101
|
Prevalence of Antimicrobial Resistant and Virulent Salmonella spp. in Treated Effluent and Receiving Aquatic Milieu of Wastewater Treatment Plants in Durban, South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:9692-713. [PMID: 26295245 PMCID: PMC4555307 DOI: 10.3390/ijerph120809692] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/17/2015] [Accepted: 08/12/2015] [Indexed: 12/29/2022]
Abstract
In this study, we evaluated the impact of treated wastewater effluent from two wastewater treatment plants on the physicochemical parameters and Salmonella spp. load of receiving rivers. Presumptive Salmonella spp. were obtained at all sampled points including the discharge points, with counts ranging from 0 to 4.14 log cfu/mL at both plants. Turbidity, chemical and biological oxygen demand were found to be high and mostly above the required limit for treated wastewater discharge. However, recorded nitrate and phosphate values were very low. Of the 200 confirmed Salmonella spp. isolates recovered from the treated effluent and receiving surface waters, 93% harbored the spiC gene, 84% harbored the misL gene, and 87.5% harbored the orfL gene while 87% harbored the pipD gene. The antibiotic resistance profile revealed that the isolates were resistant to sulfamethoxazole, nalidixic acid and streptomycin, but susceptible to quinolones and third generation β-lactams. These results indicate that in South Africa treated effluents are still a major source of contamination of rivers with pathogens such as Salmonella. Appropriate steps by the regulatory authorities and workers at the treatment plants are needed to enforce stipulated guidelines in order to prevent pollution of surface water resources due to the discharge of poorly treated effluents.
Collapse
|
102
|
Wang CX, Zhu SL, Wang XY, Feng Y, Li B, Li YG, Johnston RN, Liu GR, Zhou J, Liu SL. Complete genome sequence of Salmonella enterica subspecies arizonae str. RKS2983. Stand Genomic Sci 2015; 10:30. [PMID: 26203341 PMCID: PMC4511000 DOI: 10.1186/s40793-015-0015-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 04/21/2015] [Indexed: 11/10/2022] Open
Abstract
Salmonella arizonae (also called Salmonella subgroup IIIa) is a Gram-negative, non-spore-forming, motile, rod-shaped, facultatively anaerobic bacterium. S. arizonae strain RKS2983 was isolated from a human in California, USA. S. arizonae lies somewhere between Salmonella subgroups I (human pathogens) and V (also called S. bongori; usually non-pathogenic to humans) and so is an ideal model organism for studies of bacterial evolution from non-human pathogen to human pathogens. We hence sequenced the genome of RKS2983 for clues of genomic events that might have led to the divergence and speciation of Salmonella into distinct lineages with diverse host ranges and pathogenic features. The 4,574,836 bp complete genome contains 4,203 protein-coding genes, 82 tRNA genes and 7 rRNA operons. This genome contains several characteristics not reported to date in Salmonella subgroup I or V and may provide information about the genetic divergence of Salmonella pathogens.
Collapse
Affiliation(s)
- Chun-Xiao Wang
- Genomics Research Center, Harbin Medical University, Harbin, China
| | - Song-Ling Zhu
- Genomics Research Center, Harbin Medical University, Harbin, China
| | - Xiao-Yu Wang
- Genomics Research Center, Harbin Medical University, Harbin, China
| | - Ye Feng
- Institute for Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Bailiang Li
- Genomics Research Center, Harbin Medical University, Harbin, China
| | - Yong-Guo Li
- Department of Infectious Diseases, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Randal N Johnston
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Gui-Rong Liu
- Genomics Research Center, Harbin Medical University, Harbin, China
| | - Jin Zhou
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Shu-Lin Liu
- Genomics Research Center, Harbin Medical University, Harbin, China
- Department of Infectious Diseases, The First Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
103
|
Yang Q, Wang F, Jones KL, Meng J, Prinyawiwatkul W, Ge B. Evaluation of loop-mediated isothermal amplification for the rapid, reliable, and robust detection of Salmonella in produce. Food Microbiol 2015; 46:485-493. [DOI: 10.1016/j.fm.2014.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 11/16/2022]
|
104
|
Distinct type I and type II toxin-antitoxin modules control Salmonella lifestyle inside eukaryotic cells. Sci Rep 2015; 5:9374. [PMID: 25792384 PMCID: PMC4366850 DOI: 10.1038/srep09374] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/02/2015] [Indexed: 02/02/2023] Open
Abstract
Toxin-antitoxin (TA) modules contribute to the generation of non-growing cells in response to stress. These modules abound in bacterial pathogens although the bases for this profusion remain largely unknown. Using the intracellular bacterial pathogen Salmonella enterica serovar Typhimurium as a model, here we show that a selected group of TA modules impact bacterial fitness inside eukaryotic cells. We characterized in this pathogen twenty-seven TA modules, including type I and type II TA modules encoding antisense RNA and proteinaceous antitoxins, respectively. Proteomic and gene expression analyses revealed that the pathogen produces numerous toxins of TA modules inside eukaryotic cells. Among these, the toxins HokST, LdrAST, and TisBST, encoded by type I TA modules and T4ST and VapC2ST, encoded by type II TA modules, promote bacterial survival inside fibroblasts. In contrast, only VapC2ST shows that positive effect in bacterial fitness when the pathogen infects epithelial cells. These results illustrate how S. Typhimurium uses distinct type I and type II TA modules to regulate its intracellular lifestyle in varied host cell types. This function specialization might explain why the number of TA modules increased in intracellular bacterial pathogens.
Collapse
|
105
|
Grishin AM, Beyrakhova KA, Cygler M. Structural insight into effector proteins of Gram-negative bacterial pathogens that modulate the phosphoproteome of their host. Protein Sci 2015; 24:604-20. [PMID: 25565677 DOI: 10.1002/pro.2636] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 12/29/2014] [Indexed: 12/16/2022]
Abstract
Invading pathogens manipulate cellular process of the host cell to establish a safe replicative niche. To this end they secrete a spectrum of proteins called effectors that modify cellular environment through a variety of mechanisms. One of the most important mechanisms is the manipulation of cellular signaling through modifications of the cellular phosphoproteome. Phosphorylation/dephosphorylation plays a pivotal role in eukaryotic cell signaling, with ∼ 500 different kinases and ∼ 130 phosphatases in the human genome. Pathogens affect the phosphoproteome either directly through the action of bacterial effectors, and/or indirectly through downstream effects of host proteins modified by the effectors. Here we review the current knowledge of the structure, catalytic mechanism and function of bacterial effectors that modify directly the phosphorylation state of host proteins. These effectors belong to four enzyme classes: kinases, phosphatases, phospholyases and serine/threonine acetylases.
Collapse
Affiliation(s)
- Andrey M Grishin
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5E5
| | | | | |
Collapse
|
106
|
Andersen JL, He GX, Kakarla P, K C R, Kumar S, Lakra WS, Mukherjee MM, Ranaweera I, Shrestha U, Tran T, Varela MF. Multidrug efflux pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:1487-547. [PMID: 25635914 PMCID: PMC4344678 DOI: 10.3390/ijerph120201487] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/15/2015] [Indexed: 02/07/2023]
Abstract
Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations.
Collapse
Affiliation(s)
- Jody L Andersen
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Gui-Xin He
- Department of Clinical Laboratory and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| | - Prathusha Kakarla
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Ranjana K C
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Sanath Kumar
- QC Laboratory, Harvest and Post-Harvest Technology Division, Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India.
| | - Wazir Singh Lakra
- QC Laboratory, Harvest and Post-Harvest Technology Division, Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India.
| | - Mun Mun Mukherjee
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Indrika Ranaweera
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Ugina Shrestha
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Thuy Tran
- Department of Clinical Laboratory and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| | - Manuel F Varela
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| |
Collapse
|
107
|
Abstract
Today’s laboratory mouse, Mus musculus, has its origins as the ‘house mouse’ of North America and Europe. Beginning with mice bred by mouse fanciers, laboratory stocks (outbred) derived from M. musculus musculus from eastern Europe and M. m. domesticus from western Europe were developed into inbred strains. Since the mid-1980s, additional strains have been developed from Asian mice (M. m. castaneus from Thailand and M. m. molossinus from Japan) and from M. spretus which originated from the western Mediterranean region.
Collapse
|
108
|
Patterns of genome evolution that have accompanied host adaptation in Salmonella. Proc Natl Acad Sci U S A 2014; 112:863-8. [PMID: 25535353 DOI: 10.1073/pnas.1416707112] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Many bacterial pathogens are specialized, infecting one or few hosts, and this is often associated with more acute disease presentation. Specific genomes show markers of this specialization, which often reflect a balance between gene acquisition and functional gene loss. Within Salmonella enterica subspecies enterica, a single lineage exists that includes human and animal pathogens adapted to cause infection in different hosts, including S. enterica serovar Enteritidis (multiple hosts), S. Gallinarum (birds), and S. Dublin (cattle). This provides an excellent evolutionary context in which differences between these pathogen genomes can be related to host range. Genome sequences were obtained from ∼ 60 isolates selected to represent the known diversity of this lineage. Examination and comparison of the clades within the phylogeny of this lineage revealed signs of host restriction as well as evolutionary events that mark a path to host generalism. We have identified the nature and order of events for both evolutionary trajectories. The impact of functional gene loss was predicted based upon position within metabolic pathways and confirmed with phenotyping assays. The structure of S. Enteritidis is more complex than previously known, as a second clade of S. Enteritidis was revealed that is distinct from those commonly seen to cause disease in humans or animals, and that is more closely related to S. Gallinarum. Isolates from this second clade were tested in a chick model of infection and exhibited a reduced colonization phenotype, which we postulate represents an intermediate stage in pathogen-host adaptation.
Collapse
|
109
|
SUHANDONO SONY, BUDI UTARI INDAH. Isolation and Molecular Identification of Endophytic Bacteria from Durian Arillus (Durio zibethinus Murr.) var. Matahari. MICROBIOLOGY INDONESIA 2014. [DOI: 10.5454/mi.8.4.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
110
|
Loss of the lac Operon Contributes to Salmonella Invasion of Epithelial Cells Through Derepression of Flagellar Synthesis. Curr Microbiol 2014; 70:315-23. [DOI: 10.1007/s00284-014-0720-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022]
|
111
|
Ali SS, Soo J, Rao C, Leung AS, Ngai DHM, Ensminger AW, Navarre WW. Silencing by H-NS potentiated the evolution of Salmonella. PLoS Pathog 2014; 10:e1004500. [PMID: 25375226 PMCID: PMC4223078 DOI: 10.1371/journal.ppat.1004500] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 10/02/2014] [Indexed: 11/17/2022] Open
Abstract
The bacterial H-NS protein silences expression from sequences with higher AT-content than the host genome and is believed to buffer the fitness consequences associated with foreign gene acquisition. Loss of H-NS results in severe growth defects in Salmonella, but the underlying reasons were unclear. An experimental evolution approach was employed to determine which secondary mutations could compensate for the loss of H-NS in Salmonella. Six independently derived S. Typhimurium hns mutant strains were serially passaged for 300 generations prior to whole genome sequencing. Growth rates of all lineages dramatically improved during the course of the experiment. Each of the hns mutant lineages acquired missense mutations in the gene encoding the H-NS paralog StpA encoding a poorly understood H-NS paralog, while 5 of the mutant lineages acquired deletions in the genes encoding the Salmonella Pathogenicity Island-1 (SPI-1) Type 3 secretion system critical to invoke inflammation. We further demonstrate that SPI-1 misregulation is a primary contributor to the decreased fitness in Salmonella hns mutants. Three of the lineages acquired additional loss of function mutations in the PhoPQ virulence regulatory system. Similarly passaged wild type Salmonella lineages did not acquire these mutations. The stpA missense mutations arose in the oligomerization domain and generated proteins that could compensate for the loss of H-NS to varying degrees. StpA variants most able to functionally substitute for H-NS displayed altered DNA binding and oligomerization properties that resembled those of H-NS. These findings indicate that H-NS was central to the evolution of the Salmonellae by buffering the negative fitness consequences caused by the secretion system that is the defining characteristic of the species.
Collapse
Affiliation(s)
- Sabrina S. Ali
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jeremy Soo
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Chitong Rao
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Andrea S. Leung
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - David Hon-Man Ngai
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
112
|
Wall DM, McCormick BA. Bacterial secreted effectors and caspase-3 interactions. Cell Microbiol 2014; 16:1746-56. [PMID: 25262664 PMCID: PMC4257569 DOI: 10.1111/cmi.12368] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/10/2014] [Accepted: 09/15/2014] [Indexed: 12/29/2022]
Abstract
Apoptosis is a critical process that intrinsically links organism survival to its ability to induce controlled death. Thus, functional apoptosis allows organisms to remove perceived threats to their survival by targeting those cells that it determines pose a direct risk. Central to this process are apoptotic caspases, enzymes that form a signalling cascade, converting danger signals via initiator caspases into activation of the executioner caspase, caspase-3. This enzyme begins disassembly of the cell by activating DNA degrading enzymes and degrading the cellular architecture. Interaction of pathogenic bacteria with caspases, and in particular, caspase-3, can therefore impact both host cell and bacterial survival. With roles outside cell death such as cell differentiation, control of signalling pathways and immunomodulation also being described for caspase-3, bacterial interactions with caspase-3 may be of far more significance in infection than previously recognized. In this review, we highlight the ways in which bacterial pathogens have evolved to subvert caspase-3 both through effector proteins that directly interact with the enzyme or by modulating pathways that influence its activation and activity.
Collapse
Affiliation(s)
- Daniel M Wall
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8QQ, UK
| | | |
Collapse
|
113
|
Rossignol A, Roche SM, Virlogeux-Payant I, Wiedemann A, Grépinet O, Fredlund J, Trotereau J, Marchès O, Quéré P, Enninga J, Velge P. Deciphering why Salmonella Gallinarum is less invasive in vitro than Salmonella Enteritidis. Vet Res 2014; 45:81. [PMID: 25175996 PMCID: PMC4154518 DOI: 10.1186/s13567-014-0081-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 07/23/2014] [Indexed: 02/05/2023] Open
Abstract
Salmonella Gallinarum and Salmonella Enteritidis are genetically closely related however associated with different pathologies. Several studies have suggested that S. Gallinarum is less invasive in vitro than S. Enteritidis. In this study we confirm that the S. Gallinarum strains tested were much less invasive than the S. Enteritidis strains tested in cells of avian or human origin. In addition, the S. Gallinarum T3SS-1-dependent ability to invade host cells was delayed by two to three hours compared to S. Enteritidis, indicating that T3SS-1-dependent entry is less efficient in S. Gallinarum than S. Enteritidis. This was neither due to a decreased transcription of T3SS-1 related genes when bacteria come into contact with cells, as transcription of hilA, invF and sipA was similar to that observed for S. Enteritidis, nor to a lack of functionality of the S. Gallinarum T3SS-1 apparatus as this apparatus was able to secrete and translocate effector proteins into host cells. In contrast, genome comparison of four S. Gallinarum and two S. Enteritidis strains revealed that all S. Gallinarum genomes displayed the same point mutations in each of the main T3SS-1 effector genes sipA, sopE, sopE2, sopD and sopA.
Collapse
|
114
|
Hooton SPT, Timms AR, Cummings NJ, Moreton J, Wilson R, Connerton IF. The complete plasmid sequences of Salmonella enterica serovar Typhimurium U288. Plasmid 2014; 76:32-9. [PMID: 25175817 DOI: 10.1016/j.plasmid.2014.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 08/11/2014] [Accepted: 08/21/2014] [Indexed: 12/20/2022]
Abstract
Salmonella enterica Serovar Typhimurium U288 is an emerging pathogen of pigs. The strain contains three plasmids of diverse origin that encode traits that are of concern for food security and safety, these include antibiotic resistant determinants, an array of functions that can modify cell physiology and permit genetic mobility. At 148,711 bp, pSTU288-1 appears to be a hybrid plasmid containing a conglomerate of genes found in pSLT of S. Typhimurium LT2, coupled with a mosaic of horizontally-acquired elements. Class I integron containing gene cassettes conferring resistance against clinically important antibiotics and compounds are present in pSTU288-1. A curious feature of the plasmid involves the deletion of two genes encoded in the Salmonella plasmid virulence operon (spvR and spvA) following the insertion of a tnpA IS26-like element coupled to a blaTEM gene. The spv operon is considered to be a major plasmid-encoded Salmonella virulence factor that is essential for the intracellular lifecycle. The loss of the positive regulator SpvR may impact on the pathogenesis of S. Typhimurium U288. A second 11,067 bp plasmid designated pSTU288-2 contains further antibiotic resistance determinants, as well as replication and mobilization genes. Finally, a small 4675 bp plasmid pSTU288-3 was identified containing mobilization genes and a pleD-like G-G-D/E-E-F conserved domain protein that modulate intracellular levels of cyclic di-GMP, and are associated with motile to sessile transitions in growth.
Collapse
Affiliation(s)
- Steven P T Hooton
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Andrew R Timms
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Nicola J Cummings
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Joanna Moreton
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Ray Wilson
- DeepSeq, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Ian F Connerton
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| |
Collapse
|
115
|
Abstract
Salmonella enterica serovar Typhimurium is a food-borne pathogen that causes severe gastroenteritis. The ability of Salmonella to cause disease depends on two type III secretion systems (T3SSs) encoded in two distinct Salmonella pathogenicity islands, 1 and 2 (SPI1 and SPI2, respectively). S. Typhimurium encodes a solo LuxR homolog, SdiA, which can detect the acyl-homoserine lactones (AHLs) produced by other bacteria and upregulate the rck operon and the srgE gene. SrgE is predicted to encode a protein of 488 residues with a coiled-coil domain between residues 345 and 382. In silico studies have provided conflicting predictions as to whether SrgE is a T3SS substrate. Therefore, in this work, we tested the hypothesis that SrgE is a T3SS effector by two methods, a β-lactamase activity assay and a split green fluorescent protein (GFP) complementation assay. SrgE with β-lactamase fused to residue 40, 100, 150, or 300 was indeed expressed and translocated into host cells, but SrgE with β-lactamase fused to residue 400 or 488 was not expressed, suggesting interference by the coiled-coil domain. Similarly, SrgE with GFP S11 fused to residue 300, but not to residue 488, was expressed and translocated into host cells. With both systems, translocation into host cells was dependent upon SPI2. A phylogenetic analysis indicated that srgE is found only within Salmonella enterica subspecies. It is found sporadically within both typhoidal and nontyphoidal serovars, although the SrgE protein sequences found within typhoidal serovars tend to cluster separately from those found in nontyphoidal serovars, suggesting functional diversification.
Collapse
|
116
|
Pezoa D, Blondel CJ, Silva CA, Yang HJ, Andrews-Polymenis H, Santiviago CA, Contreras I. Only one of the two type VI secretion systems encoded in the Salmonella enterica serotype Dublin genome is involved in colonization of the avian and murine hosts. Vet Res 2014; 45:2. [PMID: 24405577 PMCID: PMC3899618 DOI: 10.1186/1297-9716-45-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/03/2013] [Indexed: 12/23/2022] Open
Abstract
The type VI secretion system (T6SS) is a virulence factor for many Gram-negative bacteria. Salmonella genus harbors five phylogenetically distinct T6SS loci encoded in Salmonella Pathogenicity Islands (SPIs) SPI-6, SPI-19, SPI-20, SPI-21 and SPI-22, which are differentially distributed among serotypes. The T6SSs encoded in SPI-6 and SPI-19 contribute to pathogenesis of serotypes Typhimurium and Gallinarum in mice and chickens, respectively. Salmonella Dublin is a pathogen restricted to cattle where it causes a systemic disease. Also, it can colonize other hosts such as chickens and mice, which can act as reservoirs of this serotype. Salmonella Dublin harbors the genes for both T6SSSPI-6 and T6SSSPI-19. This study has determined the contribution of T6SSSPI-6 and T6SSSPI-19 to host-colonization by Salmonella Dublin using avian and murine models of infection. Competitive index experiments showed that, a mutant strain lacking both T6SSs (∆T6SSSPI-6/∆T6SSSPI-19) presents a strong colonization defect in cecum of chickens, similar to the defect observed for the ∆T6SSSPI-6 mutant, suggesting that this serotype requires a functional T6SSSPI-6 for efficient colonization of the avian gastrointestinal tract. Colonization of mice was also defective, although to a lesser extent than in chickens. In contrast, the T6SSSPI-19 was not necessary for colonization of either chickens or mice. Transfer of T6SSSPI-6, but not T6SSSPI-19, restored the ability of the double mutant to colonize both animal hosts. Our data indicate that Salmonella Dublin requires only the T6SSSPI-6 for efficient colonization of mice and chickens, and that the T6SSSPI-6 and T6SSSPI-19 are not functionally redundant.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Inés Contreras
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Santiago, Chile.
| |
Collapse
|
117
|
Grishin AM, Cherney M, Anderson DH, Phanse S, Babu M, Cygler M. NleH defines a new family of bacterial effector kinases. Structure 2013; 22:250-9. [PMID: 24373767 DOI: 10.1016/j.str.2013.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 11/04/2013] [Accepted: 11/11/2013] [Indexed: 11/16/2022]
Abstract
Upon host cell infection, pathogenic Escherichia coli hijacks host cellular processes with the help of 20-60 secreted effector proteins that subvert cellular processes to create an environment conducive to bacterial survival. The NleH effector kinases manipulate the NF-κB pathway and prevent apoptosis. They show low sequence similarity to human regulatory kinases and contain two domains, the N-terminal, likely intrinsically unfolded, and a C-terminal kinase-like domain. We show that these effectors autophosphorylate on sites located predominantly in the N-terminal segment. The kinase domain displays a minimal kinase fold, but lacks an activation loop and the GHI subdomain. Nevertheless, all catalytically important residues are conserved. ATP binding proceeds with minimal structural rearrangements. The NleH structure is the first for the bacterial effector kinases family. NleHs and their homologous effector kinases form a new kinase family within the cluster of eukaryotic-like kinases that includes also Rio, Bud32, and KdoK families.
Collapse
Affiliation(s)
- Andrey M Grishin
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| | - Maia Cherney
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Deborah H Anderson
- Cancer Research, Saskatchewan Cancer Agency, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Sadhna Phanse
- Department of Biochemistry, Research and Innovation Centre, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Miroslaw Cygler
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; Department of Biochemistry, McGill University, 3655 Promenade Sir Willam Osler, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
118
|
Lienau EK, Blazar JM, Wang C, Brown EW, Stones R, Musser S, Allard MW. Phylogenomic analysis identifies gene gains that define Salmonella enterica subspecies I. PLoS One 2013; 8:e76821. [PMID: 24204679 PMCID: PMC3810377 DOI: 10.1371/journal.pone.0076821] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 09/04/2013] [Indexed: 11/29/2022] Open
Abstract
Comparative methods for analyzing whole genome sequence (WGS) data enable us to assess the genetic information available for reconstructing the evolutionary history of pathogens. We used the comparative approach to determine diagnostic genes for Salmonella enterica subspecies I. S. enterica subsp. I strains are known to infect warm-blooded organisms regularly while its close relatives tend to infect only cold-blooded organisms. We found 71 genes gained by the common ancestor of Salmonella enterica subspecies I and not subsequently lost by any member of this subspecies sequenced to date. These genes included many putative functional phenotypes. Twenty-seven of these genes are found only in Salmonella enterica subspecies I; we designed primers to test these genes for use as diagnostic sequence targets and data mined the NCBI Sequence Read Archive (SRA) database for draft genomes which carried these genes. We found that the sequence specificity and variability of these amplicons can be used to detect and discriminate among 317 different serovars and strains of Salmonella enterica subspecies I.
Collapse
Affiliation(s)
- E. Kurt Lienau
- Office of the Center Director, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, United States of America
- Evolution Industries LLC, Frederick, Maryland, United States of America
| | - Jeffrey M. Blazar
- Office of the Center Director, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, United States of America
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| | - Charles Wang
- Office of the Center Director, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, United States of America
| | - Eric W. Brown
- Office of the Center Director, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, United States of America
| | - Robert Stones
- The Food and Environment Research Agency, Sand Hutton, York, United Kingdom
| | - Steven Musser
- Office of the Center Director, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, United States of America
| | - Marc W. Allard
- Office of the Center Director, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, United States of America
| |
Collapse
|
119
|
Abstract
Salmonella bongori is a close relative of the highly virulent members of S. enterica subspecies enterica, encompassing more than 2,500 serovars, most of which cause human salmonellosis, one of the leading food-borne illnesses. S. bongori is only very rarely implicated in infections. We here present the sequence of a clinical isolate from Switzerland, S. bongori strain N268-08.
Collapse
|
120
|
Horizontally acquired glycosyltransferase operons drive salmonellae lipopolysaccharide diversity. PLoS Genet 2013; 9:e1003568. [PMID: 23818865 PMCID: PMC3688519 DOI: 10.1371/journal.pgen.1003568] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 05/01/2013] [Indexed: 12/16/2022] Open
Abstract
The immunodominant lipopolysaccharide is a key antigenic factor for Gram-negative pathogens such as salmonellae where it plays key roles in host adaptation, virulence, immune evasion, and persistence. Variation in the lipopolysaccharide is also the major differentiating factor that is used to classify Salmonella into over 2600 serovars as part of the Kaufmann-White scheme. While lipopolysaccharide diversity is generally associated with sequence variation in the lipopolysaccharide biosynthesis operon, extraneous genetic factors such as those encoded by the glucosyltransferase (gtr) operons provide further structural heterogeneity by adding additional sugars onto the O-antigen component of the lipopolysaccharide. Here we identify and examine the O-antigen modifying glucosyltransferase genes from the genomes of Salmonella enterica and Salmonella bongori serovars. We show that Salmonella generally carries between 1 and 4 gtr operons that we have classified into 10 families on the basis of gtrC sequence with apparent O-antigen modification detected for five of these families. The gtr operons localize to bacteriophage-associated genomic regions and exhibit a dynamic evolutionary history driven by recombination and gene shuffling events leading to new gene combinations. Furthermore, evidence of Dam- and OxyR-dependent phase variation of gtr gene expression was identified within eight gtr families. Thus, as O-antigen modification generates significant intra- and inter-strain phenotypic diversity, gtr-mediated modification is fundamental in assessing Salmonella strain variability. This will inform appropriate vaccine and diagnostic approaches, in addition to contributing to our understanding of host-pathogen interactions. Bacterial pathogens frequently evolve mechanisms to vary the composition of their surface structures. The consequence is enhanced long-term survival by facilitating persistence and evasion of the host immune system. Salmonella sp., cause severe infections in a range of mammalian hosts and guard themselves with a protective coat, termed the O-antigen. Through genome sequence analyses we found that Salmonella have acquired an unprecedented repertoire of genetic sequences for modifying their O-antigen coat. There is strong evidence that these genetic factors have a dynamic evolutionary history and are spread through the bacterial population by bacteriophage. In addition to this genetic repertoire, we determined that Salmonella can and often do employ stochastic mechanisms for expression of these genetic factors. This means that O-antigen coat diversity can be generated within a Salmonella population that otherwise has a common genome. Our data significantly enhance our appreciation of the genetic and regulatory characteristics underpinning Salmonella O-antigen diversity. The role attributed to bacteriophage in generating this diversity highlights that Salmonella are acquiring an extensive repertoire of O-antigen modifying traits that may enhance the pathogen's ability to persist and cause disease in mammalian hosts. Such genetic traits may make useful markers for defining new epidemiological and diagnostic tools.
Collapse
|
121
|
Hayward MR, Jansen VAA, Woodward MJ. Comparative genomics of Salmonella enterica serovars Derby and Mbandaka, two prevalent serovars associated with different livestock species in the UK. BMC Genomics 2013; 14:365. [PMID: 23725633 PMCID: PMC3680342 DOI: 10.1186/1471-2164-14-365] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/27/2013] [Indexed: 01/06/2023] Open
Abstract
Background Despite the frequent isolation of Salmonella enterica sub. enterica serovars Derby and Mbandaka from livestock in the UK and USA little is known about the biological processes maintaining their prevalence. Statistics for Salmonella isolations from livestock production in the UK show that S. Derby is most commonly associated with pigs and turkeys and S. Mbandaka with cattle and chickens. Here we compare the first sequenced genomes of S. Derby and S. Mbandaka as a basis for further analysis of the potential host adaptations that contribute to their distinct host species distributions. Results Comparative functional genomics using the RAST annotation system showed that predominantly mechanisms that relate to metabolite utilisation, in vivo and ex vivo persistence and pathogenesis distinguish S. Derby from S. Mbandaka. Alignment of the genome nucleotide sequences of S. Derby D1 and D2 and S. Mbandaka M1 and M2 with Salmonella pathogenicity islands (SPI) identified unique complements of genes associated with host adaptation. We also describe a new genomic island with a putative role in pathogenesis, SPI-23. SPI-23 is present in several S. enterica serovars, including S. Agona, S. Dublin and S. Gallinarum, it is absent in its entirety from S. Mbandaka. Conclusions We discovered a new 37 Kb genomic island, SPI-23, in the chromosome sequence of S. Derby, encoding 42 ORFS, ten of which are putative TTSS effector proteins. We infer from full-genome synonymous SNP analysis that these two serovars diverged, between 182kya and 625kya coinciding with the divergence of domestic pigs. The differences between the genomes of these serovars suggest they have been exposed to different stresses including, phage, transposons and prolonged externalisation. The two serovars possess distinct complements of metabolic genes; many of which cluster into pathways for catabolism of carbon sources.
Collapse
Affiliation(s)
- Matthew R Hayward
- Animal Health and Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey, UK.
| | | | | |
Collapse
|
122
|
Ruiz-Perez F, Nataro JP. Bacterial serine proteases secreted by the autotransporter pathway: classification, specificity, and role in virulence. Cell Mol Life Sci 2013; 71:745-70. [PMID: 23689588 DOI: 10.1007/s00018-013-1355-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 01/07/2023]
Abstract
Serine proteases exist in eukaryotic and prokaryotic organisms and have emerged during evolution as the most abundant and functionally diverse group. In Gram-negative bacteria, there is a growing family of high molecular weight serine proteases secreted to the external milieu by a fascinating and widely employed bacterial secretion mechanism, known as the autotransporter pathway. They were initially found in Neisseria, Shigella, and pathogenic Escherichia coli, but have now also been identified in Citrobacter rodentium, Salmonella, and Edwardsiella species. Here, we focus on proteins belonging to the serine protease autotransporter of Enterobacteriaceae (SPATEs) family. Recent findings regarding the predilection of serine proteases to host intracellular or extracellular protein-substrates involved in numerous biological functions, such as those implicated in cytoskeleton stability, autophagy or innate and adaptive immunity, have helped provide a better understanding of SPATEs' contributions in pathogenesis. Here, we discuss their classification, substrate specificity, and potential roles in pathogenesis.
Collapse
Affiliation(s)
- Fernando Ruiz-Perez
- Department of Pediatrics, School of Medicine, University of Virginia, P.O.Box 800326, MR4 Room 4012C, 409 Lane Road, Charlottesville, VA, 22908, USA,
| | | |
Collapse
|
123
|
Pezoa D, Yang HJ, Blondel CJ, Santiviago CA, Andrews-Polymenis HL, Contreras I. The type VI secretion system encoded in SPI-6 plays a role in gastrointestinal colonization and systemic spread of Salmonella enterica serovar Typhimurium in the chicken. PLoS One 2013; 8:e63917. [PMID: 23691117 PMCID: PMC3653874 DOI: 10.1371/journal.pone.0063917] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/09/2013] [Indexed: 02/06/2023] Open
Abstract
The role of the Salmonella Pathogenicity Islands (SPIs) in pathogenesis of Salmonella enterica Typhimurium infection in the chicken is poorly studied, while many studies have been completed in murine models. The Type VI Secretion System (T6SS) is a recently described protein secretion system in Gram-negative bacteria. The genus Salmonella contains five phylogenetically distinct T6SS encoded in differentially distributed genomic islands. S. Typhimurium harbors a T6SS encoded in SPI-6 (T6SSSPI-6), which contributes to the ability of Salmonella to colonize mice. On the other hand, serotype Gallinarum harbors a T6SS encoded in SPI-19 (T6SSSPI-19) that is required for colonization of chicks. In this work, we investigated the role of T6SSSPI-6 in infection of chicks by S. Typhimurium. Oral infection of White Leghorn chicks showed that a ΔT6SSSPI-6 mutant had reduced colonization of the gut and internal organs, compared with the wild-type strain. Transfer of the intact T6SSSPI-6 gene cluster into the T6SS mutant restored bacterial colonization. In addition, our results showed that transfer of T6SSSPI-19 from S. Gallinarum to the ΔT6SSSPI-6 mutant of S. Typhimurium not only complemented the colonization defect but also resulted in a transient increase in the colonization of the cecum and ileum of chicks at days 1 and 3 post-infection. Our data indicates that T6SSSPI-6 contributes to chicken colonization and suggests that both T6SSSPI-6 and T6SSSPI-19 perform similar functions in vivo despite belonging to different phylogenetic families.
Collapse
Affiliation(s)
- David Pezoa
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Hee-Jeong Yang
- Department of Microbial and Molecular Pathogenesis, Texas A&M University System Health Science Center, College of Medicine, College Station, Texas, United States of America
| | - Carlos J. Blondel
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Carlos A. Santiviago
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Helene L. Andrews-Polymenis
- Department of Microbial and Molecular Pathogenesis, Texas A&M University System Health Science Center, College of Medicine, College Station, Texas, United States of America
| | - Inés Contreras
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
124
|
Yang Y, Wan C, Xu H, Wei H. Identification and characterization of OmpL as a potential vaccine candidate for immune-protection against salmonellosis in mice. Vaccine 2013; 31:2930-6. [PMID: 23643894 DOI: 10.1016/j.vaccine.2013.04.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/11/2013] [Accepted: 04/18/2013] [Indexed: 01/13/2023]
Abstract
Salmonella is gram-negative flagellated bacteria that can cause food and waterborne gastroenteritis and typhoid fever in humans. Despite the importance of Salmonella infections in human and animal health, the target antigens of Salmonella-specific immunity remain poorly defined, the effectiveness of the currently available vaccines is also limited. Outer membrane proteins (OMPs) of Salmonella have been considered possible candidates for conferring protection against salmonellosis. OMPs interface the cell with the environment, thus representing important potential vaccine candidate for pathogen infection. We showed that the outer membrane porin L (OmpL) is a transmembrane β barrel (TMBB) protein, which forms 12 transmembrane β-strands. OmpL of S. Typhimurium is highly immunogenic, OmpL could evoke humoral and cell-mediated immune responses, and confer 100% protection to immunized mice against challenge with very high doses of S. Typhimurium. Besides, very efficient clearance of bacteria from the reticuloendothelial systems of immunized mice was seen. The homology search further revealed that OmpL is widely distributed and conserved, homologous proteins were identified in S. Typhi and Paratyphi by RT-PCR and western blot. We also found that anti-rOmpL serum harber a high bactericidal activity for Salmonella serovars tested in this study. Therefore, OmpL provide a promising target for the development of a candidate vaccine against Salmonella infection.
Collapse
Affiliation(s)
- Youjun Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | | | | | | |
Collapse
|
125
|
Wang Y, Sun M, Bao H, White AP. T3_MM: a Markov model effectively classifies bacterial type III secretion signals. PLoS One 2013; 8:e58173. [PMID: 23472154 PMCID: PMC3589343 DOI: 10.1371/journal.pone.0058173] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/31/2013] [Indexed: 11/18/2022] Open
Abstract
MOTIVATION Type III Secretion Systems (T3SSs) play important roles in the interaction between gram-negative bacteria and their hosts. T3SSs function by translocating a group of bacterial effector proteins into the host cytoplasm. The details of specific type III secretion process are yet to be clarified. This research focused on comparing the amino acid composition within the N-terminal 100 amino acids from type III secretion (T3S) signal sequences or non-T3S proteins, specifically whether each residue exerts a constraint on residues found in adjacent positions. We used these comparisons to set up a statistic model to quantitatively model and effectively distinguish T3S effectors. RESULTS In this study, the amino acid composition (Aac) probability profiles conditional on its sequentially preceding position and corresponding amino acids were compared between N-terminal sequences of T3S and non-T3S proteins. The profiles are generally different. A Markov model, namely T3_MM, was consequently designed to calculate the total Aac conditional probability difference, i.e., the likelihood ratio of a sequence being a T3S or a non-T3S protein. With T3_MM, known T3S and non-T3S proteins were found to well approximate two distinct normal distributions. The model could distinguish validated T3S and non-T3S proteins with a 5-fold cross-validation sensitivity of 83.9% at a specificity of 90.3%. T3_MM was also shown to be more robust, accurate, simple, and statistically quantitative, when compared with other T3S protein prediction models. The high effectiveness of T3_MM also indicated the overall Aac difference between N-termini of T3S and non-T3S proteins, and the constraint of Aac exerted by its preceding position and corresponding Aac. AVAILABILITY An R package for T3_MM is freely downloadable from: http://biocomputer.bio.cuhk.edu.hk/softwares/T3_MM. T3_MM web server: http://biocomputer.bio.cuhk.edu.hk/T3DB/T3_MM.php.
Collapse
Affiliation(s)
- Yejun Wang
- Genomics Research Center, Haerbin Medical University, Harbin, China
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ming'an Sun
- School of Life Science, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Hongxia Bao
- Genomics Research Center, Haerbin Medical University, Harbin, China
| | - Aaron P. White
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
126
|
Abstract
Six subspecies are currently recognized in Salmonella enterica. Subspecies I (subspecies enterica) is responsible for nearly all infections in humans and warm-blooded animals, while five other subspecies are isolated principally from cold-blooded animals. We sequenced 21 phylogenetically diverse strains, including two representatives from each of the previously unsequenced five subspecies and 11 diverse new strains from S. enterica subspecies enterica, to put this species into an evolutionary perspective. The phylogeny of the subspecies was partly obscured by abundant recombination events between lineages and a relatively short period of time within which subspeciation took place. Nevertheless, a variety of different tree-building methods gave congruent evolutionary tree topologies for subspeciation. A total of 285 gene families were identified that were recruited into subspecies enterica, and most of these are of unknown function. At least 2,807 gene families were identified in one or more of the other subspecies that are not found in subspecies I or Salmonella bongori. Among these gene families were 13 new candidate effectors and 7 new candidate fimbrial clusters. A third complete type III secretion system not present in subspecies enterica (I) isolates was found in both strains of subspecies salamae (II). Some gene families had complex taxonomies, such as the type VI secretion systems, which were recruited from four different lineages in five of six subspecies. Analysis of nonsynonymous-to-synonymous substitution rates indicated that the more-recently acquired regions in S. enterica are undergoing faster fixation rates than the rest of the genome. Recently acquired AT-rich regions, which often encode virulence functions, are under ongoing selection to maintain their high AT content. We have sequenced 21 new genomes which encompass the phylogenetic diversity of Salmonella, including strains of the previously unsequenced subspecies arizonae, diarizonae, houtenae, salamae, and indica as well as new diverse strains of subspecies enterica. We have deduced possible evolutionary paths traversed by this very important zoonotic pathogen and identified novel putative virulence factors that are not found in subspecies I. Gene families gained at the time of the evolution of subspecies enterica are of particular interest because they include mechanisms by which this subspecies adapted to warm-blooded hosts.
Collapse
|
127
|
Cao G, Meng J, Strain E, Stones R, Pettengill J, Zhao S, McDermott P, Brown E, Allard M. Phylogenetics and differentiation of Salmonella Newport lineages by whole genome sequencing. PLoS One 2013; 8:e55687. [PMID: 23409020 PMCID: PMC3569456 DOI: 10.1371/journal.pone.0055687] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 01/02/2013] [Indexed: 11/23/2022] Open
Abstract
Salmonella Newport has ranked in the top three Salmonella serotypes associated with foodborne outbreaks from 1995 to 2011 in the United States. In the current study, we selected 26 S. Newport strains isolated from diverse sources and geographic locations and then conducted 454 shotgun pyrosequencing procedures to obtain 16–24 × coverage of high quality draft genomes for each strain. Comparative genomic analysis of 28 S. Newport strains (including 2 reference genomes) and 15 outgroup genomes identified more than 140,000 informative SNPs. A resulting phylogenetic tree consisted of four sublineages and indicated that S. Newport had a clear geographic structure. Strains from Asia were divergent from those from the Americas. Our findings demonstrated that analysis using whole genome sequencing data resulted in a more accurate picture of phylogeny compared to that using single genes or small sets of genes. We selected loci around the mutS gene of S. Newport to differentiate distinct lineages, including those between invH and mutS genes at the 3′ end of Salmonella Pathogenicity Island 1 (SPI-1), ste fimbrial operon, and Clustered, Regularly Interspaced, Short Palindromic Repeats (CRISPR) associated-proteins (cas). These genes in the outgroup genomes held high similarity with either S. Newport Lineage II or III at the same loci. S. Newport Lineages II and III have different evolutionary histories in this region and our data demonstrated genetic flow and homologous recombination events around mutS. The findings suggested that S. Newport Lineages II and III diverged early in the serotype evolution and have evolved largely independently. Moreover, we identified genes that could delineate sublineages within the phylogenetic tree and that could be used as potential biomarkers for trace-back investigations during outbreaks. Thus, whole genome sequencing data enabled us to better understand the genetic background of pathogenicity and evolutionary history of S. Newport and also provided additional markers for epidemiological response.
Collapse
Affiliation(s)
- Guojie Cao
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, United States of America
| | - Jianghong Meng
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, United States of America
| | - Errol Strain
- Biostatistics Branch, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, United States of America
| | - Robert Stones
- Food and Environment Research Agency, York, United Kingdom
| | - James Pettengill
- Division of Microbiology, Office of Regular Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, United States of America
| | - Shaohua Zhao
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, United States of America
| | - Patrick McDermott
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, United States of America
| | - Eric Brown
- Division of Microbiology, Office of Regular Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, United States of America
| | - Marc Allard
- Division of Microbiology, Office of Regular Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
128
|
The type VI secretion system encoded in Salmonella pathogenicity island 19 is required for Salmonella enterica serotype Gallinarum survival within infected macrophages. Infect Immun 2013; 81:1207-20. [PMID: 23357385 DOI: 10.1128/iai.01165-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Salmonella enterica serotype Gallinarum is the causative agent of fowl typhoid, a disease characterized by high morbidity and mortality that causes major economic losses in poultry production. We have reported that S. Gallinarum harbors a type VI secretion system (T6SS) encoded in Salmonella pathogenicity island 19 (SPI-19) that is required for efficient colonization of chicks. In the present study, we aimed to characterize the SPI-19 T6SS functionality and to investigate the mechanisms behind the phenotypes previously observed in vivo. Expression analyses revealed that SPI-19 T6SS core components are expressed and produced under in vitro bacterial growth conditions. However, secretion of the structural/secreted components Hcp1, Hcp2, and VgrG to the culture medium could not be determined, suggesting that additional signals are required for T6SS-dependent secretion of these proteins. In vitro bacterial competition assays failed to demonstrate a role for SPI-19 T6SS in interbacterial killing. In contrast, cell culture experiments with murine and avian macrophages (RAW264.7 and HD11, respectively) revealed production of a green fluorescent protein-tagged version of VgrG soon after Salmonella uptake. Furthermore, infection of RAW264.7 and HD11 macrophages with deletion mutants of SPI-19 or strains with genes encoding specific T6SS core components (clpV and vgrG) revealed that SPI-19 T6SS contributes to S. Gallinarum survival within macrophages at 20 h postuptake. SPI-19 T6SS function was not linked to Salmonella-induced cytotoxicity or cell death of infected macrophages, as has been described for other T6SS. Our data indicate that SPI-19 T6SS corresponds to a novel tool used by Salmonella to survive within host cells.
Collapse
|
129
|
|
130
|
Bryant J, Chewapreecha C, Bentley SD. Developing insights into the mechanisms of evolution of bacterial pathogens from whole-genome sequences. Future Microbiol 2012; 7:1283-1296. [PMID: 23075447 PMCID: PMC3996552 DOI: 10.2217/fmb.12.108] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Evolution of bacterial pathogen populations has been detected in a variety of ways including phenotypic tests, such as metabolic activity, reaction to antisera and drug resistance and genotypic tests that measure variation in chromosome structure, repetitive loci and individual gene sequences. While informative, these methods only capture a small subset of the total variation and, therefore, have limited resolution. Advances in sequencing technologies have made it feasible to capture whole-genome sequence variation for each sample under study, providing the potential to detect all changes at all positions in the genome from single nucleotide changes to large-scale insertions and deletions. In this review, we focus on recent work that has applied this powerful new approach and summarize some of the advances that this has brought in our understanding of the details of how bacterial pathogens evolve.
Collapse
Affiliation(s)
- Josephine Bryant
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK
| | - Claire Chewapreecha
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK
| | - Stephen D Bentley
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| |
Collapse
|
131
|
Liu J, Guo JT, Li YG, Johnston RN, Liu GR, Liu SL. The type VI secretion system gene cluster ofSalmonella typhimurium: Required for full virulence in mice. J Basic Microbiol 2012; 53:600-7. [DOI: 10.1002/jobm.201200047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 06/06/2012] [Indexed: 11/11/2022]
Affiliation(s)
| | - Ji-Tao Guo
- Department of Microbiology; Peking University Health Science Center; Beijing; China
| | - Yong-Guo Li
- Genetic Diagnosis Center of First Affiliated Hospital; Harbin Medical University; Harbin; China
| | - Randal N. Johnston
- Department of Biochemistry and Molecular Biology; University of Calgary; Calgary; Canada
| | | | | |
Collapse
|
132
|
A Genomic Island in Salmonella enterica ssp. salamae provides new insights on the genealogy of the locus of enterocyte effacement. PLoS One 2012; 7:e41615. [PMID: 22860002 PMCID: PMC3408504 DOI: 10.1371/journal.pone.0041615] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/22/2012] [Indexed: 12/19/2022] Open
Abstract
The genomic island encoding the locus of enterocyte effacement (LEE) is an important virulence factor of the human pathogenic Escherichia coli. LEE typically encodes a type III secretion system (T3SS) and secreted effectors capable of forming attaching and effacing lesions. Although prominent in the pathogenic E. coli such as serotype O157:H7, LEE has also been detected in Citrobacter rodentium, E. albertii, and although not confirmed, it is likely to also be in Shigella boydii. Previous phylogenetic analysis of LEE indicated the genomic island was evolving through stepwise acquisition of various components. This study describes a new LEE region from two strains of Salmonella enterica subspecies salamae serovar Sofia along with a phylogenetic analysis of LEE that provides new insights into the likely evolution of this genomic island. The Salmonella LEE contains 36 of the 41 genes typically observed in LEE within a genomic island of 49, 371 bp that encodes a total of 54 genes. A phylogenetic analysis was performed on the entire T3SS and four T3SS genes (escF, escJ, escN, and escV) to elucidate the genealogy of LEE. Phylogenetic analysis inferred that the previously known LEE islands are members of a single lineage distinct from the new Salmonella LEE lineage. The previously known lineage of LEE diverged between islands found in Citrobacter and those in Escherichia and Shigella. Although recombination and horizontal gene transfer are important factors in the genealogy of most genomic islands, the phylogeny of the T3SS of LEE can be interpreted with a bifurcating tree. It seems likely that the LEE island entered the Enterobacteriaceae through horizontal gene transfer as a single unit, rather than as separate subsections, which was then subjected to the forces of both mutational change and recombination.
Collapse
|
133
|
Inouye M, Conway TC, Zobel J, Holt KE. Short read sequence typing (SRST): multi-locus sequence types from short reads. BMC Genomics 2012; 13:338. [PMID: 22827703 PMCID: PMC3460743 DOI: 10.1186/1471-2164-13-338] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 07/24/2012] [Indexed: 11/10/2022] Open
Abstract
Background Multi-locus sequence typing (MLST) has become the gold standard for population analyses of bacterial pathogens. This method focuses on the sequences of a small number of loci (usually seven) to divide the population and is simple, robust and facilitates comparison of results between laboratories and over time. Over the last decade, researchers and population health specialists have invested substantial effort in building up public MLST databases for nearly 100 different bacterial species, and these databases contain a wealth of important information linked to MLST sequence types such as time and place of isolation, host or niche, serotype and even clinical or drug resistance profiles. Recent advances in sequencing technology mean it is increasingly feasible to perform bacterial population analysis at the whole genome level. This offers massive gains in resolving power and genetic profiling compared to MLST, and will eventually replace MLST for bacterial typing and population analysis. However given the wealth of data currently available in MLST databases, it is crucial to maintain backwards compatibility with MLST schemes so that new genome analyses can be understood in their proper historical context. Results We present a software tool, SRST, for quick and accurate retrieval of sequence types from short read sets, using inputs easily downloaded from public databases. SRST uses read mapping and an allele assignment score incorporating sequence coverage and variability, to determine the most likely allele at each MLST locus. Analysis of over 3,500 loci in more than 500 publicly accessible Illumina read sets showed SRST to be highly accurate at allele assignment. SRST output is compatible with common analysis tools such as eBURST, Clonal Frame or PhyloViz, allowing easy comparison between novel genome data and MLST data. Alignment, fastq and pileup files can also be generated for novel alleles. Conclusions SRST is a novel software tool for accurate assignment of sequence types using short read data. Several uses for the tool are demonstrated, including quality control for high-throughput sequencing projects, plasmid MLST and analysis of genomic data during outbreak investigation. SRST is open-source, requires Python, BWA and SamTools, and is available from http://srst.sourceforge.net.
Collapse
Affiliation(s)
- Michael Inouye
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia
| | | | | | | |
Collapse
|
134
|
Identification and characterization of novel Salmonella mobile elements involved in the dissemination of genes linked to virulence and transmission. PLoS One 2012; 7:e41247. [PMID: 22911766 PMCID: PMC3401170 DOI: 10.1371/journal.pone.0041247] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/19/2012] [Indexed: 11/30/2022] Open
Abstract
The genetic diversity represented by >2,500 different Salmonella serovars provides a yet largely uncharacterized reservoir of mobile elements that can contribute to the frequent emergence of new pathogenic strains of this important zoonotic pathogen. Currently, our understanding of Salmonella mobile elements is skewed by the fact that most studies have focused on highly virulent or common serovars. To gain a more global picture of mobile elements in Salmonella, we used prediction algorithms to screen for mobile elements in 16 sequenced Salmonella genomes representing serovars for which no prior genome scale mobile element data were available. From these results, selected mobile elements underwent further analyses in the form of validation studies, comparative analyses, and PCR-based population screens. Through this analysis we identified a novel plasmid that has two cointegrated replicons (IncI1-IncFIB); this plasmid type was found in four genomes representing different Salmonella serovars and contained a virulence gene array that had not been previously identified. A Salmonella Montevideo isolate contained an IncHI and an IncN2 plasmid, which both encoded antimicrobial resistance genes. We also identified two novel genomic islands (SGI2 and SGI3), and 42 prophages with mosaic architecture, seven of them harboring known virulence genes. Finally, we identified a novel integrative conjugative element (ICE) encoding a type IVb pilus operon in three non-typhoidal Salmonella serovars. Our analyses not only identified a considerable number of mobile elements that have not been previously reported in Salmonella, but also found evidence that these elements facilitate transfer of genes that were previously thought to be limited in their distribution among Salmonella serovars. The abundance of mobile elements encoding pathogenic properties may facilitate the emergence of strains with novel combinations of pathogenic traits.
Collapse
|
135
|
Velge P, Wiedemann A, Rosselin M, Abed N, Boumart Z, Chaussé AM, Grépinet O, Namdari F, Roche SM, Rossignol A, Virlogeux-Payant I. Multiplicity of Salmonella entry mechanisms, a new paradigm for Salmonella pathogenesis. Microbiologyopen 2012; 1:243-58. [PMID: 23170225 PMCID: PMC3496970 DOI: 10.1002/mbo3.28] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 05/04/2012] [Accepted: 05/07/2012] [Indexed: 01/27/2023] Open
Abstract
The Salmonella enterica species includes about 2600 diverse serotypes, most of which cause a wide range of food- and water-borne diseases ranging from self-limiting gastroenteritis to typhoid fever in both humans and animals. Moreover, some serotypes are restricted to a few animal species, whereas other serotypes are able to infect plants as well as cold- and warm-blooded animals. An essential feature of the pathogenicity of Salmonella is its capacity to cross a number of barriers requiring invasion of a large variety of phagocytic and nonphagocytic cells. The aim of this review is to describe the different entry pathways used by Salmonella serotypes to enter different nonphagocytic cell types. Until recently, it was accepted that Salmonella invasion of eukaryotic cells required only the type III secretion system (T3SS) encoded by the Salmonella pathogenicity island-1. However, recent evidence shows that Salmonella can cause infection in a T3SS-1-independent manner. Currently, two outer membrane proteins Rck and PagN have been clearly identified as Salmonella invasins. As Rck mediates a Zipper-like entry mechanism, Salmonella is therefore the first bacterium shown to be able to induce both Zipper and Trigger mechanisms to invade host cells. In addition to these known entry pathways, recent data have shown that unknown entry routes could be used according to the serotype, the host and the cell type considered, inducing either Zipper-like or Trigger-like entry processes. The new paradigm presented here should change our classic view of Salmonella pathogenicity. It could also modify our understanding of the mechanisms leading to the different Salmonella-induced diseases and to Salmonella-host specificity.
Collapse
Affiliation(s)
- P Velge
- INRA, UMR1282 Infectiologie et Santé Publique F-37380, Nouzilly, France ; Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique F-37000, Tours, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Meyer T, Schirrmann T, Frenzel A, Miethe S, Stratmann-Selke J, Gerlach GF, Strutzberg-Minder K, Dübel S, Hust M. Identification of immunogenic proteins and generation of antibodies against Salmonella Typhimurium using phage display. BMC Biotechnol 2012; 12:29. [PMID: 22703709 PMCID: PMC3423037 DOI: 10.1186/1472-6750-12-29] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/25/2012] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Solely in Europoe, Salmonella Typhimurium causes more than 100,000 infections per year. Improved detection of livestock colonised with S. Typhimurium is necessary to prevent foodborne diseases. Currently, commercially available ELISA assays are based on a mixture of O-antigens (LPS) or total cell lysate of Salmonella and are hampered by cross-reaction. The identification of novel immunogenic proteins would be useful to develop ELISA based diagnostic assays with a higher specificity. RESULTS A phage display library of the entire Salmonella Typhimurium genome was constructed and 47 immunogenic oligopeptides were identified using a pool of convalescent sera from pigs infected with Salmonella Typhimurium. The corresponding complete genes of seven of the identified oligopeptids were cloned. Five of them were produced in E. coli. The immunogenic character of these antigens was validated with sera from pigs infeced with S. Tyhimurium and control sera from non-infected animals. Finally, human antibody fragments (scFv) against these five antigens were selected using antibody phage display and characterised. CONCLUSION In this work, we identified novel immunogenic proteins of Salmonella Typhimurium and generated antibody fragments against these antigens completely based on phage display. Five immunogenic proteins were validated using a panel of positive and negative sera for prospective applications in diagnostics of Salmonela Typhimurium.
Collapse
Affiliation(s)
- Torsten Meyer
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr.7, 38106 Braunschweig, Germany
| | - Thomas Schirrmann
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr.7, 38106 Braunschweig, Germany
| | - André Frenzel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr.7, 38106 Braunschweig, Germany
| | - Sebastian Miethe
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr.7, 38106 Braunschweig, Germany
| | - Janin Stratmann-Selke
- IVD GmbH Heisterbergallee 12, 30453 Hannover, Germany
- Present address: vaxxinova GmbH diagnostics, Johann-Krane-Weg 42, 48149 Münster, Germany
| | | | | | - Stefan Dübel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr.7, 38106 Braunschweig, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr.7, 38106 Braunschweig, Germany
| |
Collapse
|
137
|
Kröger C, Dillon SC, Cameron ADS, Papenfort K, Sivasankaran SK, Hokamp K, Chao Y, Sittka A, Hébrard M, Händler K, Colgan A, Leekitcharoenphon P, Langridge GC, Lohan AJ, Loftus B, Lucchini S, Ussery DW, Dorman CJ, Thomson NR, Vogel J, Hinton JCD. The transcriptional landscape and small RNAs of Salmonella enterica serovar Typhimurium. Proc Natl Acad Sci U S A 2012; 109:E1277-86. [PMID: 22538806 PMCID: PMC3356629 DOI: 10.1073/pnas.1201061109] [Citation(s) in RCA: 316] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
More than 50 y of research have provided great insight into the physiology, metabolism, and molecular biology of Salmonella enterica serovar Typhimurium (S. Typhimurium), but important gaps in our knowledge remain. It is clear that a precise choreography of gene expression is required for Salmonella infection, but basic genetic information such as the global locations of transcription start sites (TSSs) has been lacking. We combined three RNA-sequencing techniques and two sequencing platforms to generate a robust picture of transcription in S. Typhimurium. Differential RNA sequencing identified 1,873 TSSs on the chromosome of S. Typhimurium SL1344 and 13% of these TSSs initiated antisense transcripts. Unique findings include the TSSs of the virulence regulators phoP, slyA, and invF. Chromatin immunoprecipitation revealed that RNA polymerase was bound to 70% of the TSSs, and two-thirds of these TSSs were associated with σ(70) (including phoP, slyA, and invF) from which we identified the -10 and -35 motifs of σ(70)-dependent S. Typhimurium gene promoters. Overall, we corrected the location of important genes and discovered 18 times more promoters than identified previously. S. Typhimurium expresses 140 small regulatory RNAs (sRNAs) at early stationary phase, including 60 newly identified sRNAs. Almost half of the experimentally verified sRNAs were found to be unique to the Salmonella genus, and <20% were found throughout the Enterobacteriaceae. This description of the transcriptional map of SL1344 advances our understanding of S. Typhimurium, arguably the most important bacterial infection model.
Collapse
Affiliation(s)
- Carsten Kröger
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, and
| | - Shane C. Dillon
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, and
| | - Andrew D. S. Cameron
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, and
| | - Kai Papenfort
- Institute for Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Sathesh K. Sivasankaran
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, and
| | - Karsten Hokamp
- Department of Genetics, School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Yanjie Chao
- Institute for Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Alexandra Sittka
- Molecular Pulmonology, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Philipps University, 35043 Marburg, Germany
| | - Magali Hébrard
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, and
| | - Kristian Händler
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, and
| | - Aoife Colgan
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, and
| | - Pimlapas Leekitcharoenphon
- Department of Systems Biology, Center for Biological Sequence Analysis, and
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Gemma C. Langridge
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Amanda J. Lohan
- School of Medicine and Medical Science, Conway Institute, University College Dublin, Dublin 4, Ireland; and
| | - Brendan Loftus
- School of Medicine and Medical Science, Conway Institute, University College Dublin, Dublin 4, Ireland; and
| | - Sacha Lucchini
- Institute of Food Research, Colney, Norwich NR4 7UA, United Kingdom
| | - David W. Ussery
- Department of Systems Biology, Center for Biological Sequence Analysis, and
| | - Charles J. Dorman
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, and
| | - Nicholas R. Thomson
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Jörg Vogel
- Institute for Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Jay C. D. Hinton
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, and
| |
Collapse
|
138
|
Type VI secretion system-associated gene clusters contribute to pathogenesis of Salmonella enterica serovar Typhimurium. Infect Immun 2012; 80:1996-2007. [PMID: 22493086 DOI: 10.1128/iai.06205-11] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The enteropathogen Salmonella enterica serovar Typhimurium employs a suite of tightly regulated virulence factors within the intracellular compartment of phagocytic host cells resulting in systemic dissemination in mice. A type VI secretion system (T6SS) within Salmonella pathogenicity island 6 (SPI-6) has been implicated in this process; however, the regulatory inputs and the roles of noncore genes in this system are not well understood. Here we describe four clusters of noncore T6SS genes in SPI-6 based on a comparative relationship with the T6SS-3 of Burkholderia mallei and report that the disruption of these genes results in defects in intracellular replication and systemic dissemination in mice. In addition, we show that the expression of the SPI-6-encoded Hcp and VgrG orthologs is enhanced during late stages of macrophage infection. We identify six regions that are transcriptionally active during cell infections and that have regulatory contributions from the regulators of virulence SsrB, PhoP, and SlyA. We show that levels of protein expression are very weak under in vitro conditions and that expression is not enhanced upon the deletion of ssrB, phoP, slyA, qseC, ompR, or hfq, suggesting an unknown activating factor. These data suggest that the SPI-6 T6SS has been integrated into the Salmonella Typhimurium virulence network and customized for host-pathogen interactions through the action of noncore genes.
Collapse
|
139
|
Structure, diversity, and mobility of the Salmonella pathogenicity island 7 family of integrative and conjugative elements within Enterobacteriaceae. J Bacteriol 2012; 194:1494-504. [PMID: 22247511 DOI: 10.1128/jb.06403-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrative and conjugative elements (ICEs) are self-mobile genetic elements found in the genomes of some bacteria. These elements may confer a fitness advantage upon their host bacteria through the cargo genes that they carry. Salmonella pathogenicity island 7 (SPI-7), found within some pathogenic strains of Salmonella enterica, possesses features indicative of an ICE and carries genes implicated in virulence. We aimed to identify and fully analyze ICEs related to SPI-7 within the genus Salmonella and other Enterobacteriaceae. We report the sequence of two novel SPI-7-like elements, found within strains of Salmonella bongori, which share 97% nucleotide identity over conserved regions with SPI-7 and with each other. Although SPI-7 within Salmonella enterica serovar Typhi appears to be fixed within the chromosome, we present evidence that these novel elements are capable of excision and self-mobility. Phylogenetic analyses show that these Salmonella mobile elements share an ancestor which existed approximately 3.6 to 15.8 million years ago. Additionally, we identified more distantly related ICEs, with distinct cargo regions, within other strains of Salmonella as well as within Citrobacter, Erwinia, Escherichia, Photorhabdus, and Yersinia species. In total, we report on a collection of 17 SPI-7 related ICEs within enterobacterial species, of which six are novel. Using comparative and mutational studies, we have defined a core of 27 genes essential for conjugation. We present a growing family of SPI-7-related ICEs whose mobility, abundance, and cargo variability indicate that these elements may have had a large impact on the evolution of the Enterobacteriaceae.
Collapse
|