis, and express higher RANKL (TNFSF11) and sclerostin levels than osteocytes in control mice. Mechanistic studies revealed that osteocyte apoptosis was initiated by multiple myeloma cell-mediated activation of Notch signaling and was further amplified by multiple myeloma cell-secreted TNF. The induction of apoptosis increased osteocytic Rankl expression, the osteocytic Rankl/Opg (TNFRSF11B) ratio, and the ability of osteocytes to attract osteoclast precursors to induce local bone resorption. Furthermore, osteocytes in contact with multiple myeloma cells expressed high levels of Sost/sclerostin, leading to a reduction in Wnt signaling and subsequent inhibition of osteoblast differentiation. Importantly, direct contact between osteocytes and multiple myeloma cells reciprocally activated Notch signaling and increased Notch receptor expression, particularly Notch3 and 4, stimulating multiple myeloma cell growth. These studies reveal a previously unknown role for bidirectional Notch signaling that enhances MM growth and bone disease, suggesting that targeting osteocyte-multiple myeloma cell interactions through specific Notch receptor blockade may represent a promising treatment strategy in multiple myeloma.
Collapse
Affiliation(s)
- Jesus Delgado-Calle
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana. Roudebush Veterans Administration Medical Center, Indianapolis, Indiana
| | - Judith Anderson
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Meloney D Cregor
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Masahiro Hiasa
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - John M Chirgwin
- Roudebush Veterans Administration Medical Center, Indianapolis, Indiana. Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Nadia Carlesso
- Department of Pediatrics Indiana, University School of Medicine, Indianapolis, Indiana
| | - Toshiyuki Yoneda
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Khalid S Mohammad
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana. Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lilian I Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana. Roudebush Veterans Administration Medical Center, Indianapolis, Indiana
| | - G David Roodman
- Roudebush Veterans Administration Medical Center, Indianapolis, Indiana. Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| | - Teresita Bellido
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana. Roudebush Veterans Administration Medical Center, Indianapolis, Indiana. Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
111
|
Gohin S, Carriero A, Chenu C, Pitsillides AA, Arnett TR, Marenzana M. The anabolic action of intermittent parathyroid hormone on cortical bone depends partly on its ability to induce nitric oxide-mediated vasorelaxation in BALB/c mice. Cell Biochem Funct 2016; 34:52-62. [PMID: 26834008 PMCID: PMC4949522 DOI: 10.1002/cbf.3164] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/17/2015] [Accepted: 01/01/2016] [Indexed: 11/21/2022]
Abstract
There is strong evidence that vasodilatory nitric oxide (NO) donors have anabolic effects on bone in humans. Parathyroid hormone (PTH), the only osteoanabolic drug currently approved, is also a vasodilator. We investigated whether the NO synthase inhibitor L‐NAME might alter the effect of PTH on bone by blocking its vasodilatory effect. BALB/c mice received 28 daily injections of PTH[1–34] (80 µg/kg/day) or L‐NAME (30 mg/kg/day), alone or in combination. Hindlimb blood perfusion was measured by laser Doppler imaging. Bone architecture, turnover and mechanical properties in the femur were analysed respectively by micro‐CT, histomorphometry and three‐point bending. PTH increased hindlimb blood flow by >30% within 10 min of injection (P < 0.001). Co‐treatment with L‐NAME blocked the action of PTH on blood flow, whereas L‐NAME alone had no effect. PTH treatment increased femoral cortical bone volume and formation rate by 20% and 110%, respectively (P < 0.001). PTH had no effect on trabecular bone volume in the femoral metaphysis although trabecular thickness and number were increased and decreased by 25%, respectively. Co‐treatment with L‐NAME restricted the PTH‐stimulated increase in cortical bone formation but had no clear‐cut effects in trabecular bone. Co‐treatment with L‐NAME did not affect the mechanical strength in femurs induced by iPTH. These results suggest that NO‐mediated vasorelaxation plays partly a role in the anabolic action of PTH on cortical bone. © 2016 The Authors. Cell Biochemistry and Function published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- S Gohin
- Department of Bioengineering, Imperial College London, London, UK.,Department of Cell and Developmental Biology, University College London, London, UK.,Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - A Carriero
- Department of Biomedical Engineering, Florida Institute of Technology, Florida, USA
| | - C Chenu
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - A A Pitsillides
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - T R Arnett
- Department of Cell and Developmental Biology, University College London, London, UK
| | - M Marenzana
- Department of Bioengineering, Imperial College London, London, UK.,Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
112
|
Fan Y, Bi R, Densmore MJ, Sato T, Kobayashi T, Yuan Q, Zhou X, Erben RG, Lanske B. Parathyroid hormone 1 receptor is essential to induce FGF23 production and maintain systemic mineral ion homeostasis. FASEB J 2016; 30:428-40. [PMID: 26428657 PMCID: PMC4684518 DOI: 10.1096/fj.15-278184] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/14/2015] [Indexed: 02/05/2023]
Abstract
Parathyroid-hormone-type 1 receptor (PTH1R) is extensively expressed in key regulatory organs for systemic mineral ion homeostasis, including kidney and bone. We investigated the bone-specific functions of PTH1R in modulating mineral ion homeostasis by generating a novel mouse model in which PTH1R is ablated in the limb mesenchyme using Prx1Cre transgenic mice. Such ablation decreased FGF23 protein and serum levels by 50%, despite normal Fgf23 mRNA levels in long bones. Circulating calcium and PTH levels were unchanged, but inorganic phosphate and 1,25(OH)2D3 levels were significantly decreased and accompanied by elevated urinary calcium and phosphate wasting. Key renal genes for balancing mineral ion homeostasis, calbindinD28k, Klotho, and Napi2a were suppressed by 30-40%. Intermittent hPTH(1-34) injections increased Fgf23 mRNA (7.3-fold), Nurr1 mRNA (3.1-fold), and serum intact-FGF23 (1.6-fold) in controls, but failed to induce Fgf23, Nurr1 mRNA, or intact FGF23 production in mutants. Moreover, a significant elevation in serum C-terminal-FGF23 levels (4-fold) was detected in both genotypes. PTH markedly downregulated Galnt3 expression (2.7-fold) in controls but not in mutants. These results demonstrate the pivotal role of PTH1R in long bones to regulate systemic mineral ion homeostasis and the direct induction of FGF23 by PTH1R signaling.
Collapse
MESH Headings
- Animals
- Bone and Bones/metabolism
- Calbindins/genetics
- Calbindins/metabolism
- Calcification, Physiologic
- Calcium/blood
- Calcium/metabolism
- Female
- Fibroblast Growth Factor-23
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/metabolism
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Homeostasis
- Kidney/metabolism
- Klotho Proteins
- Male
- Mice
- N-Acetylgalactosaminyltransferases/genetics
- N-Acetylgalactosaminyltransferases/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Phosphates/blood
- Phosphates/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Parathyroid Hormone, Type 1/genetics
- Receptor, Parathyroid Hormone, Type 1/metabolism
- Polypeptide N-acetylgalactosaminyltransferase
Collapse
Affiliation(s)
- Yi Fan
- *Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China; Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; and Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Ruiye Bi
- *Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China; Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; and Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Michael J Densmore
- *Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China; Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; and Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Tadatoshi Sato
- *Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China; Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; and Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Tatsuya Kobayashi
- *Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China; Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; and Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Quan Yuan
- *Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China; Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; and Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Xuedong Zhou
- *Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China; Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; and Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Reinhold G Erben
- *Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China; Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; and Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Beate Lanske
- *Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China; Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; and Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
113
|
Santa Maria C, Cheng Z, Li A, Wang J, Shoback D, Tu CL, Chang W. Interplay between CaSR and PTH1R signaling in skeletal development and osteoanabolism. Semin Cell Dev Biol 2016; 49:11-23. [PMID: 26688334 PMCID: PMC4761456 DOI: 10.1016/j.semcdb.2015.12.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/05/2015] [Indexed: 12/01/2022]
Abstract
Parathyroid hormone (PTH)-related peptide (PTHrP) controls the pace of pre- and post-natal growth plate development by activating the PTH1R in chondrocytes, while PTH maintains mineral and skeletal homeostasis by modulating calciotropic activities in kidneys, gut, and bone. The extracellular calcium-sensing receptor (CaSR) is a member of family C, G protein-coupled receptor, which regulates mineral and skeletal homeostasis by controlling PTH secretion in parathyroid glands and Ca(2+) excretion in kidneys. Recent studies showed the expression of CaSR in chondrocytes, osteoblasts, and osteoclasts and confirmed its non-redundant roles in modulating the recruitment, proliferation, survival, and differentiation of the cells. This review emphasizes the actions of CaSR and PTH1R signaling responses in cartilage and bone and discusses how these two signaling cascades interact to control growth plate development and maintain skeletal metabolism in physiological and pathological conditions. Lastly, novel therapeutic regimens that exploit interrelationship between the CaSR and PTH1R are proposed to produce more robust osteoanabolism.
Collapse
Affiliation(s)
- Christian Santa Maria
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Zhiqiang Cheng
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Alfred Li
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Jiali Wang
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Dolores Shoback
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Chia-Ling Tu
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Wenhan Chang
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA.
| |
Collapse
|
114
|
Tascau L, Gardner T, Anan H, Yongpravat C, Cardozo CP, Bauman WA, Lee FY, Oh DS, Tawfeek HA. Activation of Protein Kinase A in Mature Osteoblasts Promotes a Major Bone Anabolic Response. Endocrinology 2016; 157:112-26. [PMID: 26488807 DOI: 10.1210/en.2015-1614] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein kinase A (PKA) regulates osteoblast cell function in vitro and is activated by important bone mass modulating agents. We determined whether PKA activation in osteoblasts is sufficient to mediate a bone anabolic response. Thus, a mouse model conditionally expressing a constitutively active PKA (CA-PKA) in osteoblasts (CA-PKA-OB mouse) was developed by crossing a 2.3-kb α1 (I)-collagen promoter-Cre mouse with a floxed-CA-PKA mouse. Primary osteoblasts from the CA-PKA-OB mice exhibited higher basal PKA activity than those from control mice. Microcomputed tomographic analysis revealed that CA-PKA-OB female mice had an 8.6-fold increase in femoral but only 1.16-fold increase in lumbar 5 vertebral bone volume/total volume. Femur cortical thickness and volume were also higher in the CA-PKA-OB mice. In contrast, alterations in many femoral microcomputed tomographic parameters in male CA-PKA-OB mice were modest. Interestingly, the 3-dimensional structure model index was substantially lower both in femur and lumbar 5 of male and female CA-PKA-OB mice, reflecting an increase in the plate to rod-like structure ratio. In agreement, femurs from female CA-PKA-OB mice had greater load to failure and were stiffer compared with those of control mice. Furthermore, the CA-PKA-OB mice had higher levels of serum bone turnover markers and increased osteoblast and osteoclast numbers per total tissue area compared with control animals. In summary, constitutive activation of PKA in osteoblasts is sufficient to increase bone mass and favorably modify bone architecture and improve mechanical properties. PKA activation in mature osteoblasts is, therefore, an important target for designing anabolic drugs for treating diseases with bone loss.
Collapse
Affiliation(s)
- Liana Tascau
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Thomas Gardner
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Hussein Anan
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Charlie Yongpravat
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Christopher P Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - William A Bauman
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Francis Y Lee
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Daniel S Oh
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Hesham A Tawfeek
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| |
Collapse
|
115
|
Kobayashi Y, Uehara S, Udagawa N, Takahashi N. Regulation of bone metabolism by Wnt signals. J Biochem 2015; 159:387-92. [PMID: 26711238 DOI: 10.1093/jb/mvv124] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/13/2015] [Indexed: 11/14/2022] Open
Abstract
Wnt ligands play a central role in the development and homeostasis of various organs through β-catenin-dependent and -independent signalling. The crucial roles of Wnt/β-catenin signals in bone mass have been established by a large number of studies since the discovery of a causal link between mutations in the low-density lipoprotein receptor-related protein 5 (Lrp5) gene and alternations in human bone mass. The activation of Wnt/β-catenin signalling induces the expression of osterix, a transcription factor, which promotes osteoblast differentiation. Furthermore, this signalling induces the expression of osteoprotegerin, an osteoclast inhibitory factor in osteoblast-lineage cells to prevent bone resorption. Recent studies have also shown that Wnt5a, a typical non-canonical Wnt ligand, enhanced osteoclast formation. In contrast, Wnt16 inhibited osteoclast formation through β-catenin-independent signalling. In this review, we discussed the current understanding of the Wnt signalling molecules involved in bone formation and resorption.
Collapse
Affiliation(s)
| | - Shunsuke Uehara
- Department of Biochemistry, Matsumoto Dental University, 1780 Gohara Hiro-Oka, Shiojiri, Nagano 399-0781, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, 1780 Gohara Hiro-Oka, Shiojiri, Nagano 399-0781, Japan
| | - Naoyuki Takahashi
- Department of Biochemistry, Matsumoto Dental University, 1780 Gohara Hiro-Oka, Shiojiri, Nagano 399-0781, Japan
| |
Collapse
|
116
|
Pacifici R. T cells, osteoblasts, and osteocytes: interacting lineages key for the bone anabolic and catabolic activities of parathyroid hormone. Ann N Y Acad Sci 2015; 1364:11-24. [PMID: 26662934 DOI: 10.1111/nyas.12969] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Osteoimmunology is a field of research dedicated to the study of the interactions between the immune system and bone. Among the cells of the immune system that regulate bone turnover and the responsiveness of bone cells to calciothropic hormones are bone marrow T lymphocytes. T cells secrete osteoclastogenic cytokines such as RANKL and TNF-α, as well as factors that stimulate bone formation, one of which is Wnt10b. In addition, T cells regulate the differentiation and life span of stromal cells (SCs) and their responsiveness to parathyroid hormone (PTH) via costimulatory molecules expressed on their surface. The conditioning effect of T cells on SCs is inherited by the osteoblastic and osteocytic progeny of SCs. As a result, osteoblastic cells of T cell-deficient mice have functional characteristics different from corresponding cells of T cell-replete mice. These differences include the ratio of RANKL/OPG produced in response to continuous PTH treatment, and the osteoblastogenic response to intermittent PTH treatment. This article reviews the evidence indicating that the effects of PTH are mediated not only by osteoblasts and osteocytes but also by T cells.
Collapse
Affiliation(s)
- Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, and Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, Georgia
| |
Collapse
|
117
|
Pacheco-Costa R, Davis HM, Sorenson C, Hon MC, Hassan I, Reginato RD, Allen MR, Bellido T, Plotkin LI. Defective cancellous bone structure and abnormal response to PTH in cortical bone of mice lacking Cx43 cytoplasmic C-terminus domain. Bone 2015; 81:632-643. [PMID: 26409319 PMCID: PMC4640960 DOI: 10.1016/j.bone.2015.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/04/2015] [Accepted: 09/22/2015] [Indexed: 10/23/2022]
Abstract
Connexin 43 (Cx43) forms gap junction channels and hemichannels that allow the communication among osteocytes, osteoblasts, and osteoclasts. Cx43 carboxy-terminal (CT) domain regulates channel opening and intracellular signaling by acting as a scaffold for structural and signaling proteins. To determine the role of Cx43 CT domain in bone, mice in which one allele of full length Cx43 was replaced by a mutant lacking the CT domain (Cx43(ΔCT/fl)) were studied. Cx43(ΔCT/fl) mice exhibit lower cancellous bone volume but higher cortical thickness than Cx43(fl/fl) controls, indicating that the CT domain is involved in normal cancellous bone gain but opposes cortical bone acquisition. Further, Cx43(ΔCT) is able to exert the functions of full length osteocytic Cx43 on cortical bone geometry and mechanical properties, demonstrating that domains other than the CT are responsible for Cx43 function in cortical bone. In addition, parathyroid hormone (PTH) failed to increase endocortical bone formation or energy to failure, a mechanical property that indicates resistance to fracture, in cortical bone in Cx43(ΔCT) mice with or without osteocytic full length Cx43. On the other hand, bone mass and bone formation markers were increased by the hormone in all mouse models, regardless of whether full length or Cx43(ΔCT) were or not expressed. We conclude that Cx43 CT domain is involved in proper bone acquisition; and that Cx43 expression in osteocytes is dispensable for some but not all PTH anabolic actions.
Collapse
Affiliation(s)
- Rafael Pacheco-Costa
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Morphology & Genetics, Federal University of São Paulo School of Medicine, São Paulo, Brazil.
| | - Hannah M Davis
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Chad Sorenson
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Mary C Hon
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Iraj Hassan
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Rejane D Reginato
- Department of Morphology & Genetics, Federal University of São Paulo School of Medicine, São Paulo, Brazil.
| | - Matthew R Allen
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Teresita Bellido
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Div. Endocrinology, Dept. Internal Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.
| | - Lilian I Plotkin
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
118
|
Ealba EL, Jheon AH, Hall J, Curantz C, Butcher KD, Schneider RA. Neural crest-mediated bone resorption is a determinant of species-specific jaw length. Dev Biol 2015; 408:151-63. [PMID: 26449912 PMCID: PMC4698309 DOI: 10.1016/j.ydbio.2015.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 11/28/2022]
Abstract
Precise control of jaw length during development is crucial for proper form and function. Previously we have shown that in birds, neural crest mesenchyme (NCM) confers species-specific size and shape to the beak by regulating molecular and histological programs for the induction and deposition of cartilage and bone. Here we reveal that a hitherto unrecognized but similarly essential mechanism for establishing jaw length is the ability of NCM to mediate bone resorption. Osteoclasts are considered the predominant cells that resorb bone, although osteocytes have also been shown to participate in this process. In adults, bone resorption is tightly coupled to bone deposition as a means to maintain skeletal homeostasis. Yet, the role and regulation of bone resorption during growth of the embryonic skeleton have remained relatively unexplored. We compare jaw development in short-beaked quail versus long-billed duck and find that quail have substantially higher levels of enzymes expressed by bone-resorbing cells including tartrate-resistant acid phosphatase (TRAP), Matrix metalloproteinase 13 (Mmp13), and Mmp9. Then, we transplant NCM destined to form the jaw skeleton from quail to duck and generate chimeras in which osteocytes arise from quail donor NCM and osteoclasts come exclusively from the duck host. Chimeras develop quail-like jaw skeletons coincident with dramatically elevated expression of TRAP, Mmp13, and Mmp9. To test for a link between bone resorption and jaw length, we block resorption using a bisphosphonate, osteoprotegerin protein, or an MMP13 inhibitor, and this significantly lengthens the jaw. Conversely, activating resorption with RANKL protein shortens the jaw. Finally, we find that higher resorption in quail presages their relatively lower adult jaw bone mineral density (BMD) and that BMD is also NCM-mediated. Thus, our experiments suggest that NCM not only controls bone resorption by its own derivatives but also modulates the activity of mesoderm-derived osteoclasts, and in so doing enlists bone resorption as a key patterning mechanism underlying the functional morphology and evolution of the jaw.
Collapse
Affiliation(s)
- Erin L Ealba
- Department of Orofacial Sciences, University of California, San Francisco, USA; Department of Orthopaedic Surgery, University of California, San Francisco, USA
| | - Andrew H Jheon
- Department of Orofacial Sciences, University of California, San Francisco, USA; Department of Orthopaedic Surgery, University of California, San Francisco, USA
| | - Jane Hall
- Department of Orthopaedic Surgery, University of California, San Francisco, USA
| | - Camille Curantz
- Department of Orthopaedic Surgery, University of California, San Francisco, USA
| | - Kristin D Butcher
- Department of Orthopaedic Surgery, University of California, San Francisco, USA
| | - Richard A Schneider
- Department of Orofacial Sciences, University of California, San Francisco, USA; Department of Orthopaedic Surgery, University of California, San Francisco, USA.
| |
Collapse
|
119
|
Abstract
Molecular and cellular mechanisms that control jaw length are becoming better understood. This is significant since the jaws are not only critical for species-specific adaptation and survival, but they are often affected by a variety of size-related anomalies including mandibular hypoplasia, retrognathia, asymmetry, and clefting. This chapter overviews how jaw length is established during the allocation, proliferation, differentiation, and growth of jaw precursor cells, which originate from neural crest mesenchyme (NCM). The focus is mainly on results from experiments transplanting NCM between quail and duck embryos. Quail have short jaws whereas those of duck are relatively long. Quail-duck chimeras reveal that the determinants of jaw length are NCM mediated throughout development and include species-specific differences in jaw progenitor number, differential regulation of various signaling pathways, and the autonomous activation of programs for skeletal matrix deposition and resorption. Such insights help make the goal of devising new therapies for birth defects, diseases, and injuries to the jaw skeleton seem ever more likely.
Collapse
Affiliation(s)
- Richard A Schneider
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California, USA.
| |
Collapse
|
120
|
Abstract
For many years, osteocytes have been the forgotten bone cells and considered as inactive spectators buried in the bone matrix. We now know that osteocytes detect and respond to mechanical and hormonal stimuli to coordinate bone resorption and bone formation. Osteocytes are currently considered a major source of molecules that regulate the activity of osteoclasts and osteoblasts, such as RANKL and sclerostin; and genetic and pharmacological manipulations of either molecule markedly affect bone homeostasis. Besides playing a role in physiological bone homeostasis, accumulating evidence supports the notion that dysregulation of osteocyte function and alteration of osteocyte life-span underlies the pathophysiology of skeletal disorders characterized by loss bone mass and increased bone fragility, as well as the damaging effects of cancer in bone. In this review, we highlight some of these investigations and discuss novel observations that demonstrate that osteocytes, far from being passive cells entombed in the bone, are critical for bone function and maintenance.
Collapse
Affiliation(s)
- Jesus Delgado-Calle
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana ; Roudebush Veterans Administration Medical Center, Indianapolis, Indiana
| | - Teresita Bellido
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana ; Department of Medicine, Division of Endocrinology, Indiana University School of Medicine, Indianapolis, Indiana ; Roudebush Veterans Administration Medical Center, Indianapolis, Indiana
| |
Collapse
|
121
|
Suen PK, Qin L. Sclerostin, an emerging therapeutic target for treating osteoporosis and osteoporotic fracture: A general review. J Orthop Translat 2015; 4:1-13. [PMID: 30035061 PMCID: PMC5987014 DOI: 10.1016/j.jot.2015.08.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 08/02/2015] [Accepted: 08/12/2015] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis and its associated fracture risk has become one of the major health burdens in our aging population. Currently, bisphosphonate, one of the most popular antiresorptive drugs, is used widely to treat osteoporosis but so far still no consensus has been reached for its application in treatment of osteoporotic fractures. However, in old patients, boosting new bone formation and its remodelling is essential for bone healing in age-related osteoporosis and osteoporotic fractures. Sclerostin, an inhibitor of the Wnt/β-catenin signalling pathway that regulates bone growth, has become an attractive therapeutic target for treating osteoporosis. In this review, we summarize the recent findings of sclerostin and its potential as an effective drug target for treating both osteoporosis and osteoporotic fractures.
Collapse
Affiliation(s)
- Pui Kit Suen
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
122
|
Brommage R. Genetic Approaches To Identifying Novel Osteoporosis Drug Targets. J Cell Biochem 2015; 116:2139-45. [DOI: 10.1002/jcb.25179] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 03/30/2015] [Indexed: 12/26/2022]
|
123
|
Maycas M, Ardura JA, de Castro LF, Bravo B, Gortázar AR, Esbrit P. Role of the Parathyroid Hormone Type 1 Receptor (PTH1R) as a Mechanosensor in Osteocyte Survival. J Bone Miner Res 2015; 30:1231-44. [PMID: 25529820 DOI: 10.1002/jbmr.2439] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 11/22/2014] [Accepted: 12/22/2014] [Indexed: 12/13/2022]
Abstract
Osteocytes have a major role in the control of bone remodeling. Mechanical stimulation decreases osteocyte apoptosis and promotes bone accrual, whereas skeletal unloading is deleterious in both respects. PTH1R ablation or overexpression in osteocytes in mice produces trabecular bone loss or increases bone mass, respectively. The latter effect was related to a decreased osteocyte apoptosis. Here, the putative role of PTH1R activation in osteocyte protection conferred by mechanical stimulation was assessed. Osteocytic MLO-Y4 cells were subjected to mechanical stimuli represented by hypotonic shock (216 mOsm/kg) or pulsatile fluid flow (8 Hz, 10 dynes/cm(2)) for a short pulse (10 min), with or without PTH1R antagonists or after transfection with specific PTHrP or PTH1R siRNA. These mechanical stimuli prevented cell death induced within 6 hours by etoposide (50 μM), related to PTHrP overexpression; and this effect was abolished by the calcium antagonist verapamil (1 μM), a phospholipase C (PLC) inhibitor (U73122; 10 μM), and a PKA activation inhibitor, Rp-cAMPS (25 μM), in these cells. Each mechanical stimulus also rapidly induced β-catenin stabilization and nuclear ERK translocation, which were inhibited by the PTH1R antagonist PTHrP(7-34) (1 μM), or PTH1R siRNA, and mimicked by PTHrP(1-36) (100 nM). Mechanical stretching by hypotonic shock did not affect cAMP production but rapidly (<1 min) stimulated Ca(i)(2+) transients in PTH1R-overexpressing HEK-293 cells and in MLO-Y4 cells, in which calcium signaling was unaffected by the presence of a PTHrP antiserum or PTHrP siRNA but inhibited by knocking down PTH1R. These novel findings indicate that PTH1R is an important component of mechanical signal transduction in osteocytic MLO-Y4 cells, and that PTH1R activation by PTHrP-independent and dependent mechanisms has a relevant role in the prosurvival action of mechanical stimulus in these cells.
Collapse
Affiliation(s)
- Marta Maycas
- Instituto de, Investigación Sanitaria (IIS)-, Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM) and Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Madrid, Spain
| | - Juan A Ardura
- Instituto de, Investigación Sanitaria (IIS)-, Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM) and Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Madrid, Spain
| | - Luis F de Castro
- Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, Madrid, Spain
| | - Beatriz Bravo
- Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, Madrid, Spain
| | - Arancha R Gortázar
- Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, Madrid, Spain
| | - Pedro Esbrit
- Instituto de, Investigación Sanitaria (IIS)-, Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM) and Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Madrid, Spain
| |
Collapse
|
124
|
Plotkin LI, Gortazar AR, Davis HM, Condon KW, Gabilondo H, Maycas M, Allen MR, Bellido T. Inhibition of osteocyte apoptosis prevents the increase in osteocytic receptor activator of nuclear factor κB ligand (RANKL) but does not stop bone resorption or the loss of bone induced by unloading. J Biol Chem 2015; 290:18934-42. [PMID: 26085098 DOI: 10.1074/jbc.m115.642090] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Indexed: 01/27/2023] Open
Abstract
Apoptosis of osteocytes and osteoblasts precedes bone resorption and bone loss with reduced mechanical stimulation, and receptor activator of NF-κB ligand (RANKL) expression is increased with unloading in mice. Because osteocytes are major RANKL producers, we hypothesized that apoptotic osteocytes signal to neighboring osteocytes to increase RANKL expression, which, in turn, increases osteoclastogenesis and bone resorption. The traditional bisphosphonate (BP) alendronate (Aln) or IG9402, a BP analog that does not inhibit resorption, prevented the increase in osteocyte apoptosis and osteocytic RANKL expression. The BPs also inhibited osteoblast apoptosis but did not prevent the increase in osteoblastic RANKL. Unloaded mice exhibited high serum levels of the bone resorption marker C-telopeptide fragments of type I collagen (CTX), elevated osteoclastogenesis, and increased osteoclasts in bone. Aln, but not IG9402, prevented all of these effects. In addition, Aln prevented the reduction in spinal and femoral bone mineral density, spinal bone volume/tissue volume, trabecular thickness, mechanical strength, and material strength induced by unloading. Although IG9402 did not prevent the loss of bone mass, it partially prevented the loss of strength, suggesting a contribution of osteocyte viability to strength independent of bone mass. These results demonstrate that osteocyte apoptosis leads to increased osteocytic RANKL. However, blockade of these events is not sufficient to restrain osteoclast formation, inhibit resorption, or stop bone loss induced by skeletal unloading.
Collapse
Affiliation(s)
- Lilian I Plotkin
- From the Departments of Anatomy and Cell Biology and the Roudebush Veterans Administration Medical Center, Indianapolis, Indiana 46202
| | | | | | | | | | - Marta Maycas
- From the Departments of Anatomy and Cell Biology and
| | | | - Teresita Bellido
- From the Departments of Anatomy and Cell Biology and the Roudebush Veterans Administration Medical Center, Indianapolis, Indiana 46202 Medicine, Division of Endocrinology, Indiana University School of Medicine, Indianapolis, Indiana 46202 and
| |
Collapse
|
125
|
Osteocyte specific responses to soluble and mechanical stimuli in a stem cell derived culture model. Sci Rep 2015; 5:11049. [PMID: 26056071 PMCID: PMC4460727 DOI: 10.1038/srep11049] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 05/07/2015] [Indexed: 11/08/2022] Open
Abstract
Studying osteocyte behavior in culture has proven difficult because these embedded cells require spatially coordinated interactions with the matrix and surrounding cells to achieve the osteocyte phenotype. Using an easily attainable source of bone marrow mesenchymal stem cells, we generated cells with the osteocyte phenotype within two weeks. These "stem cell derived-osteocytes" (SCD-O) displayed stellate morphology and lacunocanalicular ultrastructure. Osteocytic genes Sost, Dmp1, E11, and Fgf23 were maximally expressed at 15 days and responded to PTH and 1,25(OH)2D3. Production of sclerostin mRNA and protein, within 15 days of culture makes the SCD-O model ideal for elucidating regulatory mechanisms. We found sclerostin to be regulated by mechanical factors, where low intensity vibration significantly reduced Sost expression. Additionally, this model recapitulates sclerostin production in response to osteoactive hormones, as PTH or LIV repressed secretion of sclerostin, significantly impacting Wnt-mediated Axin2 expression, via β-catenin signaling. In summary, SCD-O cells produce abundant matrix, rapidly attain the osteocyte phenotype, and secrete functional factors including sclerostin under non-immortalized conditions. This culture model enables ex vivo observations of osteocyte behavior while preserving an organ-like environment. Furthermore, as marrow-derived mesenchymal stem cells can be obtained from transgenic animals; our model enables study of genetic control of osteocyte behaviors.
Collapse
|
126
|
Remoli C, Michienzi S, Sacchetti B, Consiglio AD, Cersosimo S, Spica E, Robey PG, Holmbeck K, Cumano A, Boyde A, Davis G, Saggio I, Riminucci M, Bianco P. Osteoblast-specific expression of the fibrous dysplasia (FD)-causing mutation Gsα(R201C) produces a high bone mass phenotype but does not reproduce FD in the mouse. J Bone Miner Res 2015; 30:1030-43. [PMID: 25487351 PMCID: PMC5526456 DOI: 10.1002/jbmr.2425] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/26/2014] [Accepted: 12/04/2014] [Indexed: 12/20/2022]
Abstract
We recently reported the generation and initial characterization of the first direct model of human fibrous dysplasia (FD; OMIM #174800), obtained through the constitutive systemic expression of one of the disease-causing mutations, Gsα(R201C) , in the mouse. To define the specific pathogenetic role(s) of individual cell types within the stromal/osteogenic system in FD, we generated mice expressing Gsα(R201C) selectively in mature osteoblasts using the 2.3kb Col1a1 promoter. We show here that this results in a striking high bone mass phenotype but not in a mimicry of human FD. The high bone mass phenotype involves specifically a deforming excess of cortical bone and prolonged and ectopic cortical bone remodeling. Expression of genes characteristic of late stages of bone cell differentiation/maturation is profoundly altered as a result of expression of Gsα(R201C) in osteoblasts, and expression of the Wnt inhibitor Sost is reduced. Although high bone mass is, in fact, a feature of some types/stages of FD lesions in humans, it is marrow fibrosis, localized loss of adipocytes and hematopoietic tissue, osteomalacia, and osteolytic changes that together represent the characteristic pathological profile of FD, as well as the sources of specific morbidity. None of these features are reproduced in mice with osteoblast-specific expression of Gsα(R201C) . We further show that hematopoietic progenitor/stem cells, as well as more mature cell compartments, and adipocyte development are normal in these mice. These data demonstrate that effects of Gsα mutations underpinning FD-defining tissue changes and morbidity do not reflect the effects of the mutations on osteoblasts proper.
Collapse
Affiliation(s)
- Cristina Remoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Stefano Michienzi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | - Stefania Cersosimo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Emanuela Spica
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Pamela G Robey
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Kenn Holmbeck
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Ana Cumano
- Lymphopoiesis Unit, INSERM, Pasteur Institute, Paris, France
| | - Alan Boyde
- Dental Physical Sciences, Queen Mary University of London, London, UK
| | - Graham Davis
- Dental Physical Sciences, Queen Mary University of London, London, UK
| | - Isabella Saggio
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, and IBPM CNR, Rome, Italy
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Paolo Bianco
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
127
|
Babey M, Wang Y, Kubota T, Fong C, Menendez A, ElAlieh HZ, Bikle DD. Gender-Specific Differences in the Skeletal Response to Continuous PTH in Mice Lacking the IGF1 Receptor in Mature Osteoblasts. J Bone Miner Res 2015; 30:1064-76. [PMID: 25502173 PMCID: PMC9045460 DOI: 10.1002/jbmr.2433] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/28/2014] [Accepted: 12/10/2014] [Indexed: 12/26/2022]
Abstract
The primary goal of this study was to determine whether the IGF1R in mature osteoblasts and osteocytes was required for the catabolic actions of continuous parathyroid hormone (cPTH). Igf1r was deleted from male and female FVN/B mice by breeding with mice expressing cre recombinase under control of the osteocalcin promoter ((0CN) Igfr1(-/-) ). Littermates lacking the cre recombinase served as controls. PTH, 60 μg/kg/d, was administered continuously by Alzet minipumps for 4 weeks. Blood was obtained for indices of calcium metabolism. The femurs were examined by micro-computed tomography for structure, immunohistochemistry for IGF1R expression, histomorphometry for bone formation rates (BFR), mRNA levels by qPCR, and bone marrow stromal cell cultures (BMSC) for alkaline phosphatase activity (ALP(+) ), mineralization, and osteoblast-induced osteoclastogenesis. Whereas cPTH led to a reduction in trabecular bone volume/tissue volume (BV/TV) and cortical thickness in the control females, no change was found in the control males. Although trabecular BV/TV and cortical thickness were reduced in the (0CN) Igfr1(-/-) mice of both sexes, no further reduction after cPTH was found in the females, unlike the reduction in males. BFR was stimulated by cPTH in the controls but blocked by Igf1r deletion in the females. The (0CN) Igfr1(-/-) male mice showed a partial response. ALP(+) and mineralized colony formation were higher in BMSC from control males than from control females. These markers were increased by cPTH in both sexes, but BMSC from male (0CN) Igfr1(-/-) also were increased by cPTH, unlike those from female (0CN) Igfr1(-/-) . cPTH stimulated receptor activator of NF-κB ligand (RANKL) and decreased osteoprotegerin and alkaline phosphatase expression more in control female bone than in control male bone. Deletion of Igf1r blocked these effects of cPTH in the female but not in the male. However, PTH stimulation of osteoblast-driven osteoclastogenesis was blocked by deleting Igfr1 in both sexes. We conclude that cPTH is catabolic in female but not male mice. Moreover, IGF1 signaling plays a greater role in the skeletal actions of cPTH in the female mouse than in the male mouse, which may underlie the sex differences in the response to cPTH.
Collapse
Affiliation(s)
- Muriel Babey
- Endocrine Research Unit, University of California, San Francisco, CA, USA
| | - Yongmei Wang
- Endocrine Research Unit, University of California, San Francisco, CA, USA
| | - Takuo Kubota
- Endocrine Research Unit, University of California, San Francisco, CA, USA
| | - Chak Fong
- Endocrine Research Unit, University of California, San Francisco, CA, USA
| | - Alicia Menendez
- Endocrine Research Unit, University of California, San Francisco, CA, USA
| | - Hashem Z ElAlieh
- Endocrine Research Unit, University of California, San Francisco, CA, USA
| | - Daniel D Bikle
- Endocrine Research Unit, University of California, San Francisco, CA, USA
| |
Collapse
|
128
|
Spatz JM, Wein MN, Gooi JH, Qu Y, Garr JL, Liu S, Barry KJ, Uda Y, Lai F, Dedic C, Balcells-Camps M, Kronenberg HM, Babij P, Pajevic PD. The Wnt Inhibitor Sclerostin Is Up-regulated by Mechanical Unloading in Osteocytes in Vitro. J Biol Chem 2015; 290:16744-58. [PMID: 25953900 DOI: 10.1074/jbc.m114.628313] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Indexed: 11/06/2022] Open
Abstract
Although bone responds to its mechanical environment, the cellular and molecular mechanisms underlying the response of the skeleton to mechanical unloading are not completely understood. Osteocytes are the most abundant but least understood cells in bones and are thought to be responsible for sensing stresses and strains in bone. Sclerostin, a product of the SOST gene, is produced postnatally primarily by osteocytes and is a negative regulator of bone formation. Recent studies show that SOST is mechanically regulated at both the mRNA and protein levels. During prolonged bed rest and immobilization, circulating sclerostin increases both in humans and in animal models, and its increase is associated with a decrease in parathyroid hormone. To investigate whether SOST/sclerostin up-regulation in mechanical unloading is a cell-autonomous response or a hormonal response to decreased parathyroid hormone levels, we subjected osteocytes to an in vitro unloading environment achieved by the NASA rotating wall vessel system. To perform these studies, we generated a novel osteocytic cell line (Ocy454) that produces high levels of SOST/sclerostin at early time points and in the absence of differentiation factors. Importantly, these osteocytes recapitulated the in vivo response to mechanical unloading with increased expression of SOST (3.4 ± 1.9-fold, p < 0.001), sclerostin (4.7 ± 0.1-fold, p < 0.001), and the receptor activator of nuclear factor κΒ ligand (RANKL)/osteoprotegerin (OPG) (2.5 ± 0.7-fold, p < 0.001) ratio. These data demonstrate for the first time a cell-autonomous increase in SOST/sclerostin and RANKL/OPG ratio in the setting of unloading. Thus, targeted osteocyte therapies could hold promise as novel osteoporosis and disuse-induced bone loss treatments by directly modulating the mechanosensing cells in bone.
Collapse
Affiliation(s)
- Jordan M Spatz
- From the Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, Harvard-MIT Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Marc N Wein
- From the Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Jonathan H Gooi
- NorthWest Academic Centre, The University of Melbourne, St. Albans, Victoria 3065, Australia, and
| | - Yili Qu
- From the Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Jenna L Garr
- From the Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Shawn Liu
- From the Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Kevin J Barry
- From the Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Yuhei Uda
- From the Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Forest Lai
- From the Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Christopher Dedic
- From the Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Mercedes Balcells-Camps
- Harvard-MIT Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, Bioengineering Department, Institut Quimic de Sarria, Ramon Llull University, 08017 Barcelona, Spain
| | - Henry M Kronenberg
- From the Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | | | - Paola Divieti Pajevic
- From the Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114,
| |
Collapse
|
129
|
Parathyroid Hormone Induces Bone Cell Motility and Loss of Mature Osteocyte Phenotype through L-Calcium Channel Dependent and Independent Mechanisms. PLoS One 2015; 10:e0125731. [PMID: 25942444 PMCID: PMC4420268 DOI: 10.1371/journal.pone.0125731] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/25/2015] [Indexed: 12/17/2022] Open
Abstract
Parathyroid Hormone (PTH) can exert both anabolic and catabolic effects on the skeleton, potentially through expression of the PTH type1 receptor (PTH1R), which is highly expressed in osteocytes. To determine the cellular and molecular mechanisms responsible, we examined the effects of PTH on osteoblast to osteocyte differentiation using primary osteocytes and the IDG-SW3 murine cell line, which differentiate from osteoblast to osteocyte-like cells in vitro and express GFP under control of the dentin matrix 1 (Dmp1) promoter. PTH treatment resulted in an increase in some osteoblast and early osteocyte markers and a decrease in mature osteocyte marker expression. The gene expression profile of PTH-treated Day 28 IDG-SW3 cells was similar to PTH treated primary osteocytes. PTH treatment induced striking changes in the morphology of the Dmp1-GFP positive cells in IDG-SW3 cultures and primary cells from Dmp1-GFP transgenic mice. The cells changed from a more dendritic to an elongated morphology and showed increased cell motility. E11/gp38 has been shown to be important for cell migration, however, deletion of the E11/gp38/podoplanin gene had no effect on PTH-induced motility. The effects of PTH on motility were reproduced using cAMP, but not with protein kinase A (PKA), exchange proteins activated by cAMP (Epac), protein kinase C (PKC) or phosphatidylinositol-4,5-bisphosphonate 3-kinase (Pi3K) agonists nor were they blocked by their antagonists. However, the effects of PTH were mediated through calcium signaling, specifically through L-type channels normally expressed in osteoblasts but decreased in osteocytes. PTH was shown to increase expression of this channel, but decrease the T-type channel that is normally more highly expressed in osteocytes. Inhibition of L-type calcium channel activity attenuated the effects of PTH on cell morphology and motility but did not prevent the downregulation of mature osteocyte marker expression. Taken together, these results show that PTH induces loss of the mature osteocyte phenotype and promotes the motility of these cells. These two effects are mediated through different mechanisms. The loss of phenotype effect is independent and the cell motility effect is dependent on calcium signaling.
Collapse
|
130
|
Silva BC, Bilezikian JP. Parathyroid hormone: anabolic and catabolic actions on the skeleton. Curr Opin Pharmacol 2015; 22:41-50. [PMID: 25854704 DOI: 10.1016/j.coph.2015.03.005] [Citation(s) in RCA: 351] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/24/2015] [Indexed: 12/16/2022]
Abstract
Parathyroid hormone (PTH) is essential for the maintenance of calcium homeostasis through, in part, its actions to regulate bone remodeling. While PTH stimulates both bone formation and bone resorption, the duration and periodicity of exposure to PTH governs the net effect on bone mass, that is whether it is catabolic or anabolic. PTH receptor signaling in osteoblasts and osteocytes can increase the RANKL/OPG ratio, increasing both osteoclast recruitment and osteoclast activity, and thereby stimulating bone resorption. In contrast, PTH-induced bone formation is explained, at least in part, by its ability to downregulate SOST/sclerostin expression in osteocytes, permitting the anabolic Wnt signaling pathway to proceed. The two modes of administration of PTH, that is, continuous vs. intermittent, can regulate, in bone cells, different sets of genes; alternatively, the same sets of genes exposed to PTH in sustained vs. transient way, will favor bone resorption or bone formation, respectively. This article reviews the effects of PTH on bone cells that lead to these dual catabolic and anabolic actions on the skeleton.
Collapse
Affiliation(s)
- Barbara C Silva
- Santa Casa de Belo Horizonte and Felicio Rocho Hospital, Division of Endocrinology, Brazil
| | - John P Bilezikian
- Metabolic Bone Diseases Unit, Division of Endocrinology, Department of Medicine, College of Physicians and Surgeons, Columbia University, United States.
| |
Collapse
|
131
|
Li C, Wang W, Xie L, Luo X, Cao X, Wan M. Lipoprotein receptor-related protein 6 is required for parathyroid hormone-induced Sost suppression. Ann N Y Acad Sci 2015; 1364:62-73. [PMID: 25847683 DOI: 10.1111/nyas.12750] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/02/2015] [Accepted: 02/19/2015] [Indexed: 02/05/2023]
Abstract
Parathyroid hormone (PTH) suppresses the expression of the bone formation inhibitor sclerostin (Sost) in osteocytes by inducing nuclear accumulation of histone deacetylases (HDACs) to inhibit the myocyte enhancer factor 2 (MEF2)-dependent Sost bone enhancer. Previous studies revealed that lipoprotein receptor-related protein 6 (LRP6) mediates the intracellular signaling activation and the anabolic bone effect of PTH. Here, we investigated whether LRP6 mediates the inhibitory effect of PTH on Sost using an osteoblast-specific Lrp6-knockout (LRP6-KO) mouse model. An increased level of Sost mRNA expression was detected in femur tissue from LRP6-KO mice, compared to wild-type littermates. The number of osteocytes expressing sclerostin protein was also increased in bone tissue of LRP6-KO littermates, indicating a negative regulatory role of LRP6 on Sost/sclerostin. In wild-type littermates, intermittent PTH treatment significantly suppressed Sost mRNA expression in bone and the number of sclerostin(+) osteocytes, while the effect of PTH was much less significant in LRP6-KO mice. Additionally, PTH-induced downregulation of MEF2C and 2D, as well as HDAC changes in osteocytes, were abrogated in LRP6-KO mice. These data indicate that LRP6 is required for PTH suppression of Sost expression.
Collapse
Affiliation(s)
- Changjun Li
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Institute of Endocrinology and Metabolism, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weishan Wang
- Department of Orthopaedics, Medical College of Shihezi University, Shihezi, Xinjiang, China
| | - Liang Xie
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xianghang Luo
- Institute of Endocrinology and Metabolism, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xu Cao
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mei Wan
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
132
|
Abstract
Although traditional diagnosis and treatment of renal osteodystrophy focused on changes in bone turnover, current data demonstrate that abnormalities in skeletal mineralization are also prevalent in pediatric chronic kidney disease (CKD) and likely contribute to skeletal morbidities that continue to plague this population. It is now clear that alterations in osteocyte biology, manifested by changes in osteocytic protein expression, occur in early CKD before abnormalities in traditional measures of mineral metabolism are apparent and may contribute to defective skeletal mineralization. Current treatment paradigms advocate the use of 1,25(OH)2vitamin D for the control of secondary hyperparathyroidism; however, these agents fail to correct defective skeletal mineralization and may exacerbate already altered osteocyte biology. Further studies are critically needed to identify the initial trigger for abnormalities of skeletal mineralization as well as the potential effects that current therapeutic options may have on osteocyte biology and bone mineralization.
Collapse
Affiliation(s)
- Katherine Wesseling-Perry
- Pediatric Nephrology, David Geffen School of Medicine at UCLA, A2-383 MDCC, 650 Charles Young Dr, Los Angeles, CA, 93001-1835, USA,
| |
Collapse
|
133
|
Synergistic effects of high dietary calcium and exogenous parathyroid hormone in promoting osteoblastic bone formation in mice. Br J Nutr 2015; 113:909-22. [PMID: 25744000 PMCID: PMC4392706 DOI: 10.1017/s0007114514004309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In the present study, we investigated whether high dietary Ca and exogenous parathyroid hormone 1–34 fragments (PTH 1–34) have synergistic effects on bone formation in adult mice, and explored the related mechanisms. Adult male mice were fed a normal diet, a high-Ca diet, a PTH-treated diet, or a high-Ca diet combined with subcutaneously injected PTH 1–34 (80 μg/kg per d) for 4 weeks. Bone mineral density, trabecular bone volume, osteoblast number, alkaline phosphatase (ALP)- and type I collagen-positive areas, and the expression levels of osteoblastic bone formation-related genes and proteins were increased significantly in mice fed the high-Ca diet, the PTH-treated diet, and, even more dramatically, the high-Ca diet combined with PTH. Osteoclast number and surface and the ratio of receptor activator for nuclear factor-κB ligand (RANKL):osteoprotegerin (OPG) were decreased in the high-Ca diet treatment group, increased in the PTH treatment group, but not in the combined treatment group. Furthermore, third-passage osteoblasts were treated with high Ca (5 mm), PTH 1–34 (10− 8m) or high Ca combined with PTH 1–34. Osteoblast viability and ALP activity were increased in either the high Ca-treated or PTH-treated cultures and, even more dramatically, in the cultures treated with high Ca plus PTH, with consistent up-regulation of the expression levels of osteoblast proliferation and differentiation-related genes and proteins. These results indicate that dietary Ca and PTH play synergistic roles in promoting osteoblastic bone formation by stimulating osteoblast proliferation and differentiation.
Collapse
|
134
|
Moe SM, Chen NX, Newman CL, Organ JM, Kneissel M, Kramer I, Gattone VH, Allen MR. Anti-sclerostin antibody treatment in a rat model of progressive renal osteodystrophy. J Bone Miner Res 2015; 30:499-509. [PMID: 25407607 PMCID: PMC4333005 DOI: 10.1002/jbmr.2372] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 09/15/2014] [Accepted: 09/20/2014] [Indexed: 12/20/2022]
Abstract
Chronic kidney disease (CKD) is associated with abnormalities in bone quantity and quality, leading to increased fractures. Recent studies suggest abnormalities of Wnt signaling in animal models of CKD and elevated sclerostin levels in patients with CKD. The goal of this study was to evaluate the effectiveness of anti-sclerostin antibody treatment in an animal model of progressive CKD with low and high parathyroid hormone (PTH) levels. Cy/+ male rats (CKD) were treated without or with calcium in the drinking water at 25 weeks of age to stratify the animals into high PTH and low PTH groups, respectively, by 30 weeks. Animals were then treated with anti-sclerostin antibody at 100 mg/kg i.v. weekly for 5 doses, a single 20-µg/kg subcutaneous dose of zoledronic acid, or no treatment, and were then euthanized at 35 weeks. As a positive control, the efficacy of anti-sclerostin antibody treatment was also evaluated in normal littermates. The results demonstrated that the CKD animals with high PTH had lower calcium, higher phosphorus, and lower FGF23 compared to the CKD animals with low PTH. Treatment with anti-sclerostin antibody had no effect on any of the biochemistries, whereas zoledronic acid lowered dkk-1 levels. The anti-sclerostin antibody increased trabecular bone volume/total volume (BV/TV) and trabecular mineralization surface in animals with low PTH, but not in animals with high PTH. Neither anti-sclerostin antibody nor zoledronic acid improved biomechanical properties in the animals. Cortical porosity was severe in high-PTH animals and was unaffected by either treatment. In contrast, in normal animals treated with anti-sclerostin antibody, there was an improvement in bone volume, cortical geometry, and biomechanical properties. In summary, this is the first study to test the efficacy of anti-sclerostin antibody treatment on animals with advanced CKD. We found efficacy in improving bone properties only when the PTH levels were low.
Collapse
Affiliation(s)
- Sharon M Moe
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Roduebush Veterans Affairs Medical Center, Indianapolis, IN, USA
| | | | | | | | | | | | | | | |
Collapse
|
135
|
St John HC, Meyer MB, Benkusky NA, Carlson AH, Prideaux M, Bonewald LF, Pike JW. The parathyroid hormone-regulated transcriptome in osteocytes: parallel actions with 1,25-dihydroxyvitamin D3 to oppose gene expression changes during differentiation and to promote mature cell function. Bone 2015; 72:81-91. [PMID: 25460572 PMCID: PMC4285334 DOI: 10.1016/j.bone.2014.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/05/2014] [Accepted: 11/14/2014] [Indexed: 12/22/2022]
Abstract
Although localized to the mineralized matrix of bone, osteocytes are able to respond to systemic factors such as the calciotropic hormones 1,25(OH)2D3 and PTH. In the present studies, we examined the transcriptomic response to PTH in an osteocyte cell model and found that this hormone regulated an extensive panel of genes. Surprisingly, PTH uniquely modulated two cohorts of genes, one that was expressed and associated with the osteoblast to osteocyte transition and the other a cohort that was expressed only in the mature osteocyte. Interestingly, PTH's effects were largely to oppose the expression of differentiation-related genes in the former cohort, while potentiating the expression of osteocyte-specific genes in the latter cohort. A comparison of the transcriptional effects of PTH with those obtained previously with 1,25(OH)2D3 revealed a subset of genes that was strongly overlapping. While 1,25(OH)2D3 potentiated the expression of osteocyte-specific genes similar to that seen with PTH, the overlap between the two hormones was more limited. Additional experiments identified the PKA-activated phospho-CREB (pCREB) cistrome, revealing that while many of the differentiation-related PTH regulated genes were apparent targets of a PKA-mediated signaling pathway, a reduction in pCREB binding at sites associated with osteocyte-specific PTH targets appeared to involve alternative PTH activation pathways. That pCREB binding activities positioned near important hormone-regulated gene cohorts were localized to control regions of genes was reinforced by the presence of epigenetic enhancer signatures exemplified by unique modifications at histones H3 and H4. These studies suggest that both PTH and 1,25(OH)2D3 may play important and perhaps cooperative roles in limiting osteocyte differentiation from its precursors while simultaneously exerting distinct roles in regulating mature osteocyte function. Our results provide new insight into transcription factor-associated mechanisms through which PTH and 1,25(OH)2D3 regulate a plethora of genes important to the osteoblast/osteocyte lineage.
Collapse
Affiliation(s)
- Hillary C St John
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mark B Meyer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nancy A Benkusky
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Alex H Carlson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mathew Prideaux
- Department of Oral Biology, School of Dentistry, University of Missouri, Kansas City, MO 64110, USA
| | - Lynda F Bonewald
- Department of Oral Biology, School of Dentistry, University of Missouri, Kansas City, MO 64110, USA
| | - J Wesley Pike
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
136
|
Wattanachanya L, Wang L, Millard SM, Lu WD, O'Carroll D, Hsiao EC, Conklin BR, Nissenson RA. Assessing the osteoblast transcriptome in a model of enhanced bone formation due to constitutive Gs-G protein signaling in osteoblasts. Exp Cell Res 2015; 333:289-302. [PMID: 25704759 DOI: 10.1016/j.yexcr.2015.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/29/2015] [Accepted: 02/11/2015] [Indexed: 12/29/2022]
Abstract
G protein-coupled receptor (GPCR) signaling in osteoblasts (OBs) is an important regulator of bone formation. We previously described a mouse model expressing Rs1, an engineered constitutively active Gs-coupled GPCR, under the control of the 2.3 kb Col I promoter. These mice showed a dramatic age-dependent increase in trabecular bone of femurs. Here, we further evaluated the effects of enhanced Gs signaling in OBs on intramembranous bone formation by examining calvariae of 1- and 9-week-old Col1(2.3)/Rs1 mice and characterized the in vivo gene expression specifically occurring in osteoblasts with activated Gs G protein-coupled receptor signaling, at the cellular level rather than in a whole bone. Rs1 calvariae displayed a dramatic increase in bone volume with partial loss of cortical structure. By immunohistochemistry, Osterix was detected in cells throughout the inter-trabecular space while Osteocalcin was expressed predominantly in cells along bone surfaces, suggesting the role of paracrine mediators secreted from OBs driven by 2.3 kb Col I promoter could influence early OB commitment, differentiation, and/or proliferation. Gene expression analysis of calvarial OBs revealed that genes affected by Rs1 signaling include those encoding proteins important for cell differentiation, cytokines and growth factors, angiogenesis, coagulation, and energy metabolism. The set of Gs-GPCRs and other GPCRs that may contribute to the observed skeletal phenotype and candidate paracrine mediators of the effect of Gs signaling in OBs were also determined. Our results identify novel detailed in vivo cellular changes of the anabolic response of the skeleton to Gs signaling in mature OBs.
Collapse
Affiliation(s)
- Lalita Wattanachanya
- Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA, USA; Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.
| | - Liping Wang
- Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA, USA.
| | - Susan M Millard
- Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA, USA.
| | - Wei-Dar Lu
- Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA, USA.
| | - Dylan O'Carroll
- Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA, USA.
| | - Edward C Hsiao
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, CA, USA.
| | - Bruce R Conklin
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
| | - Robert A Nissenson
- Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA, USA.
| |
Collapse
|
137
|
Revollo L, Kading J, Jeong SY, Li J, Salazar V, Mbalaviele G, Civitelli R. N-cadherin restrains PTH activation of Lrp6/β-catenin signaling and osteoanabolic action. J Bone Miner Res 2015; 30:274-85. [PMID: 25088803 PMCID: PMC4315770 DOI: 10.1002/jbmr.2323] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/09/2014] [Accepted: 07/25/2014] [Indexed: 12/28/2022]
Abstract
Interaction between parathyroid hormone/parathyroid hormone-related peptide receptor 1 (PTHR1) and low-density lipoprotein receptor-related protein 6 (Lrp6) is important for parathyroid hormone (PTH) signaling and anabolic action. Because N-cadherin has been shown to negatively regulate canonical Wnt/β-catenin signaling, we asked whether N-cadherin alters PTH signaling and stimulation of bone formation. Ablation of the N-cadherin gene (Cdh2) in primary osteogenic lineage cells resulted in increased Lrp6/PTHR1 interaction in response to PTH1-34 , associated with enhanced PTH-induced PKA signaling and PKA-dependent β-catenin C-terminus phosphorylation, which promotes β-catenin transcriptional activity. β-catenin C-terminus phosphorylation was abolished by Lrp6 knockdown. Accordingly, PTH1-34 stimulation of Tcf/Lef target genes, Lef1 and Axin2, was also significantly enhanced in Cdh2-deficient cells. This enhanced responsiveness to PTH extends to the osteo-anabolic effect of PTH, as mice with a conditional Cdh2 deletion in Osx+ cells treated with intermittent doses of PTH1-34 exhibited significantly larger gains in trabecular bone mass relative to control mice, the result of accentuated osteoblast activity. Therefore, N-cadherin modulates Lrp6/PTHR1 interaction, restraining the intensity of PTH-induced β-catenin signaling, and ultimately influencing bone formation in response to intermittent PTH administration.
Collapse
Affiliation(s)
- Leila Revollo
- Department of Internal Medicine, Division of Bone and Mineral Disease, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | | | |
Collapse
|
138
|
Osteocytes mediate the anabolic actions of canonical Wnt/β-catenin signaling in bone. Proc Natl Acad Sci U S A 2015; 112:E478-86. [PMID: 25605937 DOI: 10.1073/pnas.1409857112] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Osteocytes, >90% of the cells in bone, lie embedded within the mineralized matrix and coordinate osteoclast and osteoblast activity on bone surfaces by mechanisms still unclear. Bone anabolic stimuli activate Wnt signaling, and human mutations of components along this pathway underscore its crucial role in bone accrual and maintenance. However, the cell responsible for orchestrating Wnt anabolic actions has remained elusive. We show herein that activation of canonical Wnt signaling exclusively in osteocytes [dominant active (da)βcat(Ot) mice] induces bone anabolism and triggers Notch signaling without affecting survival. These features contrast with those of mice expressing the same daß-catenin in osteoblasts, which exhibit decreased resorption and perinatal death from leukemia. daßcat(Ot) mice exhibit increased bone mineral density in the axial and appendicular skeleton, and marked increase in bone volume in cancellous/trabecular and cortical compartments compared with littermate controls. daßcat(Ot) mice display increased resorption and formation markers, high number of osteoclasts and osteoblasts in cancellous and cortical bone, increased bone matrix production, and markedly elevated periosteal bone formation rate. Wnt and Notch signaling target genes, osteoblast and osteocyte markers, and proosteoclastogenic and antiosteoclastogenic cytokines are elevated in bones of daßcat(Ot) mice. Further, the increase in RANKL depends on Sost/sclerostin. Thus, activation of osteocytic β-catenin signaling increases both osteoclasts and osteoblasts, leading to bone gain, and is sufficient to activate the Notch pathway. These findings demonstrate disparate outcomes of β-catenin activation in osteocytes versus osteoblasts and identify osteocytes as central target cells of the anabolic actions of canonical Wnt/β-catenin signaling in bone.
Collapse
|
139
|
Osteoporosis: From osteoscience to neuroscience and beyond. Mech Ageing Dev 2015; 145:26-38. [DOI: 10.1016/j.mad.2015.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 11/17/2022]
|
140
|
Delanaye P, Krzesinski JM, Warling X, Moonen M, Smelten N, Médart L, Bruyère O, Reginster JY, Pottel H, Cavalier E. Clinical and Biological Determinants of Sclerostin Plasma Concentration in Hemodialysis Patients. ACTA ACUST UNITED AC 2014; 128:127-34. [DOI: 10.1159/000366449] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 08/04/2014] [Indexed: 11/19/2022]
|
141
|
When, How, and Why a Bone Biopsy Should Be Performed in Patients With Chronic Kidney Disease. Semin Nephrol 2014; 34:612-25. [DOI: 10.1016/j.semnephrol.2014.09.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
142
|
Li X, Garcia J, Lu J, Iriana S, Kalajzic I, Rowe D, Demer LL, Tintut Y. Roles of parathyroid hormone (PTH) receptor and reactive oxygen species in hyperlipidemia-induced PTH resistance in preosteoblasts. J Cell Biochem 2014; 115:179-88. [PMID: 24038594 DOI: 10.1002/jcb.24648] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 08/13/2013] [Indexed: 11/08/2022]
Abstract
Bioactive lipids initiate inflammatory reactions leading to pathogenesis of atherosclerosis. Evidence shows that they also contribute to bone loss by inhibiting parathyroid hormone receptor (PTH1R) expression and differentiation of osteoblasts. We previously demonstrated that bone anabolic effects of PTH(1-34) are blunted in hyperlipidemic mice and that these PTH effects are restored by antioxidants. However, it is not clear which osteoblastic cell developmental stage is targeted by bioactive lipids. To investigate the effects of hyperlipidemia at the cellular level, hyperlipidemic Ldlr(-/-) mice were bred with Col3.6GFPtpz mice, in which preosteoblasts/osteoblasts carry a topaz fluorescent label, and with Col2.3GFPcyan mice, in which more mature osteoblasts/osteocytes carry a cyan fluorescent label. Histological analyses of trabecular bone surfaces in femoral as well as calvarial bones showed that intermittent PTH(1-34) increased fluorescence intensity in WT-Tpz mice, but not in Tpz-Ldlr(-/-) mice. In contrast, PTH(1-34) did not alter fluorescence intensity in femoral cortical envelopes of either WT-Cyan or Ldlr(-/-)-Cyan mice. To test the mechanism of PTH1R downregulation, preosteoblastic MC3T3-E1 cells were treated with bioactive lipids and the antioxidant Trolox. Results showed that inhibitory effects of PTH1R levels by bioactive lipids were rescued by pretreatment with Trolox. The inhibitory effects on expression of PTH1R as well as on PTH-induced osteoblastic genes were mimicked by xanthine/xanthine oxidase, a known generator of reactive oxygen species. These findings suggest an important role of the preosteoblastic development stage as the target and downregulation of PTH receptor expression mediated by intracellular oxidant stress as a mechanism in hyperlipidemia-induced PTH resistance.
Collapse
Affiliation(s)
- Xin Li
- Department of Medicine, University of California, Los Angeles, California
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Fumoto T, Ito M, Ikeda K. Lanthanum carbonate stimulates bone formation in a rat model of renal insufficiency with low bone turnover. J Bone Miner Metab 2014; 32:484-93. [PMID: 24126694 DOI: 10.1007/s00774-013-0521-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 09/15/2013] [Indexed: 10/26/2022]
Abstract
Control of phosphate is important in the management of chronic kidney disease with mineral and bone disorder (CKD-MBD), for which lanthanum carbonate, a non-calcium phosphate-binding agent, has recently been introduced; however, it remains to be determined whether it has any beneficial or deleterious effect on bone remodeling. In the present study, the effects of lanthanum carbonate were examined in an animal model that mimics low turnover bone disease in CKD, i.e., thyroparathyroidectomized (TPTX) and 5/6 nephrectomized (NX) rats undergoing a constant infusion of parathyroid hormone (PTH) and thyroxine injections (TPTX-PTH-5/6NX). Bone histomorphometry at the second lumbar vertebra and tibial metaphysis revealed that both bone formation and resorption were markedly suppressed in the TPTX-PTH-5/6NX model compared with the sham-operated control group, and treatment with lanthanum carbonate was associated with the stimulation of bone formation but not an acceleration of bone resorption. Lanthanum treatment caused a robust stimulation of bone formation with an activation of osteoblasts on the endosteal surface of femoral diaphysis, leading to an increase in cortical bone volume. Thus, lanthanum carbonate has the potential to stimulate bone formation in cases of CKD-MBD with suppressed bone turnover.
Collapse
Affiliation(s)
- Toshio Fumoto
- Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka, Obu, Aichi, 474-8511, Japan
| | | | | |
Collapse
|
144
|
Xiong J, Piemontese M, Thostenson JD, Weinstein RS, Manolagas SC, O'Brien CA. Osteocyte-derived RANKL is a critical mediator of the increased bone resorption caused by dietary calcium deficiency. Bone 2014; 66:146-54. [PMID: 24933342 PMCID: PMC4125539 DOI: 10.1016/j.bone.2014.06.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 11/23/2022]
Abstract
Parathyroid hormone (PTH) excess stimulates bone resorption. This effect is associated with increased expression of the osteoclastogenic cytokine receptor activator of nuclear factor κB ligand (RANKL) in bone. However, several different cell types, including bone marrow stromal cells, osteocytes, and T lymphocytes, express both RANKL and the PTH receptor and it is unclear whether RANKL expression by any of these cell types is required for PTH-induced bone loss. Here we have used mice lacking the RANKL gene in osteocytes to determine whether RANKL produced by this cell type is required for the bone loss caused by secondary hyperparathyroidism induced by dietary calcium deficiency in adult mice. Thirty days of dietary calcium deficiency caused bone loss in control mice, but this effect was blunted in mice lacking RANKL in osteocytes. The increase in RANKL expression in bone and the increase in osteoclast number caused by dietary calcium deficiency were also blunted in mice lacking RANKL in osteocytes. These results demonstrate that RANKL produced by osteocytes contributes to the increased bone resorption and the bone loss caused by secondary hyperparathyroidism, strengthening the evidence that osteocytes are an important target cell for hormonal control of bone remodeling.
Collapse
Affiliation(s)
- Jinhu Xiong
- Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Marilina Piemontese
- Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Jeff D Thostenson
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Robert S Weinstein
- Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Stavros C Manolagas
- Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Charles A O'Brien
- Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Central Arkansas Veterans Healthcare System, Little Rock, AR, USA.
| |
Collapse
|
145
|
Ben-awadh AN, Delgado-Calle J, Tu X, Kuhlenschmidt K, Allen MR, Plotkin LI, Bellido T. Parathyroid hormone receptor signaling induces bone resorption in the adult skeleton by directly regulating the RANKL gene in osteocytes. Endocrinology 2014; 155:2797-809. [PMID: 24877630 PMCID: PMC4098003 DOI: 10.1210/en.2014-1046] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PTH upregulates the expression of the receptor activator of nuclear factor κB ligand (Rankl) in cells of the osteoblastic lineage, but the precise differentiation stage of the PTH target cell responsible for RANKL-mediated stimulation of bone resorption remains undefined. We report that constitutive activation of PTH receptor signaling only in osteocytes in transgenic mice (DMP1-caPTHR1) was sufficient to increase Rankl expression and bone resorption. Resorption in DMP1-caPTHR1 mice crossed with mice lacking the distal control region regulated by PTH in the Rankl gene (DCR(-/-)) was similar to DMP1-caPTHR1 mice at 1 month of age, but progressively declined to reach values undistinguishable from wild-type (WT) mice at 5 months of age. Moreover, DMP1-caPTHR1 mice exhibited low tissue material density and increased serum alkaline phosphatase activity at 5 month of age, and these indices of high remodeling were partially and totally corrected in compound DMP1-caPTHR1;DCR(-/-) male mice, and less affected in female mice. Rankl expression in bones from DMP1-caPTHR1 mice was elevated at both 1 and 5 months of age, whereas it was high, similar to DMP1-caPTHR1 mice at 1 month, but low, similar to WT levels at 5 months in compound mice. Moreover, PTH increased Rankl and decreased Sost and Opg expression in ex vivo bone organ cultures established from WT mice, but only regulated Sost and Opg expression in cultures from DCR(-/-) mice. PTH also increased RANKL expression in osteocyte-containing primary cultures of calvarial cells, in isolated murine osteocytes, and in WT but not in DCR(-/-) osteocyte-enriched bones. Thus, PTH upregulates Rankl expression in osteocytes in vitro, ex vivo and in vivo, and resorption induced by PTH receptor signaling in the adult skeleton requires direct regulation of the Rankl gene in osteocytes.
Collapse
Affiliation(s)
- Abdullah N Ben-awadh
- Departments of Anatomy and Cell Biology (A.N.B., J.D.-C., X.T., K.K., M.R.A., L.I.P., T.B.) and Medicine (T.B.), Division of Endocrinology, Indiana University School of Medicine, and Roudebush Veterans Administration Medical Center (J.D.-C., L.I.P., T.B.), Indianapolis, Indiana 46202
| | | | | | | | | | | | | |
Collapse
|
146
|
Liang HD, Yu F, Lv P, Zhao ZN, Tong ZH. Role of Sost in Wnt signal pathway in osteoporosis rats and regulating effect of soybean isoflavones on Wnt signal pathway. Mol Biol Rep 2014; 41:4447-54. [PMID: 24760368 DOI: 10.1007/s11033-014-3315-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 02/24/2014] [Indexed: 11/29/2022]
Abstract
To explore the mechanism of soybean isoflavones (SI) on OVX-induced osteoporosis, we investigated the effect of SI on Wnt signaling that emerged as a novel key pathway for promoting bone formation. Results showed that SI decreased bone mineral elements loss, improved biomechanics parameters in OVX rats. Wnt3a activation can promote the dissociation of β-catenin complexes, release of β-catenin monomer and inhibition of β-catenin monomer degradation. SI decreased sost mRNA and sclerosteosis protein expression in a dose-dependent manner, and increased β-catenin proteins expression in femur of OVX rats. These data suggest that SI suppresses the canonical Wnt signal in OVX rats, partially through the enhancement of the dickkopf-1 production. OVX results in decreased estrogen level in rats. SI act as inhibitors of Wnt-mediated activation of by competitively binding to LRP5, and subsequently downregulating β-catenin gene.
Collapse
Affiliation(s)
- Hai Dong Liang
- Hands and Feet Microsurgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | | | | | | | | |
Collapse
|
147
|
Rochefort GY. The osteocyte as a therapeutic target in the treatment of osteoporosis. Ther Adv Musculoskelet Dis 2014; 6:79-91. [PMID: 24891879 DOI: 10.1177/1759720x14523500] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis is characterized by a low bone-mineral density associated with skeletal fractures. The decrease in bone-mineral density is the consequence of an unbalanced bone-remodeling process, with higher bone resorption than bone formation. The orchestration of the bone-remodeling process is under the control of the most abundant cell in bone, the osteocyte. Functioning as an endocrine cell, osteocytes are also a source of soluble factors that not only target cells on the bone surface, but also target distant organs. Therefore, any drugs targeting the osteocyte functions and signaling pathways will have a major impact on the bone-remodeling process. This review discusses potential advances in drug therapy for osteoporosis, including novel osteocyte-related antiresorptive and anabolic agents that may become available in the coming years.
Collapse
Affiliation(s)
- Gaël Y Rochefort
- EA 2496, Faculté de Chirurgie Dentaire, Université Paris Descartes, 1 rue Maurice Arnoux, 92120 Montrouge, France
| |
Collapse
|
148
|
Yu EW, Kumbhani R, Siwila-Sackman E, DeLelys M, Preffer FI, Leder BZ, Wu JY. Teriparatide (PTH 1-34) treatment increases peripheral hematopoietic stem cells in postmenopausal women. J Bone Miner Res 2014; 29:1380-6. [PMID: 24420643 PMCID: PMC4564394 DOI: 10.1002/jbmr.2171] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/13/2013] [Accepted: 01/01/2014] [Indexed: 01/12/2023]
Abstract
Cells of the osteoblast lineage play an important role in regulating the hematopoietic stem cell (HSC) niche and early B-cell development in animal models, perhaps via parathyroid hormone (PTH)-dependent mechanisms. There are few human clinical studies investigating this phenomenon. We studied the impact of long-term daily teriparatide (PTH 1-34) treatment on cells of the hematopoietic lineage in postmenopausal women. Twenty-three postmenopausal women at high risk of fracture received teriparatide 20 mcg sc daily for 24 months as part of a prospective longitudinal trial. Whole blood measurements were obtained at baseline, 3, 6, 12, and 18 months. Flow cytometry was performed to identify hematopoietic subpopulations, including HSCs (CD34+/CD45(moderate); ISHAGE protocol) and early transitional B cells (CD19+, CD27-, IgD+, CD24[hi], CD38[hi]). Serial measurements of spine and hip bone mineral density (BMD) as well as serum P1NP, osteocalcin, and CTX were also performed. The average age of study subjects was 64 ± 5 years. We found that teriparatide treatment led to an early increase in circulating HSC number of 40% ± 14% (p = 0.004) by month 3, which persisted to month 18 before returning to near baseline by 24 months. There were no significant changes in transitional B cells or total B cells over the course of the study period. In addition, there were no differences in complete blood count profiles as quantified by standard automated flow cytometry. Interestingly, the peak increase in HSC number was inversely associated with increases in bone markers and spine BMD. Daily teriparatide treatment for osteoporosis increases circulating HSCs by 3 to 6 months in postmenopausal women. This may represent a proliferation of marrow HSCs or increased peripheral HSC mobilization. This clinical study establishes the importance of PTH in the regulation of the HSC niche within humans. © 2014 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joy Y. Wu
- Endocrine Unit, Massachusetts General Hospital
- Division of Endocrinology, Stanford University School of Medicine
| |
Collapse
|
149
|
Green DE, Rubin CT. Consequences of irradiation on bone and marrow phenotypes, and its relation to disruption of hematopoietic precursors. Bone 2014; 63:87-94. [PMID: 24607941 PMCID: PMC4005928 DOI: 10.1016/j.bone.2014.02.018] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/07/2014] [Accepted: 02/26/2014] [Indexed: 02/06/2023]
Abstract
The rising levels of radiation exposure, specifically for medical treatments and accidental exposures, have added great concern for the long term risks of bone fractures. Both the bone marrow and bone architecture are devastated following radiation exposure. Even sub-lethal doses cause a deficit to the bone marrow microenvironment, including a decline in hematopoietic cells, and this deficit occurs in a dose dependent fashion. Certain cell phenotypes though are more susceptible to radiation damage, with mesenchymal stem cells being more resilient than the hematopoietic stem cells. The decline in total bone marrow hematopoietic cells is accompanied with elevated adipocytes into the marrow cavity, thereby inhibiting hematopoiesis and recovery of the bone marrow microenvironment. Poor bone marrow is also associated with a decline in bone architectural quality. Therefore, the ability to maintain the bone marrow microenvironment would hinder much of the trabecular bone loss caused by radiation exposure, ultimately decreasing some comorbidities in patients exposed to radiation.
Collapse
Affiliation(s)
- Danielle E Green
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA.
| | - Clinton T Rubin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
| |
Collapse
|
150
|
Osteoblast and osteocyte: games without frontiers. Arch Biochem Biophys 2014; 561:3-12. [PMID: 24832390 DOI: 10.1016/j.abb.2014.05.003] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/30/2014] [Accepted: 05/03/2014] [Indexed: 01/23/2023]
Abstract
The portrait of osteoblasts and osteocytes has been subjected to a revision, since a large body of evidence is attributing these cells amazing roles both inside and outside the bone. The osteoblast, long confined to its bone building function, is actually a very eclectic cell, actively regulating osteoclast formation and function as well as hematopoietic stem cells homeostasis. It is also an endocrine cell, affecting energy metabolism, male fertility and cognition through the release of osteocalcin, a perfect definition-fitting hormone in its uncarboxylated state. As for the osteocytes, many evidence shows that they do not merely represent the final destination of the osteoblasts, but they are instead very active cells that, besides a mechanosensorial function, actively contribute to the bone remodelling by regulating bone formation and resorption. The regulation is exerted by the production of sclerostin (SOST), which in turn inhibits osteoblast differentiation by blocking Wnt/beta-catenin pathway. At the same time, osteocytes influence bone resorption both indirectly, by producing RANKL, which stimulates osteoclastogenesis, and directly by means of a local osteolysis, which is observed especially under pathological conditions. The great versatility of both these cells reflects the complexity of the bone tissue, which has not only a structural role, but influences and is influenced by different organs, taking part in homeostatic and adaptive responses affecting the whole organism.
Collapse
|