101
|
Can Helicobacter pylori Eradication Treatment Modify the Metabolic Response to Bariatric Surgery? Obes Surg 2018; 28:2386-2395. [PMID: 29500674 DOI: 10.1007/s11695-018-3170-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
102
|
High fructose diet-induced metabolic syndrome: Pathophysiological mechanism and treatment by traditional Chinese medicine. Pharmacol Res 2018; 130:438-450. [PMID: 29471102 DOI: 10.1016/j.phrs.2018.02.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 02/08/2023]
Abstract
Fructose is a natural monosaccharide broadly used in modern society. Over the past few decades, epidemiological studies have demonstrated that high fructose intake is an etiological factor of metabolic syndrome (MetS). This review highlights research advances on fructose-induced MetS, especially the underlying pathophysiological mechanism as well as pharmacotherapy by traditional Chinese medicine (TCM), using the PubMed, Web of science, China National Knowledge Infrastructure, China Science and Technology Journal and Wanfang Data. This review focuses on de novo lipogenesis (DNL) and uric acid (UA) production, two unique features of fructolysis different from glucose glycolysis. High level of DNL and UA production can result in insulin resistance, the key pathological event in developing MetS, mostly through oxidative stress and inflammation. Some other pathologies like the disturbance in brain and gut microbiota in the development of fructose-induced MetS in the past years, are also discussed. In management of MetS, TCM is an excellent representative in alternative and complementary medicine with a complete theory system and substantial herbal remedies. TCMs against MetS or MetS components, including Chinese patent medicines, TCM compound formulas, single TCM herbs and active compounds of TCM herbs, are reviewed on their effects and molecular mechanisms. TCMs with hypouricemic activity, which specially target fructose-induced MetS, are highlighted. And new technologies and strategies (such as high-throughput assay and systems biology) in this field are further discussed. In summary, fructose-induced MetS is a multifactorial disorder with the underlying complex mechanisms. Current clinical and pre-clinical evidence supports the potential of TCMs in management of MetS. Additionally, TCMs may show some advantages against complex MetS as their holistic feature through multiple target actions. However, further work is needed to confirm the effectivity and safety of TCMs by high-standard clinical trials, clarify the molecular mechanisms, and develop new anti-MetS drugs by development and application of optimized and feasible strategies and methods.
Collapse
|
103
|
Mastrocola R, Ferrocino I, Liberto E, Chiazza F, Cento AS, Collotta D, Querio G, Nigro D, Bitonto V, Cutrin JC, Rantsiou K, Durante M, Masini E, Aragno M, Cordero C, Cocolin L, Collino M. Fructose liquid and solid formulations differently affect gut integrity, microbiota composition and related liver toxicity: a comparative in vivo study. J Nutr Biochem 2018. [PMID: 29539590 DOI: 10.1016/j.jnutbio.2018.02.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite clinical findings suggesting that the form (liquid versus solid) of the sugars may significantly affect the development of metabolic diseases, no experimental data are available on the impact of their formulations on gut microbiota, integrity and hepatic outcomes. In the present sudy, C57Bl/6j mice were fed a standard diet plus water (SD), a standard diet plus 60% fructose syrup (L-Fr) or a 60% fructose solid diet plus water (S-Fr) for 12 weeks. Gut microbiota was characterized through 16S rRNA phylogenetic profiling and shotgun sequencing of microbial genes in ileum content and related volatilome profiling. Fructose feeding led to alterations of the gut microbiota depending on the fructose formulation, with increased colonization by Clostridium, Oscillospira and Clostridiales phyla in the S-Fr group and Bacteroides, Lactobacillus, Lachnospiraceae and Dorea in the L-Fr. S-Fr evoked the highest accumulation of advanced glycation end products and barrier injury in the ileum intestinal mucosa. These effects were associated to a stronger activation of the lipopolysaccharide-dependent proinflammatory TLR4/NLRP3 inflammasome pathway in the liver of S-Fr mice than of L-Fr mice. In contrast, L-Fr intake induced higher levels of hepatosteatosis and markers of fibrosis than S-Fr. Fructose-induced ex novo lipogenesis with production of SCFA and MCFA was confirmed by metagenomic analysis. These results suggest that consumption of fructose under different forms, liquid or solid, may differently affect gut microbiota, thus leading to impairment in intestinal mucosa integrity and liver homeostasis.
Collapse
Affiliation(s)
- Raffaella Mastrocola
- Dept. of Clinical and Biological Sciences, University of Turin, Italy; Dept. Internal Medicine, University of Maastricht, The Netherlands
| | - Ilario Ferrocino
- Dept. of Agricultural, Forest and Food Sciences, University of Turin, Italy
| | - Erica Liberto
- Dept. of Drug Science and Technology, University of Turin, Italy
| | - Fausto Chiazza
- Dept. of Drug Science and Technology, University of Turin, Italy
| | | | - Debora Collotta
- Dept. of Drug Science and Technology, University of Turin, Italy
| | - Giulia Querio
- Dept. of Drug Science and Technology, University of Turin, Italy
| | - Debora Nigro
- Dept. of Clinical and Biological Sciences, University of Turin, Italy
| | - Valeria Bitonto
- Dept. of Molecular Biotechnology and Sciences for the Health, University of Turin, Italy
| | - Juan Carlos Cutrin
- Dept. of Molecular Biotechnology and Sciences for the Health, University of Turin, Italy
| | - Kalliopi Rantsiou
- Dept. of Agricultural, Forest and Food Sciences, University of Turin, Italy
| | - Mariaconcetta Durante
- Dept. of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Italy
| | - Emanuela Masini
- Dept. of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Italy
| | - Manuela Aragno
- Dept. of Clinical and Biological Sciences, University of Turin, Italy
| | - Chiara Cordero
- Dept. of Drug Science and Technology, University of Turin, Italy
| | - Luca Cocolin
- Dept. of Agricultural, Forest and Food Sciences, University of Turin, Italy.
| | - Massimo Collino
- Dept. of Drug Science and Technology, University of Turin, Italy.
| |
Collapse
|
104
|
Jang C, Hui S, Lu W, Cowan AJ, Morscher RJ, Lee G, Liu W, Tesz GJ, Birnbaum MJ, Rabinowitz JD. The Small Intestine Converts Dietary Fructose into Glucose and Organic Acids. Cell Metab 2018; 27:351-361.e3. [PMID: 29414685 PMCID: PMC6032988 DOI: 10.1016/j.cmet.2017.12.016] [Citation(s) in RCA: 428] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/18/2017] [Accepted: 12/20/2017] [Indexed: 12/22/2022]
Abstract
Excessive consumption of sweets is a risk factor for metabolic syndrome. A major chemical feature of sweets is fructose. Despite strong ties between fructose and disease, the metabolic fate of fructose in mammals remains incompletely understood. Here we use isotope tracing and mass spectrometry to track the fate of glucose and fructose carbons in vivo, finding that dietary fructose is cleared by the small intestine. Clearance requires the fructose-phosphorylating enzyme ketohexokinase. Low doses of fructose are ∼90% cleared by the intestine, with only trace fructose but extensive fructose-derived glucose, lactate, and glycerate found in the portal blood. High doses of fructose (≥1 g/kg) overwhelm intestinal fructose absorption and clearance, resulting in fructose reaching both the liver and colonic microbiota. Intestinal fructose clearance is augmented both by prior exposure to fructose and by feeding. We propose that the small intestine shields the liver from otherwise toxic fructose exposure.
Collapse
Affiliation(s)
- Cholsoon Jang
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Sheng Hui
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Wenyun Lu
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Alexis J Cowan
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Raphael J Morscher
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Gina Lee
- Department of Pharmacology and Meyer Cancer Center, Weill Cornell Medical School, New York, NY 10065, USA
| | - Wei Liu
- Pfizer Inc. Internal Medicine, Cambridge, MA 02139, USA
| | | | | | - Joshua D Rabinowitz
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
105
|
Suriano F, Neyrinck AM, Verspreet J, Olivares M, Leclercq S, Van de Wiele T, Courtin CM, Cani PD, Bindels LB, Delzenne NM. Particle size determines the anti-inflammatory effect of wheat bran in a model of fructose over-consumption: Implication of the gut microbiota. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
106
|
Nishimura N, Tanabe H, Komori E, Sasaki Y, Inoue R, Yamamoto T. Transplantation of High Hydrogen-Producing Microbiota Leads to Generation of Large Amounts of Colonic Hydrogen in Recipient Rats Fed High Amylose Maize Starch. Nutrients 2018; 10:nu10020144. [PMID: 29382125 PMCID: PMC5852720 DOI: 10.3390/nu10020144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/13/2018] [Accepted: 01/26/2018] [Indexed: 01/13/2023] Open
Abstract
The hydrogen molecule (H2), which has low redox potential, is produced by colonic fermentation. We examined whether increased H2 concentration in the portal vein in rats fed high amylose maize starch (HAS) helped alleviate oxidative stress, and whether the transplantation of rat colonic microbiota with high H2 production can shift low H2-generating rats (LG) to high H2-generating rats (HG). Rats were fed a 20% HAS diet for 10 days and 13 days in experiments 1 and 2, respectively. After 10 days (experiment 1), rats underwent a hepatic ischemia–reperfusion (IR) operation. Rats were then categorized into quintiles of portal H2 concentration. Plasma alanine aminotransferase activity and hepatic oxidized glutathione concentration were significantly lower as portal H2 concentration increased. In experiment 2, microbiota derived from HG (the transplantation group) or saline (the control group) were orally inoculated into LG on days 3 and 4. On day 13, portal H2 concentration in the transplantation group was significantly higher compared with the control group, and positively correlated with genera Bifidobacterium, Allobaculum, and Parabacteroides, and negatively correlated with genera Bacteroides, Ruminococcus, and Escherichia. In conclusion, the transplantation of microbiota derived from HG leads to stable, high H2 production in LG, with the resultant high production of H2 contributing to the alleviation of oxidative stress.
Collapse
Affiliation(s)
- Naomichi Nishimura
- Academic Institute, College of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Hiroki Tanabe
- Department of Nutritional Sciences, Faculty of Health and Welfare Science, Nayoro City University, Kita 8-1, Nishi 4, Nayoro, Hokkaido 096-8641, Japan.
| | - Erika Komori
- Department of Nutritional Sciences, Faculty of Health and Welfare Science, Nayoro City University, Kita 8-1, Nishi 4, Nayoro, Hokkaido 096-8641, Japan.
| | - Yumi Sasaki
- Department of Nutritional Sciences, Faculty of Health and Welfare Science, Nayoro City University, Kita 8-1, Nishi 4, Nayoro, Hokkaido 096-8641, Japan.
| | - Ryo Inoue
- Department of Agricultural and Life Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Tatsuro Yamamoto
- Department of Nutritional Sciences, Faculty of Health and Welfare Science, Nayoro City University, Kita 8-1, Nishi 4, Nayoro, Hokkaido 096-8641, Japan.
| |
Collapse
|
107
|
Sangüesa G, Cascales M, Griñán C, Sánchez RM, Roglans N, Pallàs M, Laguna JC, Alegret M. Impairment of Novel Object Recognition Memory and Brain Insulin Signaling in Fructose- but Not Glucose-Drinking Female Rats. Mol Neurobiol 2018; 55:6984-6999. [DOI: 10.1007/s12035-017-0863-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/22/2017] [Indexed: 01/10/2023]
|
108
|
Khan TJ, Ahmed YM, Zamzami MA, Mohamed SA, Khan I, Baothman OAS, Mehanna MG, Yasir M. Effect of atorvastatin on the gut microbiota of high fat diet-induced hypercholesterolemic rats. Sci Rep 2018; 8:662. [PMID: 29330433 PMCID: PMC5766553 DOI: 10.1038/s41598-017-19013-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 12/20/2017] [Indexed: 01/01/2023] Open
Abstract
The aim of the present study was to investigate alterations in gut microbiota associated with hypercholesterolemia and treatment with atorvastatin, a commonly prescribed cholesterol-lowering drug. In this study, seven experimental groups of rats were developed based on diets [high-fat diet (HFD) and normal chow diet (NCD)] and various doses of atorvastatin in HFD and NCD groups. 16S rRNA amplicon sequencing was used to analyze the gut microbiota. Atorvastatin significantly reduced the cholesterol level in treated rats. Bacterial diversity was decreased in the drug-treated NCD group compared to the NCD control, but atorvastatin-treated HFD groups showed a relative increase in biodiversity compared to HFD control group. Atorvastatin promoted the relative abundance of Proteobacteria and reduced the abundance of Firmicutes in drug-treated HFD groups. Among the dominant taxa in the drug-treated HFD groups, Oscillospira, Parabacteroides, Ruminococcus, unclassified CF231, YRC22 (Paraprevotellaceae), and SMB53 (Clostridiaceae) showed reversion in population distribution toward NCD group relative to HFD group. Drug-treated HFD and NCD groups both showed an increased relative abundance of Helicobacter. Overall, bacterial community composition was altered, and diversity of gut microbiota increased with atorvastatin treatment in HFD group. Reversion in relative abundance of specific dominant taxa was observed with drug treatment to HFD rats.
Collapse
Affiliation(s)
- Tariq Jamal Khan
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21452, Saudi Arabia
| | - Youssri M Ahmed
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21452, Saudi Arabia
| | - Mazin A Zamzami
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21452, Saudi Arabia
| | - Saleh A Mohamed
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21452, Saudi Arabia
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Othman A S Baothman
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21452, Saudi Arabia
| | - Mohamed G Mehanna
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21452, Saudi Arabia
| | - Muhammad Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21452, Saudi Arabia.
| |
Collapse
|
109
|
Naito Y, Yoshikawa Y, Yoshizawa K, Takenouchi A, Yasui H. Beneficial Effect of Bis(Hinokitiolato)Zn Complex on High-fat Diet-induced Lipid Accumulation in Mouse Liver and Kidney. ACTA ACUST UNITED AC 2017; 31:1145-1151. [PMID: 29102937 DOI: 10.21873/invivo.11181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIM Metabolic syndrome-induced lifestyle-related diseases include diabetes mellitus (DM) and hypertension, and Zn-based compounds have effects on DM. We aimed to investigate the ameliorating effects of bis(hinokitiolato)Zn, [Zn(hkt)2] on lipid metabolism in the liver and kidney, histopathologically. MATERIALS AND METHODS We used a high-fat diet (HFD)-fed C57BL/6J mouse model and administered a diet containing 10-20 mg Zn/kg body weight (BW) or 20 mg pioglitazone/kg BW as the positive control. After the treatments, we collected blood, liver, and kidney samples and morphologically evaluated the mouse organs for fat accumulation. RESULTS After a 4-month HFD administration, ectopic fat deposition was detected in the liver and kidney. Furthermore, Zn accumulation in the liver and kidney increased following [Zn(hkt)2] treatment, that reduced lipid accumulations and lipid toxicity in these tissues. CONCLUSION The results of this study suggest that [Zn(hkt)2] could be a novel anti-dyslipidaemia compound for treating diet-induced obesity.
Collapse
Affiliation(s)
- Yuki Naito
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yutaka Yoshikawa
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan.,Department of Health, Sports, and Nutrition, Faculty of Health and Welfare, Kobe Women's University, Kobe, Japan
| | - Katsuhiko Yoshizawa
- Department of Food Sciences and Nutrition, School of Human Environmental Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Akiko Takenouchi
- Department of Food Sciences and Nutrition, School of Human Environmental Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
110
|
Chiu CC, Ching YH, Li YP, Liu JY, Huang YT, Huang YW, Yang SS, Huang WC, Chuang HL. Nonalcoholic Fatty Liver Disease Is Exacerbated in High-Fat Diet-Fed Gnotobiotic Mice by Colonization with the Gut Microbiota from Patients with Nonalcoholic Steatohepatitis. Nutrients 2017; 9:nu9111220. [PMID: 29113135 PMCID: PMC5707692 DOI: 10.3390/nu9111220] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/24/2017] [Accepted: 11/02/2017] [Indexed: 12/20/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a serious liver disorder associated with the accumulation of fat and inflammation. The objective of this study was to determine the gut microbiota composition that might influence the progression of NAFLD. Germ-free mice were inoculated with feces from patients with nonalcoholic steatohepatitis (NASH) or from healthy persons (HL) and then fed a standard diet (STD) or high-fat diet (HFD). We found that the epididymal fat weight, hepatic steatosis, multifocal necrosis, and inflammatory cell infiltration significantly increased in the NASH-HFD group. These findings were consistent with markedly elevated serum levels of alanine transaminase, aspartate transaminase, endotoxin, interleukin 6 (IL-6), monocyte chemotactic protein 1 (Mcp1), and hepatic triglycerides. In addition, the mRNA expression levels of Toll-like receptor 2 (Tlr2), Toll-like receptor 4 (Tlr4), tumor necrosis factor alpha (Tnf-α), Mcp1, and peroxisome proliferator-activated receptor gamma (Ppar-γ) significantly increased. Only abundant lipid accumulation and a few inflammatory reactions were observed in group HL-HFD. Relative abundance of Bacteroidetes and Firmicutes shifted in the HFD-fed mice. Furthermore, the relative abundance of Streptococcaceae was the highest in group NASH-HFD. Nevertheless, obesity-related Lactobacillaceae were significantly upregulated in HL-HFD mice. Our results revealed that the gut microbiota from NASH Patients aggravated hepatic steatosis and inflammation. These findings might partially explain the NAFLD progress distinctly was related to different compositions of gut microbiota.
Collapse
Affiliation(s)
- Chien-Chao Chiu
- Animal Technology Laboratories, Agricultural Technology Research Institute, Miaoli 350, Taiwan.
| | - Yung-Hao Ching
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan.
| | - Yen-Peng Li
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 402, Taiwan.
| | - Ju-Yun Liu
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei 115, Taiwan.
| | - Yen-Te Huang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei 115, Taiwan.
| | - Yi-Wen Huang
- Liver Center, Cathay General Hospital Medical Center, Taipei 106, Taiwan.
- School of Medicine, Taipei Medical University College of Medicine, Taipei 110, Taiwan.
| | - Sien-Sing Yang
- Liver Center, Cathay General Hospital Medical Center, Taipei 106, Taiwan.
| | - Wen-Ching Huang
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan.
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei 115, Taiwan.
| |
Collapse
|
111
|
Crescenzo R, Mazzoli A, Cancelliere R, Bucci A, Naclerio G, Baccigalupi L, Cutting S, Ricca E, Iossa S. Beneficial effects of carotenoid-producing cells of Bacillus indicus HU16 in a rat model of diet-induced metabolic syndrome. Benef Microbes 2017; 8:823-831. [DOI: 10.3920/bm2017.0025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A well-established rat model of diet-induced metabolic syndrome was used to evaluate the effects of the oral administration of spores or cells of HU16, a carotenoid-producing strain of Bacillus indicus. Symptoms of metabolic syndrome were induced in 90-days old, male Sprague-Dawley rats maintained for eight weeks on a high-fat diet, as previously reported. Parallel groups of animals under the same diet regimen also received a daily dose of 1×1010 cells or spores of B. indicus HU16. Cells of strain HU16 were able to reduce symptoms of metabolic syndrome, plasma markers of inflammation and oxidative markers in plasma and liver to levels similar to those observed in rats under a standard diet. HU16 cells did not affect obesity markers or the accumulation of triglycerides in the liver of treated animals. Denaturing gradient gel electrophoresis analysis showed that the oral administration of HU16 cells did not significantly affect the gut microbiota of high fat-fed rats, suggesting that the observed beneficial effects are not due to a reshaping of the gut microbiota but rather to metabolites produced by HU16 cells.
Collapse
Affiliation(s)
- R. Crescenzo
- Department of Biology, Federico II University, Via Cintia, 80126 Naples, Italy
| | - A. Mazzoli
- Department of Biology, Federico II University, Via Cintia, 80126 Naples, Italy
| | - R. Cancelliere
- Department of Biology, Federico II University, Via Cintia, 80126 Naples, Italy
| | - A. Bucci
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - G. Naclerio
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - L. Baccigalupi
- Department of Biology, Federico II University, Via Cintia, 80126 Naples, Italy
| | - S.M. Cutting
- School of Biological Sciences, Royal Holloway University of London, Bourne Laboratories 4-26, Egham, Surrey TW20 OEX, United Kingdom
| | - E. Ricca
- Department of Biology, Federico II University, Via Cintia, 80126 Naples, Italy
| | - S. Iossa
- Department of Biology, Federico II University, Via Cintia, 80126 Naples, Italy
| |
Collapse
|
112
|
Lambertz J, Weiskirchen S, Landert S, Weiskirchen R. Fructose: A Dietary Sugar in Crosstalk with Microbiota Contributing to the Development and Progression of Non-Alcoholic Liver Disease. Front Immunol 2017; 8:1159. [PMID: 28970836 PMCID: PMC5609573 DOI: 10.3389/fimmu.2017.01159] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022] Open
Abstract
Fructose is one of the key dietary catalysts in the development of non-alcoholic fatty liver disease (NAFLD). NAFLD comprises a complex disease spectrum, including steatosis (fatty liver), non-alcoholic steatohepatitis, hepatocyte injury, inflammation, and fibrosis. It is also the hepatic manifestation of the metabolic syndrome, which covers abdominal obesity, insulin resistance, dyslipidemia, glucose intolerance, or type 2 diabetes mellitus. Commensal bacteria modulate the host immune system, protect against exogenous pathogens, and are gatekeepers in intestinal barrier function and maturation. Dysbalanced intestinal microbiota composition influences a variety of NAFLD-associated clinical conditions. Conversely, nutritional supplementation with probiotics and preobiotics impacting composition of gut microbiota can improve the outcome of NAFLD. In crosstalk with the host immune system, the gut microbiota is able to modulate inflammation, insulin resistance, and intestinal permeability. Moreover, the composition of microbiota of an individual is a kind of fingerprint highly influenced by diet. In addition, not only the microbiota itself but also its metabolites influence the metabolism and host immune system. The gut microbiota can produce vitamins and a variety of nutrients including short-chain fatty acids. Holding a healthy balance of the microbiota is therefore highly important. In the present review, we discuss the impact of long-term intake of fructose on the composition of the intestinal microbiota and its biological consequences in regard to liver homeostasis and disease. In particular, we will refer about fructose-induced alterations of the tight junction proteins affecting the gut permeability, leading to the translocation of bacteria and bacterial endotoxins into the blood circulation.
Collapse
Affiliation(s)
- Jessica Lambertz
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Silvano Landert
- Culture Collection of Switzerland AG (CCOS), Wädenswil, Switzerland
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
113
|
Brandt A, Jin CJ, Nolte K, Sellmann C, Engstler AJ, Bergheim I. Short-Term Intake of a Fructose-, Fat- and Cholesterol-Rich Diet Causes Hepatic Steatosis in Mice: Effect of Antibiotic Treatment. Nutrients 2017; 9:nu9091013. [PMID: 28906444 PMCID: PMC5622773 DOI: 10.3390/nu9091013] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/31/2017] [Accepted: 09/11/2017] [Indexed: 02/07/2023] Open
Abstract
Intestinal microbiota and barrier functions seem to play an important role in the development of non-alcoholic fatty liver disease (NAFLD). However, whether these changes are an early event in the development of NAFLD or are primarily associated with later stages of the disease, has not yet been clarified. Using a pair-feeding model, we determined the effects of a short-term intake of a fat-, fructose- and cholesterol-rich diet (FFC) on the development of early hepatic steatosis and markers of intestinal barrier function in mice treated with and without non-resorbable antibiotics (AB). For four days, C57BL/6J mice were either pair-fed a control diet or a FFC diet ± AB (92 mg/kg body weight (BW) polymyxin B and 216 mg/kg BW neomycin). Hepatic steatosis and markers of inflammation, lipidperoxidation and intestinal barrier function were assessed. Lipid accumulation and early signs of inflammation found in the livers of FFC-fed mice were markedly attenuated in FFC + AB-fed animals. In FFC-fed mice the development of NAFLD was associated with a significant loss of tight junction proteins and an induction of matrix metalloproteinase-13 in the upper parts of the small intestine as well as significantly higher portal endotoxin levels and an induction of dependent signaling cascades in the liver. As expected, portal endotoxin levels and the expression of dependent signaling cascades in liver tissue were almost at the level of controls in FFC + AB-fed mice. However, FFC + AB-fed mice were also protected from the loss of zonula occludens-1 and partially of occludin protein in small intestine. Our data suggest that the development of early diet-induced hepatic steatosis in mice at least in part results from alterations of intestinal barrier function.
Collapse
Affiliation(s)
- Annette Brandt
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, A-1090 Vienna, Austria.
- Institute of Nutritional Sciences, SD Model Systems of Molecular Nutrition, Friedrich-Schiller-University Jena, D-07743 Jena, Germany.
| | - Cheng Jun Jin
- Institute of Nutritional Sciences, SD Model Systems of Molecular Nutrition, Friedrich-Schiller-University Jena, D-07743 Jena, Germany.
| | - Katja Nolte
- Institute of Nutritional Sciences, SD Model Systems of Molecular Nutrition, Friedrich-Schiller-University Jena, D-07743 Jena, Germany.
| | - Cathrin Sellmann
- Institute of Nutritional Sciences, SD Model Systems of Molecular Nutrition, Friedrich-Schiller-University Jena, D-07743 Jena, Germany.
| | - Anna Janina Engstler
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, A-1090 Vienna, Austria.
- Institute of Nutritional Sciences, SD Model Systems of Molecular Nutrition, Friedrich-Schiller-University Jena, D-07743 Jena, Germany.
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, A-1090 Vienna, Austria.
- Institute of Nutritional Sciences, SD Model Systems of Molecular Nutrition, Friedrich-Schiller-University Jena, D-07743 Jena, Germany.
| |
Collapse
|
114
|
Fructose diet alleviates acetaminophen-induced hepatotoxicity in mice. PLoS One 2017; 12:e0182977. [PMID: 28832650 PMCID: PMC5568217 DOI: 10.1371/journal.pone.0182977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/27/2017] [Indexed: 12/02/2022] Open
Abstract
Acetaminophen (APAP) is a commonly used analgesic and antipyretic that can cause hepatotoxicity due to production of toxic metabolites via cytochrome P450 (Cyp) 1a2 and Cyp2e1. Previous studies have shown conflicting effects of fructose (the major component in Western diet) on the susceptibility to APAP-induced hepatotoxicity. To evaluate the role of fructose-supplemented diet in modulating the extent of APAP-induced liver injury, male C57BL/6J mice were given 30% (w/v) fructose in water (or regular water) for 8 weeks, followed by oral administration of APAP. APAP-induced liver injury (determined by serum levels of liver enzymes) was decreased by two-fold in mice pretreated with fructose. Fructose-treated mice exhibited (~1.5 fold) higher basal glutathione levels and (~2 fold) lower basal (mRNA and activity) levels of Cyp1a2 and Cyp2e1, suggesting decreased bioactivation of APAP and increased detoxification of toxic metabolite in fructose-fed mice. Hepatic mRNA expression of heat shock protein 70 was also found increased in fructose-fed mice. Analysis of bacterial 16S rRNA gene amplicons from the cecal samples of vehicle groups showed that the fructose diet altered gut bacterial community, leading to increased α-diversity. The abundance of several bacterial taxa including the genus Anaerostipes was found to be significantly correlated with the levels of hepatic Cyp2e1, Cyp1a2 mRNA, and glutathione. Together, these results suggest that the fructose-supplemented diet decreases APAP-induced liver injury in mice, in part by reducing metabolic activation of APAP and inducing detoxification of toxic metabolites, potentially through altered composition of gut microbiota.
Collapse
|
115
|
Moulin S, Seematter G, Seyssel K. Fructose use in clinical nutrition: metabolic effects and potential consequences. Curr Opin Clin Nutr Metab Care 2017; 20:272-278. [PMID: 28383298 DOI: 10.1097/mco.0000000000000376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE OF REVIEW The current article presents recent findings on the metabolic effects of fructose. RECENT FINDINGS Fructose has always been considered as a simple 'caloric' hexose only metabolized by splanchnic tissues. Nevertheless, there is growing evidence that fructose acts as a second messenger and induces effects throughout the human body. SUMMARY Recent discoveries made possible with the evolution of technology have highlighted that fructose induces pleiotropic effects on different tissues. The fact that all these tissues express the specific fructose carrier GLUT5 let us reconsider that fructose is not only a caloric hexose, but could also be a potential actor of some behaviors and metabolic pathways. The physiological relevance of fructose as a metabolic driver is pertinent regarding recent scientific literature.
Collapse
Affiliation(s)
- Sandra Moulin
- aDepartment of Critical Care Medicine, Hôpital cantonal de Fribourg, Fribourg bDepartment of Anaesthesia, Hôpital Riviera-Chablais, Montreux cDepartment of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
116
|
Crescenzo R, Mazzoli A, Di Luccia B, Bianco F, Cancelliere R, Cigliano L, Liverini G, Baccigalupi L, Iossa S. Dietary fructose causes defective insulin signalling and ceramide accumulation in the liver that can be reversed by gut microbiota modulation. Food Nutr Res 2017; 61:1331657. [PMID: 28659742 PMCID: PMC5475320 DOI: 10.1080/16546628.2017.1331657] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/09/2017] [Indexed: 12/21/2022] Open
Abstract
Objective: The link between metabolic derangement of the gut-2013liver-visceral white adipose tissue (v-WAT) axis and gut microbiota was investigated. Methods: Rats were fed a fructose-rich diet and treated with an antibiotic mix. Inflammation was measured in portal plasma, ileum, liver, and v-WAT, while insulin signalling was analysed by measuring levels of phosphorylated kinase Akt. The function and oxidative status of hepatic mitochondria and caecal microbiota composition were also evaluated. Results: Ileal inflammation, increase in plasma transaminases, plasma peroxidised lipids, portal concentrations of tumour necrosis factor alpha, lipopolysaccharide, and non-esterified fatty acids, were induced by fructose and were reversed by antibiotic. The increased hepatic ceramide content, inflammation and decreased insulin signaling in liver and v-WAT induced by fructose was reversed by antibiotic. Antibiotic also blunted the increase in hepatic mitochondrial efficiency and oxidative damage of rats fed fructose-rich diet. Three genera, Coprococcus, Ruminococcus, and Clostridium, significantly increased, while the Clostridiaceae family significantly decreased in rats fed a fructose-rich diet, and antibiotic abolished these variations Conclusions: When gut microbiota modulation by fructose is prevented by antibiotic, inflammatory flow from the gut to the liver and v-WAT are reversed.
Collapse
Affiliation(s)
| | - Arianna Mazzoli
- Department of Biology, Federico II University of Naples, Naples, Italy
| | - Blanda Di Luccia
- Department of Biology, Federico II University of Naples, Naples, Italy
| | - Francesca Bianco
- Department of Biology, Federico II University of Naples, Naples, Italy
| | - Rosa Cancelliere
- Department of Biology, Federico II University of Naples, Naples, Italy
| | - Luisa Cigliano
- Department of Biology, Federico II University of Naples, Naples, Italy
| | - Giovanna Liverini
- Department of Biology, Federico II University of Naples, Naples, Italy
| | | | - Susanna Iossa
- Department of Biology, Federico II University of Naples, Naples, Italy
| |
Collapse
|
117
|
Zubiría MG, Gambaro SE, Rey MA, Carasi P, Serradell MDLÁ, Giovambattista A. Deleterious Metabolic Effects of High Fructose Intake: The Preventive Effect of Lactobacillus kefiri Administration. Nutrients 2017; 9:nu9050470. [PMID: 28513533 PMCID: PMC5452200 DOI: 10.3390/nu9050470] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/13/2017] [Accepted: 05/03/2017] [Indexed: 01/14/2023] Open
Abstract
Modern lifestyle and diets have been associated with metabolic disorders and an imbalance in the normal gut microbiota. Probiotics are widely known for their health beneficial properties targeting the gut microbial ecosystem. The aim of our study was to evaluate the preventive effect of Lactobacillus kefiri (L. kefiri) administration in a fructose-rich diet (FRD) mice model. Mice were provided with tap water or fructose-added (20% w/v) drinking water supplemented or not with L. kefiri. Results showed that probiotic administration prevented weight gain and epidydimal adipose tissue (EAT) expansion, with partial reversion of the adipocyte hypertrophy developed by FRD. Moreover, the probiotic prevented the increase of plasma triglycerides and leptin, together with the liver triglyceride content. Leptin adipocyte secretion was also improved by L. kefiri, being able to respond to an insulin stimulus. Glucose intolerance was partially prevented by L. kefiri treatment (GTT) and local inflammation (TNFα; IL1β; IL6 and INFγ) was completely inhibited in EAT. L. kefiri supplementation generated an impact on gut microbiota composition, changing Bacteroidetes and Firmicutes profiles. Overall, our results indicate that the administration of probiotics prevents the deleterious effects of FRD intake and should therefore be promoted to improve metabolic disorders.
Collapse
Affiliation(s)
- María Guillermina Zubiría
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), 526 10 y 11, La Plata 1900, Argentina.
- Biology Department, School of Exact Sciences, Universidad Nacional de La Plata, La Plata 1900, Argentina.
| | - Sabrina Eliana Gambaro
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), 526 10 y 11, La Plata 1900, Argentina.
| | - María Amanda Rey
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), 526 10 y 11, La Plata 1900, Argentina.
| | - Paula Carasi
- Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115 s/n, La Plata 1900, Argentina.
| | - María de Los Ángeles Serradell
- Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115 s/n, La Plata 1900, Argentina.
| | - Andrés Giovambattista
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), 526 10 y 11, La Plata 1900, Argentina.
- Biology Department, School of Exact Sciences, Universidad Nacional de La Plata, La Plata 1900, Argentina.
| |
Collapse
|
118
|
Talmor-Barkan Y, Kornowski R. The gut microbiome and cardiovascular risk: current perspective and gaps of knowledge. Future Cardiol 2017; 13:191-194. [DOI: 10.2217/fca-2017-0014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yeela Talmor-Barkan
- Cardiology Department, Rabin Medical Center, Petach Tikva, Israel
- The “Sackler” Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ran Kornowski
- Cardiology Department, Rabin Medical Center, Petach Tikva, Israel
- The “Sackler” Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
119
|
Short-Term Fructose Feeding Induces Inflammation and Oxidative Stress in the Hippocampus of Young and Adult Rats. Mol Neurobiol 2017; 55:2869-2883. [PMID: 28455700 DOI: 10.1007/s12035-017-0518-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/04/2017] [Indexed: 10/19/2022]
Abstract
The drastic increase in the consumption of fructose encouraged the research to focus on its effects on brain physio-pathology. Although young and adults differ largely by their metabolic and physiological profiles, most of the previous studies investigated brain disturbances induced by long-term fructose feeding in adults. Therefore, we investigated whether a short-term consumption of fructose (2 weeks) produces early increase in specific markers of inflammation and oxidative stress in the hippocampus of young and adult rats. After the high-fructose diet, plasma lipopolysaccharide and tumour necrosis factor (TNF)-alpha were found significantly increased in parallel with hippocampus inflammation, evidenced by a significant rise in TNF-alpha and glial fibrillar acidic protein concentrations in both the young and adult groups. The fructose-induced inflammatory condition was associated with brain oxidative stress, as increased levels of lipid peroxidation and nitro-tyrosine were detected in the hippocampus. The degree of activation of the protein kinase B, extracellular signal-regulated kinase 1/2, and insulin receptor substrate 1 pathways found in the hippocampus after fructose feeding indicates that the detrimental effects of the fructose-rich diet might largely depend on age. Mitochondrial function in the hippocampus, together with peroxisome proliferator-activated receptor gamma coactivator 1-alpha content, was found significantly decreased in fructose-treated adult rats. In vitro studies with BV-2 microglial cells confirmed that fructose treatment induces TNF-alpha production as well as oxidative stress. In conclusion, these results suggest that unbalanced diet, rich in fructose, may be highly deleterious in young people as in adults and must be strongly discouraged for the prevention of diet-associated neuroinflammation and neurological diseases.
Collapse
|
120
|
Steenson S, Umpleby AM, Lovegrove JA, Jackson KG, Fielding BA. Role of the Enterocyte in Fructose-Induced Hypertriglyceridaemia. Nutrients 2017; 9:nu9040349. [PMID: 28368310 PMCID: PMC5409688 DOI: 10.3390/nu9040349] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/21/2017] [Accepted: 03/31/2017] [Indexed: 01/12/2023] Open
Abstract
Dietary fructose has been linked to an increased post-prandial triglyceride (TG) level; which is an established independent risk factor for cardiovascular disease. Although much research has focused on the effects of fructose consumption on liver-derived very-low density lipoprotein (VLDL); emerging evidence also suggests that fructose may raise post-prandial TG levels by affecting the metabolism of enterocytes of the small intestine. Enterocytes have become well recognised for their ability to transiently store lipids following a meal and to thus control post-prandial TG levels according to the rate of chylomicron (CM) lipoprotein synthesis and secretion. The influence of fructose consumption on several aspects of enterocyte lipid metabolism are discussed; including de novo lipogenesis; apolipoprotein B48 and CM-TG production; based on the findings of animal and human isotopic tracer studies. Methodological issues affecting the interpretation of fructose studies conducted to date are highlighted; including the accurate separation of CM and VLDL. Although the available evidence to date is limited; disruption of enterocyte lipid metabolism may make a meaningful contribution to the hypertriglyceridaemia often associated with fructose consumption.
Collapse
Affiliation(s)
- Simon Steenson
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK.
- Department of Food & Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading RG6 6AP, UK.
| | - A Margot Umpleby
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK.
| | - Julie A Lovegrove
- Department of Food & Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading RG6 6AP, UK.
| | - Kim G Jackson
- Department of Food & Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading RG6 6AP, UK.
| | - Barbara A Fielding
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK.
| |
Collapse
|
121
|
Rega MF, Siciliano A, Gesuele R, Lofrano G, Carpentieri A, Picone D, Guida M. Ecotoxicological survey of MNEI and Y65R-MNEI proteins as new potential high-intensity sweeteners. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:9734-9740. [PMID: 28251536 DOI: 10.1007/s11356-017-8626-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/09/2017] [Indexed: 06/06/2023]
Abstract
Low-calorie sweeteners are widespread. They are routinely introduced into commonly consumed food such as diet sodas, cereals, and sugar-free desserts. Recent data revealed the presence in considerable quantities of some of these artificial sweeteners in water samples qualifying them as a class of potential new emerging contaminants. This study aimed at evaluating the ecotoxicity profile of MNEI and Y65R-MNEI, two engineered products derived from the natural protein monellin, employing representative test organism such as Daphnia magna, Ceriodaphnia dubia, and Raphidocelis subcapitata. Potential genotoxicity and mutagenicity effects on Salmonella typhimurium (strain TA97a, TA98, TA100, and TA1535) and Escherichia coli (strain WP2 pkM101) were evaluated. No genotoxicity effects were detected, whereas slight mutagenicity was highlighted by TA98 S. typhimurium. Ecotoxicity results evidenced effects approximately up to 14 and 20% with microalgae at 500 mg/L of MNEI and Y65R-MNEI, in that order. Macrophytes and crustaceans showed no significant effects. No median effective concentrations were determined. Overall, MNEI and Y65R-MNEI can be classified as not acutely toxic for the environment.
Collapse
Affiliation(s)
- Michele Fortunato Rega
- Department of Chemical Sciences, University of Naples "Federico II", Via Cinthia Complesso Monte Sant'Angelo, 80126, Naples, Italy
| | - Antonietta Siciliano
- Department of Biology, University of Naples "Federico II", Via Cinthia Complesso Monte Sant'Angelo, 80126, Naples, Italy
| | - Renato Gesuele
- Department of Biology, University of Naples "Federico II", Via Cinthia Complesso Monte Sant'Angelo, 80126, Naples, Italy
| | - Giusy Lofrano
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Salerno, Italy
| | - Andrea Carpentieri
- Department of Chemical Sciences, University of Naples "Federico II", Via Cinthia Complesso Monte Sant'Angelo, 80126, Naples, Italy
| | - Delia Picone
- Department of Chemical Sciences, University of Naples "Federico II", Via Cinthia Complesso Monte Sant'Angelo, 80126, Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples "Federico II", Via Cinthia Complesso Monte Sant'Angelo, 80126, Naples, Italy.
| |
Collapse
|
122
|
Zhang DM, Jiao RQ, Kong LD. High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions. Nutrients 2017; 9:E335. [PMID: 28353649 PMCID: PMC5409674 DOI: 10.3390/nu9040335] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/15/2017] [Accepted: 03/24/2017] [Indexed: 02/06/2023] Open
Abstract
High dietary fructose is a major contributor to insulin resistance and metabolic syndrome, disturbing tissue and organ functions. Fructose is mainly absorbed into systemic circulation by glucose transporter 2 (GLUT2) and GLUT5, and metabolized in liver to produce glucose, lactate, triglyceride (TG), free fatty acid (FFA), uric acid (UA) and methylglyoxal (MG). Its extrahepatic absorption and metabolism also take place. High levels of these metabolites are the direct dangerous factors. During fructose metabolism, ATP depletion occurs and induces oxidative stress and inflammatory response, disturbing functions of local tissues and organs to overproduce inflammatory cytokine, adiponectin, leptin and endotoxin, which act as indirect dangerous factors. Fructose and its metabolites directly and/or indirectly cause oxidative stress, chronic inflammation, endothelial dysfunction, autophagy and increased intestinal permeability, and then further aggravate the metabolic syndrome with tissue and organ dysfunctions. Therefore, this review addresses fructose-induced metabolic syndrome, and the disturbance effects of direct and/or indirect dangerous factors on the functions of liver, adipose, pancreas islet, skeletal muscle, kidney, heart, brain and small intestine. It is important to find the potential correlations between direct and/or indirect risk factors and healthy problems under excess dietary fructose consumption.
Collapse
Affiliation(s)
- Dong-Mei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China.
| | - Rui-Qing Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China.
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
123
|
Feng W, Wang H, Zhang P, Gao C, Tao J, Ge Z, Zhu D, Bi Y. Modulation of gut microbiota contributes to curcumin-mediated attenuation of hepatic steatosis in rats. Biochim Biophys Acta Gen Subj 2017; 1861:1801-1812. [PMID: 28341485 DOI: 10.1016/j.bbagen.2017.03.017] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Structural disruption of gut microbiota contributes to the development of non-alcoholic fatty liver disease (NAFLD) and modulating the gut microbiota represents a novel strategy for NAFLD prevention. Although previous studies have demonstrated that curcumin alleviates hepatic steatosis, its effect on the gut microbiota modulation has not been investigated. METHODS Next generation sequencing and multivariate analysis were utilized to evaluate the structural changes of gut microbiota in a NAFLD rat model induced by high fat-diet (HFD) feeding. RESULTS We found that curcumin attenuated hepatic ectopic fat deposition, improved intestinal barrier integrity, and alleviated metabolic endotoxemia in HFD-fed rats. More importantly, curcumin dramatically shifted the overall structure of the HFD-disrupted gut microbiota toward that of lean rats fed a normal diet and altered the gut microbial composition. The abundances of 110 operational taxonomic units (OTUs) were altered by curcumin. Seventy-six altered OTUs were significantly correlated with one or more hepatic steatosis associated parameters and designated 'functionally relevant phylotypes'. Thirty-six of the 47 functionally relevant OTUs that were positively correlated with hepatic steatosis associated parameters were reduced by curcumin. CONCLUSION These results indicate that curcumin alleviates hepatic steatosis in part through stain-specific impacts on hepatic steatosis associated phylotypes of gut microbiota in rats. GENERAL SIGNIFICANCE Compounds with antimicrobial activities should be further investigated as novel adjunctive therapies for NAFLD.
Collapse
Affiliation(s)
- Wenhuan Feng
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing 210008, People's Republic of China
| | - Hongdong Wang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing 210008, People's Republic of China
| | - Pengzi Zhang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing 210008, People's Republic of China
| | - Caixia Gao
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing 210008, People's Republic of China
| | - Junxian Tao
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing 210008, People's Republic of China
| | - Zhijuan Ge
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing 210008, People's Republic of China
| | - Dalong Zhu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing 210008, People's Republic of China.
| | - Yan Bi
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing 210008, People's Republic of China.
| |
Collapse
|
124
|
de Groot PF, Frissen MN, de Clercq NC, Nieuwdorp M. Fecal microbiota transplantation in metabolic syndrome: History, present and future. Gut Microbes 2017; 8:253-267. [PMID: 28609252 PMCID: PMC5479392 DOI: 10.1080/19490976.2017.1293224] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The history of fecal microbiota transplantation (FMT) dates back even to ancient China. Recently, scientific studies have been looking into FMT as a promising treatment of various diseases, while in the process teaching us about the interaction between the human host and its resident microbial communities. Current research focuses mainly on Clostridium difficile infections, however interest is rising in other areas such as inflammatory bowel disease (IBD) and the metabolic syndrome. With regard to the latter, the intestinal microbiota might be causally related to the progression of insulin resistance and diabetes. FMT in metabolic syndrome has proven to be an intriguing method to study the role of the gut microbiota and open the way to new therapies by dissecting in whom insulin resistance is driven by microbiota. In this article we review the history of FMT, the present evidence on its role in the pathophysiology of metabolic syndrome and its efficacy, limitations and future prospects.
Collapse
Affiliation(s)
- P. F. de Groot
- Department of Internal and Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - M. N. Frissen
- Department of Internal and Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - N. C. de Clercq
- Department of Internal and Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - M. Nieuwdorp
- Department of Internal and Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands,Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Internal medicine, VU University Medical Center, Amsterdam, The Netherlands,ICAR, VU University Medical Center, Amsterdam, The Netherlands,CONTACT M. Nieuwdorp , Department of Internal and Vascular Medicine, Academic Medical Center Meibergdreef 9, room F4–159.2, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
125
|
Stanaway IB, Wallace JC, Shojaie A, Griffith WC, Hong S, Wilder CS, Green FH, Tsai J, Knight M, Workman T, Vigoren EM, McLean JS, Thompson B, Faustman EM. Human Oral Buccal Microbiomes Are Associated with Farmworker Status and Azinphos-Methyl Agricultural Pesticide Exposure. Appl Environ Microbiol 2017; 83:e02149-16. [PMID: 27836847 PMCID: PMC5203616 DOI: 10.1128/aem.02149-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/24/2016] [Indexed: 12/24/2022] Open
Abstract
In a longitudinal agricultural community cohort sampling of 65 adult farmworkers and 52 adult nonfarmworkers, we investigated agricultural pesticide exposure-associated changes in the oral buccal microbiota. We found a seasonally persistent association between the detected blood concentration of the insecticide azinphos-methyl and the taxonomic composition of the buccal swab oral microbiome. Blood and buccal samples were collected concurrently from individual subjects in two seasons, spring/summer 2005 and winter 2006. Mass spectrometry quantified blood concentrations of the organophosphate insecticide azinphos-methyl. Buccal oral microbiome samples were 16S rRNA gene DNA sequenced, assigned to the bacterial taxonomy, and analyzed after "centered-log-ratio" transformation to handle the compositional nature of the proportional abundances of bacteria per sample. Nonparametric analysis of the transformed microbiome data for individuals with and without azinphos-methyl blood detection showed significant perturbations in seven common bacterial taxa (>0.5% of sample mean read depth), including significant reductions in members of the common oral bacterial genus Streptococcus Diversity in centered-log-ratio composition between individuals' microbiomes was also investigated using principal-component analysis (PCA) to reveal two primary PCA clusters of microbiome types. The spring/summer "exposed" microbiome cluster with significantly less bacterial diversity was enriched for farmworkers and contained 27 of the 30 individuals who also had azinphos-methyl agricultural pesticide exposure detected in the blood. IMPORTANCE In this study, we show in human subjects that organophosphate pesticide exposure is associated with large-scale significant alterations of the oral buccal microbiota composition, with extinctions of whole taxa suggested in some individuals. The persistence of this association from the spring/summer to the winter also suggests that long-lasting effects on the commensal microbiota have occurred. The important health-related outcomes of these agricultural community individuals' pesticide-associated microbiome perturbations are not understood at this time. Future investigations should index medical and dental records for common and chronic diseases that may be interactively caused by this association between pesticide exposure and microbiome alteration.
Collapse
Affiliation(s)
- Ian B Stanaway
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - James C Wallace
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - Ali Shojaie
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - William C Griffith
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - Sungwoo Hong
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - Carly S Wilder
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - Foad H Green
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - Jesse Tsai
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - Misty Knight
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - Tomomi Workman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - Eric M Vigoren
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - Jeffrey S McLean
- School of Dentistry, Periodontics, University of Washington, Seattle, Washington, USA
| | - Beti Thompson
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Elaine M Faustman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| |
Collapse
|
126
|
Rodriguez-Castaño GP, Caro-Quintero A, Reyes A, Lizcano F. Advances in Gut Microbiome Research, Opening New Strategies to Cope with a Western Lifestyle. Front Genet 2017; 7:224. [PMID: 28119734 PMCID: PMC5222858 DOI: 10.3389/fgene.2016.00224] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022] Open
Abstract
The "westernization" of global eating and lifestyle habits is associated with the growing rate of chronic diseases, mainly cardiovascular diseases, cancer, type 2 diabetes mellitus, and respiratory diseases. The primary prevention approach is to make nutritional and behavioral changes, however, there is another important determinant of our health that only recently has been considered and is the presence of beneficial microorganisms and their products in our gastrointestinal tract. Microorganisms living in our body can alter the fate of food, drugs, hormones, and xenobiotics, and recent studies point to the use of microorganisms that can counteract the harmful effects of certain compounds introduced or produced endogenously in our body. This review considers the effects of the western lifestyle on adiposity, glucose metabolism, oxidative markers and inflammation profile, emphasizes on the studies that have investigated bacterial strains and products of their metabolism that are beneficial under this lifestyle, and examines the screening strategies that recent studies are using to select the most promising probiotic isolates. In addition, we consider the relevance of studying the microbiota of metabolically healthy people under a western lifestyle for the understanding of the key components that delay the development of chronic diseases.
Collapse
Affiliation(s)
| | - Alejandro Caro-Quintero
- Corporación de Investigación Agropecuaria CORPOICA, Centro de Investigación Tibaitatá Mosquera, Colombia
| | - Alejandro Reyes
- Department of Biological Sciences, Universidad de los AndesBogotá, Colombia; Center for Genome Sciences and Systems Biology, Washington University School of MedicineSt. Louis, MO, USA; Department of Pathology and Immunology, Washington University School of MedicineSt. Louis, MO, USA
| | - Fernando Lizcano
- Center of Biomedical Research, CIBUS, Universidad de La Sabana Chía, Colombia
| |
Collapse
|
127
|
Klinder A, Shen Q, Heppel S, Lovegrove JA, Rowland I, Tuohy KM. Impact of increasing fruit and vegetables and flavonoid intake on the human gut microbiota. Food Funct 2017; 7:1788-96. [PMID: 26757793 DOI: 10.1039/c5fo01096a] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Epidemiological studies have shown protective effects of fruits and vegetables (F&V) in lowering the risk of developing cardiovascular diseases (CVD) and cancers. Plant-derived dietary fibre (non-digestible polysaccharides) and/or flavonoids may mediate the observed protective effects particularly through their interaction with the gut microbiota. The aim of this study was to assess the impact of fruit and vegetable (F&V) intake on gut microbiota, with an emphasis on the role of flavonoids, and further to explore relationships between microbiota and factors associated with CVD risk. In the study, a parallel design with 3 study groups, participants in the two intervention groups representing high-flavonoid (HF) and low flavonoid (LF) intakes were asked to increase their daily F&V intake by 2, 4 and 6 portions for a duration of 6 weeks each, while a third (control) group continued with their habitual diet. Faecal samples were collected at baseline and after each dose from 122 subjects. Faecal bacteria enumeration was performed by fluorescence in situ hybridisation (FISH). Correlations of dietary components, flavonoid intake and markers of CVD with bacterial numbers were also performed. A significant dose X treatment interaction was only found for Clostidium leptum-Ruminococcus bromii/flavefaciens with a significant increase after intake of 6 additional portions in the LF group. Correlation analysis of the data from all 122 subjects independent from dietary intervention indicated an inhibitory role of F&V intake, flavonoid content and sugars against the growth of potentially pathogenic clostridia. Additionally, we observed associations between certain bacterial populations and CVD risk factors including plasma TNF-α, plasma lipids and BMI/waist circumference.
Collapse
Affiliation(s)
- Annett Klinder
- Department of Food and Nutritional Sciences, University of Reading, Reading, Berkshire, UK. and Clinic of Orthopaedics, University Medicine Rostock, Rostock, Germany
| | - Qing Shen
- Department of Food and Nutritional Sciences, University of Reading, Reading, Berkshire, UK.
| | - Susanne Heppel
- Department of Food and Nutritional Sciences, University of Reading, Reading, Berkshire, UK.
| | - Julie A Lovegrove
- Department of Food and Nutritional Sciences, University of Reading, Reading, Berkshire, UK.
| | - Ian Rowland
- Department of Food and Nutritional Sciences, University of Reading, Reading, Berkshire, UK.
| | - Kieran M Tuohy
- Department of Food and Nutritional Sciences, University of Reading, Reading, Berkshire, UK. and Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| |
Collapse
|
128
|
Noble EE, Hsu TM, Jones RB, Fodor AA, Goran MI, Kanoski SE. Early-Life Sugar Consumption Affects the Rat Microbiome Independently of Obesity. J Nutr 2017; 147:20-28. [PMID: 27903830 PMCID: PMC5177734 DOI: 10.3945/jn.116.238816] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/10/2016] [Accepted: 10/31/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The gut microbiome has been implicated in various metabolic and neurocognitive disorders and is heavily influenced by dietary factors, but there is a paucity of research on the effects of added sugars on the gut microbiome. OBJECTIVE With the use of a rodent model, our goal was to determine how added-sugar consumption during the juvenile and adolescent phase of development affects the gut microbiome. METHODS Forty-two juvenile male Sprague-Dawley rats [postnatal day (PND) 26; 50-70 g] were given access to 1 of 3 different 11%-carbohydrate solutions designed to model a range of monosaccharide ratios commonly consumed in sugar-sweetened beverages: 1) 35% fructose:65% glucose, 2) 50% fructose:50% glucose, 3) 65% fructose:35% glucose, and 4) control (no sugar). After ad libitum access to the respective solutions for the juvenile and adolescent period (PND 26-80), fecal samples were collected for next-generation 16S ribosomal RNA sequencing and multivariate microbial composition analyses. Energy intake, weight change, and adiposity index were analyzed in relation to sugar consumption and the microbiota. RESULTS Body weight, adiposity index, and total caloric intake did not differ as a result of sugar consumption. However, sugar consumption altered the gut microbiome independently of anthropometric measures and caloric intake. At the genus level, Prevotella [linear discriminant analysis (LDA) score = -4.62; P < 0.001] and Lachnospiraceae incertae sedis (LDA score = -3.01; P = 0.03) were reduced, whereas Bacteroides (LDA score = 4.19; P < 0.001), Alistipes (LDA score = 3.88; P < 0.001), Lactobacillus (LDA score = 3.78; P < 0.001), Clostridium sensu stricto (LDA score = 3.77; P < 0.001), Bifidobacteriaceae (LDA score = 3.59; P = 0.001), and Parasutterella (LDA score = 3.79; P = 0.004) were elevated by sugar consumption. No overall pattern could be attributable to monosaccharide ratio. CONCLUSIONS Early-life sugar consumption affects the gut microbiome in rats independently of caloric intake, body weight, or adiposity index; these effects are robust across a range of fructose-to-glucose ratios.
Collapse
Affiliation(s)
- Emily E Noble
- Human and Evolutionary Biology Section, Department of Biological Sciences
| | - Ted M Hsu
- Human and Evolutionary Biology Section, Department of Biological Sciences,,Neuroscience Program, and
| | - Roshonda B Jones
- Department of Bioinformatics and Genetics, University of North Carolina at Charlotte, Charlotte, NC
| | - Anthony A Fodor
- Department of Bioinformatics and Genetics, University of North Carolina at Charlotte, Charlotte, NC
| | - Michael I Goran
- Department of Preventative Medicine, University of Southern California, Los Angeles, CA; and
| | - Scott E Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, .,Neuroscience Program, and
| |
Collapse
|
129
|
Alwahsh SM, Gebhardt R. Dietary fructose as a risk factor for non-alcoholic fatty liver disease (NAFLD). Arch Toxicol 2016; 91:1545-1563. [PMID: 27995280 DOI: 10.1007/s00204-016-1892-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/08/2016] [Indexed: 12/16/2022]
Abstract
Glucose is a major energy source for the entire body, while fructose metabolism occurs mainly in the liver. Fructose consumption has increased over the last decade globally and is suspected to contribute to the increased incidence of non-alcoholic fatty liver disease (NAFLD). NAFLD is a manifestation of metabolic syndrome affecting about one-third of the population worldwide and has progressive pathological potential for liver cirrhosis and cancer through non-alcoholic steatohepatitis (NASH). Here we have reviewed the possible contribution of fructose to the pathophysiology of NAFLD. We critically summarize the current findings about several regulators, and their potential mechanisms, that have been studied in humans and animal models in response to fructose exposure. A novel hypothesis on fructose-dependent perturbation of liver regeneration and metabolism is advanced. Fructose intake could affect inflammatory and metabolic processes, liver function, gut microbiota, and portal endotoxin influx. The role of the brain in controlling fructose ingestion and the subsequent development of NAFLD is highlighted. Although the importance for fructose (over)consumption for NAFLD in humans is still debated and comprehensive intervention studies are invited, understanding of how fructose intake can favor these pathological processes is crucial for the development of appropriate noninvasive diagnostic and therapeutic approaches to detect and treat these metabolic effects. Still, lifestyle modification, to lessen the consumption of fructose-containing products, and physical exercise are major measures against NAFLD. Finally, promising drugs against fructose-induced insulin resistance and hepatic dysfunction that are emerging from studies in rodents are reviewed, but need further validation in human patients.
Collapse
Affiliation(s)
- Salamah Mohammad Alwahsh
- Faculty of Medicine, Institute of Biochemistry, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany. .,MCR Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Dr, EH16 4UU Edinburgh, UK.
| | - Rolf Gebhardt
- Faculty of Medicine, Institute of Biochemistry, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany.
| |
Collapse
|
130
|
Yang L, Wang L, Wang X, Xian CJ, Lu H. A Possible Role of Intestinal Microbiota in the Pathogenesis of Ankylosing Spondylitis. Int J Mol Sci 2016; 17:ijms17122126. [PMID: 27999312 PMCID: PMC5187926 DOI: 10.3390/ijms17122126] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/09/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022] Open
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disease primarily affecting the sacroiliac joints and the spine, for which the pathogenesis is thought to be a result of the combination of host genetic factors and environmental triggers. However, the precise factors that determine one’s susceptibility to AS remain to be unraveled. With 100 trillion bacteria residing in the mammalian gut having established a symbiotic relation with their host influencing many aspects of host metabolism, physiology, and immunity, a growing body of evidence suggests that intestinal microbiota may play an important role in AS. Several mechanisms have been suggested to explain the potential role of the microbiome in the etiology of AS, such as alterations of intestinal permeability, stimulation of immune responses, and molecular mimicry. In this review, the existing evidence for the involvement of the microbiome in AS pathogenesis was discussed and the potential of intestinal microbiome-targeting strategies in the prevention and treatment of AS was evaluated.
Collapse
Affiliation(s)
- Lianjun Yang
- Academy of Orthopedics of Guangdong Province, Orthopaedic Hospital of Guangdong Province, Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China.
| | - Liping Wang
- Academy of Orthopedics of Guangdong Province, Orthopaedic Hospital of Guangdong Province, Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China.
- Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA5001, Australia.
| | - Xin Wang
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane QLD4059, Australia.
| | - Cory J Xian
- Academy of Orthopedics of Guangdong Province, Orthopaedic Hospital of Guangdong Province, Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China.
- Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA5001, Australia.
| | - Hai Lu
- Academy of Orthopedics of Guangdong Province, Orthopaedic Hospital of Guangdong Province, Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China.
| |
Collapse
|
131
|
Wong SK, Chin KY, Suhaimi FH, Fairus A, Ima-Nirwana S. Animal models of metabolic syndrome: a review. Nutr Metab (Lond) 2016; 13:65. [PMID: 27708685 PMCID: PMC5050917 DOI: 10.1186/s12986-016-0123-9] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/10/2016] [Indexed: 01/11/2023] Open
Abstract
Metabolic syndrome (MetS) consists of several medical conditions that collectively predict the risk for cardiovascular disease better than the sum of individual conditions. The risk of developing MetS in human depends on synergy of both genetic and environmental factors. Being a multifactorial condition with alarming rate of prevalence nowadays, establishment of appropriate experimental animal models mimicking the disease state in humans is crucial in order to solve the difficulties in evaluating the pathophysiology of MetS in human. This review aims to summarize the underlying mechanisms involved in the pathophysiology of dietary, genetic, and pharmacological models of MetS. Furthermore, we will discuss the usefulness, suitability, pros and cons of these animal models. Even though numerous animal models of MetS have been established, further investigations on the invention of new animal model and clarification of plausible mechanisms are still necessary to confer a better understanding to researchers on the selection of animal models for their studies.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur Malaysia
| | - Farihah Hj Suhaimi
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur Malaysia
| | - Ahmad Fairus
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur Malaysia
| |
Collapse
|
132
|
Marotz CA, Zarrinpar A. Treating Obesity and Metabolic Syndrome with Fecal Microbiota Transplantation. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:383-388. [PMID: 27698622 PMCID: PMC5045147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The worldwide prevalence of metabolic syndrome, which includes obesity and its associated diseases, is rising rapidly. The human gut microbiome is recognized as an independent environmental modulator of host metabolic health and disease. Research in animal models has demonstrated that the gut microbiome has the functional capacity to induce or relieve metabolic syndrome. One way to modify the human gut microbiome is by transplanting fecal matter, which contains an abundance of live microorganisms, from a healthy individual to a diseased one in the hopes of alleviating illness. Here we review recent evidence suggesting efficacy of fecal microbiota transplant (FMT) in animal models and humans for the treatment of obesity and its associated metabolic disorders.
Collapse
Affiliation(s)
- Clarisse A. Marotz
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA
| | - Amir Zarrinpar
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA,To whom all correspondence should be addressed: Amir Zarrinpar, MD, PhD, Division of Gastroenterology, University of California, San Diego, 9500 Gilman Drive, MC 0063, La Jolla, CA 92093-0063; Tel: 858-246-1665; FAX: 858-657-5022;
| |
Collapse
|
133
|
Acrolein increases macrophage atherogenicity in association with gut microbiota remodeling in atherosclerotic mice: protective role for the polyphenol-rich pomegranate juice. Arch Toxicol 2016; 91:1709-1725. [PMID: 27696135 DOI: 10.1007/s00204-016-1859-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/22/2016] [Indexed: 01/13/2023]
Abstract
The unsaturated aldehyde acrolein is pro-atherogenic, and the polyphenol-rich pomegranate juice (PJ), known for its anti-oxidative/anti-atherogenic properties, inhibits macrophage foam cell formation, the hallmark feature of early atherosclerosis. This study aimed to investigate two unexplored areas of acrolein atherogenicity: macrophage lipid metabolism and the gut microbiota composition. The protective effects of PJ against acrolein atherogenicity were also evaluated. Atherosclerotic apolipoprotein E-deficient (apoE-/-) mice that were fed acrolein (3 mg/kg/day) for 1 month showed significant increases in serum and aortic cholesterol, triglycerides, and lipid peroxides. In peritoneal macrophages isolated from the mice and in J774A.1 cultured macrophages, acrolein exposure increased intracellular oxidative stress and stimulated cholesterol and triglyceride accumulation via enhanced rates of their biosynthesis and over-expression of key regulators of cellular lipid biosynthesis: sterol regulatory element-binding proteins (SREBPs), 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR), and diacylglycerol acyltransferase1 (DGAT1). Acrolein-fed mice demonstrated a major shift in the gut microbiota composition, including a significant phylum-level change in increased Firmicutes and decreased Bacteroidetes. At the family level, acrolein significantly increased the prevalence of Ruminococcaceae and Lachnospiraceae of which the Coprococcus genus was significantly and positively correlated with serum, aortic and macrophage lipid levels and peroxidation. The pro-atherogenic effects of acrolein on serum, aortas, macrophages, and the gut microbiota were substantially abolished by PJ. In conclusion, these findings provide novel mechanisms by which acrolein increases macrophage lipid accumulation and alters the gut microbiota composition in association with enhanced atherogenesis. Moreover, PJ was found as an effective strategy against acrolein atherogenicity.
Collapse
|
134
|
Bomhof MR, Paul HA, Geuking MB, Eller LK, Reimer RA. Improvement in adiposity with oligofructose is modified by antibiotics in obese rats. FASEB J 2016; 30:2720-32. [PMID: 27059718 DOI: 10.1096/fj.201600151r] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/05/2016] [Indexed: 12/21/2022]
Abstract
Given the intimate link between gut microbiota and host physiology, there is growing interest in understanding the mechanisms by which diet influences gut microbiota and affects human metabolic health. Using antibiotics and the prebiotic oligofructose, which has been shown to counteract excess fat mass, we explored the gut microbiota-dependent effects of oligofructose on body composition and host metabolism. Diet-induced obese male Sprague Dawley rats, fed a background high-fat/sucrose diet, were randomized to one of the following diets for 6 wk: 1) high-energy control; 2) 10% oligofructose; 3) ampicillin; 4) ampicillin + 10% oligofructose; 5) ampicillin/neomycin; or 6) ampicillin/neomycin + 10% oligofructose. Combining oligofructose with ampicillin treatment blunted the decrease in adiposity seen with oligofructose. Although ampicillin did not affect total bacteria, ampicillin impeded oligofructose-induced increases in Bifidobacterium and Lactobacillus In contrast, the combination of ampicillin and neomycin reduced total bacteria but did not abrogate the oligofructose-induced decrease in adiposity. Oligofructose-mediated effects on host adiposity and metabolic health appear to be in part dependent on the presence of specific microbial species within the gut.-Bomhof, M. R., Paul, H. A., Geuking, M. B., Eller, L. K., Reimer, R. A. Improvement in adiposity with oligofructose is modified by antibiotics in obese rats.
Collapse
Affiliation(s)
- Marc R Bomhof
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta Canada
| | - Heather A Paul
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta Canada; and
| | - Markus B Geuking
- Division of Gastroenterology, Department of Clinical Research, University Clinic for Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Lindsay K Eller
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta Canada
| | - Raylene A Reimer
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta Canada; Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta Canada; and
| |
Collapse
|
135
|
Gérard P. Gut microbiota and obesity. Cell Mol Life Sci 2016; 73:147-62. [PMID: 26459447 PMCID: PMC11108539 DOI: 10.1007/s00018-015-2061-5] [Citation(s) in RCA: 339] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/29/2015] [Accepted: 10/05/2015] [Indexed: 12/14/2022]
Abstract
The human intestine harbors a complex bacterial community called the gut microbiota. This microbiota is specific to each individual despite the existence of several bacterial species shared by the majority of adults. The influence of the gut microbiota in human health and disease has been revealed in the recent years. Particularly, the use of germ-free animals and microbiota transplant showed that the gut microbiota may play a causal role in the development of obesity and associated metabolic disorders, and lead to identification of several mechanisms. In humans, differences in microbiota composition, functional genes and metabolic activities are observed between obese and lean individuals suggesting a contribution of the gut microbiota to these phenotypes. Finally, the evidence linking gut bacteria to host metabolism could allow the development of new therapeutic strategies based on gut microbiota modulation to treat or prevent obesity.
Collapse
Affiliation(s)
- Philippe Gérard
- INRA, UMR1319 MICALIS, Equipe AMIPEM, Building 442, Domaine de Vilvert, 78350, Jouy-en-Josas, France.
- AgroParisTech, UMR MICALIS, 78350, Jouy-en-Josas, France.
| |
Collapse
|