101
|
Lehmann C, Lafferty M, Garzino-Demo A, Jung N, Hartmann P, Fätkenheuer G, Wolf JS, van Lunzen J, Romerio F. Plasmacytoid dendritic cells accumulate and secrete interferon alpha in lymph nodes of HIV-1 patients. PLoS One 2010; 5:e11110. [PMID: 20559432 PMCID: PMC2885422 DOI: 10.1371/journal.pone.0011110] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 05/21/2010] [Indexed: 11/18/2022] Open
Abstract
Circulating plasmacytoid dendritic cells (pDC) decline during HIV-1 infection, but at the same time they express markedly higher levels of interferon alpha (IFNalpha), which is associated with HIV-1 disease progression. Here we show an accumulation of pDC in lymph nodes (LN) of treatment-naïve HIV-1 patients. This phenomenon was associated with elevated expression of the LN homing marker, CCR7, on pDC in peripheral blood of HIV-1 patients, which conferred increased migratory capacity in response to CCR7 ligands in ex vivo functional assays. LN-homed pDC of HIV-1 patients presented higher CD40 and lower BDCA2 levels, but unchanged CD83 and CD86 expression. In addition, these cells expressed markedly higher amounts of IFNalpha compared to uninfected individuals, and were undergoing faster rates of cell death. These results demonstrate for the first time that in asymptomatic, untreated HIV-1 patients circulating pDC up-regulate CCR7 expression, accumulate in lymph nodes, and express high amounts of IFNalpha before undergoing cell death. Since IFNalpha inhibits cell proliferation and modulates immune responses, chronically high levels of this cytokine in LN of HIV-1 patients may impair differentiation and immune function of bystander CD4(+) T cells, thus playing into the mechanisms of AIDS immunopathogenesis.
Collapse
Affiliation(s)
- Clara Lehmann
- Institute of Human Virology, University of Maryland, Baltimore, Maryland, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- First Department of Internal Medicine, University of Cologne, Cologne, Germany
| | - Mark Lafferty
- Institute of Human Virology, University of Maryland, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Alfredo Garzino-Demo
- Institute of Human Virology, University of Maryland, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Norma Jung
- First Department of Internal Medicine, University of Cologne, Cologne, Germany
| | - Pia Hartmann
- First Department of Internal Medicine, University of Cologne, Cologne, Germany
| | - Gerd Fätkenheuer
- First Department of Internal Medicine, University of Cologne, Cologne, Germany
| | - Jeffrey S. Wolf
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland Medical Center, Baltimore, Maryland, United States of America
| | - Jan van Lunzen
- University Medical Center Hamburg-Eppendorf and Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany
| | - Fabio Romerio
- Institute of Human Virology, University of Maryland, Baltimore, Maryland, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
102
|
Burdo TH, Soulas C, Orzechowski K, Button J, Krishnan A, Sugimoto C, Alvarez X, Kuroda MJ, Williams KC. Increased monocyte turnover from bone marrow correlates with severity of SIV encephalitis and CD163 levels in plasma. PLoS Pathog 2010; 6:e1000842. [PMID: 20419144 PMCID: PMC2855320 DOI: 10.1371/journal.ppat.1000842] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 03/03/2010] [Indexed: 12/24/2022] Open
Abstract
Cells of the myeloid lineage are significant targets for human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in monkeys. Monocytes play critical roles in innate and adaptive immunity during inflammation. We hypothesize that specific subsets of monocytes expand with AIDS and drive central nervous system (CNS) disease. Additionally, there may be expansion of cells from the bone marrow through blood with subsequent macrophage accumulation in tissues driving pathogenesis. To identify monocytes that recently emigrated from bone marrow, we used 5-bromo-2′-deoxyuridine (BrdU) labeling in a longitudinal study of SIV-infected CD8+ T lymphocyte depleted macaques. Monocyte expansion and kinetics in blood was assessed and newly migrated monocyte/macrophages were identified within the CNS. Five animals developed rapid AIDS with differing severity of SIVE. The percentages of BrdU+ monocytes in these animals increased dramatically, early after infection, peaking at necropsy where the percentage of BrdU+ monocytes correlated with the severity of SIVE. Early analysis revealed changes in the percentages of BrdU+ monocytes between slow and rapid progressors as early as 8 days and consistently by 27 days post infection. Soluble CD163 (sCD163) in plasma correlated with the percentage of BrdU+ monocytes in blood, demonstrating a relationship between monocyte activation and expansion with disease. BrdU+ monocytes/macrophages were found within perivascular spaces and SIVE lesions. The majority (80–90%) of the BrdU+ cells were Mac387+ that were not productively infected. There was a minor population of CD68+BrdU+ cells (<10%), very few of which were infected (<1% of total BrdU+ cells). Our results suggest that an increased rate of monocyte recruitment from bone marrow into the blood correlates with rapid progression to AIDS, and the magnitude of BrdU+ monocytes correlates with the severity of SIVE. Human immunodeficiency virus (HIV) and the closely related simian immunodeficiency virus (SIV) can infect monocyte/macrophages, which enter and accumulate in the brain leading to neuronal dysfunction. Monocyte/macrophages exit the bone marrow, transit through the blood and enter the central nervous system (CNS). What triggers these cells to traffic is undefined, but it occurs in normal non-infected conditions at a rate that is accelerated with viral infection. Here, we used 5-bromo-2′-deoxyuridine (BrdU) injection and incorporation into the DNA of monocytes prior to their departure from the bone marrow. We found that the percentage of BrdU+ monocytes leaving the bone marrow 24 hours after injection increased in animals that rapidly succumbed to AIDS and correlated with the severity of SIV encephalitis (SIVE). Differences in BrdU labeled monocytes in slow and rapid progressors were revealed as early as 8 days and were consistent by 27 days post infection. Soluble CD163, shed by activated monocyte/macrophages, directly correlated with BrdU+ monocyte expansion. Our study provides new insights into the development of HIV-related CNS disease and underscores the importance of monocyte/macrophage recruitment from the bone marrow as an AIDS defining event.
Collapse
MESH Headings
- Animals
- Antigens, CD/blood
- Antigens, CD/immunology
- Antigens, Differentiation, Myelomonocytic/blood
- Antigens, Differentiation, Myelomonocytic/immunology
- Bone Marrow Cells/immunology
- Cell Separation
- Encephalitis, Viral/etiology
- Encephalitis, Viral/immunology
- Encephalitis, Viral/pathology
- Enzyme-Linked Immunosorbent Assay
- Flow Cytometry
- Immunohistochemistry
- Macaca
- Microscopy, Confocal
- Monocytes/immunology
- Receptors, Cell Surface/blood
- Receptors, Cell Surface/immunology
- Simian Acquired Immunodeficiency Syndrome/complications
- Simian Acquired Immunodeficiency Syndrome/immunology
- Simian Acquired Immunodeficiency Syndrome/pathology
- Simian Immunodeficiency Virus
- Viral Load
Collapse
Affiliation(s)
- Tricia H. Burdo
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Caroline Soulas
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Krystyna Orzechowski
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Jessica Button
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Anitha Krishnan
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Chie Sugimoto
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Science Center, Covington, Louisiana, United States of America
| | - Xavier Alvarez
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University Health Science Center, Covington, Louisiana, United States of America
| | - Marcelo J. Kuroda
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Science Center, Covington, Louisiana, United States of America
| | - Kenneth C. Williams
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
103
|
A look behind closed doors: interaction of persistent viruses with dendritic cells. Nat Rev Microbiol 2010; 8:350-60. [PMID: 20372157 DOI: 10.1038/nrmicro2332] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Persistent infections with HIV, hepatitis B virus and hepatitis C virus are major causes of morbidity and mortality worldwide. As sentinels of the immune system, dendritic cells (DCs) are crucial for the generation of protective antiviral immunity. Recent advances in our understanding of the role of DCs during infection with these viruses provide insights into the mechanisms used by these viruses to exploit DC function and evade innate and adaptive immunity. In this Review we highlight the current knowledge about the interaction between DCs and these viruses and the underlying mechanisms that might influence the outcome of viral infections.
Collapse
|
104
|
Swiecki M, Colonna M. Unraveling the functions of plasmacytoid dendritic cells during viral infections, autoimmunity, and tolerance. Immunol Rev 2010; 234:142-62. [PMID: 20193017 PMCID: PMC3507434 DOI: 10.1111/j.0105-2896.2009.00881.x] [Citation(s) in RCA: 296] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are bone marrow-derived cells that secrete large amounts of type I interferon (IFN) in response to viruses. Type I IFNs are pleiotropic cytokines with antiviral activity that also enhance innate and adaptive immune responses. Viruses trigger activation of pDCs and type I IFN responses mainly through the Toll-like receptor pathway. However, a variety of activating and inhibitory pDC receptors fine tune the amplitude of type I IFN responses. Chronic activation and secretion of type I IFN in the absence of infection can promote autoimmune diseases. Furthermore, while activated pDCs promote immunity and autoimmunity, resting or alternatively activated pDCs may be tolerogenic. The various roles of pDCs have been extensively studied in vitro and in vivo with depleting antibodies. However, depleting antibodies cross-react with other cell types that are critical for eliciting protective immunity, potentially yielding ambiguous phenotypes. Here we discuss new approaches to assess pDC functions in vivo and provide preliminary data on their potential roles during viral infections. Such approaches would also prove useful in the more specific evaluation of how pDCs mediate tolerance and autoimmunity. Finally, we discuss the emergent role of pDCs and one of their receptors, tetherin, in human immunodeficiency virus pathogenesis.
Collapse
Affiliation(s)
- Melissa Swiecki
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
105
|
Stoddart CA, Keir ME, McCune JM. IFN-alpha-induced upregulation of CCR5 leads to expanded HIV tropism in vivo. PLoS Pathog 2010; 6:e1000766. [PMID: 20174557 PMCID: PMC2824759 DOI: 10.1371/journal.ppat.1000766] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 01/13/2010] [Indexed: 01/12/2023] Open
Abstract
Chronic immune activation and inflammation (e.g., as manifest by production of type I interferons) are major determinants of disease progression in primate lentivirus infections. To investigate the impact of such activation on intrathymic T-cell production, we studied infection of the human thymus implants of SCID-hu Thy/Liv mice with X4 and R5 HIV. X4 HIV was observed to infect CD3−CD4+CD8−CXCR4+CCR5− intrathymic T-cell progenitors (ITTP) and to abrogate thymopoiesis. R5 HIV, by contrast, first established a nonpathogenic infection of thymic macrophages and then, after many weeks, began to replicate in ITTP. We demonstrate here that the tropism of R5 HIV is expanded and pathogenicity enhanced by upregulation of CCR5 on these key T-cell progenitors. Such CCR5 induction was mediated by interferon-α (IFN-α) in both thymic organ cultures and in SCID-hu mice, and antibody neutralization of IFN-α in R5 HIV-infected SCID-hu mice inhibited both CCR5 upregulation and infection of the T-cell progenitors. These observations suggest a mechanism by which IFN-α production may paradoxically expand the tropism of R5 HIV and, in so doing, accelerate disease progression. Human immunodeficiency virus (HIV), a lentivirus, is the causative agent of AIDS. Chronic immune activation and inflammation are major determinants of disease progression in primate lentivirus infections and are associated with the production of type I interferon. To investigate the impact of type I interferon on HIV infection, we studied the human thymus implants of SCID-hu Thy/Liv mice infected with HIV that uses either CXCR4 (X4 HIV) or CCR5 (R5 HIV) as a coreceptor. X4 HIV was observed to infect T-cell progenitors in the thymus and to disrupt T-cell production by that organ. R5 HIV, by contrast, first established a nondisruptive infection of thymic macrophages and then began to infect intrathymic T-cell progenitors. We report here that the tropism of R5 HIV is expanded and T-cell disruption enhanced by increased expression of CCR5 on these key T-cell progenitors. Such CCR5 induction was mediated by interferon-α (IFN-α) in both thymic organ cultures and in SCID-hu mice. Moreover, antibody neutralization of IFN-α in R5 HIV-infected SCID-hu mice inhibited both CCR5 upregulation and infection of the T-cell progenitors. These observations suggest a mechanism by which IFN-α may paradoxically expand the tropism of R5 HIV and accelerate disease progression.
Collapse
Affiliation(s)
- Cheryl A Stoddart
- Division of Experimental Medicine, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, USA.
| | | | | |
Collapse
|
106
|
Fitzgerald-Bocarsly P, Jacobs ES. Plasmacytoid dendritic cells in HIV infection: striking a delicate balance. J Leukoc Biol 2010; 87:609-20. [PMID: 20145197 DOI: 10.1189/jlb.0909635] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
pDC are the most potent IFN-alpha-producing cells in the body and serve as a vital link between innate and adaptive immunity. Deficiencies in pDC function were among the earliest observations of immune dysfunction in HIV-1 infection. Herein, we review the status of pDC in individuals with HIV-1 infection and the potential role of these cells in pathogenesis. We begin by reviewing the basic properties of pDC and then discuss the compromise in circulating pDC numbers and function in early and viremic HIV-1 infection and mechanisms that might account for their depletion in HIV-infected patients. In addition, we review the evidence that chronic production of IFN-alpha, probably through the chronic activation of pDC, is central to the immune activation that is so detrimental in HIV infection. Finally, we discuss the importance of balance in pDC numbers and function and the potential value of using absolute pDC counts and function as a biomarker, along with CD4(+) cell counts and VL in HIV-1-infected patients.
Collapse
|
107
|
Reeves RK, Wei Q, Stallworth J, Fultz PN. Systemic dendritic cell mobilization associated with administration of FLT3 ligand to SIV- and SHIV-infected macaques. AIDS Res Hum Retroviruses 2009; 25:1313-28. [PMID: 20001520 DOI: 10.1089/aid.2009.0053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reports indicate that myeloid and plasmacytoid dendritic cells (mDCs and pDCs), which are key effector cells in host innate immune responses, can be infected with HIV-1 and are reduced in number and function during the chronic phase of HIV disease. Furthermore, it was recently demonstrated that a sustained loss of mDCs and pDCs occurs in SIV-infected macaques. Since loss of functional DC populations might impair innate immune responses to opportunistic microorganisms and neoplastic cells, we explored whether inoculation of naive and SIV- or SHIV-infected pigtailed macaques with the hematopoietic cytokine FLT3-ligand (FLT3-L) would expand the number of mDCs and pDCs in vivo. After the macaques received supraphysiologic doses of FLT3-L, mDCs, pDCs, and monocytes increased up to 45-fold in blood, lymph nodes, and bone marrow (BM), with DC expansion in the BM preceding mobilization in blood and lymphoid tissues. FLT3-L also increased serum levels of IL-12, at least transiently, and elicited higher surface expression of HLA-DR and the activation markers CD25 and CD69 on NK and T cells. During and after treatment of infected animals, APCs increased in number and were activated; however, CD4(+) T cell numbers, virion RNA, and anti-SIV/SHIV antibody titers remained relatively stable, suggesting that FLT3-L might be a safe modality to expand DC populations and provide therapeutic benefit during chronic lentivirus infections.
Collapse
Affiliation(s)
- R. Keith Reeves
- Department of Microbiology, University of Alabama at Birmingham (UAB), Birmingham, Alabama 35294
| | - Qing Wei
- Department of Microbiology, University of Alabama at Birmingham (UAB), Birmingham, Alabama 35294
| | - Jackie Stallworth
- Department of Microbiology, University of Alabama at Birmingham (UAB), Birmingham, Alabama 35294
| | - Patricia N. Fultz
- Department of Microbiology, University of Alabama at Birmingham (UAB), Birmingham, Alabama 35294
| |
Collapse
|
108
|
Cavaleiro R, Baptista AP, Soares RS, Tendeiro R, Foxall RB, Gomes P, Victorino RMM, Sousa AE. Major depletion of plasmacytoid dendritic cells in HIV-2 infection, an attenuated form of HIV disease. PLoS Pathog 2009; 5:e1000667. [PMID: 19936055 PMCID: PMC2773933 DOI: 10.1371/journal.ppat.1000667] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 10/27/2009] [Indexed: 12/18/2022] Open
Abstract
Plasmacytoid dendritic cells (pDC) provide an important link between innate and acquired immunity, mediating their action mainly through IFN-α production. pDC suppress HIV-1 replication, but there is increasing evidence suggesting they may also contribute to the increased levels of cell apoptosis and pan-immune activation associated with disease progression. Although having the same clinical spectrum, HIV-2 infection is characterized by a strikingly lower viremia and a much slower rate of CD4 decline and AIDS progression than HIV-1, irrespective of disease stage. We report here a similar marked reduction in circulating pDC levels in untreated HIV-1 and HIV-2 infections in association with CD4 depletion and T cell activation, in spite of the undetectable viremia found in the majority of HIV-2 patients. Moreover, the same overexpression of CD86 and PD-L1 on circulating pDC was found in both infections irrespective of disease stage or viremia status. Our observation that pDC depletion occurs in HIV-2 infected patients with undetectable viremia indicates that mechanisms other than direct viral infection determine the pDC depletion during persistent infections. However, viremia was associated with an impairment of IFN-α production on a per pDC basis upon TLR9 stimulation. These data support the possibility that diminished function in vitro may relate to prior activation by HIV virions in vivo, in agreement with our finding of higher expression levels of the IFN-α inducible gene, MxA, in HIV-1 than in HIV-2 individuals. Importantly, serum IFN-α levels were not elevated in HIV-2 infected individuals. In conclusion, our data in this unique natural model of “attenuated” HIV immunodeficiency contribute to the understanding of pDC biology in HIV/AIDS pathogenesis, showing that in the absence of detectable viremia a major depletion of circulating pDC in association with a relatively preserved IFN-α production does occur. Infection by HIV-2, the second AIDS-associated virus, is considered a unique natural model of attenuated HIV disease. HIV-2 infected individuals exhibit much lower levels of circulating virus (viremia) and progress to AIDS at slower rates than HIV-1 infected patients. In this study, we characterized for the first time blood plasmacytoid dendritic cells (pDC), important mediators between innate and acquired immunity, in HIV-2 infection. We observed a profound reduction in circulating pDC levels in HIV-2 infected patients, even in those with undetectable viremia, to levels similar to those found in HIV-1 infection. Moreover, we documented a more differentiated pDC phenotype in both infected cohorts relative to healthy individuals. Despite these similarities between HIV-1 and HIV-2 infections, pDC from HIV-2 patients with undetectable viremia exhibited, upon in vitro stimulation, a better-preserved ability to produce interferon-α (IFN-α), an important anti-viral cytokine with potential to stimulate other immune cells. Overall, our data suggest that the presence of virus in circulation, although not critical for the reduction in pDC number, appears to be central for the impairment of their function. This study of pDC in HIV-2 infection fills a gap in the understanding of their potential role in HIV/AIDS pathogenesis.
Collapse
Affiliation(s)
- Rita Cavaleiro
- Unidade de Imunologia Clínica, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - António P. Baptista
- Unidade de Imunologia Clínica, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Rui S. Soares
- Unidade de Imunologia Clínica, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Rita Tendeiro
- Unidade de Imunologia Clínica, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Russell B. Foxall
- Unidade de Imunologia Clínica, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Perpétua Gomes
- Laboratório de Biologia Molecular, Serviço de Medicina Transfusional, Hospital Egas Moniz, Lisboa, Portugal
| | - Rui M. M. Victorino
- Unidade de Imunologia Clínica, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Clínica Universitária de Medicina 2, Hospital de Santa Maria, Lisboa, Portugal
| | - Ana E. Sousa
- Unidade de Imunologia Clínica, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
109
|
Poonia B, Pauza CD, Salvato MS. Role of the Fas/FasL pathway in HIV or SIV disease. Retrovirology 2009; 6:91. [PMID: 19832988 PMCID: PMC2772842 DOI: 10.1186/1742-4690-6-91] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 10/15/2009] [Indexed: 01/24/2023] Open
Abstract
Human immunodeficiency virus disease involves progressive destruction of host immunity leading to opportunistic infections and increased rates for malignancies. Both depletion in immune cell numbers as well as defects in their effector functions are responsible for this immunodeficiency The broad impact of HIV reflects a similarly broad pattern of cell depletion including subsets that do not express viral receptors or support viral replication. Indirect cell killing, the destruction of uninfected cells, is due partly to activation of the Fas/FasL system for cell death. This death-signaling pathway is induced during HIV disease and contributes significantly to viral pathogenesis and disease.
Collapse
Affiliation(s)
- Bhawna Poonia
- Institute of Human Virology, University of Maryland, School of Medicine, 725 W Lombard Street, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|