101
|
Iranzo J, Gómez MJ, López de Saro FJ, Manrubia S. Large-scale genomic analysis suggests a neutral punctuated dynamics of transposable elements in bacterial genomes. PLoS Comput Biol 2014; 10:e1003680. [PMID: 24967627 PMCID: PMC4072520 DOI: 10.1371/journal.pcbi.1003680] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 05/08/2014] [Indexed: 11/18/2022] Open
Abstract
Insertion sequences (IS) are the simplest and most abundant form of transposable DNA found in bacterial genomes. When present in multiple copies, it is thought that they can promote genomic plasticity and genetic exchange, thus being a major force of evolutionary change. The main processes that determine IS content in genomes are, though, a matter of debate. In this work, we take advantage of the large amount of genomic data currently available and study the abundance distributions of 33 IS families in 1811 bacterial chromosomes. This allows us to test simple models of IS dynamics and estimate their key parameters by means of a maximum likelihood approach. We evaluate the roles played by duplication, lateral gene transfer, deletion and purifying selection. We find that the observed IS abundances are compatible with a neutral scenario where IS proliferation is controlled by deletions instead of purifying selection. Even if there may be some cases driven by selection, neutral behavior dominates over large evolutionary scales. According to this view, IS and hosts tend to coexist in a dynamic equilibrium state for most of the time. Our approach also allows for a detection of recent IS expansions, and supports the hypothesis that rapid expansions constitute transient events—punctuations—during which the state of coexistence of IS and host becomes perturbated. Insertion sequences (IS) are mobile genetic elements found in most prokaryotic genomes. They are able to autonomously change position and proliferate in chromosomes. The nature of the coevolutionary dynamics of IS with the genome that hosts them is a matter of debate: Do IS proliferate to the point of causing the extinction of the host? Is it possible that IS and hosts stably coexist? Can environmental perturbations cause IS expansions? What is the role of selection in controlling IS copy number? In this study, we have analysed abundance patterns of IS families to test two different evolutionary hypotheses: in the first one IS evolve neutrally, while in the second case they are affected by selection. Our results indicate that, most of the time, IS and their hosts coexist stably in a neutral scenario where the proliferation of IS through duplications and lateral gene transfer is balanced by regular deletions. Occasionally, though, this balance may be disrupted, causing temporary explosions of IS abundance.
Collapse
Affiliation(s)
- Jaime Iranzo
- Centro de Astrobiología (CAB), INTA-CSIC, Torrejón de Ardoz, Madrid, Spain
| | - Manuel J. Gómez
- Centro de Astrobiología (CAB), INTA-CSIC, Torrejón de Ardoz, Madrid, Spain
| | | | - Susanna Manrubia
- Centro de Astrobiología (CAB), INTA-CSIC, Torrejón de Ardoz, Madrid, Spain
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
- * E-mail:
| |
Collapse
|
102
|
Velineni S, Timoney JF. Capsular hyaluronic acid of equine isolates ofStreptococcus zooepidemicusis upregulated at temperatures below 35°C. Equine Vet J 2014; 47:333-8. [DOI: 10.1111/evj.12272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 04/05/2014] [Indexed: 11/26/2022]
Affiliation(s)
- S. Velineni
- Maxwell H. Gluck Equine Research Center; University of Kentucky; Lexington USA
| | - J. F. Timoney
- Maxwell H. Gluck Equine Research Center; University of Kentucky; Lexington USA
| |
Collapse
|
103
|
Abstract
Josh Slater looks back at the past 125 years of developments in equine infectious disease, including landmark discoveries in microbiology and genomics, and considers what the future may hold.
Collapse
Affiliation(s)
- Josh Slater
- Royal Veterinary College, Hawkshead Lane, Hatfield, Herfortshire, UK.
| |
Collapse
|
104
|
Yi L, Wang Y, Ma Z, Zhang H, Li Y, Zheng JX, Yang YC, Fan HJ, Lu CP. Biofilm Formation of Streptococcus equi ssp. zooepidemicus and Comparative Proteomic Analysis of Biofilm and Planktonic Cells. Curr Microbiol 2014; 69:227-33. [DOI: 10.1007/s00284-014-0574-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 02/08/2014] [Indexed: 10/25/2022]
|
105
|
Velineni S, Desoutter D, Perchec AM, Timoney JF. Characterization of a mucoid clone of Streptococcus zooepidemicus from an epizootic of equine respiratory disease in New Caledonia. Vet J 2014; 200:82-7. [PMID: 24618399 DOI: 10.1016/j.tvjl.2014.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 01/21/2014] [Accepted: 01/23/2014] [Indexed: 11/18/2022]
Abstract
Streptococcus equi subspecies zooepidemicus (Sz) is a tonsillar and mucosal commensal of healthy horses with the potential to cause opportunistic infections of the distal respiratory tract stressed by virus infection, transportation, training or high temperature. The invasive clone varies from horse to horse with little evidence of lateral transmission in the group. Tonsillar isolates are non-mucoid although primary isolates from opportunist lower respiratory tract infections may initially be mucoid. In this study, a novel stably mucoid Sz (SzNC) from a clonal epizootic of respiratory disease in horses in different parts of New Caledonia is described. SzNC (ST-307) was isolated in pure culture from transtracheal aspirates and as heavy growths from 80% of nasal swabs (n=31). Only 4% of swabs from unaffected horses (n=25) yielded colonies of Sz. A viral etiology was ruled out based on culture and early/late serum antibody screening. Evidence for clonality of SzNC included a mucoid colony phenotype, SzP and SzM sequences, and multilocus sequence typing. SzNC, with the exception of isolates at the end of the outbreak, was hyaluronidase positive. Its SzP protein was composed of an N2 terminal, and HV4 variable region motifs and 18 carboxy terminal PEPK repeats. Biotin labeling of surface proteins revealed DnaK and alanyl-tRNA synthetase (AlaS) on the surface of clonal isolates, but not on non-clonal non-mucoid Sz from horses in the epizootic or unrelated US isolates. Reactivity of these proteins and SzP with convalescent serum indicated expression during infection.
Collapse
Affiliation(s)
- Sridhar Velineni
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA
| | - Denise Desoutter
- Laboratoire Territorial de Diagnostic Vétérinaire, BP42 Paita, New Caledonia
| | - Anne-Marie Perchec
- Laboratoire Territorial de Diagnostic Vétérinaire, BP42 Paita, New Caledonia
| | - John F Timoney
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
106
|
Pelkonen S, Lindahl SB, Suomala P, Karhukorpi J, Vuorinen S, Koivula I, Väisänen T, Pentikäinen J, Autio T, Tuuminen T. Transmission of Streptococcus equi subspecies zooepidemicus infection from horses to humans. Emerg Infect Dis 2014; 19:1041-8. [PMID: 23777752 PMCID: PMC3713971 DOI: 10.3201/eid1907.121365] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Streptococcus equi subspecies zooepidemicus (S. zooepidemicus) is a zoonotic pathogen for persons in contact with horses. In horses, S. zooepidemicus is an opportunistic pathogen, but human infections associated with S. zooepidemicus are often severe. Within 6 months in 2011, 3 unrelated cases of severe, disseminated S. zooepidemicus infection occurred in men working with horses in eastern Finland. To clarify the pathogen’s epidemiology, we describe the clinical features of the infection in 3 patients and compare the S. zooepidemicus isolates from the human cases with S. zooepidemicus isolates from horses. The isolates were analyzed by using pulsed-field gel electrophoresis, multilocus sequence typing, and sequencing of the szP gene. Molecular typing methods showed that human and equine isolates were identical or closely related. These results emphasize that S. zooepidemicus transmitted from horses can lead to severe infections in humans. As leisure and professional equine sports continue to grow, this infection should be recognized as an emerging zoonosis.
Collapse
|
107
|
Nho SW, Hikima JI, Park SB, Jang HB, Cha IS, Yasuike M, Nakamura Y, Fujiwara A, Sano M, Kanai K, Kondo H, Hirono I, Takeyama H, Aoki T, Jung TS. Comparative genomic characterization of three Streptococcus parauberis strains in fish pathogen, as assessed by wide-genome analyses. PLoS One 2013; 8:e80395. [PMID: 24260382 PMCID: PMC3832376 DOI: 10.1371/journal.pone.0080395] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 09/28/2013] [Indexed: 11/18/2022] Open
Abstract
Streptococcus parauberis, which is the main causative agent of streptococcosis among olive flounder (Paralichthys olivaceus) in northeast Asia, can be distinctly divided into two groups (type I and type II) by an agglutination test. Here, the whole genome sequences of two Japanese strains (KRS-02083 and KRS-02109) were determined and compared with the previously determined genome of a Korean strain (KCTC 11537). The genomes of S. parauberis are intermediate in size and have lower GC contents than those of other streptococci. We annotated 2,236 and 2,048 genes in KRS-02083 and KRS-02109, respectively. Our results revealed that the three S. parauberis strains contain different genomic insertions and deletions. In particular, the genomes of Korean and Japanese strains encode different factors for sugar utilization; the former encodes the phosphotransferase system (PTS) for sorbose, whereas the latter encodes proteins for lactose hydrolysis, respectively. And the KRS-02109 strain, specifically, was the type II strain found to be able to resist phage infection through the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system and which might contribute valuably to serologically distribution. Thus, our genome-wide association study shows that polymorphisms can affect pathogen responses, providing insight into biological/biochemical pathways and phylogenetic diversity.
Collapse
Affiliation(s)
- Seong-Won Nho
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam, South Korea
| | - Jun-ichi Hikima
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, Univeristy of Miyazaki, Miyazaki, Japan
| | - Seong Bin Park
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam, South Korea
| | - Ho Bin Jang
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam, South Korea
| | - In Seok Cha
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam, South Korea
| | - Motoshige Yasuike
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Kanagawa, Japan
| | - Yoji Nakamura
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Kanagawa, Japan
| | - Atsushi Fujiwara
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Kanagawa, Japan
| | - Motohiko Sano
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Kanagawa, Japan
| | - Kinya Kanai
- Faculty of Fisheries, Nagasaki University, Nagasaki, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Minato, Tokyo, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Minato, Tokyo, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, Shinjuku, Tokyo, Japan
| | - Takashi Aoki
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam, South Korea
- Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Shinjuku-ku, Tokyo, Japan
- * E-mail: (TA); (TSJ)
| | - Tae-Sung Jung
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam, South Korea
- * E-mail: (TA); (TSJ)
| |
Collapse
|
108
|
Streptococcal superantigens: categorization and clinical associations. Trends Mol Med 2013; 20:48-62. [PMID: 24210845 DOI: 10.1016/j.molmed.2013.10.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 10/01/2013] [Accepted: 10/08/2013] [Indexed: 01/01/2023]
Abstract
Superantigens are key virulence factors in the immunopathogenesis of invasive disease caused by group A streptococcus. These protein exotoxins have also been associated with severe group C and group G streptococcal infections. A number of novel streptococcal superantigens have recently been described with some resulting confusion in their classification. In addition to clarifying the nomenclature of streptococcal superantigens and proposing guidelines for their categorization, this review summarizes the evidence supporting their involvement in various clinical diseases including acute rheumatic fever.
Collapse
|
109
|
Patty OA, Cursons RTM. The molecular identification ofStreptococcus equisubsp.equistrains isolated within New Zealand. N Z Vet J 2013; 62:63-7. [DOI: 10.1080/00480169.2013.841536] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
110
|
Draft Genome Sequence of Streptococcus equi subsp. zooepidemicus Strain S31A1, Isolated from Equine Infectious Endometritis. GENOME ANNOUNCEMENTS 2013; 1:1/5/e00683-13. [PMID: 24009118 PMCID: PMC3764413 DOI: 10.1128/genomea.00683-13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present the draft genome sequence of Streptococcus equi subsp. zooepidemicus S31A1, a strain isolated from equine infectious endometritis in Denmark. Comparative analyses of this genome were done with four published reference genomes: S. zooepidemicus strains MGCS10565, ATCC 35246, and H70 and S. equi subsp. equi strain 4047.
Collapse
|
111
|
Lindahl SB, Aspán A, Båverud V, Paillot R, Pringle J, Rash NL, Söderlund R, Waller AS. Outbreak of upper respiratory disease in horses caused by Streptococcus equi subsp. zooepidemicus ST-24. Vet Microbiol 2013; 166:281-5. [DOI: 10.1016/j.vetmic.2013.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/17/2013] [Accepted: 05/18/2013] [Indexed: 11/27/2022]
|
112
|
Robinson C, Steward KF, Potts N, Barker C, Hammond TA, Pierce K, Gunnarsson E, Svansson V, Slater J, Newton JR, Waller AS. Combining two serological assays optimises sensitivity and specificity for the identification of Streptococcus equi subsp. equi exposure. Vet J 2013; 197:188-91. [DOI: 10.1016/j.tvjl.2013.01.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/25/2013] [Accepted: 01/29/2013] [Indexed: 11/29/2022]
|
113
|
Identification of novel immunoreactive proteins of Streptococcus zooepidemicus with potential as vaccine components. Vaccine 2013; 31:4129-35. [DOI: 10.1016/j.vaccine.2013.06.100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/17/2013] [Accepted: 06/25/2013] [Indexed: 11/21/2022]
|
114
|
North SE, Wakeley PR, Mayo N, Mayers J, Sawyer J. Development of a real-time PCR to detect Streptococcus equi subspecies equi. Equine Vet J 2013; 46:56-9. [PMID: 23663066 DOI: 10.1111/evj.12088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 03/13/2013] [Indexed: 11/29/2022]
Abstract
REASONS FOR PERFORMING STUDY Infection with Streptococcus equi subspecies equi (S. equi) is endemic in the UK. A proportion of horses serve as long-term carriers and act as a reservoir of infection. Detection of these persistently infected horses is difficult using standard culture techniques owing to a lack of sensitivity and overgrowth by contaminating bacteria. In addition, differentiation of this causative bacterium from the closely related S. equi zooepidemicus has made the development of reliable and accurate diagnostic tests difficult. OBJECTIVE To develop and validate a sensitive and specific real-time PCR assay to detect S. equi and to compare the results with traditional culture techniques. STUDY DESIGN Retrospective cross-sectional study. METHODS The assay was validated using a panel of 92 samples from suspected clinical cases of strangles. These were cultured using microbial techniques and tested using the S. equi real-time PCR. The results of the 2 methods were compared, and the diagnostic sensitivity and specificity of the real-time PCR were calculated. The real-time PCR was tested for cross-reactivity with horse commensal bacteria, and the efficiencies and limits of detection were established. RESULTS The assay had a diagnostic sensitivity of 95% and specificity of 86%. No cross-reactivity was observed with any of the bacterial species tested, including S. equi zooepidemicus. The assay detected as few as 3 gene copies. CONCLUSION The assay is fast, sensitive and specific and will detect S. equi DNA directly from a crude extract of clinical material on a swab. POTENTIAL RELEVANCE This assay could aid in the rapid detection of subclinical shedders of S. equi, enabling quicker treatment and helping to limit the spread of strangles in equine populations.
Collapse
Affiliation(s)
- S E North
- Technology Transfer Unit, Specialist Scientific Support Department, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey, UK
| | | | | | | | | |
Collapse
|
115
|
Ma Z, Geng J, Yi L, Xu B, Jia R, Li Y, Meng Q, Fan H, Hu S. Insight into the specific virulence related genes and toxin-antitoxin virulent pathogenicity islands in swine streptococcosis pathogen Streptococcus equi ssp. zooepidemicus strain ATCC35246. BMC Genomics 2013; 14:377. [PMID: 23742619 PMCID: PMC3750634 DOI: 10.1186/1471-2164-14-377] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 05/28/2013] [Indexed: 01/10/2023] Open
Abstract
Background Streptococcus equi ssp. zooepidemicus (S. zooepidemicus) is an important pathogen causing swine streptococcosis in China. Pathogenicity islands (PAIs) of S. zooepidemicus have been transferred among bacteria through horizontal gene transfer (HGT) and play important roles in the adaptation and increased virulence of S. zooepidemicus. The present study used comparative genomics to examine the different pathogenicities of S. zooepidemicus. Results Genome of S. zooepidemicus ATCC35246 (Sz35246) comprises 2,167,264-bp of a single circular chromosome, with a GC content of 41.65%. Comparative genome analysis of Sz35246, S. zooepidemicus MGCS10565 (Sz10565), Streptococcus equi. ssp. equi. 4047 (Se4047) and S. zooepidemicus H70 (Sz70) identified 320 Sz35246-specific genes, clustered into three toxin-antitoxin (TA) systems PAIs and one restriction modification system (RM system) PAI. These four acquired PAIs encode proteins that may contribute to the overall pathogenic capacity and fitness of this bacterium to adapt to different hosts. Analysis of the in vivo and in vitro transcriptomes of this bacterium revealed differentially expressed PAI genes and non-PAI genes, suggesting that Sz35246 possess mechanisms for infecting animals and adapting to a wide range of host environments. Analysis of the genome identified potential Sz35246 virulence genes. Genes of the Fim III operon were presumed to be involved in breaking the host-restriction of Sz35246. Conclusion Genome wide comparisons of Sz35246 with three other strains and transcriptome analysis revealed novel genes related to bacterial virulence and breaking the host-restriction. Four specific PAIs, which were judged to have been transferred into Sz35246 genome through HGT, were identified for the first time. Further analysis of the TA and RM systems in the PAIs will improve our understanding of the pathogenicity of this bacterium and could lead to the development of diagnostics and vaccines.
Collapse
Affiliation(s)
- Zhe Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Characterization and protective immunogenicity of the SzM protein of Streptococcus zooepidemicus NC78 from a clonal outbreak of equine respiratory disease. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1181-8. [PMID: 23740925 DOI: 10.1128/cvi.00069-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptococcus zooepidemicus of Lancefield group C is a highly variable tonsillar and mucosal commensal that usually is associated with opportunistic infections of the respiratory tract of vertebrate hosts. More-virulent clones have caused epizootics of severe respiratory disease in dogs and horses. The virulence factors of these strains are poorly understood. The antiphagocytic protein SeM is a major virulence factor and protective antigen of Streptococcus equi, a clonal biovar of an ancestral S. zooepidemicus strain. Although the genome of S. zooepidemicus strain H70, an equine isolate, contains a partial homolog (szm) of sem, expression of the gene has not been documented. We have identified and characterized SzM from an encapsulated S. zooepidemicus strain from an epizootic of equine respiratory disease in New Caledonia. The SzM protein of strain NC78 (SzM(NC78)) has a predicted predominantly alpha-helical fibrillar structure with an LPSTG cell surface anchor motif and resistance to hot acid. A putative binding site for plasminogen is present in the B repeat region, the sequence of which shares homology with repeats of the plasminogen binding proteins of human group C and G streptococci. Equine plasminogen is activated in a dose-dependent manner by recombinant SzM(NC78). Only 23.20 and 25.46% DNA homology is shared with SeM proteins of S. equi strains CF32 and 4047, respectively, and homology ranges from 19.60 to 54.70% for SzM proteins of other S. zooepidemicus strains. As expected, SzM(NC78) reacted with convalescent-phase sera from horses with respiratory disease associated with strains of S. zooepidemicus. SzM(NC78) resembles SeM in binding equine fibrinogen and eliciting strong protective antibody responses in mice. Sera of vaccinated mice opsonized S. zooepidemicus strains NC78 and W60, the SzM protein of which shared partial amino acid homology with SzM(NC78). We conclude that SzM is a protective antigen of NC78; it was strongly reactive with serum antibodies from horses during recovery from S. zooepidemicus-associated respiratory disease.
Collapse
|
117
|
Moloney E, Kavanagh KS, Buckley TC, Cooney JC. Lineages of Streptococcus equi ssp. equi in the Irish equine industry. Ir Vet J 2013; 66:10. [PMID: 23731628 PMCID: PMC3679875 DOI: 10.1186/2046-0481-66-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 05/24/2013] [Indexed: 11/19/2022] Open
Abstract
Background Streptococcus equi ssp. equi is the causative agent of ‘Strangles’ in horses. This is a debilitating condition leading to economic loss, yard closures and cancellation of equestrian events. There are multiple genotypes of S. equi ssp. equi which can cause disease, but to date there has been no systematic study of strains which are prevalent in Ireland. This study identified and classified Streptococcus equi ssp. equi strains isolated from within the Irish equine industry. Results Two hundred veterinary isolates were subjected to SLST (single locus sequence typing) based on an internal sequence from the seM gene of Streptococcus equi ssp equi. Of the 171 samples which successfully gave an amplicon, 162 samples (137 Irish and 24 UK strains) gave robust DNA sequence information. Analysis of the sequences allowed division of the isolates into 19 groups, 13 of which contain at least 2 isolates and 6 groups containing single isolates. There were 19 positions where a DNA SNP (single nucleotide polymorphism) occurs, and one 3 bp insertion. All groups had multiple (2–8) SNPs. Of the SNPs 17 would result in an amino acid change in the encoded protein. Interestingly, the single isolate EI8, which has 6 SNPs, has the three base pair insertion which is not seen in any other isolate, this would result in the insertion of an Ile residue at position 62 in that protein sequence. Comparison of the relevant region in the determined sequences with the UK Streptococcus equi seM MLST database showed that Group B (15 isolates) and Group I (2 isolates), as well as the individual isolates EI3 and EI8, are unique to Ireland, and some groups are most likely of UK origin (Groups F and M), but many more probably passed back and forth between the two countries. Conclusions The strains occurring in Ireland are not clonal and there is a considerable degree of sequence variation seen in the seM gene. There are two major clades causing infection in Ireland and these strains are also common in the UK.
Collapse
Affiliation(s)
- Emma Moloney
- Department of Life Sciences, University of Limerick, Limerick, Ireland
| | | | - Tom C Buckley
- Irish Equine Centre, Johnstown, Naas, Co. Kildare, Ireland
| | - Jakki C Cooney
- Department of Life Sciences, University of Limerick, Limerick, Ireland ; Materials and Surface Sciences Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
118
|
Identification of genes transcribed by Streptococcus equi ssp. zooepidemicus in infected porcine lung. Microb Pathog 2013; 59-60:7-12. [DOI: 10.1016/j.micpath.2013.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 01/31/2013] [Accepted: 02/04/2013] [Indexed: 01/03/2023]
|
119
|
Waller AS. Strangles: taking steps towards eradication. Vet Microbiol 2013; 167:50-60. [PMID: 23642414 DOI: 10.1016/j.vetmic.2013.03.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/26/2013] [Accepted: 03/29/2013] [Indexed: 10/27/2022]
Abstract
Strangles, caused by the host adapted Lancefield group C bacterium Streptococcus equi sub-species equi (S. equi), is one of the oldest recognised infectious diseases of horses and continues to cause significant welfare and economic cost throughout the world. The ability of S. equi to establish sub-clinical persistent infections primarily in the guttural pouches of convalescent horses has been instrumental to its success. However, the implementation of simple control measures that permit the identification and treatment of persistently infected carriers can prevent further outbreaks of disease at a local level. This review summarises some of the molecular mechanisms exploited by S. equi to cause disease. New qPCR and iELISA diagnostic tests replace culture methodologies as the gold standard for the detection of infected animals. A strategy to maximise the effective application of these tests to direct management methods for the eradication of S. equi infection is presented and the role of preventative vaccines is discussed. In contrast to current understanding, emerging data illustrates the dynamism of the global S. equi population and potential consequences for the effectiveness of currently available vaccines. The ability to use modern vaccines alongside conventional biosecurity and screening procedures will be critical to the large-scale prevention and even eradication of strangles, providing an opportunity to finally break the stranglehold that this disease has on the world's equine industry.
Collapse
Affiliation(s)
- Andrew S Waller
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, United Kingdom.
| |
Collapse
|
120
|
Yi L, Wang Y, Ma Z, Zhang H, Li Y, Zheng JX, Yang YC, Lu CP, Fan HJ. Contribution of fibronectin-binding protein to pathogenesis of Streptococcus equi ssp. zooepidemicus. Pathog Dis 2013; 67:174-83. [PMID: 23620180 DOI: 10.1111/2049-632x.12029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/08/2013] [Accepted: 01/31/2013] [Indexed: 11/27/2022] Open
Abstract
Streptococcus equi ssp. zooepidemicus (S. zooepidemicus) is responsible for a wide variety of infections in many species. Fibronectin-binding protein is a bacterial cell surface protein, which specifically binds fibronectin (FN). Considering the specific role of FN-binding protein in host-pathogen interactions, we investigated the function of a novel FN-binding domain in the FN-binding protein (FNZ) of S. zooepidemicus. Five recombinant FNZ gene fragments [N1 (amino acids, 38-197), N2 (amino acids, 38-603), N3 (amino acids, 41-315), N4 (amino acids, 192-370), and N5 (amino acids, 38-225)] were expressed in Escherichia coli, and their FN-binding activities were tested. The results showed that amino acids 192-225 in the NH2 -terminal region of FNZ could be responsible for binding fibronectin. The FNZ knockout mutant was constructed in S. zooepidemicus, which results in the reduced capacity to adhere to HEp-2 cell, defective virulence in vivo, decreased biofilm formation, and decreased colonization capacity in blood, liver, lung, and spleen tissues of mice as compared to the wild type. These results suggest that FNZ participates in biofilm formation, FN binding, cell adhesion, and pathogenesis of S. zooepidemicus. Furthermore, this work offers a novel FN-binding domain within FNZ, which will help in further characterization of S. zooepidemicus FN-binding properties.
Collapse
Affiliation(s)
- Li Yi
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Bisgaard M, Bojesen AM, Petersen MR, Christensen H. A major outbreak of Streptococcus equi subsp. zooepidemicus infections in free-range chickens is linked to horses. Avian Dis 2012; 56:561-6. [PMID: 23050474 DOI: 10.1637/10123-030712-reg.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Infections of poultry due to Streptococcus equi subsp. zooepidemicus have been rare during the past decades and dissimilarities have been reported as to symptoms and lesions; likewise, the source of serious outbreaks has remained speculative. An outbreak affecting 11,000 free-range chickens at the age of 47 wk is reported. The outbreak manifested itself as acute at the onset and was followed by a chronic stage, resulting in some 80% mortality within 21 wk. Small-colony variants (SCVs) of S. equi subsp. zooepidemicus associated with the chronic phase are reported for the first time, and it is discussed whether SCVs might explain the change in lesions observed. Comparison of partial sequences of rpoB, multilocus sequence typing, and pulsed-field gel electrophoresis of isolates from chickens and horses kept at the farm showed the isolates to be identical and horses a likely source of infection. The present findings underline the importance of protecting free-range chickens from contact with other animals and birds known to host pathogens of importance to poultry.
Collapse
Affiliation(s)
- M Bisgaard
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| | | | | | | |
Collapse
|
122
|
Okumura K, Shimomura Y, Murayama SY, Yagi J, Ubukata K, Kirikae T, Miyoshi-Akiyama T. Evolutionary paths of streptococcal and staphylococcal superantigens. BMC Genomics 2012; 13:404. [PMID: 22900646 PMCID: PMC3538662 DOI: 10.1186/1471-2164-13-404] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/30/2012] [Indexed: 11/24/2022] Open
Abstract
Background Streptococcus pyogenes (GAS) harbors several superantigens (SAgs) in the prophage region of its genome, although speG and smez are not located in this region. The diversity of SAgs is thought to arise during horizontal transfer, but their evolutionary pathways have not yet been determined. We recently completed sequencing the entire genome of S. dysgalactiae subsp. equisimilis (SDSE), the closest relative of GAS. Although speG is the only SAg gene of SDSE, speG was present in only 50% of clinical SDSE strains and smez in none. In this study, we analyzed the evolutionary paths of streptococcal and staphylococcal SAgs. Results We compared the sequences of the 12–60 kb speG regions of nine SDSE strains, five speG+ and four speG–. We found that the synteny of this region was highly conserved, whether or not the speG gene was present. Synteny analyses based on genome-wide comparisons of GAS and SDSE indicated that speG is the direct descendant of a common ancestor of streptococcal SAgs, whereas smez was deleted from SDSE after SDSE and GAS split from a common ancestor. Cumulative nucleotide skew analysis of SDSE genomes suggested that speG was located outside segments of steeper slopes than the stable region in the genome, whereas the region flanking smez was unstable, as expected from the results of GAS. We also detected a previously undescribed staphylococcal SAg gene, selW, and a staphylococcal SAg -like gene, ssl, in the core genomes of all Staphylococcus aureus strains sequenced. Amino acid substitution analyses, based on dN/dS window analysis of the products encoded by speG, selW and ssl suggested that all three genes have been subjected to strong positive selection. Evolutionary analysis based on the Bayesian Markov chain Monte Carlo method showed that each clade included at least one direct descendant. Conclusions Our findings reveal a plausible model for the comprehensive evolutionary pathway of streptococcal and staphylococcal SAgs.
Collapse
Affiliation(s)
- Kayo Okumura
- Department of Infectious Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | | | | | | | | | | | | |
Collapse
|
123
|
Webb K, Barker C, Harrison T, Heather Z, Steward KF, Robinson C, Newton JR, Waller AS. Detection of Streptococcus equi subspecies equi using a triplex qPCR assay. Vet J 2012; 195:300-4. [PMID: 22884566 PMCID: PMC3611602 DOI: 10.1016/j.tvjl.2012.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/12/2012] [Accepted: 07/07/2012] [Indexed: 12/04/2022]
Abstract
Genome sequencing data for Streptococcus equi subspecies equi and zooepidemicus were used to develop a novel diagnostic triplex quantitative PCR (qPCR) assay targeting two genes specific to S. equi (eqbE and SEQ2190) and a unique 100 base pair control DNA sequence (SZIC) inserted into the SZO07770 pseudogene of S. zooepidemicus strain H70. This triplex strangles qPCR assay can provide results within 2 h of sample receipt, has an overall sensitivity of 93.9% and specificity of 96.6% relative to the eqbE singlex assay and detects S. equi at levels below the threshold of the culture assay, even in the presence of contaminating bacteria.
Collapse
Affiliation(s)
- Katy Webb
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Liu Z, Treviño J, Ramirez-Peña E, Sumby P. The small regulatory RNA FasX controls pilus expression and adherence in the human bacterial pathogen group A Streptococcus. Mol Microbiol 2012; 86:140-54. [PMID: 22882718 DOI: 10.1111/j.1365-2958.2012.08178.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bacterial pathogens use cell surface-associated adhesion molecules to promote host attachment and colonization, and the ability to modulate adhesion expression is critical to pathogen success. Here, we show that the human-specific pathogen the group A Streptococcus (GAS) uses a small regulatory RNA (sRNA) to regulate the expression of adhesive pili. The fibronectin/fibrinogen-binding/haemolytic-activity/streptokinase-regulator-X (FasX) sRNA, previously shown to positively regulate expression of the secreted virulence factor streptokinase (SKA), negatively regulates the production of pili on the GAS cell surface. FasX base pairs to the extreme 5' end of mRNA from the pilus biosynthesis operon, and this RNA:RNA interaction reduces the stability of the mRNA, while also inhibiting translation of at least the first gene in the pilus biosynthesis operon (cpa, which encodes a minor pilin protein). The negative regulation of pilus expression by FasX reduces the ability of GAS to adhere to human keratinocytes. Our findings cement FasX sRNA as an important regulator of virulence factor production in GAS and identify that FasX uses at least three distinct mechanisms, positive (ska mRNA) and negative (pilus operon mRNA) regulation of mRNA stability, and negative regulation of mRNA translation (cpa mRNA), to post-transcriptionally regulate target mRNAs during infection.
Collapse
Affiliation(s)
- Zhuyun Liu
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, Houston, Texas, USA
| | | | | | | |
Collapse
|
125
|
Erol E, Locke SJ, Donahoe JK, Mackin MA, Carter CN. Beta-hemolytic Streptococcus spp. from horses: a retrospective study (2000-2010). J Vet Diagn Invest 2012; 24:142-7. [PMID: 22362945 DOI: 10.1177/1040638711434138] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The goal of this retrospective study was to have a comprehensive picture of the β-hemolytic streptococci of horses including tissue/organ distributions and susceptibility patterns against specific antimicrobials between January 1, 2000 and December 31, 2010. A total of 2,497 β-hemolytic streptococci were isolated from 2,391 cases, of which Streptococcus equi subsp. zooepidemicus was the most frequent isolate (72.0%). Other species isolated were Streptococcus dysgalactia subsp. equisimilis (21.3%), Streptococcus equi subsp. equi (5.8%), and unidentified β-hemolytic streptococci (0.9%). As expected, S. equi was mostly isolated from lymph node abscesses and the respiratory tract in foals and adult horses. Streptococcus equi subsp. zooepidemicus and S. equisimilis were mostly isolated from placenta, fetal tissues, and genital tract of horses; S. zooepidemicus and S. equisimilis were also recovered in significant numbers from a number of other organs including lung, liver, brain, kidney, and joints, indicating a much broader tissue tropism than S. equi. In addition, more than 1 Streptococcus spp. was recovered in 106 cases, indicating the co-existence of these bacteria in some horses. This data also suggested that S. equisimilis is a major bacterial agent of horses, contrary to present knowledge. Based on Kirby-Bauer antimicrobial susceptibility data, streptococci were found to be generally susceptible to cephalothin, erythromycin, nitrofurantoin, penicillin, and ticarcillin and clavulanate. Resistance to antimicrobials has not developed over the years, except for gentamicin and tetracycline against S. equisimilis.
Collapse
Affiliation(s)
- Erdal Erol
- University of Kentucky, Veterinary Diagnostic Laboratory, PO Box 14125, Lexington, KY 40512-4125, USA.
| | | | | | | | | |
Collapse
|
126
|
Lefébure T, Richards VP, Lang P, Pavinski-Bitar P, Stanhope MJ. Gene repertoire evolution of Streptococcus pyogenes inferred from phylogenomic analysis with Streptococcus canis and Streptococcus dysgalactiae. PLoS One 2012; 7:e37607. [PMID: 22666370 PMCID: PMC3364286 DOI: 10.1371/journal.pone.0037607] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/24/2012] [Indexed: 01/08/2023] Open
Abstract
Streptococcus pyogenes, is an important human pathogen classified within the pyogenic group of streptococci, exclusively adapted to the human host. Our goal was to employ a comparative evolutionary approach to better understand the genomic events concomitant with S. pyogenes human adaptation. As part of ascertaining these events, we sequenced the genome of one of the potential sister species, the agricultural pathogen S. canis, and combined it in a comparative genomics reconciliation analysis with two other closely related species, Streptococcus dysgalactiae and Streptococcus equi, to determine the genes that were gained and lost during S. pyogenes evolution. Genome wide phylogenetic analyses involving 15 Streptococcus species provided convincing support for a clade of S. equi, S. pyogenes, S. dysgalactiae, and S. canis and suggested that the most likely S. pyogenes sister species was S. dysgalactiae. The reconciliation analysis identified 113 genes that were gained on the lineage leading to S. pyogenes. Almost half (46%) of these gained genes were phage associated and 14 showed significant matches to experimentally verified bacteria virulence factors. Subsequent to the origin of S. pyogenes, over half of the phage associated genes were involved in 90 different LGT events, mostly involving different strains of S. pyogenes, but with a high proportion involving the horse specific pathogen S. equi subsp. equi, with the directionality almost exclusively (86%) in the S. pyogenes to S. equi direction. Streptococcus agalactiae appears to have played an important role in the evolution of S. pyogenes with a high proportion of LGTs originating from this species. Overall the analysis suggests that S. pyogenes adaptation to the human host was achieved in part by (i) the integration of new virulence factors (e.g. speB, and the sal locus) and (ii) the construction of new regulation networks (e.g. rgg, and to some extent speB).
Collapse
Affiliation(s)
| | | | | | | | - Michael J. Stanhope
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
127
|
Choi SC, Rasmussen MD, Hubisz MJ, Gronau I, Stanhope MJ, Siepel A. Replacing and additive horizontal gene transfer in Streptococcus. Mol Biol Evol 2012; 29:3309-20. [PMID: 22617954 DOI: 10.1093/molbev/mss138] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The prominent role of Horizontal Gene Transfer (HGT) in the evolution of bacteria is now well documented, but few studies have differentiated between evolutionary events that predominantly cause genes in one lineage to be replaced by homologs from another lineage ("replacing HGT") and events that result in the addition of substantial new genomic material ("additive HGT"). Here in, we make use of the distinct phylogenetic signatures of replacing and additive HGTs in a genome-wide study of the important human pathogen Streptococcus pyogenes (SPY) and its close relatives S. dysgalactiae subspecies equisimilis (SDE) and S. dysgalactiae subspecies dysgalactiae (SDD). Using recently developed statistical models and computational methods, we find evidence for abundant gene flow of both kinds within each of the SPY and SDE clades and of reduced levels of exchange between SPY and SDD. In addition, our analysis strongly supports a pronounced asymmetry in SPY-SDE gene flow, favoring the SPY-to-SDE direction. This finding is of particular interest in light of the recent increase in virulence of pathogenic SDE. We find much stronger evidence for SPY-SDE gene flow among replacing than among additive transfers, suggesting a primary influence from homologous recombination between co-occurring SPY and SDE cells in human hosts. Putative virulence genes are correlated with transfer events, but this correlation is found to be driven by additive, not replacing, HGTs. The genes affected by additive HGTs are enriched for functions having to do with transposition, recombination, and DNA integration, consistent with previous findings, whereas replacing HGTs seen to influence a more diverse set of genes. Additive transfers are also found to be associated with evidence of positive selection. These findings shed new light on the manner in which HGT has shaped pathogenic bacterial genomes.
Collapse
Affiliation(s)
- Sang Chul Choi
- Department of Biological Statistics and Computational Biology, Cornell University
| | | | | | | | | | | |
Collapse
|
128
|
Antiphagocytic function of an IgG glycosyl hydrolase from Streptococcus equi subsp. equi and its use as a vaccine component. Infect Immun 2012; 80:2914-9. [PMID: 22615244 DOI: 10.1128/iai.06083-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
EndoSe from Streptococcus equi subsp. equi is an enzyme hydrolyzing glycosyl groups on IgG, analogous to EndoS from Streptococcus pyogenes. We here show that the activity of EndoSe leads to an antiphagocytic function and may thus be a contributory factor to immune evasion of S. equi. Despite the damaging effect that EndoSe has on IgG, antibodies against EndoSe can neutralize its function. Antibodies against EndoSe restored the opsonic activity of specific opsonizing antibodies. Mice infected with either S. equi subsp. equi or subsp. zooepidemicus or S. pyogenes could be protected by vaccination with EndoSe. It is speculated that EndoSe could be a suitable vaccine candidate against streptococcal infections.
Collapse
|
129
|
Eppinger M, Radnedge L, Andersen G, Vietri N, Severson G, Mou S, Ravel J, Worsham PL. Novel plasmids and resistance phenotypes in Yersinia pestis: unique plasmid inventory of strain Java 9 mediates high levels of arsenic resistance. PLoS One 2012; 7:e32911. [PMID: 22479347 PMCID: PMC3316555 DOI: 10.1371/journal.pone.0032911] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 02/06/2012] [Indexed: 12/21/2022] Open
Abstract
Growing evidence suggests that the plasmid repertoire of Yersinia pestis is not restricted to the three classical virulence plasmids. The Java 9 strain of Y. pestis is a biovar Orientalis isolate obtained from a rat in Indonesia. Although it lacks the Y. pestis-specific plasmid pMT, which encodes the F1 capsule, it retains virulence in mouse and non-human primate animal models. While comparing diverse Y. pestis strains using subtractive hybridization, we identified sequences in Java 9 that were homologous to a Y. enterocolitica strain carrying the transposon Tn2502, which is known to encode arsenic resistance. Here we demonstrate that Java 9 exhibits high levels of arsenic and arsenite resistance mediated by a novel promiscuous class II transposon, named Tn2503. Arsenic resistance was self-transmissible from Java 9 to other Y. pestis strains via conjugation. Genomic analysis of the atypical plasmid inventory of Java 9 identified pCD and pPCP plasmids of atypical size and two previously uncharacterized cryptic plasmids. Unlike the Tn2502-mediated arsenic resistance encoded on the Y. enterocolitica virulence plasmid; the resistance loci in Java 9 are found on all four indigenous plasmids, including the two novel cryptic plasmids. This unique mobilome introduces more than 105 genes into the species gene pool. The majority of these are encoded by the two entirely novel self-transmissible plasmids, which show partial homology and synteny to other enterics. In contrast to the reductive evolution in Y. pestis, this study underlines the major impact of a dynamic mobilome and lateral acquisition in the genome evolution of the plague bacterium.
Collapse
Affiliation(s)
- Mark Eppinger
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
| | - Lyndsay Radnedge
- Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Gary Andersen
- Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Nicholas Vietri
- United States Army Medical Research Institute of Infectious Diseases, Bacteriology Division, Fort Detrick, Maryland, United States of America
| | - Grant Severson
- United States Army Medical Research Institute of Infectious Diseases, Bacteriology Division, Fort Detrick, Maryland, United States of America
| | - Sherry Mou
- United States Army Medical Research Institute of Infectious Diseases, Bacteriology Division, Fort Detrick, Maryland, United States of America
| | - Jacques Ravel
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
| | - Patricia L. Worsham
- United States Army Medical Research Institute of Infectious Diseases, Bacteriology Division, Fort Detrick, Maryland, United States of America
| |
Collapse
|
130
|
Ma Z, Zhang H, Zheng J, Li Y, Yi L, Fan H, Lu C. Interaction between M-like protein and macrophage thioredoxin facilitates antiphagocytosis for Streptococcus equi ssp. zooepidemicus. PLoS One 2012; 7:e32099. [PMID: 22384152 PMCID: PMC3288065 DOI: 10.1371/journal.pone.0032099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 01/19/2012] [Indexed: 11/19/2022] Open
Abstract
Streptococcus equi ssp. zooepidemicus (S. zooepidemicus, S.z) is one of the common pathogens that can cause septicemia, meningitis, and mammitis in domesticated species. M-like protein (SzP) is an important virulence factor of S. zooepidemicus and contributes to bacterial infection and antiphagocytosis. The interaction between SzP of S. zooepidemicus and porcine thioredoxin (TRX) was identified by the yeast two-hybrid and further confirmed by co-immunoprecipitation. SzP interacted with both reduced and the oxidized forms of TRX without inhibiting TRX activity. Membrane anchored SzP was able to recruit TRX to the surface, which would facilitate the antiphagocytosis of the bacteria. Further experiments revealed that TRX regulated the alternative complement pathway by inhibiting C3 convertase activity and associating with factor H (FH). TRX alone inhibited C3 cleavage and C3a production, and the inhibitory effect was additive when FH was also present. TRX inhibited C3 deposition on the bacterial surface when it was recruited by SzP. These new findings indicated that S. zooepidemicus used SzP to recruit TRX and regulated the alternative complement pathways to evade the host immune phagocytosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| | | |
Collapse
|
131
|
Inhibitor of streptokinase gene expression improves survival after group A streptococcus infection in mice. Proc Natl Acad Sci U S A 2012; 109:3469-74. [PMID: 22331877 DOI: 10.1073/pnas.1201031109] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The widespread occurrence of antibiotic resistance among human pathogens is a major public health problem. Conventional antibiotics typically target bacterial killing or growth inhibition, resulting in strong selection for the development of antibiotic resistance. Alternative therapeutic approaches targeting microbial pathogenicity without inhibiting growth might minimize selection for resistant organisms. Compounds inhibiting gene expression of streptokinase (SK), a critical group A streptococcal (GAS) virulence factor, were identified through a high-throughput, growth-based screen on a library of 55,000 small molecules. The lead compound [Center for Chemical Genomics 2979 (CCG-2979)] and an analog (CCG-102487) were confirmed to also inhibit the production of active SK protein. Microarray analysis of GAS grown in the presence of CCG-102487 showed down-regulation of a number of important virulence factors in addition to SK, suggesting disruption of a general virulence gene regulatory network. CCG-2979 and CCG-102487 both enhanced granulocyte phagocytosis and killing of GAS in an in vitro assay, and CCG-2979 also protected mice from GAS-induced mortality in vivo. These data suggest that the class of compounds represented by CCG-2979 may be of therapeutic value for the treatment of GAS and potentially other gram-positive infections in humans.
Collapse
|
132
|
Abstract
Zoonotic infections caused by Streptococcus spp. have been neglected in spite of the fact that frequency and severity of outbreaks increased dramatically in recent years. This may be due to non-identification since respective species are often not considered in human medical diagnostic procedures. On the other hand, an expanding human population concomitant with an increasing demand for food and the increased number of companion animals favour conditions for host species adaptation of animal streptococci. This review aims to give an overview on streptococcal zoonoses with focus on epidemiology and pathogenicity of four major zoonotic species, Streptococcus canis, Streptococcus equi sub. zooepidemicus, Streptococcus iniae and Streptococcus suis.
Collapse
|
133
|
Waller AS, Paillot R, Timoney JF. Streptococcus equi: a pathogen restricted to one host. J Med Microbiol 2011; 60:1231-1240. [DOI: 10.1099/jmm.0.028233-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Andrew S. Waller
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK
| | - Romain Paillot
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK
| | - John F. Timoney
- Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
134
|
Casagrande Proietti P, Bietta A, Coppola G, Felicetti M, Cook R, Coletti M, Marenzoni M, Passamonti F. Isolation and characterization of β-haemolytic-Streptococci from endometritis in mares. Vet Microbiol 2011; 152:126-30. [DOI: 10.1016/j.vetmic.2011.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 04/06/2011] [Accepted: 04/08/2011] [Indexed: 10/18/2022]
|
135
|
Genomes and characterization of phages Bcep22 and BcepIL02, founders of a novel phage type in Burkholderia cenocepacia. J Bacteriol 2011; 193:5300-13. [PMID: 21804006 DOI: 10.1128/jb.05287-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Within the Burkholderia cepacia complex, B. cenocepacia is the most common species associated with aggressive infections in the lungs of cystic fibrosis patients, causing disease that is often refractive to treatment by antibiotics. Phage therapy may be a potential alternative form of treatment for these infections. Here we describe the genome of the previously described therapeutic B. cenocepacia podophage BcepIL02 and its close relative, Bcep22. Phage Bcep22 was found to contain a circularly permuted genome of 63,882 bp containing 77 genes; BcepIL02 was found to be 62,714 bp and contains 76 predicted genes. Major virion-associated proteins were identified by proteomic analysis. We propose that these phages comprise the founding members of a novel podophage lineage, the Bcep22-like phages. Among the interesting features of these phages are a series of tandemly repeated putative tail fiber genes that are similar to each other and also to one or more such genes in the other phages. Both phages also contain an extremely large (ca. 4,600-amino-acid), virion-associated, multidomain protein that accounts for over 20% of the phages' coding capacity, is widely distributed among other bacterial and phage genomes, and may be involved in facilitating DNA entry in both phage and other mobile DNA elements. The phages, which were previously presumed to be virulent, show evidence of a temperate lifestyle but are apparently unable to form stable lysogens in their hosts. This ambiguity complicates determination of a phage lifestyle, a key consideration in the selection of therapeutic phages.
Collapse
|
136
|
Parkinson NJ, Robin C, Newton JR, Slater J, Waller AS. Molecular epidemiology of strangles outbreaks in the UK during 2010. Vet Rec 2011; 168:666. [PMID: 21672953 DOI: 10.1136/vr.d1485] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The sequence of the Streptococcus equi subspecies equi (S equi) M-like protein (SeM) gene was determined for 105 isolates of S equi from strangles outbreaks in the UK during 2010 and compared with previous data from 2007 to 2008. Twenty-three distinct alleles were identified, including 11 novel alleles. One allele giving rise to a putative truncated M protein was identified from the guttural pouch of an asymptomatic carrier. Allele 9 was the most prevalent, comprising 57.7 per cent of isolates, followed by allele 6 (10.3 per cent). Significant changes in allele prevalence were found between 2007, 2008 and 2010, with an increasing prevalence in SeM-9-related alleles and a corresponding decreasing prevalence in SeM-6-related alleles observed over the period (P<0.001). Geographical proximity of outbreaks caused by some uncommon alleles was apparent between 2007, 2008 and 2010.
Collapse
Affiliation(s)
- N J Parkinson
- Centre for Preventive Medicine, Animal Health Trust, Landwades Park, Kentford, Newmarket, Suffolk CB8 7UU
| | | | | | | | | |
Collapse
|
137
|
|
138
|
|
139
|
Complete genome sequence and immunoproteomic analyses of the bacterial fish pathogen Streptococcus parauberis. J Bacteriol 2011; 193:3356-66. [PMID: 21531805 DOI: 10.1128/jb.00182-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Although Streptococcus parauberis is known as a bacterial pathogen associated with bovine udder mastitis, it has recently become one of the major causative agents of olive flounder (Paralichthys olivaceus) streptococcosis in northeast Asia, causing massive mortality resulting in severe economic losses. S. parauberis contains two serotypes, and it is likely that capsular polysaccharide antigens serve to differentiate the serotypes. In the present study, the complete genome sequence of S. parauberis (serotype I) was determined using the GS-FLX system to investigate its phylogeny, virulence factors, and antigenic proteins. S. parauberis possesses a single chromosome of 2,143,887 bp containing 1,868 predicted coding sequences (CDSs), with an average GC content of 35.6%. Whole-genome dot plot analysis and phylogenetic analysis of a 60-kDa chaperonin-encoding gene and the glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-encoding gene showed that the strain was evolutionarily closely related to Streptococcus uberis. S. parauberis antigenic proteins were analyzed using an immunoproteomic technique. Twenty-one antigenic protein spots were identified in S. parauberis, by reaction with an antiserum obtained from S. parauberis-challenged olive flounder. This work provides the foundation needed to understand more clearly the relationship between pathogen and host and develops new approaches toward prophylactic and therapeutic strategies to deal with streptococcosis in fish. The work also provides a better understanding of the physiology and evolution of a significant representative of the Streptococcaceae.
Collapse
|
140
|
Virulence gene pool detected in bovine group C Streptococcus dysgalactiae subsp. dysgalactiae isolates by use of a group A S. pyogenes virulence microarray. J Clin Microbiol 2011; 49:2470-9. [PMID: 21525223 DOI: 10.1128/jcm.00008-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A custom-designed microarray containing 220 virulence genes of Streptococcus pyogenes (group A Streptococcus [GAS]) was used to test group C Streptococcus dysgalactiae subsp. dysgalactiae (GCS) field strains causing bovine mastitis and group C or group G Streptococcus dysgalactiae subsp. equisimilis (GCS/GGS) isolates from human infections, with the latter being used for comparative purposes, for the presence of virulence genes. All bovine and all human isolates carried a fraction of the 220 genes (23% and 39%, respectively). The virulence genes encoding streptolysin S, glyceraldehyde-3-phosphate dehydrogenase, the plasminogen-binding M-like protein PAM, and the collagen-like protein SclB were detected in the majority of both bovine and human isolates (94 to 100%). Virulence factors, usually carried by human beta-hemolytic streptococcal pathogens, such as streptokinase, laminin-binding protein, and the C5a peptidase precursor, were detected in all human isolates but not in bovine isolates. Additionally, GAS bacteriophage-associated virulence genes encoding superantigens, DNase, and/or streptodornase were detected in bovine isolates (72%) but not in the human isolates. Determinants located in non-bacteriophage-related mobile elements, such as the gene encoding R28, were detected in all bovine and human isolates. Several virulence genes, including genes of bacteriophage origin, were shown to be expressed by reverse transcriptase PCR (RT-PCR). Phylogenetic analysis of superantigen gene sequences revealed a high level (>98%) of identity among genes of bovine GCS, of the horse pathogen Streptococcus equi subsp. equi, and of the human pathogen GAS. Our findings indicate that alpha-hemolytic bovine GCS, an important mastitis pathogen and considered to be a nonhuman pathogen, carries important virulence factors responsible for virulence and pathogenesis in humans.
Collapse
|
141
|
Murano E, Perin D, Khan R, Bergamin M. Hyaluronan: From Biomimetic to Industrial Business Strategy. Nat Prod Commun 2011. [DOI: 10.1177/1934578x1100600415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hyaluronan (hyaluronic acid) is a naturally occurring polysaccharide of a linear repeating disaccharide unit consisting of β-(1→4)-linked D-glucopyranuronic acid and β-(1→3)-linked 2-acetamido-2-deoxy-D-glucopyranose, which is present in extracellular matrices, the synovial fluid of joints, and scaffolding that comprises cartilage. In its mechanism of synthesis, its size, and its physico-chemical properties, hyaluronan is unique amongst other glycosaminoglycans. The network-forming, viscoelastic and its charge characteristics are important to many biochemical properties of living tissues. It is an important pericellular and cell surface constituent; its interaction with other macromolecules such as proteins, participates in regulating cell behavior during numerous morphogenic, restorative, and pathological processes in the body. The knowledge of HA in diseases such as various forms of cancers, arthritis and osteoporosis has led to new impetus in research and development in the preparation of biomaterials for surgical implants and drug conjugates for targeted delivery. A concise and focused review on hyaluronan is timely. This review will cover the following important aspects of hyaluronan: (i) biological functions and synthesis in nature; (ii) current industrial production and potential biosynthetic processes of hyaluronan; (iii) chemical modifications of hyaluronan leading to products of commercial significance; and (iv) and the global market position and manufacturers of hyaluronan.
Collapse
Affiliation(s)
- Erminio Murano
- PROTOS Research Institute, via Flavia 23/1c/o BIC Incubatori FVG, 34148, Trieste, Italy
- NEALYS srl, via Flavia 23/1c/o BIC Incubatori FVG, 34148, Trieste, Italy
| | - Danilo Perin
- PROTOS Research Institute, via Flavia 23/1c/o BIC Incubatori FVG, 34148, Trieste, Italy
| | - Riaz Khan
- PROTOS Research Institute, via Flavia 23/1c/o BIC Incubatori FVG, 34148, Trieste, Italy
| | - Massimo Bergamin
- PROTOS Research Institute, via Flavia 23/1c/o BIC Incubatori FVG, 34148, Trieste, Italy
- NEALYS srl, via Flavia 23/1c/o BIC Incubatori FVG, 34148, Trieste, Italy
| |
Collapse
|
142
|
Kirinus J, Pötter L, Gressler L, Leite F, Vargas A. Perfil fenotípico e susceptibilidade antimicrobiana de Streptococcus equi isolados de equinos da região Sul do Brasil. PESQUISA VETERINARIA BRASILEIRA 2011. [DOI: 10.1590/s0100-736x2011000300008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As características fenotípicas [morfológicas, bioquímicas, susceptibilidade aos antimicrobianos, índice de resistência múltipla aos antimicrobianos (IRMA), concentração inibitória mínima (CIM) e concentração bactericida mínima (CBM) da benzilpenicilina] de 38 isolados de Streptococcus equi oriundos de amostras clínicas de animais com adenite equina foram alvo deste estudo. A fenotipia demonstrou três padrões de colônias, três biotipos de fermentação de carboidratos e variação de 0 a 0,4 no IRMA. Todos os isolados de S. equi demonstraram sensibilidade à penicilina, tanto pelo método de disco difusão quanto pelo método de microdiluição. A CIM e CBM média de benzilpenicilina foi de 0,0095μg/mL e 0,0267μg/mL para S. equi subesp. equi e de 0,0128μg/mL e 0,0380μg/mL para S. equi subesp. zooepidemicus. Os valores de CIM e CBM diferiram entre as subespécies (p<0,05). O diâmetro do halo de inibição de penicilina demonstrou relação com a CIM (ì=0,03638 - 0,00072x) para S. equi subesp. equi. Também foi demonstrada relação entre o diâmetro do halo de inibição de penicilina com a CBM para S. equi subesp. equi (ì=0,10931- 0,00223x). Entretanto para as amostras de S. equi subesp. zooepidemicus esta relação somente foi verificada para a CBM (ì=0,1322 - 0,00271x). A CIM de benzilpenicilina frente às amostras isoladas da região Central, Planalto e Sul do estado do Rio Grande do Sul foram estatisticamente semelhantes, mas diferiram do isolado do estado do Paraná, sugerindo o caráter atípico desta cepa. Todos os isolados de S. equi são sensíveis à penicilina e sulfazotrim, confirmando a eleição destes antimicrobianos para o tratamento das infecções por este agente na clínica veterinária. Os resultados obtidos não dispensam a utilização prudente dos antimicrobianos.
Collapse
Affiliation(s)
| | - L. Pötter
- Universidade Federal de Santa Maria, Brasil
| | | | | | | |
Collapse
|
143
|
Frese SA, Benson AK, Tannock GW, Loach DM, Kim J, Zhang M, Oh PL, Heng NCK, Patil PB, Juge N, MacKenzie DA, Pearson BM, Lapidus A, Dalin E, Tice H, Goltsman E, Land M, Hauser L, Ivanova N, Kyrpides NC, Walter J. The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri. PLoS Genet 2011; 7:e1001314. [PMID: 21379339 PMCID: PMC3040671 DOI: 10.1371/journal.pgen.1001314] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 01/18/2011] [Indexed: 02/07/2023] Open
Abstract
Recent research has provided mechanistic insight into the important contributions of the gut microbiota to vertebrate biology, but questions remain about the evolutionary processes that have shaped this symbiosis. In the present study, we showed in experiments with gnotobiotic mice that the evolution of Lactobacillus reuteri with rodents resulted in the emergence of host specialization. To identify genomic events marking adaptations to the murine host, we compared the genome of the rodent isolate L. reuteri 100-23 with that of the human isolate L. reuteri F275, and we identified hundreds of genes that were specific to each strain. In order to differentiate true host-specific genome content from strain-level differences, comparative genome hybridizations were performed to query 57 L. reuteri strains originating from six different vertebrate hosts in combination with genome sequence comparisons of nine strains encompassing five phylogenetic lineages of the species. This approach revealed that rodent strains, although showing a high degree of genomic plasticity, possessed a specific genome inventory that was rare or absent in strains from other vertebrate hosts. The distinct genome content of L. reuteri lineages reflected the niche characteristics in the gastrointestinal tracts of their respective hosts, and inactivation of seven out of eight representative rodent-specific genes in L. reuteri 100-23 resulted in impaired ecological performance in the gut of mice. The comparative genomic analyses suggested fundamentally different trends of genome evolution in rodent and human L. reuteri populations, with the former possessing a large and adaptable pan-genome while the latter being subjected to a process of reductive evolution. In conclusion, this study provided experimental evidence and a molecular basis for the evolution of host specificity in a vertebrate gut symbiont, and it identified genomic events that have shaped this process. The gastrointestinal microbiota of vertebrates is important for nutrient utilization, resistance against pathogens, and immune maturation of its host, but little is known about the evolutionary relationships between vertebrates and individual bacterial members of these communities. Here we provide robust evidence that the evolution of the gut symbiont Lactobacillus reuteri with vertebrates resulted in the emergence of host specialization. Genomic approaches using a combination of genome sequence comparisons and microarray analysis were used to identify the host-specific genome content in rodent and human strains and the evolutionary events that resulted in host adaptation. The study revealed divergent patterns of genome evolution in rodent and human lineages and a distinct genome inventory in host-restricted sub-populations of L. reuteri that reflected the niche characteristics in the gut of their particular vertebrate hosts. The ecological significance of representative rodent-specific genes was demonstrated in gnotobiotic mice. In conclusion, this work provided evidence that the vertebrate gut symbiont Lactobacillus reuteri, despite the likelihood of horizontal transmission, has remained stably associated with related groups of vertebrate hosts over evolutionary time and has evolved a lifestyle specialized to these host animals.
Collapse
Affiliation(s)
- Steven A. Frese
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Andrew K. Benson
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Gerald W. Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Diane M. Loach
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Jaehyoung Kim
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Min Zhang
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Phaik Lyn Oh
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Nicholas C. K. Heng
- Sir John Walsh Research Institute (Faculty of Dentistry), University of Otago, Dunedin, New Zealand
| | - Prabhu B. Patil
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, United States of America
- Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Nathalie Juge
- Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| | | | - Bruce M. Pearson
- Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| | - Alla Lapidus
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Eileen Dalin
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Hope Tice
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Eugene Goltsman
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Miriam Land
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Loren Hauser
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Natalia Ivanova
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Nikos C. Kyrpides
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Jens Walter
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
144
|
Lanka S, Borst LB, Patterson SK, Maddox CW. A multiphasic typing approach to subtype Streptococcus equi subspecies equi. J Vet Diagn Invest 2011; 22:928-36. [PMID: 21088177 DOI: 10.1177/104063871002200612] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The objective of the present investigation was to differentiate between strains of Streptococcus equi subspecies equi implicated in abscess formation in vaccinated horses. Streptococcus equi isolates recovered from clinical specimens associated with equine strangles cases submitted to the University of Illinois Veterinary Diagnostic Laboratory were compared with S. equi isolates representing at least 12 lots of a commercial modified live vaccine (MLV) to determine whether the isolates obtained from the abscesses were vaccine or wild type. Genotyping techniques evaluated included enterobacterial repetitive intergenic consensus polymerase chain reaction (PCR), repetitive extragenic palindrome PCR, BOX element PCR, ribotyping, and pulsed-field gel electrophoresis (PFGE). Phenotypic evaluations were performed using the Biolog GP2 Microplate (hereafter, Biolog). In cases where Biolog and PFGE results did not coincide, a single nucleotide polymorphism located in the upstream regulatory region of szp gene was used to identify the S. equi strains. PFGE and Biolog successfully differentiated wild-type S. equi strains isolated from clinical submissions from isolates of the MLV. PFGE genotyping enabled further subtyping of the wild-type strains, whereas Biolog combined with szp sequencing was useful in differentiating the MLV strain from its wild-type progenitor. Deletion of a single guanine residue located in the upstream regulatory region of the szp gene appears to be conserved among vaccine isolates, and shows a 98.5% correlation to Biolog identification. This multiphasic approach can be used to answer specific diagnostic questions pertaining to the source of infection and/or outbreak, or to address quarantine concerns.
Collapse
Affiliation(s)
- Saraswathi Lanka
- Veterinary Diagnostic Laboratory, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Avenue, Urbana, IL 61802, USA
| | | | | | | |
Collapse
|
145
|
Shimomura Y, Okumura K, Murayama SY, Yagi J, Ubukata K, Kirikae T, Miyoshi-Akiyama T. Complete genome sequencing and analysis of a Lancefield group G Streptococcus dysgalactiae subsp. equisimilis strain causing streptococcal toxic shock syndrome (STSS). BMC Genomics 2011; 12:17. [PMID: 21223537 PMCID: PMC3027156 DOI: 10.1186/1471-2164-12-17] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 01/11/2011] [Indexed: 11/10/2022] Open
Abstract
Background Streptococcus dysgalactiae subsp. equisimilis (SDSE) causes invasive streptococcal infections, including streptococcal toxic shock syndrome (STSS), as does Lancefield group A Streptococcus pyogenes (GAS). We sequenced the entire genome of SDSE strain GGS_124 isolated from a patient with STSS. Results We found that GGS_124 consisted of a circular genome of 2,106,340 bp. Comparative analyses among bacterial genomes indicated that GGS_124 was most closely related to GAS. GGS_124 and GAS, but not other streptococci, shared a number of virulence factor genes, including genes encoding streptolysin O, NADase, and streptokinase A, distantly related to SIC (DRS), suggesting the importance of these factors in the development of invasive disease. GGS_124 contained 3 prophages, with one containing a virulence factor gene for streptodornase. All 3 prophages were significantly similar to GAS prophages that carry virulence factor genes, indicating that these prophages had transferred these genes between pathogens. SDSE was found to contain a gene encoding a superantigen, streptococcal exotoxin type G, but lacked several genes present in GAS that encode virulence factors, such as other superantigens, cysteine protease speB, and hyaluronan synthase operon hasABC. Similar to GGS_124, the SDSE strains contained larger numbers of clustered, regularly interspaced, short palindromic repeats (CRISPR) spacers than did GAS, suggesting that horizontal gene transfer via streptococcal phages between SDSE and GAS is somewhat restricted, although they share phage species. Conclusion Genome wide comparisons of SDSE with GAS indicate that SDSE is closely and quantitatively related to GAS. SDSE, however, lacks several virulence factors of GAS, including superantigens, SPE-B and the hasABC operon. CRISPR spacers may limit the horizontal transfer of phage encoded GAS virulence genes into SDSE. These findings may provide clues for dissecting the pathological roles of the virulence factors in SDSE and GAS that cause STSS.
Collapse
Affiliation(s)
- Yumi Shimomura
- Department of Infectious Diseases, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | | | | | | | | | | | | |
Collapse
|
146
|
Jolley KA, Maiden MCJ. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 2010; 11:595. [PMID: 21143983 PMCID: PMC3004885 DOI: 10.1186/1471-2105-11-595] [Citation(s) in RCA: 1781] [Impact Index Per Article: 118.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 12/10/2010] [Indexed: 02/06/2023] Open
Abstract
Background The opportunities for bacterial population genomics that are being realised by the application of parallel nucleotide sequencing require novel bioinformatics platforms. These must be capable of the storage, retrieval, and analysis of linked phenotypic and genotypic information in an accessible, scalable and computationally efficient manner. Results The Bacterial Isolate Genome Sequence Database (BIGSDB) is a scalable, open source, web-accessible database system that meets these needs, enabling phenotype and sequence data, which can range from a single sequence read to whole genome data, to be efficiently linked for a limitless number of bacterial specimens. The system builds on the widely used mlstdbNet software, developed for the storage and distribution of multilocus sequence typing (MLST) data, and incorporates the capacity to define and identify any number of loci and genetic variants at those loci within the stored nucleotide sequences. These loci can be further organised into 'schemes' for isolate characterisation or for evolutionary or functional analyses. Isolates and loci can be indexed by multiple names and any number of alternative schemes can be accommodated, enabling cross-referencing of different studies and approaches. LIMS functionality of the software enables linkage to and organisation of laboratory samples. The data are easily linked to external databases and fine-grained authentication of access permits multiple users to participate in community annotation by setting up or contributing to different schemes within the database. Some of the applications of BIGSDB are illustrated with the genera Neisseria and Streptococcus. The BIGSDB source code and documentation are available at http://pubmlst.org/software/database/bigsdb/. Conclusions Genomic data can be used to characterise bacterial isolates in many different ways but it can also be efficiently exploited for evolutionary or functional studies. BIGSDB represents a freely available resource that will assist the broader community in the elucidation of the structure and function of bacteria by means of a population genomics approach.
Collapse
|
147
|
Kittang BR, Skrede S, Langeland N, Haanshuus CG, Mylvaganam H. emm gene diversity, superantigen gene profiles and presence of SlaA among clinical isolates of group A, C and G streptococci from western Norway. Eur J Clin Microbiol Infect Dis 2010; 30:423-33. [PMID: 21103900 PMCID: PMC3034890 DOI: 10.1007/s10096-010-1105-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 10/19/2010] [Indexed: 11/28/2022]
Abstract
In order to investigate molecular characteristics of beta-hemolytic streptococcal isolates from western Norway, we analysed the entire emm gene sequences, obtained superantigen gene profiles and determined the prevalence of the gene encoding streptococcal phospholipase A2 (SlaA) of 165 non-invasive and 34 contemporary invasive group A, C and G streptococci (GAS, GCS and GGS). Among the 25 GAS and 26 GCS/GGS emm subtypes identified, only emm3.1 was significantly associated with invasive disease. M protein size variation within GAS and GCS/GGS emm types was frequently identified. Two non-invasive and one invasive GGS possessed emm genes that translated to truncated M proteins as a result of frameshift mutations. Results suggestive of recombinations between emm or emm-like gene segments were found in isolates of emm4 and stG485 types. One non-invasive GGS possessed speC, speG, speH, speI and smeZ, and another non-invasive GGS harboured SlaA. speA and SlaA were over-represented among invasive GAS, probably because they were associated with emm3. speGdys was identified in 83% of invasive and 63% of non-invasive GCS/GGS and correlated with certain emm subtypes. Our results indicate the invasive potential of isolates belonging to emm3, and show substantial emm gene diversity and possible lateral gene transfers in our streptococcal population.
Collapse
Affiliation(s)
- B R Kittang
- Institute of Medicine, University of Bergen, 5021, Bergen, Norway.
| | | | | | | | | |
Collapse
|
148
|
Jackson RW, Johnson LJ, Clarke SR, Arnold DL. Bacterial pathogen evolution: breaking news. Trends Genet 2010; 27:32-40. [PMID: 21047697 DOI: 10.1016/j.tig.2010.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/21/2010] [Accepted: 10/07/2010] [Indexed: 02/04/2023]
Abstract
The immense social and economic impact of bacterial pathogens, from drug-resistant infections in hospitals to the devastation of agricultural resources, has resulted in major investment to understand the causes and consequences of pathogen evolution. Recent genome sequencing projects have provided insight into the evolution of bacterial genome structures; revealing the impact of mobile DNA on genome restructuring and pathogenicity. Sequencing of multiple genomes of related strains has enabled the delineation of pathogen evolution and facilitated the tracking of bacterial pathogens globally. Other recent theoretical and empirical studies have shown that pathogen evolution is significantly influenced by ecological factors, such as the distribution of hosts within the environment and the effects of co-infection. We suggest that the time is ripe for experimentalists to use genomics in conjunction with evolutionary ecology experiments to further understanding of how bacterial pathogens evolve.
Collapse
Affiliation(s)
- Robert W Jackson
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6AJ, UK.
| | | | | | | |
Collapse
|
149
|
Ramirez-Peña E, Treviño J, Liu Z, Perez N, Sumby P. The group A Streptococcus small regulatory RNA FasX enhances streptokinase activity by increasing the stability of the ska mRNA transcript. Mol Microbiol 2010; 78:1332-47. [PMID: 21143309 DOI: 10.1111/j.1365-2958.2010.07427.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Small RNA molecules play key regulatory roles in many bacterial species. However, little mechanistic data exists for the action of small regulatory RNAs in the human pathogen group A Streptococcus (GAS). Here, we analysed the relationship between a putative GAS sRNA and production of the secreted virulence factor streptokinase (SKA). SKA promotes GAS dissemination by activating conversion of host plasminogen into the fibrin-degrading protease plasmin. Homologues of the putative sRNA-encoding gene fibronectin/fibrinogen-binding/haemolytic-activity/streptokinase-regulator-X (fasX) were identified in four different pyogenic streptococcal species. However, despite 79% fasX nucleotide identity, a fasX allele from the animal pathogen Streptococcus zooepidemicus failed to complement a GAS fasX mutant. Using a series of precisely constructed fasX alleles we discovered that FasX is a bona-fide sRNA that post-transcriptionally regulates SKA production in GAS. By base-pairing to the 5' end of ska mRNA, FasX enhances ska transcript stability, resulting in a ∼10-fold increase in SKA activity. Our data provide new insights into the mechanisms used by small regulatory RNAs to activate target mRNAs, and enhances our understanding of the regulation of a key GAS virulence factor.
Collapse
Affiliation(s)
- Esmeralda Ramirez-Peña
- Department of Pathology, The Methodist Hospital Research Institute, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
150
|
Ouattara M, Cunha EB, Li X, Huang YS, Dixon D, Eichenbaum Z. Shr of group A streptococcus is a new type of composite NEAT protein involved in sequestering haem from methaemoglobin. Mol Microbiol 2010; 78:739-56. [PMID: 20807204 DOI: 10.1111/j.1365-2958.2010.07367.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A growing body of evidence suggests that surface or secreted proteins with NEAr Transporter (NEAT) domains play a central role in haem acquisition and trafficking across the cell envelope of Gram-positive bacteria. Group A streptococcus (GAS), a β-haemolytic human pathogen, expresses a NEAT protein, Shr, which binds several haemoproteins and extracellular matrix (ECM) components. Shr is a complex, membrane-anchored protein, with a unique N-terminal domain (NTD) and two NEAT domains separated by a central leucine-rich repeat region. In this study we have carried out an analysis of the functional domains in Shr. We show that Shr obtains haem in solution and furthermore reduces the haem iron; this is the first report of haem reduction by a NEAT protein. More specifically, we demonstrate that both of the constituent NEAT domains of Shr are responsible for binding haem, although they are missing a critical tyrosine residue found in the ligand-binding pocket of other haem-binding NEAT domains. Further investigations show that a previously undescribed region within the Shr NTD interacts with methaemoglobin. Shr NEAT domains, however, do not contribute significantly to the binding of methaemoglobin but mediate binding to the ECM components fibronectin and laminin. A protein fragment containing the NTD plus the first NEAT domain was found to be sufficient to sequester haem directly from methaemoglobin. Correlating these in vitro findings to in vivo biological function, mutants analysis establishes the role of Shr in GAS growth with methaemoglobin as a sole source of iron, and indicates that at least one NEAT domain is necessary for the utilization of methaemoglobin. We suggest that Shr is the prototype of a new group of NEAT composite proteins involved in haem uptake found in pyogenic streptococci and Clostridium novyi.
Collapse
Affiliation(s)
- Mahamoudou Ouattara
- Department of Biology,College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | | | |
Collapse
|