101
|
Gallo A, Bulati M, Miceli V, Amodio N, Conaldi PG. Non-Coding RNAs: Strategy for Viruses' Offensive. Noncoding RNA 2020; 6:38. [PMID: 32927786 PMCID: PMC7549346 DOI: 10.3390/ncrna6030038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
The awareness of viruses as a constant threat for human public health is a matter of fact and in this resides the need of understanding the mechanisms they use to trick the host. Viral non-coding RNAs are gaining much value and interest for the potential impact played in host gene regulation, acting as fine tuners of host cellular defense mechanisms. The implicit importance of v-ncRNAs resides first in the limited genomes size of viruses carrying only strictly necessary genomic sequences. The other crucial and appealing characteristic of v-ncRNAs is the non-immunogenicity, making them the perfect expedient to be used in the never-ending virus-host war. In this review, we wish to examine how DNA and RNA viruses have evolved a common strategy and which the crucial host pathways are targeted through v-ncRNAs in order to grant and facilitate their life cycle.
Collapse
Affiliation(s)
- Alessia Gallo
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Via E.Tricomi 5, 90127 Palermo, Italy; (M.B.); (V.M.); (P.G.C.)
| | - Matteo Bulati
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Via E.Tricomi 5, 90127 Palermo, Italy; (M.B.); (V.M.); (P.G.C.)
| | - Vitale Miceli
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Via E.Tricomi 5, 90127 Palermo, Italy; (M.B.); (V.M.); (P.G.C.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Pier Giulio Conaldi
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Via E.Tricomi 5, 90127 Palermo, Italy; (M.B.); (V.M.); (P.G.C.)
- UPMC Italy (University of Pittsburgh Medical Center Italy), Discesa dei Giudici 4, 90133 Palermo, Italy
| |
Collapse
|
102
|
MicroRNA expression profile in extracellular vesicles derived from ALV-J infected chicken semen. Virus Res 2020; 286:198083. [DOI: 10.1016/j.virusres.2020.198083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/28/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022]
|
103
|
Mendes AF, Goncalves P, Serrano-Solis V, Silva PMD. Identification of candidate microRNAs from Ostreid herpesvirus-1 (OsHV-1) and their potential role in the infection of Pacific oysters (Crassostrea gigas). Mol Immunol 2020; 126:153-164. [PMID: 32853878 DOI: 10.1016/j.molimm.2020.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022]
Abstract
Oyster production is an economic activity of great interest worldwide. Recently, oysters have been suffering significant mortalities from OsHV-1infection, which has resulted in substantial economic loses in several countries around the world. Understanding viral pathogenicity mechanisms is of central importance for the establishment of disease control measures. Thus, the present work aimed to identify and characterize miRNAs from OsHV-1 as well as to predict their target transcripts in the virus and the host. OsHV-1 genome was used for the in silico discovery of pre-miRNAs. Subsequently, viral and host target transcripts of the OsHV-1 miRNAs were predicted according to the base pairing interaction between mature miRNAs and mRNA 3' untranslated regions (UTRs). Six unique pre-miRNAs were found in different regions of the viral genome, ranging in length from 85 to 172 nucleotides. A complex network of self-regulation of viral gene expression mediated by the miRNAs was identified. These sequences also seem to have a broad ability to regulate the expression of host immune-related genes, especially those associated with pathogen recognition. Our results suggest that OsHV-1 encodes miRNAs with important functions in the infection process, inducing self-regulation of viral transcripts, as well as affecting the regulation of Pacific oyster transcripts related to immunity. Understanding the molecular basis of host-pathogen interactions can help mitigate the recurrent events of oyster mass mortalities by OsHV-1 observed worldwide.
Collapse
Affiliation(s)
- Andrei Félix Mendes
- Laboratório de Imunologia e Patologia de Invertebrados (LABIPI), Departamento de Biologia Molecular, Universidade Federal da Paraíba (UFPB), 58051-900, João Pessoa, Paraíba, Brazil
| | - Priscila Goncalves
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Victor Serrano-Solis
- Laboratório de Imunologia e Patologia de Invertebrados (LABIPI), Departamento de Biologia Molecular, Universidade Federal da Paraíba (UFPB), 58051-900, João Pessoa, Paraíba, Brazil
| | - Patricia Mirella da Silva
- Laboratório de Imunologia e Patologia de Invertebrados (LABIPI), Departamento de Biologia Molecular, Universidade Federal da Paraíba (UFPB), 58051-900, João Pessoa, Paraíba, Brazil.
| |
Collapse
|
104
|
Bloch S, Lewandowska N, Węgrzyn G, Nejman-Faleńczyk B. Bacteriophages as sources of small non-coding RNA molecules. Plasmid 2020; 113:102527. [PMID: 32768406 DOI: 10.1016/j.plasmid.2020.102527] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 01/10/2023]
Abstract
Bacteriophages play an essential role in the transferring of genes that contribute to the bacterial virulence and whose products are dangerous to human health. Interestingly, phages carrying virulence genes are mostly temperate and in contrast to lytic phages undergo both lysogenic and lytic cycles. Importantly, expression of the majority of phage genes and subsequent production of phage encoded proteins is suppressed during lysogeny. The expression of the majority of phage genes is tightly linked to lytic development. Among others, small non-coding RNAs (sRNAs) of phage origin are involved in the regulation of phage gene expression and thus play an important role in both phage and host development. In the case of bacteria, sRNAs affect processes such as virulence, colonization ability, motility and cell growth or death. In turn, in the case of phages, they play essential roles during the early stage of infection, maintaining the state of lysogeny and silencing the expression of late structural genes, thereby regulating the transition between phage life cycles. Interestingly, sRNAs have been identified in both lytic and temperate phages and they have been discussed in this work according to this classification. Particular attention was paid to viral sRNAs resembling eukaryotic microRNAs.
Collapse
Affiliation(s)
- Sylwia Bloch
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland
| | - Natalia Lewandowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Bożena Nejman-Faleńczyk
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| |
Collapse
|
105
|
Saini S, Saini A, Thakur CJ, Kumar V, Gupta RD, Sharma JK. Genome-wide computational prediction of miRNAs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) revealed target genes involved in pulmonary vasculature and antiviral innate immunity. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2020; 9:83-91. [PMID: 32802902 PMCID: PMC7382400 DOI: 10.22099/mbrc.2020.36507.1487] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The current outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in China threatened humankind worldwide. The coronaviruses contains the largest RNA genome among all other known RNA viruses, therefore the disease etiology can be understood by analyzing the genome sequence of SARS-CoV-2. In this study, we used an ab-intio based computational tool VMir to scan the complete genome of SARS-CoV-2 to predict pre-miRNAs. The potential pre-miRNAs were identified by ViralMir and mature miRNAs were recognized by Mature Bayes. Additionally, predicted mature miRNAs were analysed against human genome by miRDB server to retrieve target genes. Besides that we also retrieved GO (Gene Ontology) terms for pathways, functions and cellular components. We predicted 26 mature miRNAs from genome of SARS-CoV-2 that targets human genes involved in pathways like EGF receptor signaling, apoptosis signaling, VEGF signaling, FGF receptor signaling. Gene enrichment tool analysis and substantial literature evidences suggests role of genes like BMPR2 and p53 in pulmonary vasculature and antiviral innate immunity respectively. Our findings may help research community to understand virus pathogenesis.
Collapse
Affiliation(s)
- Sandeep Saini
- Department of Bioinformatics, GGDSD College, Sector 32-C, 160030, Chandigarh, India
- Department of Biophysics, Panjab University, Sector 25, 160014, Chandigarh, India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Sector 25, 160014, Chandigarh, India
| | - Chander Jyoti Thakur
- Department of Bioinformatics, GGDSD College, Sector 32-C, 160030, Chandigarh, India
| | - Varinder Kumar
- Department of Bioinformatics, GGDSD College, Sector 32-C, 160030, Chandigarh, India
| | - Rishabh Dilip Gupta
- Department of Bioinformatics, GGDSD College, Sector 32-C, 160030, Chandigarh, India
| | - Jogesh Kumar Sharma
- Department of Bioinformatics, GGDSD College, Sector 32-C, 160030, Chandigarh, India
| |
Collapse
|
106
|
Guo JY, Wang YS, Chen T, Jiang XX, Wu P, Geng T, Pan ZH, Shang MK, Hou CX, Gao K, Guo XJ. Functional analysis of a miRNA-like small RNA derived from Bombyx mori cytoplasmic polyhedrosis virus. INSECT SCIENCE 2020; 27:449-462. [PMID: 30869181 DOI: 10.1111/1744-7917.12671] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/14/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) is a major pathogen of the economic insect silkworm, Bombyx mori. Virus-encoded microRNAs (miRNAs) have been proven to play important roles in host-pathogen interactions. In this study we identified a BmCPV-derived miRNA-like 21 nt small RNA, BmCPV-miR-1, from the small RNA deep sequencing of BmCPV-infected silkworm larvae by stem-loop quantitative real-time PCR (qPCR) and investigated its functions with qPCR and lentiviral expression systems. Bombyx mori inhibitor of apoptosis protein (BmIAP) gene was predicted by both target prediction software miRanda and Targetscan to be one of its target genes with a binding site for BmCPV-miR-1 at the 5' untranslated region. It was found that the expression of BmCPV-miR-1 and its target gene BmIAP were both up-regulated in BmCPV-infected larvae. At the same time, it was confirmed that BmCPV-miR-1 could up-regulate the expression of BmIAP gene in HEK293T cells with lentiviral expression systems and in BmN cells by transfecting mimics. Furthermore, BmCPV-miR-1 mimics could up-regulate the expression level of BmIAP gene in midgut and fat body in the silkworm. In the midgut of BmCPV-infected larvae, BmCPV-miR-1 mimics could be further up-regulated and inhibitors could lower the virus-mediated expression of BmIAP gene. With the viral genomic RNA segments S1 and S10 as indicators, BmCPV-miR-1 mimics could up-regulate and inhibitors down-regulate their replication in the infected silkworm. These results implied that BmCPV-miR-1 could inhibit cell apoptosis in the infected silkworm through up-regulating BmIAP expression, providing the virus with a better cell circumstance for its replication.
Collapse
Affiliation(s)
- Jian-Yong Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Yong-Sheng Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Tian Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xiao-Xu Jiang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Tao Geng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikoou, China
| | - Zhong-Hua Pan
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China
| | - Meng-Ke Shang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Cheng-Xiang Hou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Kun Gao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Xi-Jie Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
107
|
Leonetti P, Miesen P, van Rij RP, Pantaleo V. Viral and subviral derived small RNAs as pathogenic determinants in plants and insects. Adv Virus Res 2020; 107:1-36. [PMID: 32711727 DOI: 10.1016/bs.aivir.2020.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The phenotypic manifestations of disease induced by viruses and subviral infectious entities are the result of complex molecular interactions between host and viral factors. The viral determinants of the diseased phenotype have traditionally been sought at the level of structural or non-structural proteins. However, the discovery of RNA silencing mechanisms has led to speculations that determinants of the diseased phenotype are caused by viral nucleic acid sequences in addition to proteins. RNA silencing is a gene regulation mechanism conserved within eukaryotic kingdoms (with the exception of some yeast species), and in plants and insects it also functions as an antiviral mechanism. Non-coding RNAs of viral origin, ranging in size from 21 to 24 nucleotides (viral small interfering RNAs, vsiRNAs) accumulate in virus-infected tissues and organs, in some cases to comparable levels as the entire complement of host-encoded small interfering RNAs. Upon incorporation into RNA-induced silencing complexes, vsiRNAs can mediate cleavage or induce translational inhibition of nucleic acid targets in a sequence-specific manner. This review focuses on recent findings that suggest an increased complexity of small RNA-based interactions between virus and host. We mainly address plant viruses, but where applicable discuss insect viruses as well. Prominence is given to studies that have indisputably demonstrated that vsiRNAs determine diseased phenotype by either carrying sequence determinants or, indirectly, by altering host-gene regulatory pathways. Results from these studies suggest biotechnological applications, which are also discussed.
Collapse
Affiliation(s)
- Paola Leonetti
- Department of Biology, Agricultural and Food Sciences, Institute for Sustainable Plant Protection, CNR, Bari, Italy
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Vitantonio Pantaleo
- Department of Biology, Agricultural and Food Sciences, Institute for Sustainable Plant Protection, CNR, Bari, Italy..
| |
Collapse
|
108
|
Wang C, Shan L, Qu S, Xue M, Wang K, Fu F, Wang L, Wang Z, Feng L, Xu W, Liu P. The Coronavirus PEDV Evades Type III Interferon Response Through the miR-30c-5p/SOCS1 Axis. Front Microbiol 2020; 11:1180. [PMID: 32574254 PMCID: PMC7256192 DOI: 10.3389/fmicb.2020.01180] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/08/2020] [Indexed: 12/14/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is an economically important pathogen that has evolved several mechanisms to evade type I IFN responses. Type III interferon (IFN-λ), an innate cytokine that primarily targets the mucosal epithelia, is critical in fighting mucosal infection in the host and has been reported to potently inhibit PEDV infection in vitro. However, how PEDV escapes IFN-λ antiviral response remains unclear. In this study, we found that PEDV infection induced significant IFN-λ expression in type I IFN-defective Vero E6 cells, but virus-induced endogenous IFN-λ did not reduce PEDV titers. Moreover, we demonstrated that PEDV escaped IFN-λ responses by substantially upregulating the suppressor of cytokine signaling protein 1 (SOCS1) expression, which impaired the induction of IFN-stimulated genes (ISGs) and dampened the IFN-λ antiviral response and facilitated PEDV replication in Vero E6 cells. We further showed that PEDV infection increased SOCS1 expression by decreasing host miR-30c-5p expression. MiR-30c-5p suppressed SOCS1 expression through targeting the 3′ untranslated region (UTR) of SOCS1. The inhibition of IFN-λ elicited ISGs expression by SOCS1 was specifically rescued by overexpression of miR-30c-5p. Collectively, our findings identify a new strategy by PEDV to escape IFN-λ-mediated antiviral immune responses by engaging the SOCS1/miR-30c axis, thus improving our understanding of its pathogenesis.
Collapse
Affiliation(s)
- Changlin Wang
- Department of Urology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lingling Shan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shuxin Qu
- Department of Urology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mei Xue
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Keliang Wang
- Department of Urology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fang Fu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lu Wang
- Department of Urology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziqi Wang
- Department of Urology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wanhai Xu
- Department of Urology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pinghuang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
109
|
Ablation of non-coding RNAs affects bovine leukemia virus B lymphocyte proliferation and abrogates oncogenesis. PLoS Pathog 2020; 16:e1008502. [PMID: 32407379 PMCID: PMC7252678 DOI: 10.1371/journal.ppat.1008502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/27/2020] [Accepted: 03/26/2020] [Indexed: 12/21/2022] Open
Abstract
Viruses have developed different strategies to escape from immune response. Among these, viral non-coding RNAs are invisible to the immune system and may affect the fate of the host cell. Bovine leukemia virus (BLV) encodes both short (miRNAs) and long (antisense AS1 and AS2) non-coding RNAs. To elucidate the mechanisms associated with BLV non-coding RNAs, we performed phenotypic and transcriptomic analyzes in a reverse genetics system. RNA sequencing of B-lymphocytes revealed that cell proliferation is the most significant mechanism associated with ablation of the viral non-coding RNAs. To assess the biological relevance of this observation, we determined the cell kinetic parameters in vivo using intravenous injection of BrdU and CFSE. Fitting the data to a mathematical model provided the rates of cell proliferation and death. Our data show that deletion of miRNAs correlates with reduced proliferation of the infected cell and lack of pathogenesis. BLV is a retrovirus that integrates into the genomic DNA of B-lymphocytes from a series of ruminant species (cattle, sheep, zebu, water buffalo and yack). Expression of viral proteins is almost undetectable in infected animals. In contrast, the BLV genome contains a cluster of 10 microRNAs that are abundantly transcribed in BLV-infected cells in vivo. In this report, we show that these microRNAs primarily regulate host cell proliferation. Ablation of the viral microRNAs affects BLV replication and suppresses leukemia development.
Collapse
|
110
|
Ferrelli ML, García ML, Romanowski V, Reyes CA. Identification of a microRNA encoded by Anticarsia gemmatalis multiple nucleopolyhedrovirus. Comput Biol Chem 2020; 87:107276. [PMID: 32422523 DOI: 10.1016/j.compbiolchem.2020.107276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 11/16/2022]
Abstract
MicroRNAs are regulatory RNAs that are scarcely described in Baculoviruses. In this work we predicted a microRNA in silico, denominated agmnpv-miR-4, encoded in the genome of Anticarsia gemmatalis Nucleopolyhedrovirus (AgMNPV), which is homologous to the already validated bmnpv-miR-4 from Bombyx mori Nucleopolyhedrovirus (BmNPV). Considering information known for bmnpv-miR-4 such as seed sequence, coding location in the genome and putative target binding, we searched for the coding sequence of agmnpv-miR-4 in AgMNPV genome. A precursor sequence of agmnpv-miR-4 was predicted, and we identified a putative 23 nt mature microRNA, agmnpv-miR-4, coded in the complementary strand of AgMNPV-2D between positions 49,450 and 49,472. We validated agmnpv-miR-4 by Northern blot from HighFive cells and A. gemmatalis larve extracts infected with AgMNPV.
Collapse
Affiliation(s)
- María Leticia Ferrelli
- Instituto de Biotecnología y Biología Molecular (IBBM), CCT-La Plata, CONICET - Universidad Nacional de La Plata (UNLP), Calles 47 y 115, 1900 La Plata, Buenos Aires, Argentina.
| | - María Laura García
- Instituto de Biotecnología y Biología Molecular (IBBM), CCT-La Plata, CONICET - Universidad Nacional de La Plata (UNLP), Calles 47 y 115, 1900 La Plata, Buenos Aires, Argentina.
| | - Víctor Romanowski
- Instituto de Biotecnología y Biología Molecular (IBBM), CCT-La Plata, CONICET - Universidad Nacional de La Plata (UNLP), Calles 47 y 115, 1900 La Plata, Buenos Aires, Argentina.
| | - Carina Andrea Reyes
- Instituto de Biotecnología y Biología Molecular (IBBM), CCT-La Plata, CONICET - Universidad Nacional de La Plata (UNLP), Calles 47 y 115, 1900 La Plata, Buenos Aires, Argentina.
| |
Collapse
|
111
|
Takahashi K, Sato Y, Sekizuka T, Kuroda M, Suzuki T, Hasegawa H, Katano H. High expression of JC polyomavirus-encoded microRNAs in progressive multifocal leukoencephalopathy tissues and its repressive role in virus replication. PLoS Pathog 2020; 16:e1008523. [PMID: 32324824 PMCID: PMC7200015 DOI: 10.1371/journal.ppat.1008523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/05/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
JC polyomavirus (JCPyV, JCV) causes progressive multifocal leukoencephalopathy (PML) in immunocompromised hosts. JCPyV replicates in oligodendrocytes within the brain tissue of patients with PML. The JCPyV genome encodes a microRNA (miRNA) in the region encoding the large T antigen. JCPyV-encoded miRNA (miR-J1) has been detected in the tissue and cerebrospinal fluid samples of patients with PML; however, there are no reports describing the localization of polyomavirus-encoded miRNA in histological samples of patients with virus-associated diseases. In the present study, we detected high miR-J1 expression in the nuclei of JCPyV-infected cells in PML tissue samples via in situ hybridization. Additionally, in situ hybridization also revealed the expression of BK polyomavirus (BKPyV, BKV)-encoded miRNA in lesions of BKPyV-associated nephropathy. In situ hybridization for miR-J1-5p and -3p showed positive signals in 24/25 (96%) of PML tissues that were positive for JCPyV by immunohistochemistry. Higher copy numbers of miR-J1 were detected in PML tissues than in non-PML tissues by real-time reverse transcription PCR. Next generation sequencing showed that miR-J1-5p, a mature miRNA of primary miRNA, was predominant in the lesions compared with miR-J1-3p, another mature miRNA. Deletion or mutation of miR-J1 in recombinant JCPyV promoted the production of JCPyV-encoded proteins in cells transfected with JCPyV DNA, suggesting that polyomavirus-encoded miRNA may have a repressive role in viral replication in PML tissues. In situ hybridization for viral miRNA may be a useful diagnostic tool for PML.
Collapse
Affiliation(s)
- Kenta Takahashi
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
112
|
Reshetnyak VI, Maev IV, Burmistrov AI, Chekmazov IA, Karlovich TI. Torque teno virus in liver diseases: On the way towards unity of view. World J Gastroenterol 2020; 26:1691-1707. [PMID: 32351287 PMCID: PMC7183866 DOI: 10.3748/wjg.v26.i15.1691] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
The review presents the data accumulated for more than 20 years of research of torque teno virus (TTV). Its molecular genetic structure, immunobiology, epidemiology, diagnostic methods, possible replication sites, and pathogenicity factors are described. TTV is a virus that is frequently detectable in patients with different viral hepatitides, in cases of hepatitis without an obvious viral agent, as well as in a healthy population. There is evidence suggesting that biochemical and histological changes occur in liver tissue and bile duct epithelium in TTV monoinfection. There are sufficient histological signs of liver damage, which confirm that the virus can undergo a replicative cycle in hepatocytes. Along with this, cytological hybridization in TTV-infected cells has shown no substantial cytopathic (cell-damaging) effects that are characteristic of pathogenic hepatotropic viruses. Studying TTV has led to the evolution of views on its role in the development of human pathology. The first ideas about the hepatotropism of the virus were gradually reformed as new data became available on the prevalence of the virus and its co-infection with other viruses, including the viruses of the known types of hepatitides. The high prevalence of TTV in the human population indicates its persistence in the body as a virome and a non-pathogenic virus. It has recently been proposed that the level of TTV DNA in the blood of patients undergoing organ transplantation should be used as an endogenous marker of the body's immune status. The available data show the polytropism of the virus and deny the fact that TTV can be assigned exclusively to hepatitis viruses. Fortunately, the rare detection of the damaging effect of TTV on hepatic and bile duct epithelial cells may be indirect evidence of its conditionally pathogenic properties. The ubiquity of the virus and the variability of its existence in humans cannot put an end to its study.
Collapse
Affiliation(s)
- Vasiliy I Reshetnyak
- Department of Propaedeutic of Internal Diseases and Gastroenterology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Igor V Maev
- Department of Propaedeutic of Internal Diseases and Gastroenterology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Alexandr I Burmistrov
- Department of Propaedeutic of Internal Diseases and Gastroenterology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Igor A Chekmazov
- Central Clinical Hospital with Polyclinic, Presidential Administration of the Russian Federation, Moscow 121359, Russia
| | - Tatiana I Karlovich
- Central Clinical Hospital with Polyclinic, Presidential Administration of the Russian Federation, Moscow 121359, Russia
| |
Collapse
|
113
|
Cui M, Chen S, Zhang S, Cheng A, Pan Y, Huang J, Hu Z, Zhang X, Wang M, Zhu D, Chen S, Liu M, Zhao X, Wu Y, Yang Q, Liu Y, Zhang L, Yu Y, Yin Z, Jing B, Rehman MU, Tian B, Pan L, Jia R. Duck Tembusu Virus Utilizes miR-221-3p Expression to Facilitate Viral Replication via Targeting of Suppressor of Cytokine Signaling 5. Front Microbiol 2020; 11:596. [PMID: 32373087 PMCID: PMC7186361 DOI: 10.3389/fmicb.2020.00596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/18/2020] [Indexed: 12/26/2022] Open
Abstract
Duck Tembusu virus (DTMUV), a member of Flaviviridae family, causes acute egg-drop syndrome in ducks. MicroRNAs (miRNAs) have been found to be involved in various biological processes, including tumor genesis, viral infection, and immune response. However, the functional effect of miRNAs on DTMUV replication remains largely unclear. This study aimed to elucidate the role of host microRNA-221-3p (miR-221-3p) in regulating DTMUV replication. Here, we indicated that the expression of miR-221-3p was significantly upregulated in duck embryo fibroblasts (DEFs) during DTMUV infection. Transfection of miR-221-3p mimic significantly reduced interferon (IFN) β production, whereas transfection of miR-221-3p inhibitor conversely significantly increased the expression of IFN-β in DTMUV-infected DEF. Moreover, we found that viral RNA copies, viral E protein expression level, and virus titer, which represent the replication and proliferation of virus, were all enhanced when transfecting the miR-221-3p mimic into DEF; reverse results were also observed by transfecting the miR-221-3p inhibitor. We also found that the expression of suppressor of cytokine signaling 5 (SOCS5) was downregulated in DEF infected with DTMUV. Besides, we further proved that SOCS5 is a target of miR-221-3p and that miR-221-3p could negatively modulate SOCS5 expression at both mRNA and protein levels. Finally, our results showed that overexpression of SOCS5 inhibited DTMUV replication and knockdown of SOCS5 enhanced DTMUV replication. Thus, our findings reveal a novel host evasion mechanism adopted by DTMUV via miR-221-3p, which may hew out novel strategies for designing miRNA-based vaccines and therapies.
Collapse
Affiliation(s)
- Min Cui
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shuling Chen
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuhong Pan
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiqiang Hu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingcui Zhang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mujeeb Ur Rehman
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
114
|
Luo J, Teng M, Zai X, Tang N, Zhang Y, Mandviwala A, Reddy VRAP, Baigent S, Yao Y, Nair V. Efficient Mutagenesis of Marek's Disease Virus-Encoded microRNAs Using a CRISPR/Cas9-Based Gene Editing System. Viruses 2020; 12:E466. [PMID: 32325942 PMCID: PMC7232411 DOI: 10.3390/v12040466] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 01/06/2023] Open
Abstract
The virus-encoded microRNAs (miRNAs) have been demonstrated to have important regulatory roles in herpesvirus biology, including virus replication, latency, pathogenesis and/or tumorigenesis. As an emerging efficient tool for gene editing, the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system has been successfully applied in manipulating the genomes of large DNA viruses. Herein, utilizing the CRISPR/Cas9 system with a double-guide RNAs transfection/virus infection strategy, we have established a new platform for mutagenesis of viral miRNAs encoded by the Marek's disease virus serotype 1 (MDV-1), an oncogenic alphaherpesvirus that can induce rapid-onset T-cell lymphomas in chickens. A series of miRNA-knocked out (miR-KO) mutants with deletions of the Meq- or the mid-clustered miRNAs, namely RB-1B∆Meq-miRs, RB-1B∆M9-M2, RB-1B∆M4, RB-1B∆M9 and RB-1B∆M11, were generated from vvMDV strain RB-1B virus. Interestingly, mutagenesis of the targeted miRNAs showed changes in the in vitro virus growth kinetics, which is consistent with that of the in vivo proliferation curves of our previously reported GX0101 mutants produced by the bacterial artificial chromosome (BAC) clone and Rec E/T homologous recombination techniques. Our data demonstrate that the CRISPR/Cas9-based gene editing is a simple, efficient and relatively nondisruptive approach for manipulating the small non-coding genes from the genome of herpesvirus and will undoubtedly contribute significantly to the future progress in herpesvirus biology.
Collapse
Affiliation(s)
- Jun Luo
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
- Key Laboratory of Animal Immunology, Ministry of Agriculture & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Man Teng
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
- Key Laboratory of Animal Immunology, Ministry of Agriculture & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xusheng Zai
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou 225009, China
| | - Na Tang
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
- Binzhou Animal Science and Veterinary Medicine Academy & UK-China Centre of Excellence for Research on Avian Diseases, Binzhou 256600, China
| | - Yaoyao Zhang
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Ahmedali Mandviwala
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
| | - Vishwanatha R. A. P. Reddy
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
| | - Susan Baigent
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
| |
Collapse
|
115
|
Prasad AN, Ronk AJ, Widen SG, Wood TG, Basler CF, Bukreyev A. Ebola Virus Produces Discrete Small Noncoding RNAs Independently of the Host MicroRNA Pathway Which Lack RNA Interference Activity in Bat and Human Cells. J Virol 2020; 94:e01441-19. [PMID: 31852785 PMCID: PMC7158719 DOI: 10.1128/jvi.01441-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
The question as to whether RNA viruses produce bona fide microRNAs (miRNAs) during infection has been the focus of intense research and debate. Recently, several groups using computational prediction methods have independently reported possible miRNA candidates produced by Ebola virus (EBOV). Additionally, efforts to detect these predicted RNA products in samples from infected animals and humans have produced positive results. However, these studies and their conclusions are predicated on the assumption that these RNA products are actually processed through, and function within, the miRNA pathway. In the present study, we performed the first rigorous assessment of the ability of filoviruses to produce miRNA products during infection of both human and bat cells. Using next-generation sequencing, we detected several candidate miRNAs from both EBOV and the closely related Marburg virus (MARV). Focusing our validation efforts on EBOV, we found evidence contrary to the idea that these small RNA products function as miRNAs. The results of our study are important because they highlight the potential pitfalls of relying on computational methods alone for virus miRNA discovery.IMPORTANCE Here, we report the discovery, via deep sequencing, of numerous noncoding RNAs (ncRNAs) derived from both EBOV and MARV during infection of both bat and human cell lines. In addition to identifying several novel ncRNAs from both viruses, we identified two EBOV ncRNAs in our sequencing data that were near-matches to computationally predicted viral miRNAs reported in the literature. Using molecular and immunological techniques, we assessed the potential of EBOV ncRNAs to function as viral miRNAs. Importantly, we found little evidence supporting this hypothesis. Our work is significant because it represents the first rigorous assessment of the potential for EBOV to encode viral miRNAs and provides evidence contrary to the existing paradigm regarding the biological role of computationally predicted EBOV ncRNAs. Moreover, our work highlights further avenues of research regarding the nature and function of EBOV ncRNAs.
Collapse
Affiliation(s)
- Abhishek N Prasad
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, Texas, USA
- The University of Texas Medical Branch, Galveston, Texas, USA
| | - Adam J Ronk
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, Texas, USA
- The University of Texas Medical Branch, Galveston, Texas, USA
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Thomas G Wood
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Christopher F Basler
- Center of Microbial Pathogenesis, Institute of Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Alexander Bukreyev
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, Texas, USA
- The University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
116
|
Heidari M, Zhang L, Zhang H. MicroRNA profiling in the bursae of Marek's disease virus-infected resistant and susceptible chicken lines. Genomics 2020; 112:2564-2571. [PMID: 32059995 DOI: 10.1016/j.ygeno.2020.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/14/2020] [Accepted: 02/10/2020] [Indexed: 12/16/2022]
Abstract
Marek's disease (MD) is a lymphoproliferative disease of domestic chickens caused by a cell-associated oncogenic alpha-herpesvirus, Marek's disease virus (MDV). Clinical signs of MD include bursal/thymic atrophy, neurologic disorders, and T cell lymphomas. MiRNAs play key roles in regulation of gene expression by targeting translational suppression or mRNA degradation. MDV encodes miRNAs that are associated with viral pathogenicity and oncogenesis. In this study, we performed miRNA sequencing in the bursal tissues, non-tumorous but viral-induced atrophied lymphoid organ, from control and infected MD-resistant and susceptible chickens at 21 days post infection. In addition to some known miRNAs, a minimum of 300 novel miRNAs were identified in each group that mapped to the chicken genome with no sequence homology to existing miRNAs in chicken miRbase. Comparative analysis identified 54 deferentially expressed miRNAs between the chicken lines that might shed light on underlying mechanism of bursal atrophy and resistance or susceptibility to MD.
Collapse
Affiliation(s)
- Mohammad Heidari
- Avian Disease and Oncology Laboratory, Agriculture Research Service, United States Department of Agriculture, East Lansing, MI, USA.
| | - Lei Zhang
- Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, No 4899, Jv Ye Street, Changchun, Jilin 130112, China
| | - Huanmin Zhang
- Avian Disease and Oncology Laboratory, Agriculture Research Service, United States Department of Agriculture, East Lansing, MI, USA
| |
Collapse
|
117
|
Mishra R, Kumar A, Ingle H, Kumar H. The Interplay Between Viral-Derived miRNAs and Host Immunity During Infection. Front Immunol 2020; 10:3079. [PMID: 32038626 PMCID: PMC6989438 DOI: 10.3389/fimmu.2019.03079] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/17/2019] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs are short non-coding RNAs that play a crucial role in the regulation of gene expression during cellular processes. The host-encoded miRNAs are known to modulate the antiviral defense during viral infection. In the last decade, multiple DNA and RNA viruses have been shown to produce miRNAs known as viral miRNAs (v-miRNAs) so as to evade the host immune response. In this review, we highlight the origin and biogenesis of viral miRNAs during the viral lifecycle. We also explore the role of viral miRNAs in immune evasion and hence in maintaining chronic infection and disease. Finally, we offer insights into the underexplored role of viral miRNAs as potential targets for developing therapeutics for treating complex viral diseases.
Collapse
Affiliation(s)
- Richa Mishra
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Ashish Kumar
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Harshad Ingle
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Himanshu Kumar
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
- Laboratory of Host Defense, WPI Immunology, Frontier Research Centre, Osaka University, Osaka, Japan
| |
Collapse
|
118
|
Conti I, Varano G, Simioni C, Laface I, Milani D, Rimondi E, Neri LM. miRNAs as Influencers of Cell-Cell Communication in Tumor Microenvironment. Cells 2020; 9:cells9010220. [PMID: 31952362 PMCID: PMC7016744 DOI: 10.3390/cells9010220] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
microRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at the posttranscriptional level, inducing the degradation of the target mRNA or translational repression. MiRNAs are involved in the control of a multiplicity of biological processes, and their absence or altered expression has been associated with a variety of human diseases, including cancer. Recently, extracellular miRNAs (ECmiRNAs) have been described as mediators of intercellular communication in multiple contexts, including tumor microenvironment. Cancer cells cooperate with stromal cells and elements of the extracellular matrix (ECM) to establish a comfortable niche to grow, to evade the immune system, and to expand. Within the tumor microenvironment, cells release ECmiRNAs and other factors in order to influence and hijack the physiological processes of surrounding cells, fostering tumor progression. Here, we discuss the role of miRNAs in the pathogenesis of multicomplex diseases, such as Alzheimer’s disease, obesity, and cancer, focusing on the contribution of both intracellular miRNAs, and of released ECmiRNAs in the establishment and development of cancer niche. We also review growing evidence suggesting the use of miRNAs as novel targets or potential tools for therapeutic applications.
Collapse
Affiliation(s)
- Ilaria Conti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Gabriele Varano
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Carolina Simioni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Ilaria Laface
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Daniela Milani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Erika Rimondi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Luca M. Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
- LTTA—Electron Microscopy Center, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-0532-455940
| |
Collapse
|
119
|
Lu J, Shen Z, Lu L, Xu D. Cyprinid Herpesvirus 2 miR-C12 Attenuates Virus-Mediated Apoptosis and Promotes Virus Propagation by Targeting Caspase 8. Front Microbiol 2019; 10:2923. [PMID: 31921084 PMCID: PMC6930231 DOI: 10.3389/fmicb.2019.02923] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/04/2019] [Indexed: 12/27/2022] Open
Abstract
DNA viruses, most notably members of the herpesvirus family, generally encode miRNAs to mediate both virus and host genes expression. We previously demonstrated that Cyprinid herpesvirus 2 (CyHV-2) encodes 17 miRNAs that are involved in innate immune signaling pathways. In this study, the function of CyHV-2-encoded miRNA was further investigated in GiCF cells. We found that miR-C4 promoted CyHV-2-induced apoptosis, while miR-C12 decreased CyHV-2-induced apoptosis. miR-C12 targeted to 3' UTR sequence of caspase 8 and suppressed the expression of caspase 8. Besides, the silencing of caspase 8 by specific siRNA led to the attenuation of CyHV-2-induced apoptosis. Furthermore, caspase 8 was downregulated in cells transfected with miR-C12 during CyHV-2 infection. Overexpression of miR-C12 significantly suppressed CyHV-2-induced apoptosis, while silencing of miR-C12 promoted CyHV-2-induced apoptosis. Finally, inhibition of miR-C12 resulted in suppression of CyHV-2 propagation, overexpression of miR-C12, and CASP8-siRNA-1 facilitated CyHV-2 propagation. Taken together, our results demonstrated that CyHV-2-encoded miR-C12 to suppress virus-induced apoptosis and promoted virus replication by targeting caspase 8.
Collapse
Affiliation(s)
- Jianfei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Zhaoyuan Shen
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, China
| | - Dan Xu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, China.,Guangxi Key Laboratory for Marine Biotechnology, Guangxi Institute of Oceanography, Guangxi Academy of Sciences, Beihai, China
| |
Collapse
|
120
|
A DNA virus-encoded immune antagonist fully masks the potent antiviral activity of RNAi in Drosophila. Proc Natl Acad Sci U S A 2019; 116:24296-24302. [PMID: 31712431 DOI: 10.1073/pnas.1909183116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Coevolution of viruses and their hosts may lead to viral strategies to avoid, evade, or suppress antiviral immunity. An example is antiviral RNA interference (RNAi) in insects: the host RNAi machinery processes viral double-stranded RNA into small interfering RNAs (siRNAs) to suppress viral replication, whereas insect viruses encode suppressors of RNAi, many of which inhibit viral small interfering RNA (vsiRNA) production. Yet, many studies have analyzed viral RNAi suppressors in heterologous systems, due to the lack of experimental systems to manipulate the viral genome of interest, raising questions about in vivo functions of RNAi suppressors. To address this caveat, we generated an RNAi suppressor-defective mutant of invertebrate iridescent virus 6 (IIV6), a large DNA virus in which we previously identified the 340R protein as a suppressor of RNAi. Loss of 340R did not affect vsiRNA production, indicating that 340R binds siRNA duplexes to prevent RNA-induced silencing complex assembly. Indeed, vsiRNAs were not efficiently loaded into Argonaute 2 during wild-type IIV6 infection. Moreover, IIV6 induced a limited set of mature microRNAs in a 340R-dependent manner, most notably miR-305-3p, which we attribute to stabilization of the miR-305-5p:3p duplex by 340R. The IIV6 340R deletion mutant did not have a replication defect in cells, but was strongly attenuated in adult Drosophila This in vivo replication defect was completely rescued in RNAi mutant flies, indicating that 340R is a bona fide RNAi suppressor, the absence of which uncovers a potent antiviral immune response that suppresses virus accumulation ∼100-fold. Together, our work indicates that viral RNAi suppressors may completely mask antiviral immunity.
Collapse
|
121
|
Witteveldt J, Ivens A, Macias S. Inhibition of Microprocessor Function during the Activation of the Type I Interferon Response. Cell Rep 2019; 23:3275-3285. [PMID: 29898398 PMCID: PMC6019736 DOI: 10.1016/j.celrep.2018.05.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/01/2018] [Accepted: 05/15/2018] [Indexed: 11/26/2022] Open
Abstract
Type I interferons (IFNs) are central components of the antiviral response. Most cell types respond to viral infections by secreting IFNs, but the mechanisms that regulate correct expression of these cytokines are not completely understood. Here, we show that activation of the type I IFN response regulates the expression of miRNAs in a post-transcriptional manner. Activation of IFN expression alters the binding of the Microprocessor complex to pri-miRNAs, reducing its processing rate and thus leading to decreased levels of a subset of mature miRNAs in an IRF3-dependent manner. The rescue of Microprocessor function during the antiviral response downregulates the levels of IFN-β and IFN-stimulated genes. All these findings support a model by which the inhibition of Microprocessor activity is an essential step to induce a robust type I IFN response in mammalian cells.
Collapse
Affiliation(s)
- Jeroen Witteveldt
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Alasdair Ivens
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Sara Macias
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK.
| |
Collapse
|
122
|
Withers JB, Mondol V, Pawlica P, Rosa-Mercado NA, Tycowski KT, Ghasempur S, Torabi SF, Steitz JA. Idiosyncrasies of Viral Noncoding RNAs Provide Insights into Host Cell Biology. Annu Rev Virol 2019; 6:297-317. [PMID: 31039329 PMCID: PMC6768742 DOI: 10.1146/annurev-virology-092818-015811] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Like their host cells, many viruses express noncoding RNAs (ncRNAs). Despite the technical challenge of ascribing function to ncRNAs, diverse biological roles for virally expressed ncRNAs have been described, including regulation of viral replication, modulation of host gene expression, host immune evasion, cellular survival, and cellular transformation. Insights into conserved interactions between viral ncRNAs and host cell machinery frequently lead to novel findings concerning host cell biology. In this review, we discuss the functions and biogenesis of ncRNAs produced by animal viruses. Specifically, we describe noncanonical pathways of microRNA (miRNA) biogenesis and novel mechanisms used by viruses to manipulate miRNA and messenger RNA stability. We also highlight recent advances in understanding the function of viral long ncRNAs and circular RNAs.
Collapse
Affiliation(s)
- Johanna B Withers
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Vanessa Mondol
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
| | - Paulina Pawlica
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
| | - Nicolle A Rosa-Mercado
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
| | - Kazimierz T Tycowski
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Salehe Ghasempur
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
| | - Seyed F Torabi
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| |
Collapse
|
123
|
López P, Girardi E, Pfeffer S. [Importance of cellular microRNAs in the regulation of viral infections]. Med Sci (Paris) 2019; 35:667-673. [PMID: 31532379 DOI: 10.1051/medsci/2019130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Viruses are obligatory intracellular parasites that rely on a wide range of cellular factors to successfully accomplish their infectious cycle. Among those, micro (mi)RNAs have recently emerged as important modulators of viral infections. These small regulatory molecules act as repressors of gene expression. During infection, miRNAs can function by targeting either cellular or viral RNAs. In this review, we will recapitulate what has been reported to date on this interplay between cellular miRNAs and viruses and the effect on the infection. Furthermore, we will briefly discuss the possibilities of interfering with the infection through the modulation of this pathway to develop novel antiviral therapies.
Collapse
Affiliation(s)
- Paula López
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15, rue René Descartes, 67084 Strasbourg, France
| | - Erika Girardi
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15, rue René Descartes, 67084 Strasbourg, France
| | - Sébastien Pfeffer
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15, rue René Descartes, 67084 Strasbourg, France
| |
Collapse
|
124
|
Gallo A, Miele M, Badami E, Conaldi PG. Molecular and cellular interplay in virus-induced tumors in solid organ recipients. Cell Immunol 2019. [DOI: 10.1016/j.cellimm.2018.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
125
|
Marek's Disease Virus-Encoded MicroRNA 155 Ortholog Critical for the Induction of Lymphomas Is Not Essential for the Proliferation of Transformed Cell Lines. J Virol 2019; 93:JVI.00713-19. [PMID: 31189706 PMCID: PMC6694823 DOI: 10.1128/jvi.00713-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/05/2019] [Indexed: 01/10/2023] Open
Abstract
Marek’s disease virus (MDV) is an alphaherpesvirus associated with Marek’s disease (MD), a highly contagious neoplastic disease of chickens. MD serves as an excellent model for studying virus-induced T-cell lymphomas in the natural chicken hosts. Among the limited set of genes associated with MD oncogenicity, MDV-miR-M4, a highly expressed viral ortholog of the oncogenic miR-155, has received extensive attention due to its direct role in the induction of lymphomas. Using a targeted CRISPR-Cas9-based gene editing approach in MDV-transformed lymphoblastoid cell lines, we show that MDV-miR-M4, despite its critical role in the induction of tumors, is not essential for maintaining the transformed phenotype and continuous proliferation. As far as we know, this was the first study in which precise editing of an oncogenic miRNA was carried out in situ in MD lymphoma-derived cell lines to demonstrate that it is not essential in maintaining the transformed phenotype. MicroRNAs (miRNAs) are small noncoding RNAs with profound regulatory roles in many areas of biology, including cancer. MicroRNA 155 (miR-155), one of the extensively studied multifunctional miRNAs, is important in several human malignancies such as diffuse large B cell lymphoma and chronic lymphocytic leukemia. Moreover, miR-155 orthologs KSHV-miR-K12-11 and MDV-miR-M4, encoded by Kaposi’s sarcoma-associated herpesvirus (KSHV) and Marek’s disease virus (MDV), respectively, are also involved in oncogenesis. In MDV-induced T-cell lymphomas and in lymphoblastoid cell lines derived from them, MDV-miR-M4 is highly expressed. Using excellent disease models of infection in natural avian hosts, we showed previously that MDV-miR-M4 is critical for the induction of T-cell lymphomas as mutant viruses with precise deletions were significantly compromised in their oncogenicity. However, those studies did not elucidate whether continued expression of MDV-miR-M4 is essential for maintaining the transformed phenotype of tumor cells. Here using an in situ CRISPR/Cas9 editing approach, we deleted MDV-miR-M4 from the MDV-induced lymphoma-derived lymphoblastoid cell line MDCC-HP8. Precise deletion of MDV-miR-M4 was confirmed by PCR, sequencing, quantitative reverse transcription-PCR (qRT-PCR), and functional analysis. Continued proliferation of the MDV-miR-M4-deleted cell lines demonstrated that MDV-miR-M4 expression is not essential for maintaining the transformed phenotype, despite its initial critical role in the induction of lymphomas. Ability to examine the direct role of oncogenic miRNAs in situ in tumor cell lines is valuable in delineating distinct determinants and pathways associated with the induction or maintenance of transformation in cancer cells and will also contribute significantly to gaining further insights into the biology of oncogenic herpesviruses. IMPORTANCE Marek’s disease virus (MDV) is an alphaherpesvirus associated with Marek’s disease (MD), a highly contagious neoplastic disease of chickens. MD serves as an excellent model for studying virus-induced T-cell lymphomas in the natural chicken hosts. Among the limited set of genes associated with MD oncogenicity, MDV-miR-M4, a highly expressed viral ortholog of the oncogenic miR-155, has received extensive attention due to its direct role in the induction of lymphomas. Using a targeted CRISPR-Cas9-based gene editing approach in MDV-transformed lymphoblastoid cell lines, we show that MDV-miR-M4, despite its critical role in the induction of tumors, is not essential for maintaining the transformed phenotype and continuous proliferation. As far as we know, this was the first study in which precise editing of an oncogenic miRNA was carried out in situ in MD lymphoma-derived cell lines to demonstrate that it is not essential in maintaining the transformed phenotype.
Collapse
|
126
|
A Gammaherpesvirus MicroRNA Targets EWSR1 (Ewing Sarcoma Breakpoint Region 1) In Vivo To Promote Latent Infection of Germinal Center B Cells. mBio 2019; 10:mBio.00996-19. [PMID: 31363027 PMCID: PMC6667617 DOI: 10.1128/mbio.00996-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Gammaherpesviruses, including the human pathogens Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), directly contribute to the genesis of multiple types of malignancies. In vivo, these viruses infect B cells and manipulate B cell biology to establish lifelong infection. To accomplish this, gammaherpesviruses employ an array of gene products, including miRNAs, short noncoding RNAs that bind to and repress protein synthesis from specific target mRNAs. The in vivo relevance of repression of targets of gammaherpesvirus miRNAs remains highly elusive. Here, we identified a murine gammaherpesvirus miRNA as critical for in vivo infection and validated the host mRNA EWSR1 (Ewing sarcoma breakpoint region 1) as the predominant target for this miRNA. Using a novel technology, we demonstrated that repression of EWSR1 was essential for in vivo infection of the critical B cell reservoir. These findings provide the first in vivo demonstration of the significance of repression of a specific host mRNA by a gammaherpesvirus miRNA. Gammaherpesviruses, including the human pathogens Epstein-Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV), directly contribute to the genesis of multiple types of malignancies, including B cell lymphomas. In vivo, these viruses infect B cells and manipulate B cell biology to establish lifelong latent infection. To accomplish this, gammaherpesviruses employ an array of gene products, including microRNAs (miRNAs). Although numerous host mRNA targets of gammaherpesvirus miRNAs have been identified, the in vivo relevance of repression of these targets remains elusive due to species restriction. Murine gammaherpesvirus 68 (MHV68) provides a robust virus-host system to dissect the in vivo function of conserved gammaherpesvirus genetic elements. We identified here MHV68 mghv-miR-M1-7-5p as critical for in vivo infection and then validated host EWSR1 (Ewing sarcoma breakpoint region 1) as the predominant target for this miRNA. Using novel, target-specific shRNA-expressing viruses, we determined that EWSR1 repression in vivo was essential for germinal center B cell infection. These findings provide the first in vivo demonstration of the biological significance of repression of a specific host mRNA by a gammaherpesvirus miRNA.
Collapse
|
127
|
Weng SL, Huang KY, Weng JTY, Hung FY, Chang TH, Lee TY. Genome-wide discovery of viral microRNAs based on phylogenetic analysis and structural evolution of various human papillomavirus subtypes. Brief Bioinform 2019; 19:1102-1114. [PMID: 28531277 DOI: 10.1093/bib/bbx046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Indexed: 12/18/2022] Open
Abstract
In mammals, microRNAs (miRNAs) play key roles in controlling posttranscriptional regulation through binding to the mRNAs of target genes. Recently, it was discovered that viral miRNAs may be involved in human cancers and diseases. It is likely that viral miRNAs help viruses enter the latent phase of their life cycle and become undetected by the host's immune system, while increasing the host's risk for cancer development. Cervical cancer is typically related to the infection of human papillomavirus (HPV) through sexual transmission. To further understand the molecular mechanisms underlying the associations of HPV infection with genital diseases, we developed a systematic method for viral miRNA identification and viral miRNA-mediated regulatory network construction based on genome-wide sequence analysis. The complete genomes of certain high-risk HPV subtypes were used to predict putative viral pre-miRNAs by bioinformatics approaches. In addition, small RNA libraries in human cervical lesions from existing publications were collected to validate the predicted HPV pre-miRNAs. For the construction of virally encoded miRNA-mediated regulatory network of HPV infection, cervical squamous epithelial carcinoma gene expression data were extracted from the RNA sequencing platform in The Cancer Genome Atlas; the differentially expressed genes were used to identify the putative targets of viral miRNAs. Predicted cellular target genes of HPV-encoded miRNAs provide an overview of these viral miRNA's putative functions. Finally, a large-scale genome analysis was carried out to examine the phylogenetic relationship and structural evolution among genital HPV types that have the potential to cause genital cancer. In this study, we discovered putative HPV-encoded miRNAs, which were validated against the small RNA libraries in human cervical lesions. Furthermore, as indicated by their biological functions, host genes targeted by HPV-encoded miRNAs may play significant roles in virus infection and carcinogenesis. These viral miRNAs pose as promising candidates for the development of antiviral drugs. More importantly, the identified subtype-specific miRNAs have the potential to be used as biomarkers for HPV subtype determination.
Collapse
Affiliation(s)
| | - Kai-Yao Huang
- Department of Computer Science and Engineering, Graduate Program in Biomedical Informatics, Yuan Ze University
| | - Julia Tzu-Ya Weng
- Graduate Program of Biomedical Informatics at Yuan Ze University in Taiwan
| | | | - Tzu-Hao Chang
- Institute of Biomedical Informatics, Taipei Medical University
| | - Tzong-Yi Lee
- Department of Computer Science and Engineering, Graduate Program in Biomedical Informatics, Yuan Ze University
| |
Collapse
|
128
|
Ressel S, Rosca A, Gordon K, Buck AH. Extracellular RNA in viral-host interactions: Thinking outside the cell. WILEY INTERDISCIPLINARY REVIEWS. RNA 2019; 10:e1535. [PMID: 30963709 PMCID: PMC6617787 DOI: 10.1002/wrna.1535] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/15/2022]
Abstract
Small RNAs and their associated RNA interference (RNAi) pathways underpin diverse mechanisms of gene regulation and genome defense across all three kingdoms of life and are integral to virus-host interactions. In plants, fungi and many animals, an ancestral RNAi pathway exists as a host defense mechanism whereby viral double-stranded RNA is processed to small RNAs that enable recognition and degradation of the virus. While this antiviral RNAi pathway is not generally thought to be present in mammals, other RNAi mechanisms can influence infection through both viral- and host-derived small RNAs. Furthermore, a burgeoning body of data suggests that small RNAs in mammals can function in a non-cell autonomous manner to play various roles in cell-to-cell communication and disease through their transport in extracellular vesicles. While vesicular small RNAs have not been proposed as an antiviral defense pathway per se, there is increasing evidence that the export of host- or viral-derived RNAs from infected cells can influence various aspects of the infection process. This review discusses the current knowledge of extracellular RNA functions in viral infection and the technical challenges surrounding this field of research. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action.
Collapse
Affiliation(s)
- Sarah Ressel
- Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Adelina Rosca
- Department of VirologyCarol Davila University of Medicine and PharmacyBucharestRomania
| | - Katrina Gordon
- Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Amy H. Buck
- Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
129
|
Freer G, Maggi F, Pistello M. Virome and Inflammasomes, a Finely Tuned Balance with Important Consequences for the Host Health. Curr Med Chem 2019; 26:1027-1044. [PMID: 28982318 DOI: 10.2174/0929867324666171005112921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 07/06/2017] [Accepted: 07/27/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND The virome is a network of viruses normally inhabiting humans. It forms a conspicuous portion of the so-called microbiome, once generically referred to as resident flora. Indeed, viruses infecting humans without leading to clinical disease are increasingly recognized as part of the microbiome and have an impact on the development of our immune system. In addition, they activate inflammasomes, multiprotein complexes that assemble in cells and that are responsible for the downstream effects of sensing pathogens. OBJECTIVE This review aims at summarizing the evidence on the role of the virome in modulating inflammation and emphasizes evidence for Anelloviruses as useful molecular markers to monitor inflammatory processes and immune system competence. METHOD We carried out a review of the literature published in the last 5 years and summarized older literature to take into account ground-breaking discoveries concerning inflammasome assembly and virome. RESULTS A massive amount of data recently emerging demonstrate that the microbiome closely reflects what we eat, and many other unexpected variables. Composition, location, and amount of the microbiome have an impact on innate and adaptive immune defences. Viruses making up the virome contribute to shaping the immune system. Anelloviruses, the best known of such viruses, are present in most human beings, persistently without causing apparent disease. Depending on their interplay with such viruses, inflammasomes instruct host defences to tolerate or forfeit a specific microorganism. CONCLUSION The virome plays an important role in shaping human immune defences and contributes to inflammatory processes by quenching or increasing them.
Collapse
Affiliation(s)
- Giulia Freer
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy
| | | | - Mauro Pistello
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy.,Virology Unit, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
130
|
Islam MS, Khan MAAK, Murad MW, Karim M, Islam ABMMK. In silico analysis revealed Zika virus miRNAs associated with viral pathogenesis through alteration of host genes involved in immune response and neurological functions. J Med Virol 2019; 91:1584-1594. [PMID: 31095749 DOI: 10.1002/jmv.25505] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND The concurrent Zika Virus (ZIKV) outbreaks in the United States and Northeast Brazil have evoked global surveillance. Zika infection has been correlated with severe clinical symptoms, such as microcephaly, Guillain-Barré syndrome, and other congenital brain abnormalities. Recent data suggest that ZIKV predominantly targets neural progenitor cells leading to neurological impairment. Despite the clinical evidence, detailed experimental mechanism of ZIKV neurotropic pathogenesis has not been fully understood yet. Here we hypothesized that ZIKV produces miRNAs, which target essential host genes involved in various cellular pathways facilitating their survival through immune evasion and progression of disease during brain development. METHODS From genome sequence information using several bioinformatic tools, we predicted pri-miRNAs, pre-miRNAs, and finally the mature miRNAs produced by ZIKV. We also identified their target genes and performed functional enrichment analysis to identify the biological processes associated with these genes. Finally, we analyzed a publicly available RNA-seq data set to determine the altered expression level of the targeted genes. RESULTS From ZIKV genome sequence, we identified and validated 47 putative novel miRNAs. Functional enrichment of the targeted genes demonstrates the involvement of various biological pathways regulating cellular signaling, neurological functions, cancer, and fetal development. The expression analysis of these genes showed that ZIKV-produced miRNAs downregulate the key genes involved in these pathways, which in turn may lead to impaired brain development. CONCLUSIONS Our finding proposes novel ZIKV miRNAs and their targets, which upon experimental validation could help developing new therapeutics to combat ZIKV infection and minimize ZIKV-mediated pathologies.
Collapse
Affiliation(s)
- Md Sajedul Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | | - Md Wahid Murad
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Marwah Karim
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | |
Collapse
|
131
|
Hancock MH, Skalsky RL. Roles of Non-coding RNAs During Herpesvirus Infection. Curr Top Microbiol Immunol 2019; 419:243-280. [PMID: 28674945 DOI: 10.1007/82_2017_31] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Non-coding RNAs (ncRNAs) play essential roles in multiple aspects of the life cycles of herpesviruses and contribute to lifelong persistence of herpesviruses within their respective hosts. In this chapter, we discuss the types of ncRNAs produced by the different herpesvirus families during infection, some of the cellular ncRNAs manipulated by these viruses, and the overall contributions of ncRNAs to the viral life cycle, influence on the host environment, and pathogenesis.
Collapse
Affiliation(s)
- Meaghan H Hancock
- Vaccine and Gene Therapy Institute at Oregon Health and Science University, Beaverton, OR, USA
| | - Rebecca L Skalsky
- Vaccine and Gene Therapy Institute at Oregon Health and Science University, Beaverton, OR, USA.
| |
Collapse
|
132
|
Jiao Y, Wang J, Deng R, Yu X, Wang X. AcMNPV-miR-3 is a miRNA encoded by Autographa californica nucleopolyhedrovirus and regulates the viral infection by targeting ac101. Virus Res 2019; 267:49-58. [PMID: 31077766 DOI: 10.1016/j.virusres.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 01/04/2023]
Abstract
MicroRNAs (miRNAs), which are small noncoding RNAs found in plants, animals, and many viruses, regulate various biological processes. Our group has previously reported the first miRNA encoded by Autographa californica multiple Nucleopolyhedrovirus (AcMNPV), AcMNPV-miR-1, which regulates the expression of three viral genes. This study characterizes another miRNA encoded by AcMNPV, AcMNPV-miR-3. This miRNA is located on the opposite strand of the viral gene ac101 coding sequence in the AcMNPV genome, and it can be detected at 6 h post-infection and accumulated to a peak around 12 h post-infection in AcMNPV infected Sf9 cells. Five viral genes (ac101, ac23, ac25, ac86, and ac98) were verified to be regulated by AcMNPV-miR-3. Ac101 was markedly down-regulated by AcMNPV-miR-3 that may be via a siRNA-like cleavage mode. Administrating excessive AcMNPV-miR-3 resulted in decreased production of infectious budded virions (BV) and accelerated the formation of occlusion-derived virions (ODV). These results suggest that AcMNPV-miR-3 may play a regulatory role in BV and ODV production.
Collapse
Affiliation(s)
- Yingzhen Jiao
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jinwen Wang
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Riqiang Deng
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xinghua Yu
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xunzhang Wang
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
133
|
Hussein HAM, Alfhili MA, Pakala P, Simon S, Hussain J, McCubrey JA, Akula SM. miRNAs and their roles in KSHV pathogenesis. Virus Res 2019; 266:15-24. [PMID: 30951791 DOI: 10.1016/j.virusres.2019.03.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman Disease (MCD). Recent mechanistic advances have discerned the importance of microRNAs in the virus-host relationship. KSHV has two modes of replication: lytic and latent phase. KSHV entry into permissive cells, establishment of infection, and maintenance of latency are contingent upon successful modulation of the host miRNA transcriptome. Apart from host cell miRNAs, KSHV also encodes viral miRNAs. Among various cellular and molecular targets, miRNAs are appearing to be key players in regulating viral pathogenesis. Therefore, the use of miRNAs as novel therapeutics has gained considerable attention as of late. This innovative approach relies on either mimicking miRNA species by identical oligonucleotides, or selective silencing of miRNA with specific oligonucleotide inhibitors. Here, we provide an overview of KSHV pathogenesis at the molecular level with special emphasis on the various roles miRNAs play during virus infection.
Collapse
Affiliation(s)
- Hosni A M Hussein
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States; Faculty of Science, Al Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Mohammad A Alfhili
- Department of Medicine (Division of Hematology/Oncology), Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Pranaya Pakala
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Sandra Simon
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Jaffer Hussain
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Shaw M Akula
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States.
| |
Collapse
|
134
|
Bondada MS, Yao Y, Nair V. Multifunctional miR-155 Pathway in Avian Oncogenic Virus-Induced Neoplastic Diseases. Noncoding RNA 2019; 5:ncrna5010024. [PMID: 30871221 PMCID: PMC6468363 DOI: 10.3390/ncrna5010024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/02/2019] [Accepted: 03/08/2019] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that fine-tune the responses of the cell by modulating the cell transcriptome and gene expression. MicroRNA 155 (miR-155) is a conserved multifunctional miRNA involved in multiple roles including the modulation of the immune responses. When deregulated, miR-155 can also contribute to cancer as has been demonstrated in several human malignancies such as diffuse large B cell lymphoma, chronic lymphocytic leukemia, as well as in Epstein⁻Barr virus (EBV)-induced B cell transformation. Avian oncogenic viruses such as Marek's disease virus (MDV), avian leukosis virus (ALV), and reticuloendotheliosis virus (REV) that account for more than 90% of cancers in avian species, also make use of the miR-155 pathway during oncogenesis. While oncogenic retroviruses, such as ALV, activate miR-155 by insertional activation, acutely transforming retroviruses use transduced oncogenes such as v-rel to upregulate miR-155 expression. MDV on the other hand, encodes a functional miR-155 ortholog mdv1-miR-M4, similar to the miR-155 ortholog kshv-miR-K11 present in Kaposi's sarcoma-associated herpesvirus (KSHV). We have shown that mdv1-miR-M4 is critical for the induction of MDV-induced lymphomas further demonstrating the oncogenic potential of miR-155 pathway in cancers irrespective of the diverse etiology. In this review, we discuss on our current understanding of miR-155 function in virus-induced lymphomas focusing primarily on avian oncogenic viruses.
Collapse
Affiliation(s)
- Megha Sravani Bondada
- Avian Oncogenic Viruses, The Pirbright Institute and the UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
| | - Yongxiu Yao
- Avian Oncogenic Viruses, The Pirbright Institute and the UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
| | - Venugopal Nair
- Avian Oncogenic Viruses, The Pirbright Institute and the UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, United Kingdom..
| |
Collapse
|
135
|
Arcà B, Colantoni A, Fiorillo C, Severini F, Benes V, Di Luca M, Calogero RA, Lombardo F. MicroRNAs from saliva of anopheline mosquitoes mimic human endogenous miRNAs and may contribute to vector-host-pathogen interactions. Sci Rep 2019; 9:2955. [PMID: 30814633 PMCID: PMC6393464 DOI: 10.1038/s41598-019-39880-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/04/2019] [Indexed: 12/31/2022] Open
Abstract
During blood feeding haematophagous arthropods inject into their hosts a cocktail of salivary proteins whose main role is to counteract host haemostasis, inflammation and immunity. However, animal body fluids are known to also carry miRNAs. To get insights into saliva and salivary gland miRNA repertoires of the African malaria vector Anopheles coluzzii we used small RNA-Seq and identified 214 miRNAs, including tissue-enriched, sex-biased and putative novel anopheline miRNAs. Noteworthy, miRNAs were asymmetrically distributed between saliva and salivary glands, suggesting that selected miRNAs may be preferentially directed toward mosquito saliva. The evolutionary conservation of a subset of saliva miRNAs in Anopheles and Aedes mosquitoes, and in the tick Ixodes ricinus, supports the idea of a non-random occurrence pointing to their possible physiological role in blood feeding by arthropods. Strikingly, eleven of the most abundant An. coluzzi saliva miRNAs mimicked human miRNAs. Prediction analysis and search for experimentally validated targets indicated that miRNAs from An. coluzzii saliva may act on host mRNAs involved in immune and inflammatory responses. Overall, this study raises the intriguing hypothesis that miRNAs injected into vertebrates with vector saliva may contribute to host manipulation with possible implication for vector-host interaction and pathogen transmission.
Collapse
Affiliation(s)
- Bruno Arcà
- Department of Public Health and Infectious Diseases, "Sapienza" University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Alessio Colantoni
- Department of Biology and Biotechnology, "Sapienza University", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Carmine Fiorillo
- Department of Public Health and Infectious Diseases, "Sapienza" University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Francesco Severini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Marco Di Luca
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Raffaele A Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Fabrizio Lombardo
- Department of Public Health and Infectious Diseases, "Sapienza" University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
136
|
Bussey KA, Murthy S, Reimer E, Chan B, Hatesuer B, Schughart K, Glaunsinger B, Adler H, Brinkmann MM. Endosomal Toll-Like Receptors 7 and 9 Cooperate in Detection of Murine Gammaherpesvirus 68 Infection. J Virol 2019; 93:e01173-18. [PMID: 30429335 PMCID: PMC6340039 DOI: 10.1128/jvi.01173-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022] Open
Abstract
Murine gammaherpesvirus 68 (MHV68) is a small-animal model suitable for study of the human pathogens Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus. Here, we have characterized the roles of the endosomal Toll-like receptor (TLR) escort protein UNC93B, endosomal TLR7, -9, and -13, and cell surface TLR2 in MHV68 detection. We found that the alpha interferon (IFN-α) response of plasmacytoid dendritic cells (pDC) to MHV68 was reduced in Tlr9-/- cells compared to levels in wild type (WT) cells but not completely lost. Tlr7-/- pDC responded similarly to WT. However, we found that in Unc93b-/- pDC, as well as in Tlr7-/-Tlr9-/- double-knockout pDC, the IFN-α response to MHV68 was completely abolished. Thus, the only pattern recognition receptors contributing to the IFN-α response to MHV68 in pDC are TLR7 and TLR9, but the contribution of TLR7 is masked by the presence of TLR9. To address the role of UNC93B and TLR for MHV68 infection in vivo, we infected mice with MHV68. Lytic replication of MHV68 after intravenous infection was enhanced in the lungs, spleen, and liver of UNC93B-deficient mice, in the spleen of TLR9-deficient mice, and in the liver and spleen of Tlr7-/-Tlr9-/- mice. The absence of TLR2 or TLR13 did not affect lytic viral titers. We then compared reactivation of MHV68 from latently infected WT, Unc93b-/-, Tlr7-/-Tlr9-/-, Tlr7-/-, and Tlr9-/- splenocytes. We observed enhanced reactivation and latent viral loads, particularly from Tlr7-/-Tlr9-/- splenocytes compared to levels in the WT. Our data show that UNC93B-dependent TLR7 and TLR9 cooperate in and contribute to detection and control of MHV68 infection.IMPORTANCE The two human gammaherpesviruses, Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), can cause aggressive forms of cancer. These herpesviruses are strictly host specific, and therefore the homolog murine gammaherpesvirus 68 (MHV68) is a widely used model to obtain in vivo insights into the interaction between these two gammaherpesviruses and their host. Like EBV and KSHV, MHV68 establishes lifelong latency in B cells. The innate immune system serves as one of the first lines of host defense, with pattern recognition receptors such as the Toll-like receptors playing a crucial role in mounting a potent antiviral immune response to various pathogens. Here, we shed light on a yet unanticipated role of Toll-like receptor 7 in the recognition of MHV68 in a subset of immune cells called plasmacytoid dendritic cells, as well as on the control of this virus in its host.
Collapse
Affiliation(s)
- Kendra A Bussey
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sripriya Murthy
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Elisa Reimer
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Baca Chan
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Bastian Hatesuer
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
- University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Britt Glaunsinger
- Department of Plant and Microbial Biology, University of California Berkeley, Howard Hughes Medical Institute, Berkeley, California, USA
| | - Heiko Adler
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München-German Research Center for Environmental Health, German Center of Lung Research, Munich, Germany
| | - Melanie M Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
137
|
Wakabayashi K, Machitani M, Tachibana M, Sakurai F, Mizuguchi H. A MicroRNA Derived from Adenovirus Virus-Associated RNAII Promotes Virus Infection via Posttranscriptional Gene Silencing. J Virol 2019; 93:e01265-18. [PMID: 30355689 PMCID: PMC6321910 DOI: 10.1128/jvi.01265-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/11/2018] [Indexed: 12/18/2022] Open
Abstract
The adenovirus (Ad) serotype 5 genome encodes two noncoding small RNAs (virus-associated RNAs I and II [VA-RNAI and -II]), which are approximately 160-nucleotide (nt) RNAs transcribed by RNA polymerase III. It is well known that VA-RNAI supports Ad infection via the inhibition of double-stranded RNA-dependent protein kinase (PKR), which recognizes double-stranded RNA and acts as an antiviral system. Recent studies revealed that VA-RNAs are processed into VA-RNA-derived microRNAs (miRNAs) (mivaRNAI and -II); however, we and another group recently demonstrated that mivaRNAI does not promote Ad replication. On the other hand, the roles of VA-RNAII and mivaRNAII in Ad replication have remained to be clarified. In this study, we demonstrated mivaRNAII-mediated promotion of Ad replication. Transfection with chemically synthesized 3'-mivaRNAII-138, one of the most abundant forms of mivaRNAII, significantly enhanced Ad replication, while the other species of mivaRNAII did not. We identified 8 putative target genes of 3'-mivaRNAII-138 by microarray analysis and in silico analysis. Among the 8 candidates, knockdown of the cullin 4A (CUL4A) gene, which encodes a component of the ubiquitin ligase complex, most significantly enhanced Ad replication. CUL4A expression was significantly suppressed by 3'-mivaRNAII-138 via posttranscriptional gene silencing, indicating that CUL4A is a target gene of 3'-mivaRNAII-138 and mivaRNAII functions as a viral miRNA promoting Ad infection. It has been reported that CUL4A is involved in degradation of c-Jun, which acts as a transcription factor in the Jun-N-terminal kinase (JNK) signaling cascade. Treatment with JNK inhibitors dramatically suppressed Ad replication, suggesting that mivaRNAII-mediated downregulation of CUL4A enhanced JNK signaling and thereby promoted Ad infection.IMPORTANCE Several types of viruses encode viral miRNAs which regulate host and/or viral gene expression via posttranscriptional gene silencing, leading to efficient viral infection. Adenovirus (Ad) expresses miRNAs derived from VA-RNAs (mivaRNAI and -II); however, recent studies have revealed that processing of VA-RNAI into mivaRNAI inhibits Ad replication. Conversely, we demonstrate here that mivaRNAII significantly promotes Ad replication and that mivaRNAII-mediated suppression of CUL4A expression via posttranscriptional gene silencing induces accumulation of c-Jun, leading to promotion of Ad infection. These results exhibited the significance of VA-RNAII for supporting Ad infection through a mechanism complementary to that of VA-RNAI. These observations could provide important clues toward a new perspective on host-virus interaction. Moreover, Ad is widely used as a basic framework for viral vectors and oncolytic viruses. Our findings will help to regulate Ad infection and will promote the development of novel Ad vectors and oncolytic Ad.
Collapse
Affiliation(s)
- K Wakabayashi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - M Machitani
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - M Tachibana
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - F Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Laboratory of Regulatory Sciences for Oligonucleotide Therapeutics, Clinical Drug Development Unit, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - H Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan
- Laboratory of Hepatocyte Differentiation, National Institute of Biomedical Innovation, Osaka, Japan
| |
Collapse
|
138
|
Damas ND, Fossat N, Scheel TKH. Functional Interplay between RNA Viruses and Non-Coding RNA in Mammals. Noncoding RNA 2019; 5:ncrna5010007. [PMID: 30646609 PMCID: PMC6468702 DOI: 10.3390/ncrna5010007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/31/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Abstract
Exploring virus–host interactions is key to understand mechanisms regulating the viral replicative cycle and any pathological outcomes associated with infection. Whereas interactions at the protein level are well explored, RNA interactions are less so. Novel sequencing methodologies have helped uncover the importance of RNA–protein and RNA–RNA interactions during infection. In addition to messenger RNAs (mRNAs), mammalian cells express a great number of regulatory non-coding RNAs, some of which are crucial for regulation of the immune system whereas others are utilized by viruses. It is thus becoming increasingly clear that RNA interactions play important roles for both sides in the arms race between virus and host. With the emerging field of RNA therapeutics, such interactions are promising antiviral targets. In this review, we discuss direct and indirect RNA interactions occurring between RNA viruses or retroviruses and host non-coding transcripts upon infection. In addition, we review RNA virus derived non-coding RNAs affecting immunological and metabolic pathways of the host cell typically to provide an advantage to the virus. The relatively few known examples of virus–host RNA interactions suggest that many more await discovery.
Collapse
Affiliation(s)
- Nkerorema Djodji Damas
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
- Department of Infectious Diseases, Hvidovre Hospital, DK-2650 Hvidovre, Denmark.
| | - Nicolas Fossat
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
- Department of Infectious Diseases, Hvidovre Hospital, DK-2650 Hvidovre, Denmark.
| | - Troels K H Scheel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
- Department of Infectious Diseases, Hvidovre Hospital, DK-2650 Hvidovre, Denmark.
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
139
|
Meki IK, Kariithi HM, Parker AG, Vreysen MJB, Ros VID, Vlak JM, van Oers MM, Abd-Alla AMM. RNA interference-based antiviral immune response against the salivary gland hypertrophy virus in Glossina pallidipes. BMC Microbiol 2018; 18:170. [PMID: 30470195 PMCID: PMC6251114 DOI: 10.1186/s12866-018-1298-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Glossina pallidipes salivary gland hypertrophy virus (GpSGHV; Hytrosaviridae) is a non-occluded dsDNA virus that specifically infects the adult stages of the hematophagous tsetse flies (Glossina species, Diptera: Glossinidae). GpSGHV infections are usually asymptomatic, but unknown factors can result to a switch to acute symptomatic infection, which is characterized by the salivary gland hypertrophy (SGH) syndrome associated with decreased fecundity that can ultimately lead to a colony collapse. It is uncertain how GpSGHV is maintained amongst Glossina spp. populations but RNA interference (RNAi) machinery, a conserved antiviral defense in insects, is hypothesized to be amongst the host’s mechanisms to maintain the GpSGHV in asymptomatic (persistent or latent) infection state. Here, we investigated the involvement of RNAi during GpSGHV infections by comparing the expression of three key RNAi machinery genes, Dicer (DCR), Argonaute (AGO) and Drosha, in artificially virus injected, asymptomatic and symptomatic infected G. pallidipes flies compared to PBS injected (controls) individuals. We further assessed the impact of AGO2 knockdown on virus infection by RT-qPCR quantification of four selected GpSGHV genes, i.e. odv-e66, dnapol, maltodextrin glycosyltransferase (a tegument gene) and SGHV091 (a capsid gene). Results We show that in response to hemocoelic injections of GpSGHV into G. pallidipes flies, increased virus replication was accompanied by significant upregulation of the expression of three RNAi key genes; AGO1, AGO2 and DCR2, and a moderate increase in the expression of Drosha post injection compared to the PBS-injected controls. Furthermore, compared to asymptomatically infected individuals, symptomatic flies showed significant downregulation of AGO1, AGO2 and Drosha, but a moderate increase in the expression of DCR2. Compared to the controls, knockdown of AGO2 did not have a significant impact on virus infection in the flies as evidenced by unaltered transcript levels of the selected GpSGHV genes. Conclusion The upregulation of the expression of the RNAi genes implicate involvement of this machinery in controlling GpSGHV infections and the establishment of symptomatic GpSGHV infections in Glossina. These findings provide a strategic foundation to understand GpSGHV infections and to control latent (asymptomatic) infections in Glossina spp. and thereby control SGHVs in insect production facilities. Electronic supplementary material The online version of this article (10.1186/s12866-018-1298-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irene K Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.,Laboratory of Virology, Wageningen University, 6708, PB, Wageningen, The Netherlands
| | - Henry M Kariithi
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.,Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O Box 57811, Loresho, Nairobi, Kenya
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Marc J B Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Vera I D Ros
- Laboratory of Virology, Wageningen University, 6708, PB, Wageningen, The Netherlands
| | - Just M Vlak
- Laboratory of Virology, Wageningen University, 6708, PB, Wageningen, The Netherlands
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University, 6708, PB, Wageningen, The Netherlands
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.
| |
Collapse
|
140
|
Hooykaas MJG, Soppe JA, De Buhr HM, Kruse E, Wiertz EJHJ, Lebbink RJ. RNA accessibility impacts potency of Tough Decoy microRNA inhibitors. RNA Biol 2018; 15:1410-1419. [PMID: 30339041 PMCID: PMC6284568 DOI: 10.1080/15476286.2018.1537746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules that post-transcriptionally regulate gene expression through silencing of complementary target mRNAs. miRNAs are involved in many biological processes, including cell proliferation, differentiation, cell signaling and cellular defense responses to infection. Strategies that allow for strong and stable suppression of specific microRNA activity are needed to study miRNA functions and to develop therapeutic intervention strategies aimed at interfering with miRNA activity in vivo. One of these classes of miRNA inhibitors are Tough Decoys (TuD) RNAs, which comprise of an imperfect RNA hairpin structure that harbors two opposing miRNA binding sites. Upon developing TuDs targeting Epstein-Barr virus miRNAs, we observed a strong variation in inhibitory potential between different TuD RNAs targeting the same miRNA. We show that the composition of the 'bulge' sequence in the miRNA binding sites has a strong impact on the inhibitory potency of the TuD. Our data implies that miRNA inhibition correlates with the thermodynamic properties of the TuD and that design aimed at lowering the TuD opening energy increases TuD potency. Our study provides specific guidelines for the design and construction of potent decoy-based miRNA inhibitors, which may be used for future therapeutic intervention strategies.
Collapse
Affiliation(s)
- Marjolein J G Hooykaas
- a Department of Medical Microbiology , University Medical Center Utrecht , Utrecht , The Netherlands
| | - Jasper A Soppe
- a Department of Medical Microbiology , University Medical Center Utrecht , Utrecht , The Netherlands
| | - Hendrik M De Buhr
- a Department of Medical Microbiology , University Medical Center Utrecht , Utrecht , The Netherlands
| | - Elisabeth Kruse
- a Department of Medical Microbiology , University Medical Center Utrecht , Utrecht , The Netherlands
| | - Emmanuel J H J Wiertz
- a Department of Medical Microbiology , University Medical Center Utrecht , Utrecht , The Netherlands
| | - Robert J Lebbink
- a Department of Medical Microbiology , University Medical Center Utrecht , Utrecht , The Netherlands
| |
Collapse
|
141
|
Akhbari P, Tobin D, Poterlowicz K, Roberts W, Boyne JR. MCV-miR-M1 Targets the Host-Cell Immune Response Resulting in the Attenuation of Neutrophil Chemotaxis. J Invest Dermatol 2018; 138:2343-2354. [PMID: 29777657 DOI: 10.1016/j.jid.2018.03.1527] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/02/2018] [Accepted: 03/28/2018] [Indexed: 01/07/2023]
Abstract
Virus-encoded microRNAs are emerging as key regulators of persistent infection and host-cell immune evasion. Merkel cell polyomavirus, the predominant etiological agent of Merkel cell carcinoma, encodes a single microRNA, MCV-miR-M1, which targets the oncogenic Merkel cell polyomavirus large T antigen. MCV-miR-M1 has previously been shown to play an important role in the establishment of long-term infection, however, the underlying mechanism is not fully understood. A key unanswered question is whether, in addition to autoregulating large T antigen, MCV-miR-M1 also targets cellular transcripts to orchestrate an environment conducive to persistent infection. To address this, we adopted an RNA sequencing-based approach to identify cellular targets of MCV-miR-M1. Intriguingly, bioinformatics analysis of transcripts that are differentially expressed in cells expressing MCV-miR-M1 revealed several genes implicated in immune evasion. Subsequent target validation led to the identification of the innate immunity protein, SP100, as a direct target of MCV-miR-M1. Moreover, MCV-miR-M1-mediated modulation of SP100 was associated with a significant decrease in CXCL8 secretion, resulting in the attenuation of neutrophil chemotaxis toward Merkel cells harboring synthetic Merkel cell polyomavirus. Based on these observations, we propose that MCV-miR-M1 targets key immune response regulators to help facilitate persistent infection, which is a prerequisite for cellular transformation in Merkel cell carcinoma.
Collapse
Affiliation(s)
- Pouria Akhbari
- Centre for Skin Sciences, School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Desmond Tobin
- Centre for Skin Sciences, School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Krzysztof Poterlowicz
- Centre for Skin Sciences, School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Wayne Roberts
- Pharmacology and Experimental Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK; School of Clinical and Applied Science, Leeds Beckett University, Leeds, UK
| | - James R Boyne
- Centre for Skin Sciences, School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, UK.
| |
Collapse
|
142
|
HCMV miRNA Targets Reveal Important Cellular Pathways for Viral Replication, Latency, and Reactivation. Noncoding RNA 2018; 4:ncrna4040029. [PMID: 30360396 PMCID: PMC6315856 DOI: 10.3390/ncrna4040029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 02/06/2023] Open
Abstract
It is now well appreciated that microRNAs (miRNAs) play a critical role in the lifecycles of many herpes viruses. The human cytomegalovirus (HCMV) replication cycle varies significantly depending on the cell type infected, with lytic replication occurring in fully-differentiated cells such as fibroblasts, endothelial cells, or macrophages, and latent infection occurring in less-differentiated CD14+ monocytes and CD34+ hematopoietic progenitor cells where viral gene expression is severely diminished and progeny virus is not produced. Given their non-immunogenic nature and their capacity to target numerous cellular and viral transcripts, miRNAs represent a particularly advantageous means for HCMV to manipulate viral gene expression and cellular signaling pathways during lytic and latent infection. This review will focus on our current knowledge of HCMV miRNA viral and cellular targets, and discuss their importance in lytic and latent infection, highlight the challenges of studying HCMV miRNAs, and describe how viral miRNAs can help us to better understand the cellular processes involved in HCMV latency.
Collapse
|
143
|
Girardi E, López P, Pfeffer S. On the Importance of Host MicroRNAs During Viral Infection. Front Genet 2018; 9:439. [PMID: 30333857 PMCID: PMC6176045 DOI: 10.3389/fgene.2018.00439] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/14/2018] [Indexed: 12/21/2022] Open
Abstract
Every living organism has to constantly face threats from the environment and deal with a large number of pathogens against which it has to defend itself to survive. Among those, viruses represent a large class of obligatory intracellular parasites, which rely on their host machinery to multiply and propagate. As a result, viruses and their hosts have engaged in an ever-evolving arms race to be able to maintain their existence. The role played by micro (mi)RNAs in this ongoing battle has been extensively studied in the past 15 years and will be the subject of this review article. We will mainly focus on cellular miRNAs and their implication during viral infection in mammals. Thus, we will describe current techniques that can be used to identify miRNAs involved in the modulation of viral infection and to characterize their targets and mode of action. We will also present different reported examples of miRNA-mediated regulation of viruses, which can have a positive outcome either for the host or for the virus. In addition, the mode of action is also of a dual nature, depending on the target of the miRNA. Indeed, the regulatory small RNA can either directly guide an Argonaute protein on a viral transcript, or target a cellular mRNA involved in the host antiviral response. We will then see whether and how viruses respond to miRNA-mediated targeting. Finally, we will discuss how our knowledge of viral targeting by miRNA can be exploited for developing new antiviral therapeutic approaches.
Collapse
Affiliation(s)
- Erika Girardi
- Architecture and Reactivity of RNA, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, Strasbourg, France
| | - Paula López
- Architecture and Reactivity of RNA, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, Strasbourg, France
| | - Sébastien Pfeffer
- Architecture and Reactivity of RNA, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
144
|
Gray ER, Bain R, Varsaneux O, Peeling RW, Stevens MM, McKendry RA. p24 revisited: a landscape review of antigen detection for early HIV diagnosis. AIDS 2018; 32:2089-2102. [PMID: 30102659 PMCID: PMC6139023 DOI: 10.1097/qad.0000000000001982] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
: Despite major advances in HIV testing, early detection of infection at the point of care (PoC) remains a key challenge. Although rapid antibody PoC and laboratory-based nucleic acid amplification tests dominate the diagnostics market, the viral capsid protein p24 is recognized as an alternative early virological biomarker of infection. However, the detection of ultra-low levels of p24 at the PoC has proven challenging. Here we review the landscape of p24 diagnostics to identify knowledge gaps and barriers and help shape future research agendas. Five hundred and seventy-four research articles to May 2018 that propose or evaluate diagnostic assays for p24 were identified and reviewed. We give a brief history of diagnostic development, and the utility of p24 as a biomarker in different populations such as infants, the newly infected, those on preexposure prophylaxis and self-testers. We review the performance of commercial p24 assays and consider elements such as immune complex disruption, resource-poor settings, prevalence, and assay antibodies. Emerging and ultrasensitive assays are reviewed and show a number of promising approaches but further translation has been limited. We summarize studies on the health economic benefits of using antigen testing. Finally, we speculate on the future uses of high-performance p24 assays, particularly, if available in self-test format.
Collapse
Affiliation(s)
- Eleanor R Gray
- London Centre for Nanotechnology, Faculty of Maths and Physical Sciences, University College London
| | - Robert Bain
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London
| | | | | | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London
| | - Rachel A McKendry
- London Centre for Nanotechnology, Faculty of Maths and Physical Sciences, University College London
- Division of Medicine, University College London, London, UK
| |
Collapse
|
145
|
Martelli F, Macera L, Spezia PG, Medici C, Pistello M, Guasti D, Romagnoli P, Maggi F, Giannecchini S. Torquetenovirus detection in exosomes enriched vesicles circulating in human plasma samples. Virol J 2018; 15:145. [PMID: 30236130 PMCID: PMC6149034 DOI: 10.1186/s12985-018-1055-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Torquetenovirus (TTV) belongs to Anelloviridae family, infects nearly all people indefinitely without causing overt disease establishing a fine and successful interaction with the host. Increasing evidence have shown some human viruses exploit extracellular vesicles thereby helping viral persistence in the host. Here, the presence of TTV in extracellular vesicles circulating in human plasma was investigated. METHODS TTV DNA was quantified in plasma-derived exosomes from 122 samples collected from 97 diseased patients and 25 healthy donors. Exosomes enriched vesicles (EEVs) were extracted from plasma and characterized by Nanoparticle tracking analysis, by western blot for presence of tetraspanin CD63, CD81 and annexin II protein and, finally, by electron microscopy (EM). Presence and quantitation of TTV DNA were assessed with an universal single step real-time TaqMan PCR assay. RESULTS Preliminary investigation showed that the human plasma extracted extracellular vesicles exhibited a main size of 70 nm, had concentration of 2.5 × 109/ml, and scored positive for tetraspanin CD63, CD81 and annexin II, typical characteristic of the exosomes vesicles. EEVs extracted from pooled plasma with TTV DNA viremia of 9.7 × 104 copies/ml showed to contain 6.3 × 102 TTV copies/ml, corresponding to 0.65% of total viral load. Important, TTV yield changed significantly following freezing/thawing, detergents and DNAse treatment of plasma before EEVs extraction. EEVs purified by sucrose-density gradient centrifugation and analysis of gradient fraction positive for exosomes marker CD63 harbored 102 TTV copies/ml. Moreover, EM evidenced the presence of TTV-like particles in EEVs. Successive investigation of plasma EEVs from 122 subjects (37 HIV-positive, 20 HCV infected, 20 HBV infected, 20 kidney transplant recipients, and 25 healthy) reported TTV DNA detection in 42 (34%) of the viremic samples (37 were from diseased patients and 5 from healthy people) at a mean level of 4.8 × 103 copies/ml. The examination of EEVs selected samples reported the presence of TTV genogroup 1, 3, 4 and 5, with genogroup 3 highly observed. CONCLUSIONS Collectively, although these observations should be confirmed by further studies, circulation of TTV particles in EEVs opens new avenues and mechanistic insights on the molecular strategies adopted by anelloviruses to persist in the host.
Collapse
Affiliation(s)
- Francesco Martelli
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, I-50134, Florence, Italy
| | - Lisa Macera
- Virology Unit, Pisa University Hospital, Pisa, Italy.,Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy
| | - Pietro Giorgio Spezia
- Virology Unit, Pisa University Hospital, Pisa, Italy.,Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy
| | - Chiara Medici
- Virology Unit, Pisa University Hospital, Pisa, Italy
| | - Mauro Pistello
- Virology Unit, Pisa University Hospital, Pisa, Italy.,Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy
| | - Daniele Guasti
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, I-50134, Florence, Italy
| | - Paolo Romagnoli
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, I-50134, Florence, Italy
| | | | - Simone Giannecchini
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, I-50134, Florence, Italy.
| |
Collapse
|
146
|
Giri BR, Mahato RI, Cheng G. Roles of microRNAs in T cell immunity: Implications for strategy development against infectious diseases. Med Res Rev 2018; 39:706-732. [PMID: 30272819 DOI: 10.1002/med.21539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022]
Abstract
T cell immunity plays a vital role in pathogen infections. MicroRNA (miRNAs) are small, single-stranded noncoding RNAs that regulate T cell immunity by targeting key transcriptional factors, signaling proteins, and cytokines associated with T cell activation, differentiation, and function. The dysregulation of miRNA expression in T cells may lead to specific immune responses and can provide new therapeutic opportunities against various infectious diseases. Here, we summarize recent studies that focus on the roles of miRNAs in T cell immunity and highlight miRNA functions in prevalent infectious diseases. Additionally, we also provide insights into the functions of extracellular vesicle miRNAs and attempt to delineate the mechanism of miRNA sorting into extracellular vesicles and their immunomodulatory functions. Moreover, methodologies and strategies for miRNA delivery against infectious diseases are summarized. Finally, potential strategies for miRNA-based therapies are proposed.
Collapse
Affiliation(s)
- Bikash R Giri
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Guofeng Cheng
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
147
|
HHV-6 encoded small non-coding RNAs define an intermediate and early stage in viral reactivation. NPJ Genom Med 2018; 3:25. [PMID: 30210807 PMCID: PMC6125432 DOI: 10.1038/s41525-018-0064-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022] Open
Abstract
Human herpesvirus 6A and 6B frequently acquires latency. HHV-6 activation has been associated with various human diseases. Germ line inheritance of chromosomally integrated HHV-6 makes viral DNA-based analysis difficult for determination of early stages of viral activation. We characterized early stages of HHV-6 activation using high throughput transcriptomics studies and applied the results to understand virus activation under clinical conditions. Using a latent HHV-6A cell culture model in U2OS cells, we identified an early stage of viral reactivation, which we define as transactivation that is marked by transcription of several viral small non-coding RNAs (sncRNAs) in the absence of detectable increase in viral replication and proteome. Using deep sequencing approaches, we detected previously known as well as a new viral sncRNAs that characterized viral transactivation and differentiated it from latency. Here we show changes in human transcriptome upon viral transactivation that reflect multiple alterations in mitochondria-associated pathways, which was supported by observation of increased mitochondrial fragmentation in virus reactivated cells. Furthermore, we present here a unique clinical case of DIHS/DRESS associated death where HHV-6 sncRNA-U14 was abundantly detected throughout the body of the patient in the presence of low viral DNA. In this study, we have identified a unique and early stage of viral activation that is characterized by abundant transcription of viral sncRNAs, which can serve as an ideal biomarker under clinical conditions.
Collapse
|
148
|
Núñez-Hernández F, Vera G, Sánchez A, Rodríguez F, Núñez JI. African swine fever virus does not express viral microRNAs in experimentally infected pigs. BMC Vet Res 2018; 14:268. [PMID: 30176871 PMCID: PMC6122539 DOI: 10.1186/s12917-018-1601-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 08/28/2018] [Indexed: 01/03/2023] Open
Abstract
Background African swine fever virus (ASFV) is the etiological agent of African swine fever (ASF), a re-expanding devastating and highly lethal hemorrhagic viral disease. microRNAs (miRNAs) are a new class of small non-coding RNAs that regulate gene expression post-transcriptionally. The discovery of virus specific miRNAs has increased both in number and importance in the past few years. We have recently described the differential expression of several porcine miRNAs during in vivo infection with attenuated and virulent ASFV strains. Here, we have extended these studies trying to identify the presence of viral miRNAs encoded by ASFV in an in vivo infection in pigs. Results Sixteen small RNA libraries were analyzed from spleen and submandibular lymph nodes obtained from eight pigs, seven infected with either the virulent E75 ASFV strain or its attenuated counterpart E75CV1, or from pigs surviving E75CV1-infection and challenged with BA71 (heterologous challenge) and one non infected as negative control. Samples were recovered at different times post-infection. Libraries were analyzed by next-generation sequencing. Some viral miRNA candidates were initially identified, which did not correspond to porcine miRNAs. Further structural analyses were carried out in order to confirm if they met the conformational requirements to be considered a viral miRNA. Conclusions The analysis of sixteen small RNA libraries prepared from two different tissues obtained from pigs experimentally infected with E75, E75CV1 or with E75CV1 plus BA71, revealed the presence of six potential miRNA sequences but none of them met the requirements to be considered as viral miRNAs. Thus, we can conclude that ASFV does not express miRNAs in vivo, at least under the experimental conditions described here.
Collapse
Affiliation(s)
- Fernando Núñez-Hernández
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Gonzalo Vera
- Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Bellaterra, Barcelona, Spain
| | - Armand Sánchez
- Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Bellaterra, Barcelona, Spain.,Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Fernando Rodríguez
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - José I Núñez
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| |
Collapse
|
149
|
Meki IK, İnce İA, Kariithi HM, Boucias DG, Ozcan O, Parker AG, Vlak JM, van Oers MM, Abd-Alla AMM. Expression Profile of Glossina pallidipes MicroRNAs During Symptomatic and Asymptomatic Infection With Glossina pallidipes Salivary Gland Hypertrophy Virus (Hytrosavirus). Front Microbiol 2018; 9:2037. [PMID: 30233523 PMCID: PMC6129597 DOI: 10.3389/fmicb.2018.02037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/13/2018] [Indexed: 01/01/2023] Open
Abstract
The Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) infects tsetse flies predominantly asymptomatically and occasionally symptomatically. Symptomatic infections are characterized by overt salivary gland hypertrophy (SGH) in mass reared tsetse flies, which causes reproductive dysfunctions and colony collapse, thus hindering tsetse control via sterile insect technique (SIT). Asymptomatic infections have no apparent cost to the fly's fitness. Here, small RNAs were sequenced and profiles in asymptomatically and symptomatically infected G. pallidipes flies determined. Thirty-eight host-encoded microRNAs (miRNAs) were present in both the asymptomatic and symptomatic fly profiles, while nine host miRNAs were expressed specifically in asymptomatic flies versus 10 in symptomatic flies. Of the shared 38 miRNAs, 15 were differentially expressed when comparing asymptomatic with symptomatic flies. The most up-regulated host miRNAs in symptomatic flies was predicted to target immune-related mRNAs of the host. Six GpSGHV-encoded miRNAs were identified, of which five of them were only in symptomatic flies. These virus-encoded miRNAs may not only target host immune genes but may also participate in viral immune evasion. This evidence of differential host miRNA profile in Glossina in symptomatic flies advances our understanding of the GpSGHV-Glossina interactions and provides potential new avenues, for instance by utilization of particular miRNA inhibitors or mimics to better manage GpSGHV infections in tsetse mass-rearing facilities, a prerequisite for successful SIT implementation.
Collapse
Affiliation(s)
- Irene K. Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
- Laboratory of Virology, Wageningen University and Research, Wageningen, Netherlands
| | - İkbal A. İnce
- Department of Medical Microbiology, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
- Department of Biostatistics and Medical Informatics, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Henry M. Kariithi
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya
| | - Drion G. Boucias
- Entomology and Nematology Department, University of Florida, Gainesville, FL, United States
| | - Orhan Ozcan
- Department of Biostatistics and Medical Informatics, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Andrew G. Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Just M. Vlak
- Laboratory of Virology, Wageningen University and Research, Wageningen, Netherlands
| | - Monique M. van Oers
- Laboratory of Virology, Wageningen University and Research, Wageningen, Netherlands
| | - Adly M. M. Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| |
Collapse
|
150
|
Chen L, Zhou Y, Li H. LncRNA, miRNA and lncRNA-miRNA interaction in viral infection. Virus Res 2018; 257:25-32. [PMID: 30165080 DOI: 10.1016/j.virusres.2018.08.018] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/25/2018] [Accepted: 08/26/2018] [Indexed: 12/27/2022]
Abstract
Noncoding RNAs (ncRNAs) are key components of the transcriptome and play an important role in both normal biological activity and pathological processes such as viral infection and tumorigenesis. LncRNAs and miRNAs are the most important elements of ncRNAs and function as vital regulatory elements. Their complex regulatory relationship has therefore attracted a lot of attention. In this review, we address the generation, classification, and regulatory mechanisms of lncRNAs and miRNAs in the interaction between virus and host, focusing on their mutual regulation in viral replication and pathogenesis. In-depth analysis of the underlying mechanisms will provide new information for the prevention of viral infections and development of antiviral drugs.
Collapse
Affiliation(s)
- Linlin Chen
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, 935 Jiaoling Road, Kunming 650118, China.
| | - Yan Zhou
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, 935 Jiaoling Road, Kunming 650118, China.
| | - Hongjun Li
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, 935 Jiaoling Road, Kunming 650118, China.
| |
Collapse
|