101
|
Liu Y, Song M, Ding S, Zhu K. Discovery of Linear Low-Cationic Peptides to Target Methicillin-Resistant Staphylococcus aureus in Vivo. ACS Infect Dis 2019; 5:123-130. [PMID: 30372023 DOI: 10.1021/acsinfecdis.8b00230] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development and rapid spread of multidrug resistant (MDR) bacteria cause severe public crises. New antibacterial compounds are urgently needed to treat bacterial infections. By circumventing the disadvantages of cationic peptides here, we engineered a short, linear, low-cationic peptide bacaucin-1a, which exhibited remarkable antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Bacaucin-1a was efficient in the prevention of MRSA associated infections in both in vitro and in vivo models with a unique mode of action. The discovery of low-cationic antibiotic candidates will extend our antibiotic pipeline in the fight against antibiotic resistant bacteria.
Collapse
Affiliation(s)
- Yuan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, China 100193
| | - Meirong Song
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, China 100193
| | - Shuangyang Ding
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, China 100193
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, China 100193
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, China 100193
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, China 100193
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, China 100193
| |
Collapse
|
102
|
Li L, Abdelhady W, Donegan NP, Seidl K, Cheung A, Zhou YF, Yeaman MR, Bayer AS, Xiong YQ. Role of Purine Biosynthesis in Persistent Methicillin-Resistant Staphylococcus aureus Infection. J Infect Dis 2018; 218:1367-1377. [PMID: 29868791 PMCID: PMC6151072 DOI: 10.1093/infdis/jiy340] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/01/2018] [Indexed: 11/13/2022] Open
Abstract
Persistent methicillin-resistant Staphylococcus aureus (MRSA) bacteremia (PB) represents an important subset of S. aureus endovascular infections. In this study, we investigated potential genetic mechanisms underlying the persistent outcomes. Compared with resolving bacteremia (RB) isolates (defined as isolates associated with negative results of blood cultures 2-4 days after initiation of therapy), PB strains (defined as isolates associated with positive results of blood cultures ≥7 days after initiation of therapy) had significantly earlier onset activation of key virulence regulons and structural genes (eg, sigB, sarA, sae, and cap5), higher expression of purine biosynthesis genes (eg, purF), and faster growth rates, with earlier entrance into stationary phase. Importantly, an isogenic strain set featuring a wild-type MRSA isolate, a purF mutant strain, and a purF-complemented strain and use of strategic purine biosynthesis inhibitors implicated a causal relationship between purine biosynthesis and the in vivo persistent outcomes. These observations suggest that purine biosynthesis plays a key role in the outcome of PB and may represent a new target for enhanced efficacy in treating life-threatening MRSA infections.
Collapse
Affiliation(s)
- Liang Li
- Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance
| | - Wessam Abdelhady
- Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance
| | | | - Kati Seidl
- University Hospital of Zurich, Switzerland
| | | | - Yu-Feng Zhou
- Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance
- South China Agricultural University, Guangzhou
| | - Michael R Yeaman
- Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance
- David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Arnold S Bayer
- Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance
- David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Yan Q Xiong
- Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance
- David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
103
|
Trutneva K, Shleeva M, Nikitushkin V, Demina G, Kaprelyants A. Protein Composition of Mycobacterium smegmatis Differs Significantly Between Active Cells and Dormant Cells With Ovoid Morphology. Front Microbiol 2018; 9:2083. [PMID: 30233550 PMCID: PMC6131537 DOI: 10.3389/fmicb.2018.02083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/14/2018] [Indexed: 01/07/2023] Open
Abstract
Mycobacteria are able to form dormant cells, which survive for a long time without multiplication. The molecular mechanisms behind prolonged survival of dormant cells are not fully described. In particular, little information is known on biochemical processes which might take place in cells under dormancy. To gain insight into this problem, Mycobacterium smegmatis cells in deep dormant state were obtained after gradual acidification of the growth medium in prolonged stationary phase followed by 1 month of storage at room temperature. Such cells were characterized by low metabolic activity, including respiration, resistance to antibiotics, and altered morphology. The protein composition of cytoplasm and membrane fractions obtained from active and dormant cells were compared by 2D electrophoresis. Almost half of the proteins found in the proteome of dormant cells were absent in that of active cells. This result differs significantly from published results obtained in other studies employing different models of mycobacterium dormancy. This discrepancy could be explained by a deeper dormancy developed in the present model. A feature of a “dormant proteome” is high representation of enzymes involved in glycolysis and defense systems that inactivate or detoxify reactive oxygen and nitrogen species, aldehydes, and oxidized lipids. Dormant mycobacteria are enriched by degradative enzymes, which could eliminate damaged molecules, or the products of such degradation could be reutilized by the cell during prolonged storage. We suggest that some enzymes in dormant cells are inactive, having been used upon transition to the dormant state, or proteins stored in dormant cells for further cell reactivation. At the same time, some proteins could be functional and play roles in maintenance of cell metabolism, albeit at a very slow rate. This study provides a clue as to which biochemical processes could be active under dormancy to ensure long-term viability of dormant mycobacteria.
Collapse
Affiliation(s)
- Kseniya Trutneva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Margarita Shleeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Vadim Nikitushkin
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Galina Demina
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Arseny Kaprelyants
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
104
|
Fernández L, González S, Quiles-Puchalt N, Gutiérrez D, Penadés JR, García P, Rodríguez A. Lysogenization of Staphylococcus aureus RN450 by phages ϕ11 and ϕ80α leads to the activation of the SigB regulon. Sci Rep 2018; 8:12662. [PMID: 30139986 PMCID: PMC6107660 DOI: 10.1038/s41598-018-31107-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/10/2018] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus is a major opportunistic pathogen that commonly forms biofilms on various biotic and abiotic surfaces. Also, most isolates are known to carry prophages in their genomes. With this in mind, it seems that acquiring a better knowledge of the impact of prophages on the physiology of S. aureus biofilm cells would be useful for developing strategies to eliminate this pathogen. Here, we performed RNA-seq analysis of biofilm cells formed by S. aureus RN450 and two derived strains carrying prophages ϕ11 and ϕ80α. The lysogenic strains displayed increased biofilm formation and production of the carotenoid pigment staphyloxanthin. These phenotypes could be partly explained by the differences in gene expression displayed by prophage-harboring strains, namely an activation of the alternative sigma factor (SigB) regulon and downregulation of genes controlled by the Agr quorum-sensing system, especially the decreased transcription of genes encoding dispersion factors like proteases. Nonetheless, spontaneous lysis of part of the population could also contribute to the increased attached biomass. Interestingly, it appears that the phage CI protein plays a role in orchestrating these phage-host interactions, although more research is needed to confirm this possibility. Likewise, future studies should examine the impact of these two prophages during the infection.
Collapse
Affiliation(s)
- Lucía Fernández
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n 33300 -, Villaviciosa, Asturias, Spain.
| | - Silvia González
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n 33300 -, Villaviciosa, Asturias, Spain
| | - Nuria Quiles-Puchalt
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8TA, Glasgow, UK
| | - Diana Gutiérrez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n 33300 -, Villaviciosa, Asturias, Spain
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8TA, Glasgow, UK
| | - Pilar García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n 33300 -, Villaviciosa, Asturias, Spain
| | - Ana Rodríguez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n 33300 -, Villaviciosa, Asturias, Spain
| |
Collapse
|
105
|
From the genome sequence via the proteome to cell physiology – Pathoproteomics and pathophysiology of Staphylococcus aureus. Int J Med Microbiol 2018; 308:545-557. [DOI: 10.1016/j.ijmm.2018.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/23/2017] [Accepted: 01/02/2018] [Indexed: 02/01/2023] Open
|
106
|
Brandt SL, Putnam NE, Cassat JE, Serezani CH. Innate Immunity to Staphylococcus aureus: Evolving Paradigms in Soft Tissue and Invasive Infections. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:3871-3880. [PMID: 29866769 PMCID: PMC6028009 DOI: 10.4049/jimmunol.1701574] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/12/2018] [Indexed: 01/18/2023]
Abstract
Staphylococcus aureus causes a wide range of diseases that together embody a significant public health burden. Aided by metabolic flexibility and a large virulence repertoire, S. aureus has the remarkable ability to hematogenously disseminate and infect various tissues, including skin, lung, heart, and bone, among others. The hallmark lesions of invasive staphylococcal infections, abscesses, simultaneously denote the powerful innate immune responses to tissue invasion as well as the ability of staphylococci to persist within these lesions. In this article, we review the innate immune responses to S. aureus during infection of skin and bone, which serve as paradigms for soft tissue and bone disease, respectively.
Collapse
Affiliation(s)
- Stephanie L Brandt
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Nicole E Putnam
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - James E Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232;
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232; and
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232
| | - C Henrique Serezani
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232;
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
107
|
Tuchscherr L, Korpos È, van de Vyver H, Findeisen C, Kherkheulidze S, Siegmund A, Deinhardt-Emmer S, Bach O, Rindert M, Mellmann A, Sunderkötter C, Peters G, Sorokin L, Löffler B. Staphylococcus aureus requires less virulence to establish an infection in diabetic hosts. Int J Med Microbiol 2018; 308:761-769. [PMID: 29843979 DOI: 10.1016/j.ijmm.2018.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/16/2018] [Accepted: 05/21/2018] [Indexed: 01/12/2023] Open
Abstract
Staphylococcus aureus is the most frequent pathogen causing diabetic foot infections. Here, we investigated the degree of bacterial virulence required to establish invasive tissue infections in diabetic organisms. Staphylococcal isolates from diabetic and non-diabetic foot ulcers were tested for their virulence in in vitro functional assays of host cell invasion and cytotoxicity. Isolates from diabetes mellitus type I/II patients exhibited less virulence than isolates from non-diabetic patients, but were nevertheless able to establish severe infections. In some cases, non-invasive isolates were detected deep within diabetic wounds, even though the strains were non-pathogenic in cell culture models. Testing of defined isolates in murine footpad injection models revealed that both low- and high-virulent bacterial strains persisted in higher numbers in diabetic compared to non-diabetic hosts, suggesting that hyperglycemia favors bacterial survival. Additionally, the bacterial load was higher in NOD mice, which have a compromised immune system, compared to C57Bl/6 mice. Our results reveal that high as well as low-virulent staphylococcal strains are able to cause soft tissue infections and to persist in diabetic humans and mice, suggesting a reason for the frequent and endangering infections in patients with diabetes.
Collapse
Affiliation(s)
- Lorena Tuchscherr
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany.
| | - Èva Korpos
- Institute of Physiological Chemistry and Pathobiochemistry, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Hélène van de Vyver
- Institute of Medical Microbiology, University Hospital of Muenster, Muenster, Germany
| | - Clais Findeisen
- Institute of Physiological Chemistry and Pathobiochemistry, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Salome Kherkheulidze
- Institute of Medical Microbiology, University Hospital of Muenster, Muenster, Germany
| | - Anke Siegmund
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | | | - Olaf Bach
- Surgery, Orthopedics and Traumatology, Special Trauma Surgery, Clinic of Weimar, Germany
| | - Martin Rindert
- Surgery, Orthopedics and Traumatology, Special Trauma Surgery, Clinic of Weimar, Germany
| | | | - Cord Sunderkötter
- Department of Translational Dermatoinfectiology, University of Muenster, Muenster and Department of Dermatology, University Hospital of Halle, Halle, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Georg Peters
- Institute of Medical Microbiology, University Hospital of Muenster, Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| |
Collapse
|
108
|
Pediatric Methicillin-Resistant Staphylococcus aureus Osteoarticular Infections. Microorganisms 2018; 6:microorganisms6020040. [PMID: 29734665 PMCID: PMC6027280 DOI: 10.3390/microorganisms6020040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 01/24/2023] Open
Abstract
Osteoarticular infections (OSI) are a significant cause of hospitalizations and morbidity in young children. The pediatric patient with OSI presents unique challenges in diagnosis and management due to higher morbidity, effect on growth plate with associated long-lasting sequelae, and challenges in early identification and management. Methicillin-resistant Staphylococcus aureus (MRSA), first described in the 1960s, has evolved rapidly to emerge as a predominant cause of OSI in children, and therefore empiric treatment for OSI should include an antibiotic effective against MRSA. Characterizing MRSA strains can be done by antimicrobial susceptibility testing, detection of Panton–Valentine leukocidin (PVL) gene, staphylococcal cassette chromosome mec (SCCmec) typing, pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST). Worldwide, community-onset methicillin-resistant staphylococcal disease is widespread and is mainly associated with a PVL-producing clone, ST8/USA300. Many studies have implied a correlation between PVL genes and more severe infection. We review MRSA OSI along with the pertinent aspects of its pathogenesis, clinical spectrum, diagnosis, and current guidelines for management.
Collapse
|
109
|
Imber M, Loi VV, Reznikov S, Fritsch VN, Pietrzyk-Brzezinska AJ, Prehn J, Hamilton C, Wahl MC, Bronowska AK, Antelmann H. The aldehyde dehydrogenase AldA contributes to the hypochlorite defense and is redox-controlled by protein S-bacillithiolation in Staphylococcus aureus. Redox Biol 2018; 15:557-568. [PMID: 29433022 PMCID: PMC5975064 DOI: 10.1016/j.redox.2018.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 01/28/2023] Open
Abstract
Staphylococcus aureus produces bacillithiol (BSH) as major low molecular weight (LMW) thiol which functions in thiol-protection and redox-regulation by protein S-bacillithiolation under hypochlorite stress. The aldehyde dehydrogenase AldA was identified as S-bacillithiolated at its active site Cys279 under NaOCl stress in S. aureus. Here, we have studied the expression, function, redox regulation and structural changes of AldA of S. aureus. Transcription of aldA was previously shown to be regulated by the alternative sigma factor SigmaB. Northern blot analysis revealed SigmaB-independent induction of aldA transcription under formaldehyde, methylglyoxal, diamide and NaOCl stress. Deletion of aldA resulted in a NaOCl-sensitive phenotype in survival assays, suggesting an important role of AldA in the NaOCl stress defense. Purified AldA showed broad substrate specificity for oxidation of several aldehydes, including formaldehyde, methylglyoxal, acetaldehyde and glycol aldehyde. Thus, AldA could be involved in detoxification of aldehyde substrates that are elevated under NaOCl stress. Kinetic activity assays revealed that AldA is irreversibly inhibited under H2O2 treatment in vitro due to overoxidation of Cys279 in the absence of BSH. Pre-treatment of AldA with BSH prior to H2O2 exposure resulted in reversible AldA inactivation due to S-bacillithiolation as revealed by activity assays and BSH-specific Western blot analysis. Using molecular docking and molecular dynamic simulation, we further show that BSH occupies two different positions in the AldA active site depending on the AldA activation state. In conclusion, we show here that AldA is an important target for S-bacillithiolation in S. aureus that is up-regulated under NaOCl stress and functions in protection under hypochlorite stress.
Collapse
Affiliation(s)
- Marcel Imber
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany
| | - Vu Van Loi
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany
| | - Sylvia Reznikov
- School of Chemistry, Bedson Building, Newcastle University, NE1 7RU Newcastle upon Tyne, UK
| | - Verena Nadin Fritsch
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany
| | - Agnieszka J Pietrzyk-Brzezinska
- Freie Universität Berlin, Laboratory of Structural Biochemistry, D-14195 Berlin, Germany; Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz 90-924, Poland
| | - Janek Prehn
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany
| | - Chris Hamilton
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Markus C Wahl
- Freie Universität Berlin, Laboratory of Structural Biochemistry, D-14195 Berlin, Germany; Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, D-12489 Berlin, Germany
| | - Agnieszka K Bronowska
- School of Chemistry, Bedson Building, Newcastle University, NE1 7RU Newcastle upon Tyne, UK
| | - Haike Antelmann
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany.
| |
Collapse
|
110
|
Abstract
Periprosthetic joint infection (PJI) is a potentially devastating complication of orthopedic joint replacement surgery. PJI with associated osteomyelitis is particularly problematic and difficult to cure. Whether viable osteocytes, the predominant cell type in mineralized bone tissue, have a role in these infections is not clear, although their involvement might contribute to the difficulty in detecting and clearing PJI. Here, using Staphylococcus aureus, the most common pathogen in PJI, we demonstrate intracellular infection of human-osteocyte-like cells in vitro and S. aureus adaptation by forming quasi-dormant small-colony variants (SCVs). Consistent patterns of host gene expression were observed between in vitro-infected osteocyte-like cultures, an ex vivo human bone infection model, and bone samples obtained from PJI patients. Finally, we confirm S. aureus infection of osteocytes in clinical cases of PJI. Our findings are consistent with osteocyte infection being a feature of human PJI and suggest that this cell type may provide a reservoir for silent or persistent infection. We suggest that elucidating the molecular/cellular mechanism(s) of osteocyte-bacterium interactions will contribute to better understanding of PJI and osteomyelitis, improved pathogen detection, and treatment.IMPORTANCE Periprosthetic joint infections (PJIs) are increasing and are recognized as one of the most common modes of failure of joint replacements. Osteomyelitis arising from PJI is challenging to treat and difficult to cure and increases patient mortality 5-fold. Staphylococcus aureus is the most common pathogen causing PJI. PJI can have subtle symptoms and lie dormant or go undiagnosed for many years, suggesting persistent bacterial infection. Osteocytes, the major bone cell type, reside in bony caves and tunnels, the lacuno-canalicular system. We report here that S. aureus can infect and reside in human osteocytes without causing cell death both experimentally and in bone samples from patients with PJI. We demonstrate that osteocytes respond to infection by the differential regulation of a large number of genes. S. aureus adapts during intracellular infection of osteocytes by adopting the quasi-dormant small-colony variant (SCV) lifestyle, which might contribute to persistent or silent infection. Our findings shed new light on the etiology of PJI and osteomyelitis in general.
Collapse
|
111
|
Sinha D, Mondal R, Mahapa A, Sau K, Chattopadhyaya R, Sau S. A staphylococcal anti-sigma factor possesses a single-domain, carries different denaturant-sensitive regions and unfolds via two intermediates. PLoS One 2018; 13:e0195416. [PMID: 29621342 PMCID: PMC5886543 DOI: 10.1371/journal.pone.0195416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/21/2018] [Indexed: 11/26/2022] Open
Abstract
RsbW, an anti-sigma factor possessing kinase activity, is expressed by many Gram-positive bacteria including Staphylococcus aureus. To obtain clues about the domain structure and the folding-unfolding mechanism of RsbW, we have elaborately studied rRsbW, a recombinant S. aureus RsbW. Sequence analysis of the protein fragments, generated by the limited proteolysis of rRsbW, has proposed it to be a single-domain protein. The unfolding of rRsbW in the presence of GdnCl or urea was completely reversible in nature and occurred through the formation of at least two intermediates. The structure, shape, and the surface hydrophobicity of no intermediate completely matches with those of other intermediates or the native rRsbW. Interestingly, one of the intermediates, formed in the presence of less GdnCl concentrations, has a molten globule-like structure. Conversely, all of the intermediates, like native rRsbW, exist as dimers in aqueous solution. The putative molten globule and the urea-generated intermediates also have retained some kinase activity. Additionally, the putative ATP binding site/catalytic site of rRsbW shows higher denaturant sensitivity than the tentative dimerization region of this enzyme.
Collapse
Affiliation(s)
- Debabrata Sinha
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Rajkrishna Mondal
- Department of Biotechnology, Nagaland University, Dimapur, Nagaland, India
| | - Avisek Mahapa
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
| | - Keya Sau
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
| | | | - Subrata Sau
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
112
|
Suligoy CM, Lattar SM, Noto Llana M, González CD, Alvarez LP, Robinson DA, Gómez MI, Buzzola FR, Sordelli DO. Mutation of Agr Is Associated with the Adaptation of Staphylococcus aureus to the Host during Chronic Osteomyelitis. Front Cell Infect Microbiol 2018; 8:18. [PMID: 29456969 PMCID: PMC5801681 DOI: 10.3389/fcimb.2018.00018] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/12/2018] [Indexed: 11/13/2022] Open
Abstract
Selection pressures exerted on Staphylococcus aureus by host factors may lead to the emergence of mutants better adapted to the evolving conditions at the infection site. This study was aimed at identifying the changes that occur in S. aureus exposed to the host defense mechanisms during chronic osteomyelitis and evaluating whether these changes affect the virulence of the organism. Genome assessment of two S. aureus isolates collected 13 months apart (HU-85a and HU-85c) from a host with chronic osteomyelitis was made by whole genome sequencing. Agr functionality was assessed by qRT-PCR. Isolates were tested in a rat model of osteomyelitis and the bacterial load (CFU/tibia) and the morphometric osteomyelitic index (OI) were determined. The ability of the isolates to trigger the release of proinflammatory cytokines was determined on macrophages in culture. Persistence of S. aureus within the host resulted in an agrC frameshift mutation that likely led to the observed phenotype. The capacity to cause bone tissue damage and trigger proinflammatory cytokines by macrophages of the agr-deficient, unencapsulated derivative (HU-85c) was decreased when compared with those of the isogenic CP8-capsulated parental strain (HU-85a). By comparison, no significant differences were found in the bacterial load or the OI from rats challenged with isogenic Reynolds strains [CP5, CP8, and non-typeable (NT)], indicating that lack of CP expression alone was not likely responsible for the reduced capacity to cause tissue damage in HU-85c compared with HU-85a. The production of biofilm was significantly increased in the isogenic derivative HU-85c. Lack of agr-dependent factors makes S. aureus less virulent during chronic osteomyelitis and alteration of the agr functionality seems to permit better adaptation of S. aureus to the chronically infected host.
Collapse
Affiliation(s)
- Carlos M Suligoy
- Instituto de Investigaciones en Microbiología y Parasitología Médica, University of Buenos Aires - CONICET, Buenos Aires, Argentina
| | - Santiago M Lattar
- Instituto de Investigaciones en Microbiología y Parasitología Médica, University of Buenos Aires - CONICET, Buenos Aires, Argentina
| | - Mariángeles Noto Llana
- Instituto de Investigaciones en Microbiología y Parasitología Médica, University of Buenos Aires - CONICET, Buenos Aires, Argentina
| | - Cintia D González
- Instituto de Investigaciones en Microbiología y Parasitología Médica, University of Buenos Aires - CONICET, Buenos Aires, Argentina
| | - Lucía P Alvarez
- Instituto de Investigaciones en Microbiología y Parasitología Médica, University of Buenos Aires - CONICET, Buenos Aires, Argentina
| | - D Ashley Robinson
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Marisa I Gómez
- Instituto de Investigaciones en Microbiología y Parasitología Médica, University of Buenos Aires - CONICET, Buenos Aires, Argentina
| | - Fernanda R Buzzola
- Instituto de Investigaciones en Microbiología y Parasitología Médica, University of Buenos Aires - CONICET, Buenos Aires, Argentina
| | - Daniel O Sordelli
- Instituto de Investigaciones en Microbiología y Parasitología Médica, University of Buenos Aires - CONICET, Buenos Aires, Argentina
| |
Collapse
|
113
|
van Krüchten A, Wilden JJ, Niemann S, Peters G, Löffler B, Ludwig S, Ehrhardt C. Staphylococcus aureus triggers a shift from influenza virus-induced apoptosis to necrotic cell death. FASEB J 2018; 32:2779-2793. [PMID: 29401589 DOI: 10.1096/fj.201701006r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Superinfections with Staphylococcus aureus are a major complication of influenza disease, causing excessive inflammation and tissue damage. This enhanced cell-damaging effect is also observed in superinfected tissue cultures, leading to a strong decrease in overall cell viability. In our analysis of the underlying molecular mechanisms, we observed that, despite enhanced cell damage in superinfection, S. aureus did not increase but rather inhibited influenza virus (IV)-induced apoptosis in cells on the level of procaspase-8 activation. This apparent contradiction was solved when we observed that S. aureus mediated a switch from apoptosis to necrotic cell death of IV-infected cells, a mechanism that was dependent on the bacterial accessory gene regulator ( agr) locus that promotes bacterial survival and spread. This so far unknown action may be a bacterial strategy to enhance dissemination of intracellular S. aureus and may thereby contribute to increased tissue damage and severity of disease.-Van Krüchten, A., Wilden, J. J., Niemann, S., Peters, G., Löffler, B., Ludwig, S., Ehrhardt, C. Staphylococcus aureus triggers a shift from influenza virus-induced apoptosis to necrotic cell death.
Collapse
Affiliation(s)
- Andre van Krüchten
- Institute of Virology (IVM), Westfaelische Wilhelms-University (WWU) Münster, Muenster, Germany.,Institute of Medical Microbiology, WWU Münster, Münster, Germany
| | - Janine J Wilden
- Institute of Virology (IVM), Westfaelische Wilhelms-University (WWU) Münster, Muenster, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, WWU Münster, Münster, Germany
| | - Georg Peters
- Institute of Medical Microbiology, WWU Münster, Münster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion Interfaculty Centre, WWU Münster, Muenster, Germany; and
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Stephan Ludwig
- Institute of Virology (IVM), Westfaelische Wilhelms-University (WWU) Münster, Muenster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion Interfaculty Centre, WWU Münster, Muenster, Germany; and
| | - Christina Ehrhardt
- Institute of Virology (IVM), Westfaelische Wilhelms-University (WWU) Münster, Muenster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion Interfaculty Centre, WWU Münster, Muenster, Germany; and
| |
Collapse
|
114
|
Horn J, Stelzner K, Rudel T, Fraunholz M. Inside job: Staphylococcus aureus host-pathogen interactions. Int J Med Microbiol 2017; 308:607-624. [PMID: 29217333 DOI: 10.1016/j.ijmm.2017.11.009] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is a notorious opportunistic pathogen causing a plethora of diseases. Recent research established that once phagocytosed by neutrophils and macrophages, a certain percentage of S. aureus is able to survive within these phagocytes which thereby even may contribute to dissemination of the pathogen. S. aureus further induces its uptake by otherwise non-phagocytic cells and the ensuing intracellular cytotoxicity is suggested to lead to tissue destruction, whereas bacterial persistence within cells is thought to lead to immune evasion and chronicity of infections. We here review recent work on the S. aureus host pathogen interactions with a focus on the intracellular survival of the pathogen.
Collapse
Affiliation(s)
- Jessica Horn
- Chair of Microbiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Kathrin Stelzner
- Chair of Microbiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martin Fraunholz
- Chair of Microbiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
115
|
Rom JS, Atwood DN, Beenken KE, Meeker DG, Loughran AJ, Spencer HJ, Lantz TL, Smeltzer MS. Impact of Staphylococcus aureus regulatory mutations that modulate biofilm formation in the USA300 strain LAC on virulence in a murine bacteremia model. Virulence 2017; 8:1776-1790. [PMID: 28910576 PMCID: PMC5810510 DOI: 10.1080/21505594.2017.1373926] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus causes acute and chronic forms of infection, the latter often associated with formation of a biofilm. It has previously been demonstrated that mutation of atl, codY, rot, sarA, and sigB limits biofilm formation in the USA300 strain LAC while mutation of agr, fur, and mgrA has the opposite effect. Here we used a murine sepsis model to assess the impact of these same loci in acute infection. Mutation of agr, atl, and fur had no impact on virulence, while mutation of mgrA and rot increased virulence. In contrast, mutation of codY, sarA, and sigB significantly attenuated virulence. Mutation of sigB resulted in reduced accumulation of AgrA and SarA, while mutation of sarA resulted in reduced accumulation of AgrA, but this cannot account for the reduced virulence of sarA or sigB mutants because the isogenic agr mutant was not attenuated. Indeed, as assessed by accumulation of alpha toxin and protein A, all of the mutants we examined exhibited unique phenotypes by comparison to an agr mutant and to each other. Attenuation of the sarA, sigB and codY mutants was correlated with increased production of extracellular proteases and global changes in extracellular protein profiles. These results suggest that the inability to repress the production of extracellular proteases plays a key role in attenuating the virulence of S. aureus in acute as well as chronic, biofilm-associated infections, thus opening up the possibility that strategies aimed at the de-repression of protease production could be used to broad therapeutic advantage. They also suggest that the impact of codY, sarA, and sigB on protease production occurs via an agr-independent mechanism.
Collapse
Affiliation(s)
- Joseph S Rom
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Danielle N Atwood
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Karen E Beenken
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Daniel G Meeker
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Allister J Loughran
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Horace J Spencer
- b Department of Biostatistics , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Tamara L Lantz
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Mark S Smeltzer
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA.,c Department of Orthopaedic Surgery , University of Arkansas for Medical Sciences , Little Rock , AR , USA.,d Department of Pathology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| |
Collapse
|
116
|
García-Betancur JC, Goñi-Moreno A, Horger T, Schott M, Sharan M, Eikmeier J, Wohlmuth B, Zernecke A, Ohlsen K, Kuttler C, Lopez D. Cell differentiation defines acute and chronic infection cell types in Staphylococcus aureus. eLife 2017; 6. [PMID: 28893374 PMCID: PMC5595439 DOI: 10.7554/elife.28023] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 08/09/2017] [Indexed: 12/13/2022] Open
Abstract
A central question to biology is how pathogenic bacteria initiate acute or chronic infections. Here we describe a genetic program for cell-fate decision in the opportunistic human pathogen Staphylococcus aureus, which generates the phenotypic bifurcation of the cells into two genetically identical but different cell types during the course of an infection. Whereas one cell type promotes the formation of biofilms that contribute to chronic infections, the second type is planktonic and produces the toxins that contribute to acute bacteremia. We identified a bimodal switch in the agr quorum sensing system that antagonistically regulates the differentiation of these two physiologically distinct cell types. We found that extracellular signals affect the behavior of the agr bimodal switch and modify the size of the specialized subpopulations in specific colonization niches. For instance, magnesium-enriched colonization niches causes magnesium binding to S. aureusteichoic acids and increases bacterial cell wall rigidity. This signal triggers a genetic program that ultimately downregulates the agr bimodal switch. Colonization niches with different magnesium concentrations influence the bimodal system activity, which defines a distinct ratio between these subpopulations; this in turn leads to distinct infection outcomes in vitro and in an in vivo murine infection model. Cell differentiation generates physiological heterogeneity in clonal bacterial infections and helps to determine the distinct infection types. While in hospital, patients can be unwittingly exposed to bacteria that can cause disease. These hospital-associated bacteria can lead to potentially life-threatening infections that may also complicate the treatment of the patients’ existing medical conditions. Staphylococcus aureus is one such bacterium, and it can cause several types of infection including pneumonia, blood infections and long-term infections of prosthetic devices. It is thought that S. aureus is able to cause so many different types of infection because it is capable of colonizing distinct tissues and organs in various parts of the body. Understanding the biological processes that drive the different infections is crucial to improving how these infections are treated. S. aureus lives either as an independent, free-swimming cell or as part of a community known as a biofilm. These different lifestyles dictate the type of infection the bacterium can cause, with free-swimming cells producing toxins that contribute to intense, usually short-lived, infections and biofilms promoting longer-term infections that are difficult to eradicate. However, it is not clear how a population of S. aureus cells chooses to adopt a particular lifestyle and whether there are any environmental signals that influence this decision. Here, Garcia-Betancur et al. found that S. aureus populations contain small groups of cells that have already specialized into a particular lifestyle. These groups of cells collectively influence the choice made by other cells in the population. While both lifestyles will be represented in the population, environmental factors influence the numbers of cells that initially adopt each type of lifestyle, which ultimately affects the choice made by the rest of the population. For example, if the bacteria colonize a tissue or organ that contains high levels of magnesium ions, the population is more likely to form biofilms. In the future, the findings of Garcia-Betancur et al. may help us to predict how an infection may develop in a particular patient, which may help to diagnose the infection more quickly and allow it to be treated more effectively.
Collapse
Affiliation(s)
- Juan-Carlos García-Betancur
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany.,Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
| | - Angel Goñi-Moreno
- School of Computing Science, Newcastle University, Newcastle, United Kingdom
| | - Thomas Horger
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Melanie Schott
- Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Würzburg, Germany
| | - Malvika Sharan
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Julian Eikmeier
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany.,Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
| | - Barbara Wohlmuth
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Alma Zernecke
- Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Würzburg, Germany
| | - Knut Ohlsen
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Christina Kuttler
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Daniel Lopez
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany.,Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany.,National Center for Biotechnology, Madrid, Spain
| |
Collapse
|
117
|
A global Staphylococcus aureus proteome resource applied to the in vivo characterization of host-pathogen interactions. Sci Rep 2017; 7:9718. [PMID: 28887440 PMCID: PMC5591248 DOI: 10.1038/s41598-017-10059-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/24/2017] [Indexed: 12/16/2022] Open
Abstract
Data-independent acquisition mass spectrometry promises higher performance in terms of quantification and reproducibility compared to data-dependent acquisition mass spectrometry methods. To enable high-accuracy quantification of Staphylococcus aureus proteins, we have developed a global ion library for data-independent acquisition approaches employing high-resolution time of flight or Orbitrap instruments for this human pathogen. We applied this ion library resource to investigate the time-resolved adaptation of S. aureus to the intracellular niche in human bronchial epithelial cells and in a murine pneumonia model. In epithelial cells, abundance changes for more than 400 S. aureus proteins were quantified, revealing, e.g., the precise temporal regulation of the SigB-dependent stress response and differential regulation of translation, fermentation, and amino acid biosynthesis. Using an in vivo murine pneumonia model, our data-independent acquisition quantification analysis revealed for the first time the in vivo proteome adaptation of S. aureus. From approximately 2.15 × 105 S. aureus cells, 578 proteins were identified. Increased abundance of proteins required for oxidative stress response, amino acid biosynthesis, and fermentation together with decreased abundance of ribosomal proteins and nucleotide reductase NrdEF was observed in post-infection samples compared to the pre-infection state.
Collapse
|
118
|
Influence of IS 256 on Genome Variability and Formation of Small-Colony Variants in Staphylococcus aureus. Antimicrob Agents Chemother 2017; 61:AAC.00144-17. [PMID: 28584147 DOI: 10.1128/aac.00144-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/30/2017] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus has acquired resistance to nearly all antibiotics used in clinical practice. Whereas some resistance mechanisms are conferred by uptake of resistance genes, others evolve by mutation. In this study, IS256 has been shown to play a role, e.g., in S. aureus strains displaying intermediate resistance to vancomycin (VISA). To characterize the IS256 insertion sites in the genomes of two closely related sequence type 247 (ST247) VISA strains, all insertions were mapped in both VISA and a susceptible control strain. The results showed that the three ST247 strains contained the highest number so far of IS256 insertions for all sequenced S. aureus strains. Furthermore, in contrast to the case with the other IS elements in these genomes, the IS256 insertion sites were not identical in the closely related strains, indicating a high transposition frequency of IS256 When IS256 was introduced into a laboratory strain which was then cultured in the presence of antibiotics, it was possible to isolate small-colony variants (SCVs) that possessed IS256 insertions in guaA and hemY that displayed increased resistance to vancomycin and aminoglycosides, respectively. For these clones, a very rapid reversion to the wild type that resembled the fast reversion of clinical SCVs was observed. The reversion was caused by excision of IS256 in a small number of fast-growing clones that quickly outcompeted the SCVs in broth cultures. In conclusion, the presence of IS256 confers a strong genomic plasticity that is useful for adaptation to antibiotic stress.
Collapse
|
119
|
Rollin G, Tan X, Tros F, Dupuis M, Nassif X, Charbit A, Coureuil M. Intracellular Survival of Staphylococcus aureus in Endothelial Cells: A Matter of Growth or Persistence. Front Microbiol 2017; 8:1354. [PMID: 28769913 PMCID: PMC5515828 DOI: 10.3389/fmicb.2017.01354] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/04/2017] [Indexed: 11/23/2022] Open
Abstract
The Gram-positive human pathogen Staphylococcus aureus is a leading cause of severe bacterial infections. Recent studies have shown that various cell types could readily internalize S. aureus and infected cells have been proposed to serve as vehicle for the systemic dissemination of the pathogen. Here we focused on the intracellular behavior of the Community-Associated Methicillin-Resistant S. aureus strain USA300. Supporting earlier observations, we found that wild-type S. aureus strain USA300 persisted for longer period within endothelial cells than within macrophages and that a mutant displaying the small colony variant phenotype (ΔhemDBL) had increased intracellular persistence. Time-lapse microscopy revealed that initial persistence of wild-type bacteria in endothelial cells corresponded to distinct single cell events, ranging from active intracellular bacterial proliferation, leading to cell lysis, to non-replicating bacterial persistence even 1 week after infection. In sharp contrast, ΔhemDBL mutant bacteria were essentially non-replicating up to 10 days after infection. These findings suggest that internalization of S. aureus in endothelial cells triggers its persistence and support the notion that endothelial cells might constitute an intracellular persistence niche responsible for reported relapse of infection after antibiotic therapy.
Collapse
Affiliation(s)
- Guillaume Rollin
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment LericheParis, France.,Institut National de la Santé et de la Recherche Médicale U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades, Equipe 11: Pathogénie des Infections SystémiquesParis, France
| | - Xin Tan
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment LericheParis, France.,Institut National de la Santé et de la Recherche Médicale U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades, Equipe 11: Pathogénie des Infections SystémiquesParis, France
| | - Fabiola Tros
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment LericheParis, France.,Institut National de la Santé et de la Recherche Médicale U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades, Equipe 11: Pathogénie des Infections SystémiquesParis, France
| | - Marion Dupuis
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment LericheParis, France.,Institut National de la Santé et de la Recherche Médicale U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades, Equipe 11: Pathogénie des Infections SystémiquesParis, France
| | - Xavier Nassif
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment LericheParis, France.,Institut National de la Santé et de la Recherche Médicale U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades, Equipe 11: Pathogénie des Infections SystémiquesParis, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants MaladesParis, France
| | - Alain Charbit
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment LericheParis, France.,Institut National de la Santé et de la Recherche Médicale U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades, Equipe 11: Pathogénie des Infections SystémiquesParis, France
| | - Mathieu Coureuil
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment LericheParis, France.,Institut National de la Santé et de la Recherche Médicale U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades, Equipe 11: Pathogénie des Infections SystémiquesParis, France
| |
Collapse
|
120
|
Tuchscherr L, Geraci J, Löffler B. Staphylococcus aureus Regulator Sigma B is Important to Develop Chronic Infections in Hematogenous Murine Osteomyelitis Model. Pathogens 2017; 6:pathogens6030031. [PMID: 28714889 PMCID: PMC5617988 DOI: 10.3390/pathogens6030031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 11/28/2022] Open
Abstract
Staphylococcus aureus is a major pathogen causing bone infections that can become chronic and difficult to treat. Recently, we described the mechanism employed by S. aureus to switch to small colony variants (SCVs) and trigger intracellular bacterial persistence through the global stress regulator SigB. Here, we studied the role of SigB in the formation of chronic osteomyelitis. We used a murine hematogenous osteomyelitis model, where the mice were infected via the tail vein and subsequently developed chronic osteomyelitis. Mice were infected with S. aureus LS1, LS1ΔsigB and LS1ΔsigB complemented and kidney and bone tissues were analyzed six weeks after infection. S. aureus LS1ΔsigB formed a high rate of abscesses in kidneys, but the bacterial loads and the weight loss of the animals were lower in comparison with animals infected with the wild type and the complemented strain, indicating a more rapid and efficient bacterial clearing by the host immune system. Moreover, the sigB-mutant was not able to form SCV phenotypes either in kidney or in bone tissue. Our results demonstrate that staphylococcal SigB is important to avoid bacterial elimination by the host immune response, establish a bone infection and mediate bacterial adaptation (SCV-formation) for persistent infections
Collapse
Affiliation(s)
- Lorena Tuchscherr
- Institute of Medical Microbiology, Jena University Hospital, Jena 07747, Germany.
| | - Jennifer Geraci
- Institute of Medical Microbiology, Jena University Hospital, Jena 07747, Germany.
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Jena 07747, Germany.
| |
Collapse
|
121
|
Sulfide Homeostasis and Nitroxyl Intersect via Formation of Reactive Sulfur Species in Staphylococcus aureus. mSphere 2017; 2:mSphere00082-17. [PMID: 28656172 PMCID: PMC5480029 DOI: 10.1128/msphere.00082-17] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/02/2017] [Indexed: 12/30/2022] Open
Abstract
Hydrogen sulfide (H2S) is a toxic molecule and a recently described gasotransmitter in vertebrates whose function in bacteria is not well understood. In this work, we describe the transcriptomic response of the major human pathogen Staphylococcus aureus to quantified changes in levels of cellular organic reactive sulfur species, which are effector molecules involved in H2S signaling. We show that nitroxyl (HNO), a recently described signaling intermediate proposed to originate from the interplay of H2S and nitric oxide, also induces changes in cellular sulfur speciation and transition metal homeostasis, thus linking sulfide homeostasis to an adaptive response to antimicrobial reactive nitrogen species. Staphylococcus aureus is a commensal human pathogen and a major cause of nosocomial infections. As gaseous signaling molecules, endogenous hydrogen sulfide (H2S) and nitric oxide (NO·) protect S. aureus from antibiotic stress synergistically, which we propose involves the intermediacy of nitroxyl (HNO). Here, we examine the effect of exogenous sulfide and HNO on the transcriptome and the formation of low-molecular-weight (LMW) thiol persulfides of bacillithiol, cysteine, and coenzyme A as representative of reactive sulfur species (RSS) in wild-type and ΔcstR strains of S. aureus. CstR is a per- and polysulfide sensor that controls the expression of a sulfide oxidation and detoxification system. As anticipated, exogenous sulfide induces the cst operon but also indirectly represses much of the CymR regulon which controls cysteine metabolism. A zinc limitation response is also observed, linking sulfide homeostasis to zinc bioavailability. Cellular RSS levels impact the expression of a number of virulence factors, including the exotoxins, particularly apparent in the ΔcstR strain. HNO, like sulfide, induces the cst operon as well as other genes regulated by exogenous sulfide, a finding that is traced to a direct reaction of CstR with HNO and to an endogenous perturbation in cellular RSS, possibly originating from disassembly of Fe-S clusters. More broadly, HNO induces a transcriptomic response to Fe overload, Cu toxicity, and reactive oxygen species and reactive nitrogen species and shares similarity with the sigB regulon. This work reveals an H2S/NO· interplay in S. aureus that impacts transition metal homeostasis and virulence gene expression. IMPORTANCE Hydrogen sulfide (H2S) is a toxic molecule and a recently described gasotransmitter in vertebrates whose function in bacteria is not well understood. In this work, we describe the transcriptomic response of the major human pathogen Staphylococcus aureus to quantified changes in levels of cellular organic reactive sulfur species, which are effector molecules involved in H2S signaling. We show that nitroxyl (HNO), a recently described signaling intermediate proposed to originate from the interplay of H2S and nitric oxide, also induces changes in cellular sulfur speciation and transition metal homeostasis, thus linking sulfide homeostasis to an adaptive response to antimicrobial reactive nitrogen species.
Collapse
|
122
|
Van de Vyver H, Bovenkamp PR, Hoerr V, Schwegmann K, Tuchscherr L, Niemann S, Kursawe L, Grosse C, Moter A, Hansen U, Neugebauer U, Kuhlmann MT, Peters G, Hermann S, Löffler B. A Novel Mouse Model of Staphylococcus aureus Vascular Graft Infection: Noninvasive Imaging of Biofilm Development in Vivo. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:268-279. [PMID: 28088288 DOI: 10.1016/j.ajpath.2016.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/20/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022]
Abstract
Staphylococcus aureus causes very serious infections of vascular grafts. Knowledge of the molecular mechanisms of this disease is largely lacking because of the absence of representable models. Therefore, the aim of this study was to set up a mouse model of vascular graft infections that closely mimics the human situation. A catheter was inserted into the right carotid artery of mice, which acted as a vascular graft. Mice were infected i.v. using 8 different S. aureus strains, and development of the infection was followed up. Although all strains had varying abilities to form biofilm in vitro and different levels of virulence in mice, they all caused biofilm formation on the grafts. This graft infection was monitored using magnetic resonance imaging (MRI) and 18F-fluordeoxyglucose positron emission tomography (FDG-PET). MRI allowed the quantification of blood flow through the arteries, which was decreased in the catheter after infection. FDG-PET revealed high inflammation levels at the site of the catheter after infection. This model closely resembles the situation in patients, which is characterized by a tight interplay between pathogen and host, and can therefore be used for the testing of novel treatment, diagnosis, and prevention strategies. In addition, combining MRI and PET with microscopic techniques provides an appropriate way to characterize the course of these infections and to precisely analyze biofilm development.
Collapse
Affiliation(s)
- Hélène Van de Vyver
- Institute of Medical Microbiology, University Hospital Muenster, Muenster, Germany.
| | - Philipp R Bovenkamp
- Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany
| | - Verena Hoerr
- Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany; Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Katrin Schwegmann
- European Institute for Molecular Imaging, University Hospital Muenster, Muenster, Germany
| | - Lorena Tuchscherr
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital Muenster, Muenster, Germany
| | - Laura Kursawe
- Biofilmcenter, German Heart Institute Berlin, Berlin, Germany
| | - Christina Grosse
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany; Leibniz Institute of Photonic Technology, Jena, Germany
| | - Annette Moter
- Biofilmcenter, German Heart Institute Berlin, Berlin, Germany
| | - Uwe Hansen
- Institute of Experimental Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
| | - Ute Neugebauer
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany; Leibniz Institute of Photonic Technology, Jena, Germany; Institute of Physical Chemistry, University of Jena, Jena, Germany
| | - Michael T Kuhlmann
- European Institute for Molecular Imaging, University Hospital Muenster, Muenster, Germany
| | - Georg Peters
- Institute of Medical Microbiology, University Hospital Muenster, Muenster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging, University Hospital Muenster, Muenster, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| |
Collapse
|
123
|
Vestergaard M, Paulander W, Leng B, Nielsen JB, Westh HT, Ingmer H. Novel Pathways for Ameliorating the Fitness Cost of Gentamicin Resistant Small Colony Variants. Front Microbiol 2016; 7:1866. [PMID: 27920765 PMCID: PMC5119051 DOI: 10.3389/fmicb.2016.01866] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/04/2016] [Indexed: 01/08/2023] Open
Abstract
Small colony variants (SCVs) of the human pathogen Staphylococcus aureus are associated with persistent infections. Phenotypically, SCVs are characterized by slow growth and they can arise upon interruption of the electron transport chain that consequently reduce membrane potential and thereby limit uptake of aminoglycosides (e.g., gentamicin). In this study, we have examined the pathways by which the fitness cost of SCVs can be ameliorated. Five gentamicin resistant SCVs derived from S. aureus JE2 were independently selected on agar plates supplemented with gentamicin. The SCVs carried mutations in the menaquinone and hemin biosynthesis pathways, which caused a significant reduction in exponential growth rates relative to wild type (WT; 0.59-0.72) and reduced membrane potentials. Fifty independent lineages of the low-fitness, resistant mutants were serially passaged for up to 500 generations with or without sub-lethal concentrations of gentamicin. Amelioration of the fitness cost followed three evolutionary trajectories and was dependent on the initial mutation type (point mutation vs. deletion) and the passage condition (absence or presence of gentamicin). For SCVs evolved in the absence of gentamicin, 12 out of 15 lineages derived from SCVs with point mutations acquired intra-codonic suppressor mutations restoring membrane potential, growth rate, gentamicin susceptibility and colony size to WT levels. For the SCVs carrying deletions, all lineages enhanced fitness independent of membrane potential restoration without alterations in gentamicin resistance levels. By whole genome sequencing, we identified compensatory mutations in genes related to the σB stress response (7 out of 10 lineages). Inactivation of rpoF that encode for the alternative sigma factor SigB (σB) partially restored fitness of SCVs. For all lineages passaged in the presence of gentamicin, fitness compensation via membrane potential restoration was suppressed, however, selected for secondary mutations in fusA and SAUSA300_0749. This study is the first to describe fitness compensatory events in SCVs with deletion mutations and adaptation of SCVs to continued exposure to gentamicin.
Collapse
Affiliation(s)
- Martin Vestergaard
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen Frederiksberg, Denmark
| | - Wilhelm Paulander
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen Frederiksberg, Denmark
| | - Bingfeng Leng
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen Frederiksberg, Denmark
| | - Jesper B Nielsen
- MRSA Knowledge Center, Department of Clinical Microbiology, Hvidovre Hospital Hvidovre, Denmark
| | - Henrik T Westh
- MRSA Knowledge Center, Department of Clinical Microbiology, Hvidovre Hospital Hvidovre, Denmark
| | - Hanne Ingmer
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen Frederiksberg, Denmark
| |
Collapse
|
124
|
McLoughlin A, Rochfort KD, McDonnell CJ, Kerrigan SW, Cummins PM. Staphylococcus aureus-mediated blood-brain barrier injury: an in vitro human brain microvascular endothelial cell model. Cell Microbiol 2016; 19. [PMID: 27598716 DOI: 10.1111/cmi.12664] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 12/17/2022]
Abstract
Blood-brain barrier (BBB) disruption constitutes a hallmark event during pathogen-mediated neurological disorders such as bacterial meningitis. As a prevalent opportunistic pathogen, Staphylococcus aureus (SA) is of particular interest in this context, although our fundamental understanding of how SA disrupts the BBB is very limited. This paper employs in vitro infection models to address this. Human brain microvascular endothelial cells (HBMvECs) were infected with formaldehyde-fixed (multiplicity of infection [MOI] 0-250, 0-48 hr) and live (MOI 0-100, 0-3 hr) SA cultures. Both Fixed-SA and Live-SA could adhere to HBMvECs with equal efficacy and cause elevated paracellular permeability. In further studies employing Fixed-SA, infection of HBMvECs caused dose-dependent release of cytokines/chemokines (TNF-α, IL-6, MCP-1, IP-10, and thrombomodulin), reduced expression of interendothelial junction proteins (VE-Cadherin, claudin-5, and ZO-1), and activation of both canonical and non-canonical NF-κB pathways. Using N-acetylcysteine, we determined that these events were coupled to the SA-mediated induction of reactive oxygen species (ROS) within HBMvECs. Finally, treatment of HBMvECs with Fixed-ΔSpA (MOI 0-250, 48 hr), a gene deletion mutant of Staphylococcal protein A associated with bacterial infectivity, had relatively similar effects to Newman WT Fixed-SA. In conclusion, these findings provide insight into how SA infection may activate proinflammatory mechanisms within the brain microvascular endothelium to elicit BBB failure.
Collapse
Affiliation(s)
| | - Keith D Rochfort
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Cormac J McDonnell
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin, Ireland
| | - Steven W Kerrigan
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin, Ireland
| | - Philip M Cummins
- School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
125
|
Clinical Significance and Pathogenesis of Staphylococcal Small Colony Variants in Persistent Infections. Clin Microbiol Rev 2016; 29:401-27. [PMID: 26960941 DOI: 10.1128/cmr.00069-15] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Small colony variants (SCVs) were first described more than 100 years ago for Staphylococcus aureus and various coagulase-negative staphylococci. Two decades ago, an association between chronic staphylococcal infections and the presence of SCVs was observed. Since then, many clinical studies and observations have been published which tie recurrent, persistent staphylococcal infections, including device-associated infections, bone and tissue infections, and airway infections of cystic fibrosis patients, to this special phenotype. By their intracellular lifestyle, SCVs exhibit so-called phenotypic (or functional) resistance beyond the classical resistance mechanisms, and they can often be retrieved from therapy-refractory courses of infection. In this review, the various clinical infections where SCVs can be expected and isolated, diagnostic procedures for optimized species confirmation, and the pathogenesis of SCVs, including defined underlying molecular mechanisms and the phenotype switch phenomenon, are presented. Moreover, relevant animal models and suggested treatment regimens, as well as the requirements for future research areas, are highlighted.
Collapse
|
126
|
Blättner S, Das S, Paprotka K, Eilers U, Krischke M, Kretschmer D, Remmele CW, Dittrich M, Müller T, Schuelein-Voelk C, Hertlein T, Mueller MJ, Huettel B, Reinhardt R, Ohlsen K, Rudel T, Fraunholz MJ. Staphylococcus aureus Exploits a Non-ribosomal Cyclic Dipeptide to Modulate Survival within Epithelial Cells and Phagocytes. PLoS Pathog 2016; 12:e1005857. [PMID: 27632173 PMCID: PMC5025175 DOI: 10.1371/journal.ppat.1005857] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/10/2016] [Indexed: 12/21/2022] Open
Abstract
Community-acquired (CA) Staphylococcus aureus cause various diseases even in healthy individuals. Enhanced virulence of CA-strains is partly attributed to increased production of toxins such as phenol-soluble modulins (PSM). The pathogen is internalized efficiently by mammalian host cells and intracellular S. aureus has recently been shown to contribute to disease. Upon internalization, cytotoxic S. aureus strains can disrupt phagosomal membranes and kill host cells in a PSM-dependent manner. However, PSM are not sufficient for these processes. Here we screened for factors required for intracellular S. aureus virulence. We infected escape reporter host cells with strains from an established transposon mutant library and detected phagosomal escape rates using automated microscopy. We thereby, among other factors, identified a non-ribosomal peptide synthetase (NRPS) to be required for efficient phagosomal escape and intracellular survival of S. aureus as well as induction of host cell death. By genetic complementation as well as supplementation with the synthetic NRPS product, the cyclic dipeptide phevalin, wild-type phenotypes were restored. We further demonstrate that the NRPS is contributing to virulence in a mouse pneumonia model. Together, our data illustrate a hitherto unrecognized function of the S. aureus NRPS and its dipeptide product during S. aureus infection.
Collapse
Affiliation(s)
- Sebastian Blättner
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | - Sudip Das
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | - Kerstin Paprotka
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | - Ursula Eilers
- Core Unit Functional Genomics, University of Würzburg, Würzburg, Germany
| | - Markus Krischke
- Biocenter, Chair of Pharmaceutical Biology, University of Würzburg, Würzburg, Germany
| | - Dorothee Kretschmer
- Department of Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University Tübingen, Tübingen, Germany
| | | | - Marcus Dittrich
- Biocenter, Chair of Bioinformatics, University of Würzburg, Würzburg, Germany
- Institute of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Tobias Müller
- Biocenter, Chair of Bioinformatics, University of Würzburg, Würzburg, Germany
| | | | - Tobias Hertlein
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Martin J. Mueller
- Biocenter, Chair of Pharmaceutical Biology, University of Würzburg, Würzburg, Germany
| | | | | | - Knut Ohlsen
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Thomas Rudel
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
127
|
Resilience in the Face of Uncertainty: Sigma Factor B Fine-Tunes Gene Expression To Support Homeostasis in Gram-Positive Bacteria. Appl Environ Microbiol 2016; 82:4456-4469. [PMID: 27208112 DOI: 10.1128/aem.00714-16] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gram-positive bacteria are ubiquitous and diverse microorganisms that can survive and sometimes even thrive in continuously changing environments. The key to such resilience is the ability of members of a population to respond and adjust to dynamic conditions in the environment. In bacteria, such responses and adjustments are mediated, at least in part, through appropriate changes in the bacterial transcriptome in response to the conditions encountered. Resilience is important for bacterial survival in diverse, complex, and rapidly changing environments and requires coordinated networks that integrate individual, mechanistic responses to environmental cues to enable overall metabolic homeostasis. In many Gram-positive bacteria, a key transcriptional regulator of the response to changing environmental conditions is the alternative sigma factor σ(B) σ(B) has been characterized in a subset of Gram-positive bacteria, including the genera Bacillus, Listeria, and Staphylococcus Recent insight from next-generation-sequencing results indicates that σ(B)-dependent regulation of gene expression contributes to resilience, i.e., the coordination of complex networks responsive to environmental changes. This review explores contributions of σ(B) to resilience in Bacillus, Listeria, and Staphylococcus and illustrates recently described regulatory functions of σ(B).
Collapse
|
128
|
Bronesky D, Wu Z, Marzi S, Walter P, Geissmann T, Moreau K, Vandenesch F, Caldelari I, Romby P. Staphylococcus aureus RNAIII and Its Regulon Link Quorum Sensing, Stress Responses, Metabolic Adaptation, and Regulation of Virulence Gene Expression. Annu Rev Microbiol 2016; 70:299-316. [PMID: 27482744 DOI: 10.1146/annurev-micro-102215-095708] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Staphylococcus aureus RNAIII is one of the main intracellular effectors of the quorum-sensing system. It is a multifunctional RNA that encodes a small peptide, and its noncoding parts act as antisense RNAs to regulate the translation and/or the stability of mRNAs encoding transcriptional regulators, major virulence factors, and cell wall metabolism enzymes. In this review, we explain how regulatory proteins and RNAIII are embedded in complex regulatory circuits to express virulence factors in a dynamic and timely manner in response to stress and environmental and metabolic changes.
Collapse
Affiliation(s)
- Delphine Bronesky
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| | - Zongfu Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Stefano Marzi
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| | - Philippe Walter
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| | - Thomas Geissmann
- Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Université de Lyon, INSERM U1111, CNRS UMR 5308, CIRI, 69008 Lyon, France
| | - Karen Moreau
- Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Université de Lyon, INSERM U1111, CNRS UMR 5308, CIRI, 69008 Lyon, France
| | - François Vandenesch
- Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Université de Lyon, INSERM U1111, CNRS UMR 5308, CIRI, 69008 Lyon, France
| | - Isabelle Caldelari
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| | - Pascale Romby
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| |
Collapse
|
129
|
Strobel M, Pförtner H, Tuchscherr L, Völker U, Schmidt F, Kramko N, Schnittler HJ, Fraunholz MJ, Löffler B, Peters G, Niemann S. Post-invasion events after infection with Staphylococcus aureus are strongly dependent on both the host cell type and the infecting S. aureus strain. Clin Microbiol Infect 2016; 22:799-809. [PMID: 27393124 DOI: 10.1016/j.cmi.2016.06.020] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
Abstract
Host cell invasion is a major feature of Staphylococcus aureus and contributes to infection development. The intracellular metabolically active bacteria can induce host cell activation and death but they can also persist for long time periods. In this study a comparative analysis was performed of different well-characterized S. aureus strains in their interaction with a variety of host cell types. Staphylococcus aureus (strains 6850, USA300, LS1, SH1000, Cowan1) invasion was compared in different human cell types (epithelial and endothelial cells, keratinocytes, fibroblasts, osteoblasts). The number of intracellular bacteria was determined, cell inflammation was investigated, as well as cell death and phagosomal escape of bacteria. To explain strain-dependent differences in the secretome, a proteomic approach was used. Barrier cells took up high amounts of bacteria and were killed by aggressive strains. These strains expressed high levels of toxins, and possessed the ability to escape from phagolysosomes. Osteoblasts and keratinocytes ingested less bacteria, and were not killed, even though the primary osteoblasts were strongly activated by S. aureus. In all cell types S. aureus was able to persist. Strong differences in uptake, cytotoxicity, and inflammatory response were observed between primary cells and their corresponding cell lines, demonstrating that cell lines reflect only partially the functions and physiology of primary cells. This study provides a contribution for a better understanding of the pathomechanisms of S. aureus infections. The proteomic data provide important basic knowledge on strains commonly used in the analysis of S. aureus-host cell interaction.
Collapse
Affiliation(s)
- M Strobel
- University Hospital of Muenster, Institute of Medical Microbiology, Muenster, Germany
| | - H Pförtner
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - L Tuchscherr
- Institute of Medical Microbiology, Jena University Hospital, Germany
| | - U Völker
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - F Schmidt
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - N Kramko
- Westfaelische-Wilhelms University, Institute of Anatomy and Vascular Biology, Muenster, Germany
| | - H-J Schnittler
- Westfaelische-Wilhelms University, Institute of Anatomy and Vascular Biology, Muenster, Germany
| | - M J Fraunholz
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - B Löffler
- Institute of Medical Microbiology, Jena University Hospital, Germany
| | - G Peters
- University Hospital of Muenster, Institute of Medical Microbiology, Muenster, Germany; Cluster of Excellence EXC 1003, Cells in Motion, Muenster, Germany
| | - S Niemann
- University Hospital of Muenster, Institute of Medical Microbiology, Muenster, Germany.
| |
Collapse
|
130
|
Josse J, Guillaume C, Bour C, Lemaire F, Mongaret C, Draux F, Velard F, Gangloff SC. Impact of the Maturation of Human Primary Bone-Forming Cells on Their Behavior in Acute or Persistent Staphylococcus aureus Infection Models. Front Cell Infect Microbiol 2016; 6:64. [PMID: 27446812 PMCID: PMC4914565 DOI: 10.3389/fcimb.2016.00064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/30/2016] [Indexed: 02/05/2023] Open
Abstract
Staphylococcus aureus is one of the most frequently involved pathogens in bacterial infections such as skin abscess, pneumonia, endocarditis, osteomyelitis, and implant-associated infection. As for bone homeostasis, it is partly altered during infections by S. aureus by the induction of various responses from osteoblasts, which are the bone-forming cells responsible for extracellular matrix synthesis and its mineralization. Nevertheless, bone-forming cells are a heterogeneous population with different stages of maturation and the impact of the latter on their responses toward bacteria remains unclear. We describe the impact of S. aureus on two populations of human primary bone-forming cells (HPBCs) which have distinct maturation characteristics in both acute and persistent models of interaction. Cell maturation did not influence the internalization and survival of S. aureus inside bone-forming cells or the cell death related to the infection. By studying the expression of chemokines, cytokines, and osteoclastogenic regulators by HPBCs, we observed different profiles of chemokine expression according to the degree of cell maturation. However, there was no statistical difference in the amounts of proteins released by both populations in the presence of S. aureus compared to the non-infected counterparts. Our findings show that cell maturation does not impact the behavior of HPBCs infected with S. aureus and suggest that the role of bone-forming cells may not be pivotal for the inflammatory response in osteomyelitis.
Collapse
Affiliation(s)
- Jérôme Josse
- EA 4691 ≪Biomatériaux et Inflammation en Site Osseux ≫, Pôle Santé, Université de Reims Champagne-ArdenneReims, France; UFR Pharmacie, Pôle Santé, Université de Reims Champagne-ArdenneReims, France
| | - Christine Guillaume
- EA 4691 ≪Biomatériaux et Inflammation en Site Osseux ≫, Pôle Santé, Université de Reims Champagne-ArdenneReims, France; UFR Odontologie, Pôle Santé, Université de Reims Champagne-ArdenneReims, France
| | - Camille Bour
- EA 4691 ≪Biomatériaux et Inflammation en Site Osseux ≫, Pôle Santé, Université de Reims Champagne-Ardenne Reims, France
| | - Flora Lemaire
- EA 4691 ≪Biomatériaux et Inflammation en Site Osseux ≫, Pôle Santé, Université de Reims Champagne-Ardenne Reims, France
| | - Céline Mongaret
- EA 4691 ≪Biomatériaux et Inflammation en Site Osseux ≫, Pôle Santé, Université de Reims Champagne-ArdenneReims, France; UFR Pharmacie, Pôle Santé, Université de Reims Champagne-ArdenneReims, France
| | - Florence Draux
- EA 4691 ≪Biomatériaux et Inflammation en Site Osseux ≫, Pôle Santé, Université de Reims Champagne-ArdenneReims, France; UFR Odontologie, Pôle Santé, Université de Reims Champagne-ArdenneReims, France
| | - Frédéric Velard
- EA 4691 ≪Biomatériaux et Inflammation en Site Osseux ≫, Pôle Santé, Université de Reims Champagne-ArdenneReims, France; UFR Odontologie, Pôle Santé, Université de Reims Champagne-ArdenneReims, France
| | - Sophie C Gangloff
- EA 4691 ≪Biomatériaux et Inflammation en Site Osseux ≫, Pôle Santé, Université de Reims Champagne-ArdenneReims, France; UFR Pharmacie, Pôle Santé, Université de Reims Champagne-ArdenneReims, France
| |
Collapse
|
131
|
Trouillet-Assant S, Lelièvre L, Martins-Simões P, Gonzaga L, Tasse J, Valour F, Rasigade JP, Vandenesch F, Muniz Guedes RL, Ribeiro de Vasconcelos AT, Caillon J, Lustig S, Ferry T, Jacqueline C, Loss de Morais G, Laurent F. Adaptive processes of Staphylococcus aureus isolates during the progression from acute to chronic bone and joint infections in patients. Cell Microbiol 2016; 18:1405-14. [PMID: 26918656 DOI: 10.1111/cmi.12582] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 02/20/2016] [Indexed: 11/28/2022]
Abstract
Staphylococcus aureus bone and joint infection (BJI) is associated with significant rates of chronicity and relapse. In this study, we investigated how S. aureus is able to adapt to the human environment by comparing isolates from single patients with persisting or relapsing BJIs that were recovered during the initial and recurrent BJI episodes. In vitro and in vivo assays and whole-genome sequencing analyses revealed that the recurrent isolates induced a reduced inflammatory response, formed more biofilms, persisted longer in the intracellular compartments of host bone cells, were less cytotoxic and induced less mortality in a mouse infection model compared with the initial isolates despite the lack of significant changes at the genomic level. These findings suggest that S. aureus BJI chronicization is associated with an in vivo bacterial phenotypical adaptation that leads to decreased virulence and host immune escape, which is linked to increased intraosteoblastic persistence and biofilm formation.
Collapse
Affiliation(s)
- Sophie Trouillet-Assant
- Centre International de Recherche en Infectiologie, INSERM U1111, Pathogenesis of staphylococcal infections, University of Lyon 1, Lyon, France. .,Department of Clinical Microbiology, Northern Hospital Group, Hospices Civils de Lyon, Lyon, France.
| | - Lucie Lelièvre
- Centre International de Recherche en Infectiologie, INSERM U1111, Pathogenesis of staphylococcal infections, University of Lyon 1, Lyon, France
| | - Patrícia Martins-Simões
- Centre International de Recherche en Infectiologie, INSERM U1111, Pathogenesis of staphylococcal infections, University of Lyon 1, Lyon, France.,Department of Clinical Microbiology, Northern Hospital Group, Hospices Civils de Lyon, Lyon, France
| | - Luiz Gonzaga
- Bioinformatics Laboratory - LABINFO, National Laboratory of Scientific Computation - LNCC/MCTI, Petrópolis, Brazil
| | - Jason Tasse
- Centre International de Recherche en Infectiologie, INSERM U1111, Pathogenesis of staphylococcal infections, University of Lyon 1, Lyon, France.,Department of Clinical Microbiology, Northern Hospital Group, Hospices Civils de Lyon, Lyon, France
| | - Florent Valour
- Centre International de Recherche en Infectiologie, INSERM U1111, Pathogenesis of staphylococcal infections, University of Lyon 1, Lyon, France.,Infectious Diseases Department, Northern Hospital Group, Hospices Civils de Lyon, Lyon, France
| | - Jean-Philippe Rasigade
- Centre International de Recherche en Infectiologie, INSERM U1111, Pathogenesis of staphylococcal infections, University of Lyon 1, Lyon, France.,Department of Clinical Microbiology, Northern Hospital Group, Hospices Civils de Lyon, Lyon, France.,National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France
| | - François Vandenesch
- Centre International de Recherche en Infectiologie, INSERM U1111, Pathogenesis of staphylococcal infections, University of Lyon 1, Lyon, France.,Department of Clinical Microbiology, Northern Hospital Group, Hospices Civils de Lyon, Lyon, France.,National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France
| | - Rafael Lucas Muniz Guedes
- Bioinformatics Laboratory - LABINFO, National Laboratory of Scientific Computation - LNCC/MCTI, Petrópolis, Brazil
| | | | - Jocelyne Caillon
- University of Nantes, Medical School, UPRES EA, 3826, Nantes, France
| | - Sebastien Lustig
- Orthopedic Surgery Department, Northern Hospital Group, Hospices Civils de Lyon, Lyon, France
| | - Tristan Ferry
- Centre International de Recherche en Infectiologie, INSERM U1111, Pathogenesis of staphylococcal infections, University of Lyon 1, Lyon, France.,Infectious Diseases Department, Northern Hospital Group, Hospices Civils de Lyon, Lyon, France
| | - Cédric Jacqueline
- University of Nantes, Medical School, UPRES EA, 3826, Nantes, France
| | - Guilherme Loss de Morais
- Bioinformatics Laboratory - LABINFO, National Laboratory of Scientific Computation - LNCC/MCTI, Petrópolis, Brazil
| | - Frédéric Laurent
- Centre International de Recherche en Infectiologie, INSERM U1111, Pathogenesis of staphylococcal infections, University of Lyon 1, Lyon, France.,Department of Clinical Microbiology, Northern Hospital Group, Hospices Civils de Lyon, Lyon, France.,National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
132
|
Mäder U, Nicolas P, Depke M, Pané-Farré J, Debarbouille M, van der Kooi-Pol MM, Guérin C, Dérozier S, Hiron A, Jarmer H, Leduc A, Michalik S, Reilman E, Schaffer M, Schmidt F, Bessières P, Noirot P, Hecker M, Msadek T, Völker U, van Dijl JM. Staphylococcus aureus Transcriptome Architecture: From Laboratory to Infection-Mimicking Conditions. PLoS Genet 2016; 12:e1005962. [PMID: 27035918 PMCID: PMC4818034 DOI: 10.1371/journal.pgen.1005962] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/04/2016] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus aureus is a major pathogen that colonizes about 20% of the human population. Intriguingly, this Gram-positive bacterium can survive and thrive under a wide range of different conditions, both inside and outside the human body. Here, we investigated the transcriptional adaptation of S. aureus HG001, a derivative of strain NCTC 8325, across experimental conditions ranging from optimal growth in vitro to intracellular growth in host cells. These data establish an extensive repertoire of transcription units and non-coding RNAs, a classification of 1412 promoters according to their dependence on the RNA polymerase sigma factors SigA or SigB, and allow identification of new potential targets for several known transcription factors. In particular, this study revealed a relatively low abundance of antisense RNAs in S. aureus, where they overlap only 6% of the coding genes, and only 19 antisense RNAs not co-transcribed with other genes were found. Promoter analysis and comparison with Bacillus subtilis links the small number of antisense RNAs to a less profound impact of alternative sigma factors in S. aureus. Furthermore, we revealed that Rho-dependent transcription termination suppresses pervasive antisense transcription, presumably originating from abundant spurious transcription initiation in this A+T-rich genome, which would otherwise affect expression of the overlapped genes. In summary, our study provides genome-wide information on transcriptional regulation and non-coding RNAs in S. aureus as well as new insights into the biological function of Rho and the implications of spurious transcription in bacteria. The major human pathogen Staphylococcus aureus can survive under a wide range of conditions, both inside and outside the human body. The goal of this study was to determine how S. aureus adapts to such different conditions and, additionally, we wanted to identify general factors governing the staphylococcal transcriptome architecture. Therefore, we performed a precise analysis of all RNA transcripts of S. aureus across experimental conditions ranging from in vitro growth in different media to internalization by eukaryotic host cells. We systematically mapped all transcription units, annotated non-coding RNAs, and assigned promoters controlled by particular RNA polymerase sigma factors and transcription factors. By a comparison with data available for the related Gram-positive bacterium Bacillus subtilis, we made key observations concerning the abundance and origin of antisense RNAs. Intriguingly, these findings support the view that many antisense RNAs in a bacterium like B. subtilis could be byproducts of spurious promoter recognition by condition-specific alternative sigma factors. We also report that the transcription termination factor Rho prevents widespread antisense transcription, presumably caused by pervasive transcription initiation in the A+T-rich genome of S. aureus. Altogether our study presents new perspectives on the biological significance of antisense and pervasive transcription in bacteria.
Collapse
Affiliation(s)
- Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Pierre Nicolas
- MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Maren Depke
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jan Pané-Farré
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Michel Debarbouille
- Biology of Gram-Positive Pathogens, Department of Microbiology, Institut Pasteur and CNRS ERL 3526, Paris, France
| | - Magdalena M. van der Kooi-Pol
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Cyprien Guérin
- MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sandra Dérozier
- MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Aurelia Hiron
- Biology of Gram-Positive Pathogens, Department of Microbiology, Institut Pasteur and CNRS ERL 3526, Paris, France
| | - Hanne Jarmer
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Aurélie Leduc
- MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Ewoud Reilman
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marc Schaffer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Frank Schmidt
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | | | - Philippe Noirot
- Institut Micalis, INRA and AgroParisTech, Jouy-en-Josas, France
| | - Michael Hecker
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Tarek Msadek
- Biology of Gram-Positive Pathogens, Department of Microbiology, Institut Pasteur and CNRS ERL 3526, Paris, France
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- * E-mail: (UV); (JMvD)
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail: (UV); (JMvD)
| |
Collapse
|
133
|
Kong C, Neoh HM, Nathan S. Targeting Staphylococcus aureus Toxins: A Potential form of Anti-Virulence Therapy. Toxins (Basel) 2016; 8:toxins8030072. [PMID: 26999200 PMCID: PMC4810217 DOI: 10.3390/toxins8030072] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/03/2016] [Accepted: 03/10/2016] [Indexed: 01/01/2023] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen and the leading cause of a wide range of severe clinical infections. The range of diseases reflects the diversity of virulence factors produced by this pathogen. To establish an infection in the host, S. aureus expresses an inclusive set of virulence factors such as toxins, enzymes, adhesins, and other surface proteins that allow the pathogen to survive under extreme conditions and are essential for the bacteria’s ability to spread through tissues. Expression and secretion of this array of toxins and enzymes are tightly controlled by a number of regulatory systems. S. aureus is also notorious for its ability to resist the arsenal of currently available antibiotics and dissemination of various multidrug-resistant S. aureus clones limits therapeutic options for a S. aureus infection. Recently, the development of anti-virulence therapeutics that neutralize S. aureus toxins or block the pathways that regulate toxin production has shown potential in thwarting the bacteria’s acquisition of antibiotic resistance. In this review, we provide insights into the regulation of S. aureus toxin production and potential anti-virulence strategies that target S. aureus toxins.
Collapse
Affiliation(s)
- Cin Kong
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia.
| | - Hui-min Neoh
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Sheila Nathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
134
|
Atwood DN, Beenken KE, Lantz TL, Meeker DG, Lynn WB, Mills WB, Spencer HJ, Smeltzer MS. Regulatory Mutations Impacting Antibiotic Susceptibility in an Established Staphylococcus aureus Biofilm. Antimicrob Agents Chemother 2016; 60:1826-9. [PMID: 26824954 PMCID: PMC4775981 DOI: 10.1128/aac.02750-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/26/2015] [Indexed: 02/04/2023] Open
Abstract
We previously determined the extent to which mutations of different Staphylococcus aureus regulatory loci impact biofilm formation as assessed under in vitro conditions. Here we extend these studies to determine the extent to which those regulatory loci that had the greatest effect on biofilm formation also impact antibiotic susceptibility. The experiments were done under in vitro and in vivo conditions using two clinical isolates of S. aureus (LAC and UAMS-1) and two functionally diverse antibiotics (daptomycin and ceftaroline). Mutation of the staphylococcal accessory regulator (sarA) or sigB was found to significantly increase susceptibilities to both antibiotics and in both strains in a manner that could not be explained by changes in the MICs. The impact of a mutation in sarA was comparable to that of a mutation in sigB and greater than the impact observed with any other mutant. These results suggest that therapeutic strategies targeting sarA and/or sigB have the greatest potential to facilitate the ability to overcome the intrinsic antibiotic resistance that defines S. aureus biofilm-associated infections.
Collapse
Affiliation(s)
- Danielle N Atwood
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Karen E Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Tamara L Lantz
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Daniel G Meeker
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - William B Lynn
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Weston B Mills
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Horace J Spencer
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Mark S Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
135
|
Abstract
Musculoskeletal infections caused by Staphylococcus aureus are among the most difficult-to-treat infections. S. aureus osteomyelitis is associated with a tremendous disease burden through potential for long-term relapses and functional deficits. Although considerable advances have been achieved in diagnosis and treatment of osteomyelitis, the management remains challenging and impact on quality of life is still enormous. S. aureus acute arthritis is relatively seldom in general population, but the incidence is considerably higher in patients with predisposing conditions, particularly those with rheumatoid arthritis. Rapidly destructive course with high mortality and disability rates makes urgent diagnosis and treatment of acute arthritis essential. S. aureus pyomyositis is a common disease in tropical countries, but it is very seldom in temperate regions. Nevertheless, the cases have been increasingly reported also in non-tropical countries, and the physicians should be able to timely recognize this uncommon condition and initiate appropriate treatment. The optimal management of S. aureus-associated musculoskeletal infections requires a strong interdisciplinary collaboration between all involved specialists.
Collapse
|
136
|
Tranchemontagne ZR, Camire RB, O'Donnell VJ, Baugh J, Burkholder KM. Staphylococcus aureus Strain USA300 Perturbs Acquisition of Lysosomal Enzymes and Requires Phagosomal Acidification for Survival inside Macrophages. Infect Immun 2016; 84:241-53. [PMID: 26502911 PMCID: PMC4694005 DOI: 10.1128/iai.00704-15] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 10/22/2015] [Indexed: 02/08/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) causes invasive, drug-resistant skin and soft tissue infections. Reports that S. aureus bacteria survive inside macrophages suggest that the intramacrophage environment may be a niche for persistent infection; however, mechanisms by which the bacteria might evade macrophage phagosomal defenses are unclear. We examined the fate of the S. aureus-containing phagosome in THP-1 macrophages by evaluating bacterial intracellular survival and phagosomal acidification and maturation and by testing the impact of phagosomal conditions on bacterial viability. Multiple strains of S. aureus survived inside macrophages, and in studies using the MRSA USA300 clone, the USA300-containing phagosome acidified rapidly and acquired the late endosome and lysosome protein LAMP1. However, fewer phagosomes containing live USA300 bacteria than those containing dead bacteria associated with the lysosomal hydrolases cathepsin D and β-glucuronidase. Inhibiting lysosomal hydrolase activity had no impact on intracellular survival of USA300 or other S. aureus strains, suggesting that S. aureus perturbs acquisition of lysosomal enzymes. We examined the impact of acidification on S. aureus intramacrophage viability and found that inhibitors of phagosomal acidification significantly impaired USA300 intracellular survival. Inhibition of macrophage phagosomal acidification resulted in a 30-fold reduction in USA300 expression of the staphylococcal virulence regulator agr but had little effect on expression of sarA, saeR, or sigB. Bacterial exposure to acidic pH in vitro increased agr expression. Together, these results suggest that S. aureus survives inside macrophages by perturbing normal phagolysosome formation and that USA300 may sense phagosomal conditions and upregulate expression of a key virulence regulator that enables its intracellular survival.
Collapse
Affiliation(s)
| | - Ryan B Camire
- Department of Nursing, University of New England, Biddeford, Maine, USA
| | | | - Jessfor Baugh
- Department of Biology, University of New England, Biddeford, Maine, USA
| | | |
Collapse
|
137
|
Josse J, Velard F, Gangloff SC. Staphylococcus aureus vs. Osteoblast: Relationship and Consequences in Osteomyelitis. Front Cell Infect Microbiol 2015; 5:85. [PMID: 26636047 PMCID: PMC4660271 DOI: 10.3389/fcimb.2015.00085] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/10/2015] [Indexed: 12/11/2022] Open
Abstract
Bone cells, namely osteoblasts and osteoclasts work in concert and are responsible for bone extracellular matrix formation and resorption. This homeostasis is, in part, altered during infections by Staphylococcus aureus through the induction of various responses from the osteoblasts. This includes the over-production of chemokines, cytokines and growth factors, thus suggesting a role for these cells in both innate and adaptive immunity. S. aureus decreases the activity and viability of osteoblasts, by induction of apoptosis-dependent and independent mechanisms. The tight relationship between osteoclasts and osteoblasts is also modulated by S. aureus infection. The present review provides a survey of the relevant literature discussing the important aspects of S. aureus and osteoblast interaction as well as the ability for antimicrobial peptides to kill intra-osteoblastic S. aureus, hence emphasizing the necessity for new anti-infectious therapeutics.
Collapse
Affiliation(s)
- Jérôme Josse
- EA 4691 Biomatériaux et inflammation en site osseux, Pôle Santé, Université de Reims Champagne-Ardenne Reims, France
| | - Frédéric Velard
- EA 4691 Biomatériaux et inflammation en site osseux, Pôle Santé, Université de Reims Champagne-Ardenne Reims, France
| | - Sophie C Gangloff
- EA 4691 Biomatériaux et inflammation en site osseux, Pôle Santé, Université de Reims Champagne-Ardenne Reims, France
| |
Collapse
|
138
|
Tuchscherr L, Kreis CA, Hoerr V, Flint L, Hachmeister M, Geraci J, Bremer-Streck S, Kiehntopf M, Medina E, Kribus M, Raschke M, Pletz M, Peters G, Löffler B. Staphylococcus aureus develops increased resistance to antibiotics by forming dynamic small colony variants during chronic osteomyelitis. J Antimicrob Chemother 2015; 71:438-48. [PMID: 26589581 DOI: 10.1093/jac/dkv371] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/04/2015] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Staphylococcus aureus osteomyelitis often develops to chronicity despite antimicrobial treatments that have been found to be susceptible in in vitro tests. The complex infection strategies of S. aureus, including host cell invasion and intracellular persistence via the formation of dynamic small colony variant (SCV) phenotypes, could be responsible for therapy-refractory infection courses. METHODS To analyse the efficacy of antibiotics in the acute and chronic stage of bone infections, we established long-term in vitro and in vivo osteomyelitis models. Antibiotics that were tested include β-lactams, fluoroquinolones, vancomycin, linezolid, daptomycin, fosfomycin, gentamicin, rifampicin and clindamycin. RESULTS Cell culture infection experiments revealed that all tested antibiotics reduced bacterial numbers within infected osteoblasts when treatment was started immediately, whereas some antibiotics lost their activity against intracellular persisting bacteria. Only rifampicin almost cleared infected osteoblasts in the acute and chronic stages. Furthermore, we detected that low concentrations of gentamicin, moxifloxacin and clindamycin enhanced the formation of SCVs, and these could promote chronic infections. Next, we treated a murine osteomyelitis model in the acute and chronic stages. Only rifampicin significantly reduced the bacterial load of bones in the acute phase, whereas cefuroxime and gentamicin were less effective and gentamicin strongly induced SCV formation. During chronicity none of the antimicrobial compounds tested showed a beneficial effect on bone deformation or reduced the numbers of persisting bacteria. CONCLUSIONS In all infection models rifampicin was most effective at reducing bacterial loads. In the chronic stage, particularly in the in vivo model, many tested compounds lost activity against persisting bacteria and some antibiotics even induced SCV formation.
Collapse
Affiliation(s)
- L Tuchscherr
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - C A Kreis
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital of Münster, Münster, Germany
| | - V Hoerr
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany Department for Clinical Radiology, University Hospital of Münster, Münster, Germany
| | - L Flint
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - M Hachmeister
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - J Geraci
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - S Bremer-Streck
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - M Kiehntopf
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - E Medina
- Helmholtz Center for Infection Research, Braunschweig, Germany
| | - M Kribus
- Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Jena, Germany
| | - M Raschke
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital of Münster, Münster, Germany
| | - M Pletz
- Center for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - G Peters
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - B Löffler
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| |
Collapse
|
139
|
A full genomic characterization of the development of a stable Small Colony Variant cell-type by a clinical Staphylococcus aureus strain. INFECTION GENETICS AND EVOLUTION 2015; 36:345-355. [PMID: 26458527 DOI: 10.1016/j.meegid.2015.10.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 12/30/2022]
Abstract
A key to persistent and recurrent Staphylococcus aureus infections is its ability to adapt to diverse and toxic conditions. This ability includes a switch into a biofilm or to the quasi-dormant Small Colony Variant (SCV). The development and molecular attributes of SCVs have been difficult to study due to their rapid reversion to their parental cell-type. We recently described the unique induction of a matrix-embedded and stable SCV cell-type in a clinical S. aureus strain (WCH-SK2) by growing the cells with limiting conditions for a prolonged timeframe. Here we further study their characteristics. They possessed an increased viability in the presence of antibiotics compared to their non-SCV form. Their stability implied that there had been genetic changes; we therefore determined both the genome sequence of WCH-SK2 and its stable SCV form at a single base resolution, employing Single Molecular Real-Time (SMRT) sequencing that enabled the methylome to also be determined. The genetic features of WCH-SK2 have been identified; the SCCmec type, the pathogenicity and genetic islands and virulence factors. The genetic changes that had occurred in the stable SCV form were identified; most notably being in MgrA, a global regulator, and RsbU, a phosphoserine phosphatase within the regulatory pathway of the sigma factor SigB. There was a shift in the methylomes of the non-SCV and stable SCV forms. We have also shown a similar induction of this cell-type in other S. aureus strains and performed a genetic comparison to these and other S. aureus genomes. We additionally map RNAseq data to the WCH-SK2 genome in a transcriptomic analysis of the parental, SCV and stable SCV cells. The results from this study represent the unique identification of a suite of epigenetic, genetic and transcriptional factors that are implicated in the switch in S. aureus to its persistent SCV form.
Collapse
|
140
|
Johns BE, Purdy KJ, Tucker NP, Maddocks SE. Phenotypic and Genotypic Characteristics of Small Colony Variants and Their Role in Chronic Infection. Microbiol Insights 2015; 8:15-23. [PMID: 26448688 PMCID: PMC4581789 DOI: 10.4137/mbi.s25800] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/09/2015] [Accepted: 08/13/2015] [Indexed: 01/02/2023] Open
Abstract
Small colony variant (SCV) bacteria arise spontaneously within apparently homogeneous microbial populations, largely in response to environmental stresses, such as antimicrobial treatment. They display unique phenotypic characteristics conferred in part by heritable genetic changes. Characteristically slow growing, SCVs comprise a minor proportion of the population from which they arise but persist by virtue of their inherent resilience and host adaptability. Consequently, SCVs are problematic in chronic infection, where antimicrobial treatment is administered during the acute phase of infection but fails to eradicate SCVs, which remain within the host causing recurrent or chronic infection. This review discusses some of the phenotypic and genotypic changes that enable SCVs to successfully proliferate within the host environment as potential pathogens and strategies that could ameliorate the resolution of infection where SCVs are present.
Collapse
Affiliation(s)
- Benjamin E Johns
- Department of Biomedical Science, Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Kevin J Purdy
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Nicholas P Tucker
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Sarah E Maddocks
- Department of Biomedical Science, Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| |
Collapse
|
141
|
Staphylococcus aureus dynamically adapts global regulators and virulence factor expression in the course from acute to chronic infection. Curr Genet 2015; 62:15-7. [DOI: 10.1007/s00294-015-0503-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
|