101
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to examine the evidence describing adipose tissue as a reservoir for HIV-1 and how this often expansive anatomic compartment contributes to HIV persistence. RECENT FINDINGS Memory CD4 T cells and macrophages, the major host cells for HIV, accumulate in adipose tissue during HIV/SIV infection of humans and rhesus macaques. Whereas HIV and SIV proviral DNA is detectable in CD4 T cells of multiple fat depots in virtually all infected humans and monkeys examined, viral RNA is less frequently detected, and infected macrophages may be less prevalent in adipose tissue. However, based on viral outgrowth assays, adipose-resident CD4 T cells are latently infected with virus that is replication-competent and infectious. Additionally, adipocytes interact with CD4 T cells and macrophages to promote immune cell activation and inflammation which may be supportive for HIV persistence. Antiviral effector cells, such as CD8 T cells and NK/NKT cells, are abundant in adipose tissue during HIV/SIV infection and typically exceed CD4 T cells, whereas B cells are largely absent from adipose tissue of humans and monkeys. Additionally, CD8 T cells in adipose tissue of HIV patients are activated and have a late differentiated phenotype, with unique TCR clonotypes of less diversity relative to blood CD8 T cells. With respect to the distribution of antiretroviral drugs in adipose tissue, data is limited, but there may be class-specific penetration of fat depots. The trafficking of infected immune cells within adipose tissues is a common event during HIV/SIV infection of humans and monkeys, but the virus may be mostly transcriptionally dormant. Viral replication may occur less in adipose tissue compared to other major reservoirs, such as lymphoid tissue, but replication competence and infectiousness of adipose latent virus are comparable to other tissues. Due to the ubiquitous nature of adipose tissue, inflammatory interactions among adipocytes and CD4 T cells and macrophages, and selective distribution of antiretroviral drugs, the sequestration of infected immune cells within fat depots likely represents a major challenge for cure efforts.
Collapse
Affiliation(s)
- Jacob Couturier
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 2.112, Houston, TX, 77030, USA
| | - Dorothy E Lewis
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 2.112, Houston, TX, 77030, USA.
| |
Collapse
|
102
|
Rao M, Dodoo E, Zumla A, Maeurer M. Immunometabolism and Pulmonary Infections: Implications for Protective Immune Responses and Host-Directed Therapies. Front Microbiol 2019; 10:962. [PMID: 31134013 PMCID: PMC6514247 DOI: 10.3389/fmicb.2019.00962] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
The biology and clinical efficacy of immune cells from patients with infectious diseases or cancer are associated with metabolic programming. Host immune- and stromal-cell genetic and epigenetic signatures in response to the invading pathogen shape disease pathophysiology and disease outcomes. Directly linked to the immunometabolic axis is the role of the host microbiome, which is also discussed here in the context of productive immune responses to lung infections. We also present host-directed therapies (HDT) as a clinically viable strategy to refocus dysregulated immunometabolism in patients with infectious diseases, which requires validation in early phase clinical trials as adjuncts to conventional antimicrobial therapy. These efforts are expected to be continuously supported by newly generated basic and translational research data to gain a better understanding of disease pathology while devising new molecularly defined platforms and therapeutic options to improve the treatment of patients with pulmonary infections, particularly in relation to multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Ernest Dodoo
- Department of Oncology and Haematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - Alimuddin Zumla
- Division of Infection and Immunity, University College London, NIHR Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal.,Department of Oncology and Haematology, Krankenhaus Nordwest, Frankfurt, Germany
| |
Collapse
|
103
|
Impact of HIV/simian immunodeficiency virus infection and viral proteins on adipose tissue fibrosis and adipogenesis. AIDS 2019; 33:953-964. [PMID: 30946149 DOI: 10.1097/qad.0000000000002168] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE HIV-infected patients receiving antiretroviral treatment (ART) often present adipose tissue accumulation and/or redistribution. adipose tissue has been shown to be an HIV/SIV reservoir and viral proteins as Tat or Nef can be released by infected immune cells and exert a bystander effect on adipocytes or precursors. Our aim was to demonstrate that SIV/HIV infection per se could alter adipose tissue structure and/or function. DESIGN Morphological and functional alterations of subcutaneous (SCAT) and visceral adipose tissue (VAT) were studied in SIV-infected macaques and HIV-infected ART-controlled patients. To analyze the effect of Tat or Nef, we used human adipose stem cells (ASCs) issued from healthy donors, and analyzed adipogenesis and extracellular matrix component production using two dimensional (2D) and three-dimensional (3D) culture models. METHODS Adipocyte size and index of fibrosis were determined on Sirius red-stained adipose tissue samples. Proliferating and adipocyte 2D-differentiating or 3D-differentiating ASCs were treated chronically with Tat or Nef. mRNA, protein expression and secretion were examined by RT-PCR, western-blot and ELISA. RESULTS SCAT and VAT from SIV-infected macaques displayed small adipocytes, decreased adipogenesis and severe fibrosis with collagen deposition. SCAT and VAT from HIV-infected ART-controlled patients presented similar alterations. In vitro, Tat and/or Nef induced a profibrotic phenotype in undifferentiated ASCs and altered adipogenesis and collagen production in adipocyte-differentiating ASCs. CONCLUSION We demonstrate here a specific role for HIV/SIV infection per se on adipose tissue fibrosis and adipogenesis, probably through the release of viral proteins, which could be involved in adipose tissue dysfunction contributing to cardiometabolic alterations of HIV-infected individuals.
Collapse
|
104
|
Wanjalla CN, McDonnell WJ, Barnett L, Simmons JD, Furch BD, Lima MC, Woodward BO, Fan R, Fei Y, Baker PG, Ram R, Pilkinton MA, Mashayekhi M, Brown NJ, Mallal SA, Kalams SA, Koethe JR. Adipose Tissue in Persons With HIV Is Enriched for CD4 + T Effector Memory and T Effector Memory RA + Cells, Which Show Higher CD69 Expression and CD57, CX3CR1, GPR56 Co-expression With Increasing Glucose Intolerance. Front Immunol 2019; 10:408. [PMID: 30941121 PMCID: PMC6433850 DOI: 10.3389/fimmu.2019.00408] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 02/15/2019] [Indexed: 01/14/2023] Open
Abstract
Chronic T cell activation and accelerated immune senescence are hallmarks of HIV infection, which may contribute to the increased risk of cardiometabolic diseases in people living with HIV (PLWH). T lymphocytes play a central role in modulating adipose tissue inflammation and, by extension, adipocyte energy storage and release. Here, we assessed the CD4+ and CD8+ T cell profiles in the subcutaneous adipose tissue (SAT) and blood of non-diabetic (n = 9; fasting blood glucose [FBG] < 100 mg/dL), pre-diabetic (n = 8; FBG = 100-125 mg/dL) and diabetic (n = 9; FBG ≥ 126 mg/dL) PLWH, in addition to non- and pre-diabetic, HIV-negative controls (n = 8). SAT was collected by liposuction and T cells were extracted by collagenase digestion. The proportion of naïve (TNai) CD45RO-CCR7+, effector memory (TEM) CD45RO+CCR7-, central memory (TCM) CD45RO+CCR7+, and effector memory revertant RA+(TEMRA) CD45RO-CCR7- CD4+ and CD8+ T cells were measured by flow cytometry. CD4+ and CD8+ TEM and TEMRA were significantly enriched in SAT of PLWH compared to blood. The proportions of SAT CD4+ and CD8+ memory subsets were similar across metabolic status categories in the PLWH, but CD4+ T cell expression of the CD69 early-activation and tissue residence marker, particularly on TEM cells, increased with progressive glucose intolerance. Use of t-distributed Stochastic Neighbor Embedding (t-SNE) identified a separate group of predominantly CD69lo TEM and TEMRA cells co-expressing CD57, CX3CR1, and GPR56, which were significantly greater in diabetics compared to non-diabetics. Expression of the CX3CR1 and GPR56 markers indicate these TEM and TEMRA cells may have anti-viral specificity. Compared to HIV-negative controls, SAT from PLWH had an increased CD8:CD4 ratio, but the distribution of CD4+ and CD8+ memory subsets was similar irrespective of HIV status. Finally, whole adipose tissue from PLWH had significantly higher expression of TLR2, TLR8, and multiple chemokines potentially relevant to immune cell homing compared to HIV-negative controls with similar glucose tolerance.
Collapse
Affiliation(s)
- Celestine N. Wanjalla
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Wyatt J. McDonnell
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
| | - Louise Barnett
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Joshua D. Simmons
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Briana D. Furch
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Morgan C. Lima
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Beverly O. Woodward
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Run Fan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ye Fei
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Paxton G. Baker
- VANTAGE, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ramesh Ram
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
| | - Mark A. Pilkinton
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Mona Mashayekhi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University, Nashville, TN, United States
| | - Nancy J. Brown
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Simon A. Mallal
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, United States
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
- VANTAGE, Vanderbilt University Medical Center, Nashville, TN, United States
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
| | - Spyros A. Kalams
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, United States
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - John R. Koethe
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
105
|
Cellular Determinants of HIV Persistence on Antiretroviral Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1075:213-239. [PMID: 30030795 DOI: 10.1007/978-981-13-0484-2_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The era of antiretroviral therapy has made HIV-1 infection a manageable chronic disease for those with access to treatment. Despite treatment, virus persists in tissue reservoirs seeded with long-lived infected cells that are resistant to cell death and immune recognition. Which cells contribute to this reservoir and which factors determine their persistence are central questions that need to be answered to achieve viral eradication. In this chapter, we describe how cell susceptibility to infection, resistance to cell death, and immune-mediated killing as well as natural cell life span and turnover potential are central components that allow persistence of different lymphoid and myeloid cell subsets that were recently identified as key players in harboring latent and actively replicating virus. The relative contribution of these subsets to persistence of viral reservoir is described, and the open questions are highlighted.
Collapse
|
106
|
Laparra A, Tricot S, Le Van M, Damouche A, Gorwood J, Vaslin B, Favier B, Benoist S, Ho Tsong Fang R, Bosquet N, Le Grand R, Chapon C, Lambotte O, Bourgeois C. The Frequencies of Immunosuppressive Cells in Adipose Tissue Differ in Human, Non-human Primate, and Mouse Models. Front Immunol 2019; 10:117. [PMID: 30804937 PMCID: PMC6371887 DOI: 10.3389/fimmu.2019.00117] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/15/2019] [Indexed: 12/20/2022] Open
Abstract
Although the metabolic properties of white adipose tissue have been extensively characterized, the tissue's immune properties are now attracting renewed interest. Early experiments in a mouse model suggested that white adipose tissue contains a high density of regulatory T cells (Tregs), and so it was assumed that all adipose tissue has an immunosuppressive profile—even though the investigation was limited to visceral body fat in relatively old male mice. This observation was also corroborated by high frequencies of other cell subsets with immunoregulatory properties, such as anti-inflammatory M2 macrophages, and regulatory B cells. Many studies have since evidenced the persistence of pathogens (trypanosomes, Mycobacterium tuberculosis, HIV, etc.) in adipose tissue. However, a recent report identified adipose tissue as a reservoir of memory T cells capable of protecting animals upon rechallenge. The immune potential of lean adipose tissue thus remains to be further investigated. Here, we compared the relative proportions of immune cells (and Tregs in particular) in lean adipose tissue collected from humans, a non-human primate (the cynomolgus macaque), and three mouse models. We demonstrated that the proportion of Foxp3+ Tregs in visceral adipose tissue was low in all models other than the C57Bl/6 mouse. These low values were not linked to correspondingly low proportions of effector cells because T lymphocytes (a main target of Treg suppression) were more frequent in cynomolgus macaques than in C57Bl/6 mice and (to a lesser extent) humans. In contrast, the proportions of macrophages and B cells were lower in cynomolgus macaques than in C57Bl/6 mice. We also observed a higher proportion of CD34+CD45- cells (which predominantly correspond to mesenchymal stem cells) in C57Bl/6 mouse and cynomolgus macaques than in humans and both for subcutaneous and visceral adipose tissues. Lastly, a microscopy analysis confirmed predominant proportion of adipocytes within adipose tissue, and highlighted a marked difference in adipocyte size among the three species studied. In conclusion, our study of lean, middle-aged, male individuals showed that the immune compartment of adipose tissue differed markedly in humans vs. mice, and suggesting the presence of a more inflammatory steady-state profile in humans than mice.
Collapse
Affiliation(s)
- Ariane Laparra
- CEA - Université Paris Sud 11 - INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Sabine Tricot
- CEA - Université Paris Sud 11 - INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Mélanie Le Van
- CEA - Université Paris Sud 11 - INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Abderaouf Damouche
- CEA - Université Paris Sud 11 - INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Jennifer Gorwood
- CEA - Université Paris Sud 11 - INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Bruno Vaslin
- CEA - Université Paris Sud 11 - INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Benoit Favier
- CEA - Université Paris Sud 11 - INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Stéphane Benoist
- Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, Service de Chirurgie Digestive et Oncologique, Le Kremlin-Bicêtre, France
| | - Raphael Ho Tsong Fang
- CEA - Université Paris Sud 11 - INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Nathalie Bosquet
- CEA - Université Paris Sud 11 - INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Roger Le Grand
- CEA - Université Paris Sud 11 - INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Catherine Chapon
- CEA - Université Paris Sud 11 - INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Olivier Lambotte
- CEA - Université Paris Sud 11 - INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France.,Université Paris Sud, Le Kremlin Bicêtre, France.,Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne et Immunologie Clinique, Groupe Hospitalier Universitaire Paris Sud, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Christine Bourgeois
- CEA - Université Paris Sud 11 - INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| |
Collapse
|
107
|
Relationship of visceral and subcutaneous adipose depots to markers of arterial injury and inflammation among individuals with HIV. AIDS 2019; 33:229-236. [PMID: 30325779 DOI: 10.1097/qad.0000000000002060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Persons living with HIV (PLWH) well treated on antiretroviral therapies remain at risk for ensuing arterial disease. We investigated the relationship between adipose depots and biomarkers of arterial injury and inflammation to gain insight into the link between body composition and CVD risk. DESIGNS/METHODS One hundred and fifty-five HIV-infected and 70 non-HIV infected individuals were well phenotyped for body composition. Adipose depots were assessed via single-slice abdominal computed tomography (CT). Circulating markers of arterial disease and generalized inflammation [lipoprotein-associated phospholipase A2 (LpPLA2), oxidized low-density lipoprotein (oxLDL), high-sensitivity cardiac troponin T (hs-cTnT), high-sensitivity C-reactive protein (hsCRP)] were evaluated. RESULTS Despite similar BMI and visceral adipose tissue (VAT), HIV-infected individuals had significantly lower subcutaneous adipose tissue [SAT, 199 (126-288) vs. 239 (148-358) cm(2), P = 0.04] than non-HIV infected individuals. Among HIV-infected individuals, reduced SAT inversely correlated with LpPLA2 (ρ = -0.19, P = 0.02) and hs-cTnT (ρ = -0.24, P = 0.004), whereas increased VAT significantly and positively related to LpPLA2 (ρ = 0.25, P = 0.003), oxLDL (ρ = 0.28, P = 0.0005), hs-cTnT (ρ = 0.28, P = 0.0007) and hsCRP (ρ = 0.32, P = < 0.0001). Similar analyses among the non-HIV infected individuals revealed significant relationships between SAT and LpPLA2 (ρ = -0.24, P = 0.05), as well as VAT and LpPLA2 (ρ = 0.37, P = 0.002), oxLDL (ρ = 0.24, P = 0.05) and hsCRP (ρ = 0.29, P = .02). In modelling performed among the HIV group, simultaneously controlling for VAT, SAT, age and relevant HIV-related parameters, reduced SAT was an independent predictor of LpPLA2 (P = 0.04) and hs-cTnT (P = 0.005) and increased VAT was an independent predictor of LpPLA2 (P = 0.001), oxLDL (P = 0.02), hs-cTnT (P = 0.04) and hsCRP (P = 0.04). CONCLUSION Fat redistribution phenotypes, characterized by SAT loss and/or VAT accumulation, may be linked to arterial injury and inflammation in HIV.
Collapse
|
108
|
Macdougall CE, Longhi MP. Adipose tissue dendritic cells in steady-state. Immunology 2019; 156:228-234. [PMID: 30552824 DOI: 10.1111/imm.13034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 12/17/2022] Open
Abstract
Healthy white adipose tissue (WAT) participates in regulating systemic metabolism, whereas dysfunctional WAT plays a prominent role in the development of obesity-associated co-morbidities. Tissue-resident immune cells are important for maintaining WAT homeostasis, including conventional dendritic cells (cDCs) which are critical in the initiation and regulation of adaptive immune responses. Due to phenotypic overlap with other myeloid cells, the distinct contribution of WAT cDCs has been poorly understood. This review will discuss the contribution of cDCs in the maintenance of WAT homeostasis. In particular, the review will focus on the metabolic cross-talk between cDCs and adipocytes that regulates local immune responses during physiological conditions.
Collapse
Affiliation(s)
- Claire E Macdougall
- William Harvey Research Institute, Barts and the London, Queen Mary University of London, London, UK
| | - M Paula Longhi
- William Harvey Research Institute, Barts and the London, Queen Mary University of London, London, UK
| |
Collapse
|
109
|
Adipose Tissue is Enriched for Activated and Late-Differentiated CD8+ T Cells and Shows Distinct CD8+ Receptor Usage, Compared With Blood in HIV-Infected Persons. J Acquir Immune Defic Syndr 2018; 77:e14-e21. [PMID: 29040163 DOI: 10.1097/qai.0000000000001573] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Adverse viral and medication effects on adipose tissue contribute to the development of metabolic disease in HIV-infected persons, but T cells also have a central role modulating local inflammation and adipocyte function. We sought to characterize potentially proinflammatory T-cell populations in adipose tissue among persons on long-term antiretroviral therapy and assess whether adipose tissue CD8 T cells represent an expanded, oligoclonal population. METHODS We recruited 10 HIV-infected, non-diabetic, overweight or obese adults on efavirenz, tenofovir, and emtricitabine for >4 years with consistent viral suppression. We collected fasting blood and subcutaneous abdominal adipose tissue to measure the percentage of CD4 and CD8 T cells expressing activation, exhaustion, late differentiation/senescence, and memory surface markers. We performed T-cell receptor (TCR) sequencing on sorted CD8 cells. We compared the proportion of each T-cell subset and the TCR repertoire diversity, in blood versus adipose tissue. RESULTS Adipose tissue had a higher percentage of CD3CD8 T cells compared with blood (61.0% vs. 51.7%, P < 0.01) and was enriched for both activated CD8HLA-DR T cells (5.5% vs. 0.9%, P < 0.01) and late-differentiated CD8CD57 T cells (37.4% vs. 22.7%, P < 0.01). Adipose tissue CD8 T cells displayed distinct TCRβ V and J gene usage, and the Shannon Entropy index, a measure of overall TCRβ repertoire diversity, was lower compared with blood (4.39 vs. 4.46; P = 0.05). CONCLUSIONS Adipose tissue is enriched for activated and late-differentiated CD8 T cells with distinct TCR usage. These cells may contribute to tissue inflammation and impaired adipocyte fitness in HIV-infected persons.
Collapse
|
110
|
Wanjalla CN, McDonnell WJ, Koethe JR. Adipose Tissue T Cells in HIV/SIV Infection. Front Immunol 2018; 9:2730. [PMID: 30559739 PMCID: PMC6286992 DOI: 10.3389/fimmu.2018.02730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue comprises one of the largest organs in the body and performs diverse functions including energy storage and release, regulation of appetite and other neuroendocrine signaling, and modulation of immuity, among others. Adipocytes reside in a complex compartment where antigen, antigen presenting cells, innate immune cells, and adaptive immune cells interact locally and exert systemic effects on inflammation, circulating immune cell profiles, and metabolic homeostasis. T lymphocytes are a major component of the adipose tissue milieu which are altered in disease states such as obesity and human immunodeficiency virus (HIV) infection. While obesity, HIV infection, and simian immunodeficiency virus (SIV; a non-human primate virus similar to HIV) infection are accompanied by enrichment of CD8+ T cells in the adipose tissue, major phenotypic differences in CD4+ T cells and other immune cell populations distinguish HIV/SIV infection from obesity. Furthermore, DNA and RNA species of HIV and SIV can be detected in the stromal vascular fraction of visceral and subcutaneous adipose tissue, and replication-competent HIV resides in local CD4+ T cells. Here, we review studies of adipose tissue CD4+ and CD8+ T cell populations in HIV and SIV, and contrast the findings with those reported in obesity.
Collapse
Affiliation(s)
- Celestine N Wanjalla
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.,Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Wyatt J McDonnell
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.,Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
| | - John R Koethe
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.,Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
111
|
Sharma G, Strong AT, Boules M, Tu C, Szomstein S, Rosenthal R, Rodriguez J, Taege AJ, Kroh M. Comparative Outcomes of Bariatric Surgery in Patients With and Without Human Immunodeficiency Virus. Obes Surg 2018; 28:1070-1079. [PMID: 29127578 DOI: 10.1007/s11695-017-2996-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Paradoxically, advances in anti-retroviral therapy that has increased survival for patients with human immunodeficiency virus (HIV) have resulted in greater numbers of HIV+ patients developing other chronic diseases, including obesity. Little comparative literature exists detailing perioperative or metabolic outcomes of bariatric surgery in the HIV+ population compared to HIV negative (HIV-) controls. METHODS This is a retrospective case-control study with both HIV+ (case) and HIV- control patients. Individuals undergoing sleeve gastrectomy (SG) or Roux-en-Y gastric bypass (RYGB) between January 1, 2006 and December 31, 2015 were included. HIV+ status was defined as any individual with documented history of HIV. RESULTS Eleven HIV+ patients underwent RYGB or SG during the study period. After matching (1:5 HIV+: HIV-) both cohorts had similar mean age (42 years), gender distribution (63% female), and preoperative BMI (48 kg/m2), as well as comorbidities. There were no differences in postoperative length of stay, or all cause 30-day morbidity. There were 63.7% HIV+ and 76.4% with 1-year follow-up available. Both percent excess weight loss (56% HIV+ vs. 60% HIV-) and BMI (32 HIV+ vs. 34 kg/m2 HIV-) were similar in both groups. There were minimal changes to CD4 count or HIV viral load in the patients during the follow-up period. CONCLUSION Bariatric surgery is safe and feasible in HIV-infected population well controlled on anti-retroviral medication. The short-term surgical and metabolic outcomes are similar to HIV- controls with minimal effect on the CD4 count and viral load in HIV+ cohort for long-term follow-up.
Collapse
Affiliation(s)
- Gautam Sharma
- Section of Surgical Endoscopy, Cleveland Clinic, Digestive Disease and Surgery Institute, Cleveland, OH, USA
| | - Andrew T Strong
- Section of Surgical Endoscopy, Cleveland Clinic, Digestive Disease and Surgery Institute, Cleveland, OH, USA
| | - Mena Boules
- Section of Surgical Endoscopy, Cleveland Clinic, Digestive Disease and Surgery Institute, Cleveland, OH, USA
| | - Chao Tu
- Section of Surgical Endoscopy, Cleveland Clinic, Digestive Disease and Surgery Institute, Cleveland, OH, USA.,Quantitiatve Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Samuel Szomstein
- Bariatric and Metabolic Institute, Cleveland Clinic, Tampa, Florida, USA.,Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Raul Rosenthal
- Bariatric and Metabolic Institute, Cleveland Clinic, Tampa, Florida, USA.,Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - John Rodriguez
- Section of Surgical Endoscopy, Cleveland Clinic, Digestive Disease and Surgery Institute, Cleveland, OH, USA.,Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Alan J Taege
- Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Infectious Disease Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Matthew Kroh
- Section of Surgical Endoscopy, Cleveland Clinic, Digestive Disease and Surgery Institute, Cleveland, OH, USA. .,Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA. .,Digestive Disease Institute, Cleveland Clinic, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
112
|
Bhagwat P, Ofotokun I, McComsey GA, Brown TT, Moser C, Sugar CA, Currier JS. Changes in Waist Circumference in HIV-Infected Individuals Initiating a Raltegravir or Protease Inhibitor Regimen: Effects of Sex and Race. Open Forum Infect Dis 2018; 5:ofy201. [PMID: 30465010 PMCID: PMC6239079 DOI: 10.1093/ofid/ofy201] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 10/11/2018] [Indexed: 11/23/2022] Open
Abstract
Background This study investigates the association of clinical and demographic predictors with abdominal fat gain, measured using waist circumference (WC) and self-reported abdominal size. Methods We analyzed data from ACTG A5257, a clinical trial that randomized treatment-naïve HIV-infected participants to 1 of 3 antiretroviral regimens: raltegravir (RAL) or the protease inhibitors (PIs) atazanavir/ritonavir (ATV/r) or darunavir/ritonavir (DRV/r), each in combination with tenofovir disoproxil fumarate/emtricitabine. Associations of treatment and baseline/demographic characteristics with 96-week WC change were assessed using repeated-measures models. Ordinal logistic regression was used to examine the associations of predictors with week 96 self-reported abdominal changes. Results The study population (n = 1809) was 76.0% male and predominantly black non-Hispanic (41.9%) and white non-Hispanic (34.1%). Mean baseline WC was 90.6 cm, with an average 96-week increase of 3.4 cm. WC increases were higher in the RAL arm compared with DRV/r (P = .0130). Females experienced greater increases in WC on RAL vs ATV/r than males (P = .0065). Similarly, a larger difference in WC change was found for RAL vs DRV/r for black vs nonblack individuals (P = .0043). A separate multivariable model found that in addition to the treatment regimen, higher baseline viral load and lower CD4+ were also associated with WC increases. Conclusions With antiretroviral therapy initiation, higher WC increases in the RAL arm compared with PIs were more pronounced in female and black participants, and a more advanced baseline HIV disease state was a strong predictor of larger abdominal increases. Understanding factors predisposing individuals to abdominal fat gain could inform health management after therapy initiation.
Collapse
Affiliation(s)
- Priya Bhagwat
- University of California, Los Angeles, Los Angeles, California
| | - Ighovwerha Ofotokun
- Emory University School of Medicine, Department of Medicine, Atlanta, Georgia
| | | | - Todd T Brown
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Carlee Moser
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | | | | |
Collapse
|
113
|
Abstract
BACKGROUND The efficacy of antiretroviral therapy has made HIV a chronic condition. The prevalence of obesity in HIV positive patients has subsequently risen and is present in 6-34% of men and 21-30% of women (Keithley et al. J Assoc Nurses AIDS Care 20(4):260-74, 2009). Sleeve gastrectomy is a safe and effective procedure for weight loss in the general population, but having HIV may bring hesitation to performing bariatric surgery for some practitioners. OBJECTIVES The aim of this study is to evaluate the safety and efficacy of laparoscopic sleeve gastrectomy (LSG) in patients with HIV. METHODS A retrospective analysis of prospectively collected data of patients with HIV who underwent LSG at a community hospital by a single surgeon was performed. Nine patients with HIV underwent LSG. Primary outcomes include weight loss at 6 and 12 months and postoperative CD4 count and viral load. Secondary outcomes include alteration to antiretroviral therapy (ART). RESULTS Our patients had a mean BMI of 46 (range 35-66) and were all well controlled on ART preoperatively. Mean weight loss at 12 months was 40 kg (range 21-55), with mean excess body weight loss 69% (range 42-112). There were no significant changes in CD4 counts, and all patients continued to have undetectable viral loads at 1 year postoperatively. One patient had a change in ART, which was unrelated to bariatric surgery. There were no complications in our patient group. CONCLUSION This is the largest series to date evaluating sleeve gastrectomy in HIV-positive patients and further supports the safety and efficacy of sleeve gastrectomy in this patient population.
Collapse
|
114
|
McDonnell WJ, Koethe JR, Mallal SA, Pilkinton MA, Kirabo A, Ameka MK, Cottam MA, Hasty AH, Kennedy AJ. High CD8 T-Cell Receptor Clonality and Altered CDR3 Properties Are Associated With Elevated Isolevuglandins in Adipose Tissue During Diet-Induced Obesity. Diabetes 2018; 67:2361-2376. [PMID: 30181158 PMCID: PMC6198339 DOI: 10.2337/db18-0040] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 08/20/2018] [Indexed: 12/29/2022]
Abstract
Adipose tissue (AT) CD4+ and CD8+ T cells contribute to obesity-associated insulin resistance. Prior studies identified conserved T-cell receptor (TCR) chain families in obese AT, but the presence and clonal expansion of specific TCR sequences in obesity has not been assessed. We characterized AT and liver CD8+ and CD4+ TCR repertoires of mice fed a low-fat diet (LFD) and high-fat diet (HFD) using deep sequencing of the TCRβ chain to quantify clonal expansion, gene usage, and CDR3 sequence. In AT CD8+ T cells, HFD reduced TCR diversity, increased the prevalence of public TCR clonotypes, and selected for TCR CDR3 regions enriched in positively charged and less polarized amino acids. Although TCR repertoire alone could distinguish between LFD- and HFD-fed mice, these properties of the CDR3 region of AT CD8+ T cells from HFD-fed mice led us to examine the role of negatively charged and nonpolar isolevuglandin (isoLG) adduct-containing antigen-presenting cells within AT. IsoLG-adducted protein species were significantly higher in AT macrophages of HFD-fed mice; isoLGs were elevated in M2-polarized macrophages, promoting CD8+ T-cell activation. Our findings demonstrate that clonal TCR expansion that favors positively charged CDR3s accompanies HFD-induced obesity, which may be an antigen-driven response to isoLG accumulation in macrophages.
Collapse
Affiliation(s)
- Wyatt J McDonnell
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
- Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN
| | - John R Koethe
- Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN
- Veterans Administration Tennessee Valley Healthcare System, Nashville, TN
| | - Simon A Mallal
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
- Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Mark A Pilkinton
- Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN
- Veterans Administration Tennessee Valley Healthcare System, Nashville, TN
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Magdalene K Ameka
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Matthew A Cottam
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Alyssa H Hasty
- Veterans Administration Tennessee Valley Healthcare System, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Arion J Kennedy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
115
|
Peterson TA, MacLean AG. Current and Future Therapeutic Strategies for Lentiviral Eradication from Macrophage Reservoirs. J Neuroimmune Pharmacol 2018; 14:68-93. [PMID: 30317409 DOI: 10.1007/s11481-018-9814-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/02/2018] [Indexed: 12/17/2022]
Abstract
Macrophages, one of the most abundant populations of leukocytes in the body, function as the first line of defense against pathogen invaders. Human Immunodeficiency virus 1 (HIV-1) remains to date one of the most extensively studied viral infections. Naturally occurring lentiviruses in domestic and primate species serve as valuable models to investigate lentiviral pathogenesis and novel therapeutics. Better understanding of the role macrophages play in HIV pathogenesis will aid in the advancement towards a cure. Even with current efficacy of first- and second-line Antiretroviral Therapy (ART) guidelines and future efficacy of Long Acting Slow Effective Release-ART (LASER-ART); ART alone does not lead to a cure. The major challenge of HIV eradication is viral latency. Latency Reversal Agents (LRAs) show promise as a possible means to eradicate HIV-1 from the body. It has become evident that complete eradication will need to include combinations of various effective therapeutic strategies such as LASER-ART, LRAs, and gene editing. Review of the current literature indicates the most promising HIV eradication strategy appears to be LASER-ART in conjunction with viral and receptor gene modifications via the CRISPR/Cas9 system. Graphical abstract A multimodal approach to HIV treatment including gene editing, LASER-ART, and latency reversal agents may provide a means to achieve HIV eradication.
Collapse
Affiliation(s)
- Tiffany A Peterson
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - Andrew G MacLean
- Department of Microbiology & Immunology, Division of Comparative Pathology, Tulane National Primate Research Center, Tulane Center for Aging, Tulane Brain Institute, 18703 Three Rivers Road, Covington, LA, 70433, USA.
| |
Collapse
|
116
|
Chandra PK, Gerlach SL, Wu C, Khurana N, Swientoniewski LT, Abdel-Mageed AB, Li J, Braun SE, Mondal D. Mesenchymal stem cells are attracted to latent HIV-1-infected cells and enable virus reactivation via a non-canonical PI3K-NFκB signaling pathway. Sci Rep 2018; 8:14702. [PMID: 30279437 PMCID: PMC6168583 DOI: 10.1038/s41598-018-32657-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/11/2018] [Indexed: 02/08/2023] Open
Abstract
Persistence of latent HIV-1 in macrophages (MACs) and T-helper lymphocytes (THLs) remain a major therapeutic challenge. Currently available latency reversing agents (LRAs) are not very effective in vivo. Therefore, understanding of physiologic mechanisms that dictate HIV-1 latency/reactivation in reservoirs is clearly needed. Mesenchymal stromal/stem cells (MSCs) regulate the function of immune cells; however, their role in regulating virus production from latently-infected MACs & THLs is not known. We documented that exposure to MSCs or their conditioned media (MSC-CM) rapidly increased HIV-1 p24 production from the latently-infected U1 (MAC) & ACH2 (THL) cell lines. Exposure to MSCs also increased HIV-1 long terminal repeat (LTR) directed gene expression in the MAC and THL reporter lines, U937-VRX and J-Lat (9.2), respectively. MSCs exposed to CM from U1 cells (U1-CM) showed enhanced migratory ability towards latently-infected cells and retained their latency-reactivation potential. Molecular studies showed that MSC-mediated latency-reactivation was dependent upon both the phosphatidyl inositol-3-kinase (PI3K) and nuclear factor-κB (NFκB) signaling pathways. The pre-clinically tested inhibitors of PI3K (PX-866) and NFκB (CDDO-Me) suppressed MSC-mediated HIV-1 reactivation. Furthermore, coexposure to MSC-CM enhanced the latency-reactivation efficacy of the approved LRAs, vorinostat and panobinostat. Our findings on MSC-mediated latency-reactivation may provide novel strategies against persistent HIV-1 reservoirs.
Collapse
Affiliation(s)
- Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Samantha L Gerlach
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Chengxiang Wu
- Tulane National Primate Research Center, Covington, LA, USA
| | - Namrata Khurana
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Urology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Asim B Abdel-Mageed
- Department of Urology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jian Li
- Tulane School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Stephen E Braun
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Tulane National Primate Research Center, Covington, LA, USA
| | - Debasis Mondal
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
117
|
Stimmelmayr R, Rotstein DS, Maboni G, Person BT, Sanchez S. Morbillivirus-associated lipid pneumonia in Arctic foxes. J Vet Diagn Invest 2018; 30:933-936. [PMID: 30205787 DOI: 10.1177/1040638718797382] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We describe lipid pneumonia in 5 of 24 Arctic foxes ( Vulpes lagopus) in association with morbillivirus infection, and lymphoid depletion in 3 of these 5 foxes. Canine distemper virus (CDV) immunohistochemistry yielded positive staining in lung, lymph nodes, spleen, adipose tissue, and renal pelvic urothelial cells in 5 cases. Liver and bone marrow samples collected from these cases tested positive for morbillivirus by reverse-transcription PCR assay. Strains belonged to the CDV Arctic lineage based on sequencing of the hemagglutinin gene followed by phylogenetic analysis. Phylogenetic analysis of the phosphoprotein gene showed that the identified CDV strains were not closely related to any previously documented strains responsible for outbreaks in different animals in other parts of the world.
Collapse
Affiliation(s)
- Raphaela Stimmelmayr
- Department of Wildlife Management, North Slope Borough, Utqiagvik, AK (Stimmelmayr; Person).,Institute of Arctic Biology, University of Alaska-Fairbanks, Fairbanks, AK (Stimmelmayr).,Marine Mammal Pathology Services, Olney, MD (Rotstein).,Athens Veterinary Diagnostic Laboratory (Maboni, Sanchez), Department of Infectious Diseases, College of Veterinary Medicine (Sanchez), The University of Georgia, Athens, GA
| | - David S Rotstein
- Department of Wildlife Management, North Slope Borough, Utqiagvik, AK (Stimmelmayr; Person).,Institute of Arctic Biology, University of Alaska-Fairbanks, Fairbanks, AK (Stimmelmayr).,Marine Mammal Pathology Services, Olney, MD (Rotstein).,Athens Veterinary Diagnostic Laboratory (Maboni, Sanchez), Department of Infectious Diseases, College of Veterinary Medicine (Sanchez), The University of Georgia, Athens, GA
| | - Grazieli Maboni
- Department of Wildlife Management, North Slope Borough, Utqiagvik, AK (Stimmelmayr; Person).,Institute of Arctic Biology, University of Alaska-Fairbanks, Fairbanks, AK (Stimmelmayr).,Marine Mammal Pathology Services, Olney, MD (Rotstein).,Athens Veterinary Diagnostic Laboratory (Maboni, Sanchez), Department of Infectious Diseases, College of Veterinary Medicine (Sanchez), The University of Georgia, Athens, GA
| | - Brian T Person
- Department of Wildlife Management, North Slope Borough, Utqiagvik, AK (Stimmelmayr; Person).,Institute of Arctic Biology, University of Alaska-Fairbanks, Fairbanks, AK (Stimmelmayr).,Marine Mammal Pathology Services, Olney, MD (Rotstein).,Athens Veterinary Diagnostic Laboratory (Maboni, Sanchez), Department of Infectious Diseases, College of Veterinary Medicine (Sanchez), The University of Georgia, Athens, GA
| | - Susan Sanchez
- Department of Wildlife Management, North Slope Borough, Utqiagvik, AK (Stimmelmayr; Person).,Institute of Arctic Biology, University of Alaska-Fairbanks, Fairbanks, AK (Stimmelmayr).,Marine Mammal Pathology Services, Olney, MD (Rotstein).,Athens Veterinary Diagnostic Laboratory (Maboni, Sanchez), Department of Infectious Diseases, College of Veterinary Medicine (Sanchez), The University of Georgia, Athens, GA
| |
Collapse
|
118
|
The changes in the transcriptomic profiling of subcutaneous adipose tissue after bariatric surgery depend on the insulin resistance state. Surg Obes Relat Dis 2018; 14:1182-1191. [DOI: 10.1016/j.soard.2018.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 11/17/2022]
|
119
|
Mirza FS, Luthra P, Chirch L. Endocrinological aspects of HIV infection. J Endocrinol Invest 2018; 41:881-899. [PMID: 29313284 DOI: 10.1007/s40618-017-0812-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 12/16/2017] [Indexed: 02/06/2023]
Abstract
PURPOSE Patients with human immunodeficiency virus (HIV) are living longer with effective antiretroviral therapies and are enjoying near normal life span. Therefore, they are encountering endocrine issues faced by the general population along with those specific to HIV infection. The purpose of this article is to review the common endocrine aspects of HIV infection, and the early detection and management strategies for these complications. METHODS Recent literature on HIV and endocrine disease was reviewed. RESULTS HIV can influence endocrine glands at several levels. Endocrine glandular function may be altered by the direct effect of HIV viral proteins, through generation of systemic and local cytokines and the inflammatory response and via glandular involvement with opportunistic infections and HIV-related malignancies. Endocrine disorders seen in people with HIV include metabolic issues related to obesity such as diabetes, hyperlipidemia, lipohypertrophy, lipoatrophy and lipodystrophy and contribute significantly to quality of life, morbidity and mortality. In addition, hypogonadism, osteopenia and osteoporosis are also more prevalent in the patients with HIV. Although disorders of hypothalamic-pituitary-adrenal axis resulting in adrenal insufficiency can be life threatening, these along with thyroid dysfunction are being seen less commonly in the antiretroviral therapy (ART) era. ARTs have greatly improved life expectancy in people living with HIV but can also have adverse endocrine effects. CONCLUSIONS Clinicians need to have a high index of suspicion for endocrine abnormalities in people with HIV as they can be potentially life threatening if untreated. Endocrine evaluation should be pursued as in the general population, with focus on prevention, early detection and treatment to improve quality of life and longevity.
Collapse
Affiliation(s)
- F S Mirza
- Division of Endocrinology and Metabolism, Department of Medicine, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-5456, USA.
- Department of Medicine, UConn Health, Farmington, CT, 06030, USA.
| | - P Luthra
- Division of Endocrinology and Metabolism, Department of Medicine, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-5456, USA
- Department of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - L Chirch
- Division of Infectious Diseases, UConn Health, Farmington, CT, 06030, USA
- Department of Medicine, UConn Health, Farmington, CT, 06030, USA
| |
Collapse
|
120
|
Bailin SS, Jenkins CA, Petucci C, Culver JA, Shepherd BE, Fessel JP, Hulgan T, Koethe JR. Lower Concentrations of Circulating Medium and Long-Chain Acylcarnitines Characterize Insulin Resistance in Persons with HIV. AIDS Res Hum Retroviruses 2018; 34:536-543. [PMID: 29607651 DOI: 10.1089/aid.2017.0314] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In human immunodeficiency virus (HIV)-negative individuals, a plasma metabolite profile, characterized by higher levels of branched-chain amino acids (BCAA), aromatic amino acids, and C3/C5 acylcarnitines, is associated with insulin resistance and increased risk of diabetes. We sought to characterize the metabolite profile accompanying insulin resistance in HIV-positive persons to assess whether the same or different bioenergetics pathways might be implicated. We performed an observational cohort study of 70 nondiabetic, HIV-positive individuals (50% with body mass index ≥30 kg/m2) on efavirenz, tenofovir, and emtricitabine with suppressed HIV-1 RNA levels (<50 copies/mL) for at least 2 years and a CD4+ count over 350 cells/μL. We measured fasting insulin resistance using the homeostatic model assessment 2, plasma free fatty acids (FFA) using gas chromatography, and amino acids, acylcarnitines, and organic acids using liquid chromatography/mass spectrometry. We assessed the relationship of plasma metabolites with insulin resistance using multivariable linear regression. The median age was 45 years, median CD4+ count was 701 cells/μL, and median hemoglobin A1c was 5.2%. Insulin resistance was associated with higher plasma C3 acylcarnitines (p = .01), but not BCAA or C5 acylcarnitines. However, insulin resistance was associated with lower plasma levels of C18, C16, C12, and C2 acylcarnitines (p ≤ .03 for all), and lower C18 and C16 acylcarnitine:FFA ratios (p = .002, and p = .03, respectively). In HIV-positive persons, lower levels of plasma acylcarnitines, including the C2 product of complete fatty acid oxidation, are a more prominent feature of insulin resistance than changes in BCAA, suggesting impaired fatty acid uptake and/or mitochondrial oxidation is a central aspect of glucose intolerance in this population.
Collapse
Affiliation(s)
- Samuel S. Bailin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Cathy A. Jenkins
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christopher Petucci
- Sanford Burnham Prebys Metabolomics Core at the Southeast Center for Integrated Metabolomics, University of Florida, Gainesville, Florida
| | - Jeffrey A. Culver
- Sanford Burnham Prebys Metabolomics Core at the Southeast Center for Integrated Metabolomics, University of Florida, Gainesville, Florida
| | - Bryan E. Shepherd
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Joshua P. Fessel
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Todd Hulgan
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee
| | - John R. Koethe
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
121
|
Lin Y, Leung G, Louie D, Bogoslowski A, Ross J, Kubes P, von der Weid PY, Liao S. Perinodal Adipose Tissue Participates in Immune Protection through a Lymphatic Vessel-Independent Route. THE JOURNAL OF IMMUNOLOGY 2018; 201:296-305. [PMID: 29760196 DOI: 10.4049/jimmunol.1800151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/27/2018] [Indexed: 12/15/2022]
Abstract
Lymphatic vessels remove and transport excess interstitial fluid to lymph nodes (LNs) for fluid balance and immune protection. LNs are typically surrounded by perinodal adipose tissue (PAT). However, PAT is a blood vessel-rich but lymphatic-rare tissue; therefore, how excess fluid in PAT is removed remains unclear. Using C57BL/6 mice, fluorescent dye tracing and transmission electron microscopy results suggest that fluid in PAT can travel to the LN via collagen I+ channels (PAT-LN conduits), merge into a collagen-rich space between the PAT and LN capsule (PAT-LN sinus), and may enter the LN via the LN capsule-associated conduits. This newly identified route of fluid flow allows fluid to enter the draining LN even when the afferent lymphatic vessels are blocked, indicating that fluid trafficking in PAT-LN conduits is not dependent on functional lymphatic vessels. Similar to lymphatic vessels, PAT-LN conduits can deliver Ags to the LN for immune protection. Additionally, Staphylococcus aureus from intradermal or i.v. infection may use PAT-LN conduits to infect PAT and stimulate PAT immune protection. Our studies revealed a new route of material exchange between PAT and the LN. Ag accumulation and bacterial infection in PAT demonstrate that PAT not only provides energy and regulatory factors, but can also directly participate in immune protection, indicating a new immune function of PAT for host immunity.
Collapse
Affiliation(s)
- Yujia Lin
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin 150086, China; and
| | - Glory Leung
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Dante Louie
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Ania Bogoslowski
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - James Ross
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Paul Kubes
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Pierre-Yves von der Weid
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Shan Liao
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada;
| |
Collapse
|
122
|
Pushpakom SP, Adaikalakoteswari A, Owen A, Back DJ, Tripathi G, Kumar S, McTernan P, Pirmohamed M. Telmisartan reverses antiretroviral-induced adipocyte toxicity and insulin resistance in vitro. Diab Vasc Dis Res 2018; 15:233-242. [PMID: 29466880 PMCID: PMC5949706 DOI: 10.1177/1479164118757924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Antiretroviral therapy in HIV-positive patients leads to insulin resistance which is central to the pathogenesis of various metabolic abnormalities and cardiovascular disease seen in this patient group. We have investigated the dose-response relationship of telmisartan, an antihypertensive, on adipocytes in vitro in order to determine whether it may have metabolic beneficial effects. METHODS Using in vitro chronic toxicity models (3T3-F442A murine and primary human adipocytes), we evaluated the effects of different concentrations of telmisartan on adipocyte differentiation and adipogenic gene expression using lipid accumulation assays and real-time polymerase chain reaction, respectively. Adipokine secretion and expression of insulin signalling mediators were evaluated using enzyme-linked immunosorbent assays. RESULTS Telmisartan partially reversed the deleterious effects of antiretrovirals on adipocyte lipid accumulation, expression of adipogenic regulators (peroxisome proliferator receptor-gamma and lipin 1), adipokine secretion and expression of the insulin signalling mediator pAktSer473. The metabolic effects of telmisartan followed a non-monotonic response with the maximal effect observed at 5 µM in the primary human adipocyte model. CONCLUSION Telmisartan has beneficial metabolic effects in adipocytes in vitro, but its potential to reduce antiretroviral-induced cardiometabolic disease in HIV-infected individuals needs to be evaluated in a well-designed adequately powered clinical trial.
Collapse
Affiliation(s)
- Sudeep P Pushpakom
- Department of Molecular and Clinical
Pharmacology, The Wolfson Centre for Personalised Medicine, University of Liverpool,
Liverpool, UK
- Sudeep P Pushpakom, Department of Molecular
and Clinical Pharmacology, The Wolfson Centre for Personalised Medicine,
University of Liverpool, Block A: Waterhouse Buildings, 1-5 Brownlow Street,
Liverpool L69 3GL, UK.
| | | | - Andrew Owen
- Department of Molecular and Clinical
Pharmacology, The Wolfson Centre for Personalised Medicine, University of Liverpool,
Liverpool, UK
| | - David J Back
- Department of Molecular and Clinical
Pharmacology, The Wolfson Centre for Personalised Medicine, University of Liverpool,
Liverpool, UK
| | - Gyanendra Tripathi
- Department of Biomedical Sciences,
University of Westminster, London, UK
| | - Sudhesh Kumar
- Warwick Medical School, University of
Warwick, Coventry, UK
| | | | - Munir Pirmohamed
- Department of Molecular and Clinical
Pharmacology, The Wolfson Centre for Personalised Medicine, University of Liverpool,
Liverpool, UK
| |
Collapse
|
123
|
Couturier J, Winchester LC, Suliburk JW, Wilkerson GK, Podany AT, Agarwal N, Xuan Chua CY, Nehete PN, Nehete BP, Grattoni A, Sastry KJ, Fletcher CV, Lake JE, Balasubramanyam A, Lewis DE. Adipocytes impair efficacy of antiretroviral therapy. Antiviral Res 2018; 154:140-148. [PMID: 29630975 DOI: 10.1016/j.antiviral.2018.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 03/31/2018] [Accepted: 04/03/2018] [Indexed: 01/05/2023]
Abstract
Adequate distribution of antiretroviral drugs to infected cells in HIV patients is critical for viral suppression. In humans and primates, HIV- and SIV-infected CD4 T cells in adipose tissues have recently been identified as reservoirs for infectious virus. To better characterize adipose tissue as a pharmacological sanctuary for HIV-infected cells, in vitro experiments were conducted to assess antiretroviral drug efficacy in the presence of adipocytes, and drug penetration in adipose tissue cells (stromal-vascular-fraction cells and mature adipocytes) was examined in treated humans and monkeys. Co-culture experiments between HIV-1-infected CD4 T cells and primary human adipocytes showed that adipocytes consistently reduced the antiviral efficacy of the nucleotide reverse transcriptase inhibitor tenofovir and its prodrug forms tenofovir disoproxil fumarate (TDF) and tenofovir alafenamide (TAF). In HIV-infected persons, LC-MS/MS analysis of intracellular lysates derived from adipose tissue stromal-vascular-fraction cells or mature adipocytes suggested that integrase inhibitors penetrate adipose tissue, whereas penetration of nucleoside/nucleotide reverse transcriptase inhibitors such as TDF, emtricitabine, abacavir, and lamivudine is restricted. The limited distribution and functions of key antiretroviral drugs within fat depots may contribute to viral persistence in adipose tissue.
Collapse
Affiliation(s)
- Jacob Couturier
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lee C Winchester
- Department of Pharmacy Practice, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - James W Suliburk
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Gregory K Wilkerson
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Anthony T Podany
- Department of Pharmacy Practice, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Neeti Agarwal
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | - Pramod N Nehete
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Bharti P Nehete
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - K Jagannadha Sastry
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Courtney V Fletcher
- Department of Pharmacy Practice, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jordan E Lake
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ashok Balasubramanyam
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Dorothy E Lewis
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
124
|
Hsu DC, Wegner MD, Sunyakumthorn P, Silsorn D, Tayamun S, Inthawong D, Kuncharin Y, Im-Erbsin R, Ege C, O'Connell RJ, Michael NL, Ndhlovu LC, Vasan S. CD4+ Cell infiltration into subcutaneous adipose tissue is not indicative of productively infected cells during acute SHIV infection. J Med Primatol 2018; 46:154-157. [PMID: 28748665 DOI: 10.1111/jmp.12298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2017] [Indexed: 11/26/2022]
Abstract
Limited longitudinal data exist on the effect of HIV on adipose tissue (AT). We found an increase in CD4+ cells and detectable SHIV-RNA in AT during acute SHIV infection. SHIV-RNA+ cells were rare, suggesting that AT is unlikely to be a major source of productively infected cells in SHIV infection.
Collapse
Affiliation(s)
- Denise C Hsu
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.,US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Matthew D Wegner
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | - Decha Silsorn
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sujitra Tayamun
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | - Yanin Kuncharin
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Rawiwan Im-Erbsin
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Christine Ege
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Robert J O'Connell
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.,US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nelson L Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Lishomwa C Ndhlovu
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Sandhya Vasan
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.,US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| |
Collapse
|
125
|
Rouzioux C, Avettand-Fenoël V. Total HIV DNA: a global marker of HIV persistence. Retrovirology 2018; 15:30. [PMID: 29615133 PMCID: PMC5883363 DOI: 10.1186/s12977-018-0412-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/26/2018] [Indexed: 11/10/2022] Open
Abstract
Among the different markers of HIV persistence in infected cells, total HIV DNA is to date the most widely used. It allows an overall quantification of all viral forms of HIV DNA in infected cells, each playing a different role in HIV replication and pathophysiology. The real-time PCR technology is to date, a precise, sensitive and reproducible technology that allows the description of the distribution of HIV infected cells in blood and tissues. The objective of this review is to present some examples which show the interest to quantify total HIV DNA levels. This marker brought an undeniable and considerable contribution to reservoir studies. Many results, both in clinical and basic research, allowed to get a large overview of the distribution of infected cells in the body, at all stages of HIV disease and during therapy. Future clinical studies aiming at reducing HIV reservoirs will benefit from HIV DNA quantification in blood and tissues, in association with other markers of HIV reservoir activity.
Collapse
Affiliation(s)
- Christine Rouzioux
- Laboratoire de Virologie, APHP Hôpital Necker Enfants Malades, Paris, France. .,EA 7327, Université Paris Descartes, Sorbonne Paris-Cité, Paris, France.
| | - Véronique Avettand-Fenoël
- Laboratoire de Virologie, APHP Hôpital Necker Enfants Malades, Paris, France.,EA 7327, Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
| |
Collapse
|
126
|
Abstract
PURPOSE OF REVIEW The aim of this review is to summarize knowledge of the prevalence, relevant physiology, and consequences of obesity and visceral adiposity in HIV-infected adults, including highlighting gaps in current knowledge and future research directions. RECENT FINDINGS Similar to the general population, obesity prevalence is increasing among HIV-infected persons, and obesity and visceral adiposity are associated with numerous metabolic and inflammatory sequelae. However, HIV- and antiretroviral therapy (ART)-specific factors may contribute to fat gain and fat quality in treated HIV infection, particularly to the development of visceral adiposity, and sex differences may exist. Obesity and visceral adiposity commonly occur in HIV-infected persons and have significant implications for morbidity and mortality. Future research should aim to better elucidate the HIV- and ART-specific contributors to obesity and visceral adiposity in treated HIV infection, with the goal of developing targeted therapies for the prevention and treatment of obesity and visceral adiposity in the modern ART era.
Collapse
Affiliation(s)
- Jordan E Lake
- University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 2.112, Houston, TX, 77030, USA.
| |
Collapse
|
127
|
Macdougall CE, Wood EG, Loschko J, Scagliotti V, Cassidy FC, Robinson ME, Feldhahn N, Castellano L, Voisin MB, Marelli-Berg F, Gaston-Massuet C, Charalambous M, Longhi MP. Visceral Adipose Tissue Immune Homeostasis Is Regulated by the Crosstalk between Adipocytes and Dendritic Cell Subsets. Cell Metab 2018; 27. [PMID: 29514067 PMCID: PMC5846800 DOI: 10.1016/j.cmet.2018.02.007] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Visceral adipose tissue (VAT) has multiple roles in orchestrating whole-body energy homeostasis. In addition, VAT is now considered an immune site harboring an array of innate and adaptive immune cells with a direct role in immune surveillance and host defense. We report that conventional dendritic cells (cDCs) in VAT acquire a tolerogenic phenotype through upregulation of pathways involved in adipocyte differentiation. While activation of the Wnt/β-catenin pathway in cDC1 DCs induces IL-10 production, upregulation of the PPARγ pathway in cDC2 DCs directly suppresses their activation. Combined, they promote an anti-inflammatory milieu in vivo delaying the onset of obesity-induced chronic inflammation and insulin resistance. Under long-term over-nutrition, changes in adipocyte biology curtail β-catenin and PPARγ activation, contributing to VAT inflammation.
Collapse
Affiliation(s)
- Claire E Macdougall
- William Harvey Research Institute, Barts, and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Elizabeth G Wood
- William Harvey Research Institute, Barts, and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Jakob Loschko
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Valeria Scagliotti
- William Harvey Research Institute, Barts, and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Féaron C Cassidy
- William Harvey Research Institute, Barts, and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Mark E Robinson
- Centre for Haematology, Department of Medicine, Imperial College London, W12 0NN London, UK; Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), Hammersmith Hospital, London W12 0NN, UK
| | - Niklas Feldhahn
- Centre for Haematology, Department of Medicine, Imperial College London, W12 0NN London, UK
| | - Leandro Castellano
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), Hammersmith Hospital, London W12 0NN, UK
| | - Mathieu-Benoit Voisin
- William Harvey Research Institute, Barts, and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Federica Marelli-Berg
- William Harvey Research Institute, Barts, and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Carles Gaston-Massuet
- William Harvey Research Institute, Barts, and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Marika Charalambous
- William Harvey Research Institute, Barts, and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - M Paula Longhi
- William Harvey Research Institute, Barts, and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
128
|
Estes JD, LeGrand R, Petrovas C. Visualizing the Immune System: Providing Key Insights into HIV/SIV Infections. Front Immunol 2018; 9:423. [PMID: 29552017 PMCID: PMC5840205 DOI: 10.3389/fimmu.2018.00423] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/16/2018] [Indexed: 12/23/2022] Open
Abstract
Immunological inductive tissues, such as secondary lymphoid organs, are composed of distinct anatomical microenvironments for the generation of immune responses to pathogens and immunogens. These microenvironments are characterized by the compartmentalization of highly specialized immune and stromal cell populations, as well as the presence of a complex network of soluble factors and chemokines that direct the intra-tissue trafficking of naïve and effector cell populations. Imaging platforms have provided critical contextual information regarding the molecular and cellular interactions that orchestrate the spatial microanatomy of relevant cells and the development of immune responses against pathogens. Particularly in HIV/SIV disease, imaging technologies are of great importance in the investigation of the local interplay between the virus and host cells, with respect to understanding viral dynamics and persistence, immune responses (i.e., adaptive and innate inflammatory responses), tissue structure and pathologies, and changes to the surrounding milieu and function of immune cells. Merging imaging platforms with other cutting-edge technologies could lead to novel findings regarding the phenotype, function, and molecular signatures of particular immune cell targets, further promoting the development of new antiviral treatments and vaccination strategies.
Collapse
Affiliation(s)
- Jacob D Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States.,Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Roger LeGrand
- CEA, Université Paris Sud 11, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Constantinos Petrovas
- Tissue Analysis Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID) National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
129
|
Lake JE, Stanley TL, Apovian CM, Bhasin S, Brown TT, Capeau J, Currier JS, Dube MP, Falutz J, Grinspoon SK, Guaraldi G, Martinez E, McComsey GA, Sattler FR, Erlandson KM. Practical Review of Recognition and Management of Obesity and Lipohypertrophy in Human Immunodeficiency Virus Infection. Clin Infect Dis 2018; 64:1422-1429. [PMID: 28329372 DOI: 10.1093/cid/cix178] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/22/2016] [Indexed: 12/13/2022] Open
Abstract
Background Obesity and lipohypertrophy are common in treated human immunodeficiency virus (HIV) infection and contribute to morbidity and mortality among HIV-infected adults on antiretroviral therapy (ART). Methods We present a consensus opinion on the diagnosis, clinical consequences, and treatment of excess adiposity in adults with treated HIV infection. Results Obesity and lipohypertrophy commonly occur among HIV-infected adults on ART and may have overlapping pathophysiologies and/or synergistic metabolic consequences. Traditional, HIV-specific, and ART-specific risk factors all contribute. The metabolic and inflammatory consequences of excess adiposity are critical drivers of non-AIDS events in this population. Although promising treatment strategies exist, further research is needed to better understand the pathophysiology and optimal treatment of obesity and lipohypertrophy in the modern ART era. Conclusions Both generalized obesity and lipohypertrophy are prevalent among HIV-infected persons on ART. Aggressive diagnosis and management are key to the prevention and treatment of end-organ disease in this population and critical to the present and future health of HIV-infected persons.
Collapse
Affiliation(s)
- Jordan E Lake
- Department of Medicine, University of Texas Health Science Center at Houston
| | - Takara L Stanley
- Department of Pediatrics, Harvard University School of Medicine and
| | - Caroline M Apovian
- Departments of Medicine and.,Pediatrics, Boston University School of Medicine, Massachusetts
| | | | - Todd T Brown
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jaqueline Capeau
- Department of Cell Biology and Metabolism, Univ-Paris 6, Inserm UMRS938, ICAN, Paris, France
| | - Judith S Currier
- Department of Medicine, University of California Los Angeles and
| | - Michael P Dube
- Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles
| | - Julian Falutz
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Steven K Grinspoon
- Department of Medicine, Harvard University School of Medicine, Boston, Massachusetts
| | - Giovanni Guaraldi
- Department of Infectious Diseases, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Grace A McComsey
- Department of Medicine and Pediatrics, Case Western University, Cleveland, Ohio; and
| | - Fred R Sattler
- Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles
| | | |
Collapse
|
130
|
Stein J, Storcksdieck Genannt Bonsmann M, Streeck H. Barriers to HIV Cure. HLA 2018; 88:155-63. [PMID: 27620852 DOI: 10.1111/tan.12867] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 02/06/2023]
Abstract
Since the beginning of the epidemic, more than 70 million people have been infected with human immunodeficiency virus (HIV) and about 38 million have died from acquired immune deficiency syndrome (AIDS)-related illnesses. While the discovery of highly active antiretroviral therapy (HAART) in the mid 90's has saved millions of lives, a complete eradication of HIV is still not possible as HIV can persist for decades in a small reservoir of latently infected cells. Once reactivated, these latently infected cells can actively produce viral particles. Recent studies suggest that several sanctuaries exist within infected individuals where HIV can remain undetected by the immune system. These cellular, anatomical and microanatomical viral reservoirs represent a major obstacle for the eradication of HIV. Here we review recent findings on potential sanctuaries of HIV and address potential avenues to overcome these immunological barriers.
Collapse
Affiliation(s)
- J Stein
- Institute for HIV Research, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| | | | - H Streeck
- Institute for HIV Research, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,US Military HIV Research Program, Henry M. Jackson Foundation, Rockville, MD, USA
| |
Collapse
|
131
|
Rose R, Nolan DJ, Maidji E, Stoddart CA, Singer EJ, Lamers SL, McGrath MS. Eradication of HIV from Tissue Reservoirs: Challenges for the Cure. AIDS Res Hum Retroviruses 2018; 34:3-8. [PMID: 28691499 DOI: 10.1089/aid.2017.0072] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The persistence of HIV infection, even after lengthy and successful combined antiretroviral therapy (cART), has precluded an effective cure. The anatomical locations and biological mechanisms through which the viral population is maintained remain unknown. Much research has focused nearly exclusively on circulating resting T cells as the predominant source of persistent HIV, a strategy with limited success in developing an effective cure strategy. In this study, we review research supporting the importance of anatomical tissues and other immune cells for HIV maintenance and expansion, including the central nervous system, lymph nodes, and macrophages. We present accumulated research that clearly demonstrates the limitations of using blood-derived cells as a proxy for tissue reservoirs and sanctuaries throughout the body. We cite recent studies that have successfully used deep-sequencing strategies to uncover the complexity of HIV infection and the ability of the virus to evolve despite undetectable plasma viral loads. Finally, we suggest new strategies and highlight the importance of tissue banks for future research.
Collapse
Affiliation(s)
| | | | - Ekaterina Maidji
- Division of Experimental Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, California
| | - Cheryl A. Stoddart
- Division of Experimental Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, California
| | - Elyse J. Singer
- The National Neurological AIDS Bank at David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine and Olive View-UCLA Medical Center, Los Angeles, California
| | | | - Michael S. McGrath
- The AIDS and Cancer Specimen Resource, San Francisco, California
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California
| |
Collapse
|
132
|
Abstract
Research over the past decade has resulted in a much-improved understanding of how and where HIV persists in patients on otherwise suppressive antiretroviral therapy (ART). It has become clear that the establishment of a latent infection in long-lived cells is the key barrier to curing HIV or allowing for sustained ART-free remission. Informed by in vitro and ex vivo studies, several therapeutic approaches aimed at depleting the pool of latently infected cells have been tested in small-scale experimental clinical trials including studies of ART intensification, genome editing, ART during acute/early infection and latency reversal. Many studies have focused on the use of latency-reversing agents (LRAs) to induce immune- or virus-mediated elimination of virus-producing cells. These trials have been instrumental in establishing safety and have shown that it is possible to impact the state HIV latency in patients on suppressive ART. However, administration of LRAs alone has thus far not demonstrated an effect on the frequency of latently infected cells or the time to virus rebound during analytical interruption of ART. More recently, there has been an enhanced focus on immune-based therapies in the onwards search for an HIV cure including therapeutic vaccines, toll-like receptor agonists, broadly neutralising antibodies, immune checkpoint inhibitors, interferon-α and interleukin therapy. In ongoing studies immunotherapy interventions are also tested in combination with latency reversal. In this chapter, the overall results of these clinical interventions ultimately aimed at a cure for HIV are presented and discussed.
Collapse
|
133
|
Merino KM, Allers C, Didier ES, Kuroda MJ. Role of Monocyte/Macrophages during HIV/SIV Infection in Adult and Pediatric Acquired Immune Deficiency Syndrome. Front Immunol 2017; 8:1693. [PMID: 29259605 PMCID: PMC5723290 DOI: 10.3389/fimmu.2017.01693] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/16/2017] [Indexed: 12/17/2022] Open
Abstract
Monocytes/macrophages are a diverse group of cells that act as first responders in innate immunity and then as mediators for adaptive immunity to help clear infections. In performing these functions, however, the macrophage inflammatory responses can also contribute to pathogenesis. Various monocyte and tissue macrophage subsets have been associated with inflammatory disorders and tissue pathogeneses such as occur during HIV infection. Non-human primate research of simian immunodeficiency virus (SIV) has been invaluable in better understanding the pathogenesis of HIV infection. The question of HIV/SIV-infected macrophages serving as a viral reservoir has become significant for achieving a cure. In the rhesus macaque model, SIV-infected macrophages have been shown to promote pathogenesis in several tissues resulting in cardiovascular, metabolic, and neurological diseases. Results from human studies illustrated that alveolar macrophages could be an important HIV reservoir and humanized myeloid-only mice supported productive HIV infection and viral persistence in macrophages during ART treatment. Depletion of CD4+ T cells is considered the primary cause for terminal progression, but it was reported that increasing monocyte turnover was a significantly better predictor in SIV-infected adult macaques. Notably, pediatric cases of HIV/SIV exhibit faster and more severe disease progression than adults, yet neonates have fewer target T cells and generally lack the hallmark CD4+ T cell depletion typical of adult infections. Current data show that the baseline blood monocyte turnover rate was significantly higher in neonatal macaques compared to adults and this remained high with disease progression. In this review, we discuss recent data exploring the contribution of monocytes and macrophages to HIV/SIV infection and progression. Furthermore, we highlight the need to further investigate their role in pediatric cases of infection.
Collapse
Affiliation(s)
- Kristen M. Merino
- Division of Immunology, Tulane National Primate Research Center, Covington LA, United States
| | - Carolina Allers
- Division of Immunology, Tulane National Primate Research Center, Covington LA, United States
| | - Elizabeth S. Didier
- Division of Microbiology, Tulane National Primate Research Center, Covington LA, United States
| | - Marcelo J. Kuroda
- Division of Immunology, Tulane National Primate Research Center, Covington LA, United States
| |
Collapse
|
134
|
Han SJ, Glatman Zaretsky A, Andrade-Oliveira V, Collins N, Dzutsev A, Shaik J, Morais da Fonseca D, Harrison OJ, Tamoutounour S, Byrd AL, Smelkinson M, Bouladoux N, Bliska JB, Brenchley JM, Brodsky IE, Belkaid Y. White Adipose Tissue Is a Reservoir for Memory T Cells and Promotes Protective Memory Responses to Infection. Immunity 2017; 47:1154-1168.e6. [PMID: 29221731 DOI: 10.1016/j.immuni.2017.11.009] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 09/13/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022]
Abstract
White adipose tissue bridges body organs and plays a fundamental role in host metabolism. To what extent adipose tissue also contributes to immune surveillance and long-term protective defense remains largely unknown. Here, we have shown that at steady state, white adipose tissue contained abundant memory lymphocyte populations. After infection, white adipose tissue accumulated large numbers of pathogen-specific memory T cells, including tissue-resident cells. Memory T cells in white adipose tissue expressed a distinct metabolic profile, and white adipose tissue from previously infected mice was sufficient to protect uninfected mice from lethal pathogen challenge. Induction of recall responses within white adipose tissue was associated with the collapse of lipid metabolism in favor of antimicrobial responses. Our results suggest that white adipose tissue represents a memory T cell reservoir that provides potent and rapid effector memory responses, positioning this compartment as a potential major contributor to immunological memory.
Collapse
Affiliation(s)
- Seong-Ji Han
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Arielle Glatman Zaretsky
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Vinicius Andrade-Oliveira
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Nicholas Collins
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Amiran Dzutsev
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jahangheer Shaik
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Denise Morais da Fonseca
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Oliver J Harrison
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Samira Tamoutounour
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Allyson L Byrd
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA; Department of Bioinformatics, Boston University, Boston, MA 02215, USA
| | - Margery Smelkinson
- Biological Imaging, Research Technology Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Nicolas Bouladoux
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; NIAID Microbiome Program, NIH, Bethesda, MD 20892, USA
| | - James B Bliska
- Department of Molecular Genetics and Microbiology, 238 Centers for Molecular Medicine, Stony Brook University, Stonybrook, NY 11794, USA
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Igor E Brodsky
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yasmine Belkaid
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; NIAID Microbiome Program, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
135
|
Sun J, Schaaf K, Duverger A, Wolschendorf F, Speer A, Wagner F, Niederweis M, Kutsch O. Protein phosphatase, Mg2+/Mn2+-dependent 1A controls the innate antiviral and antibacterial response of macrophages during HIV-1 and Mycobacterium tuberculosis infection. Oncotarget 2017; 7:15394-409. [PMID: 27004401 PMCID: PMC4941249 DOI: 10.18632/oncotarget.8190] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/04/2016] [Indexed: 12/13/2022] Open
Abstract
Co-infection with HIV-1 and Mycobacterium tuberculosis (Mtb) is a major public health issue. While some research has described how each pathogen accelerates the course of infection of the other pathogen by compromising the immune system, very little is known about the molecular biology of HIV-1/Mtb co-infection at the host cell level. This is somewhat surprising, as both pathogens are known to replicate and persist in macrophages. We here identify Protein Phosphatase, Mg2+/Mn2+-dependent 1A (PPM1A) as a molecular link between Mtb infection and increased HIV-1 susceptibility of macrophages. We demonstrate that both Mtb and HIV-1 infection induce the expression of PPM1A in primary human monocyte/macrophages and THP-1 cells. Genetic manipulation studies revealed that increased PPMA1 expression rendered THP-1 cells highly susceptible to HIV-1 infection, while depletion of PPM1A rendered them relatively resistant to HIV-1 infection. At the same time, increased PPM1A expression abrogated the ability of THP-1 cells to respond to relevant bacterial stimuli with a proper cytokine/chemokine secretion response, blocked their chemotactic response and impaired their ability to phagocytose bacteria. These data suggest that PPM1A, which had previously been shown to play a role in the antiviral response to Herpes Simplex virus infection, also governs the antibacterial response of macrophages to bacteria, or at least to Mtb infection. PPM1A thus seems to play a central role in the innate immune response of macrophages, implying that host directed therapies targeting PPM1A could be highly beneficial, in particular for HIV/Mtb co-infected patients.
Collapse
Affiliation(s)
- Jim Sun
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kaitlyn Schaaf
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alexandra Duverger
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Frank Wolschendorf
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alexander Speer
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, Netherlands
| | - Frederic Wagner
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Olaf Kutsch
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
136
|
Ayyappan JP, Vinnard C, Subbian S, Nagajyothi JF. Effect of Mycobacterium tuberculosis infection on adipocyte physiology. Microbes Infect 2017; 20:81-88. [PMID: 29109018 DOI: 10.1016/j.micinf.2017.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB) remains as a major threat to human health worldwide despite of the availability of standardized antibiotic therapy. One of the characteristic of pathogenic Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis is its ability to persist in the host in a dormant state and develop latent infection without clinical signs of active disease. However, the mechanisms involved in bacterial persistence and the establishment of latency is not well understood. Adipose tissue is emerging as an important niche that favors actively replicating as well as dormant Mtb during acute and latent infection. This also suggests that Mtb can disseminate from the lungs to adipose tissue during aerosol infection and/or from adipose tissue to lungs during reactivation of latent infection. In this study, we report the interplay between key adipokine levels and the dynamics of Mtb pathogenesis in the lungs and adipose tissue using a rabbit model of pulmonary infection with two clinical isolates that produce divergent outcome in disease progression. Results show that markers of adipocyte physiology and function were significantly altered during Mtb infection and distinct patterns of adipokine expression were noted between adipose tissue and the lungs. Moreover, these markers were differentially expressed between active disease and latent infection. Thus, this study highlights the importance of targeting adipocyte function as potential target for developing better TB intervention strategies.
Collapse
Affiliation(s)
- Janeesh Plakkal Ayyappan
- Department of Microbiology, Biochemistry and Molecular Genetics, Public Health Research Institute, New Jersey Medical School, Newark, USA
| | - Christopher Vinnard
- Department of Medicine, Public Health Research Institute, New Jersey Medical School, Newark, USA
| | - Selvakumar Subbian
- Department of Medicine, Public Health Research Institute, New Jersey Medical School, Newark, USA.
| | - Jyothi F Nagajyothi
- Department of Microbiology, Biochemistry and Molecular Genetics, Public Health Research Institute, New Jersey Medical School, Newark, USA.
| |
Collapse
|
137
|
Khan S, Telwatte S, Trapecar M, Yukl S, Sanjabi S. Differentiating Immune Cell Targets in Gut-Associated Lymphoid Tissue for HIV Cure. AIDS Res Hum Retroviruses 2017; 33:S40-S58. [PMID: 28882067 PMCID: PMC5685216 DOI: 10.1089/aid.2017.0153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The single greatest challenge to an HIV cure is the persistence of latently infected cells containing inducible, replication-competent proviral genomes, which constitute only a small fraction of total or infected cells in the body. Although resting CD4+ T cells in the blood are a well-known source of viral rebound, more than 90% of the body's lymphocytes reside elsewhere. Many are in gut tissue, where HIV DNA levels per million CD4+ T cells are considerably higher than in the blood. Despite the significant contribution of gut tissue to viral replication and persistence, little is known about the cell types that support persistence of HIV in the gut; importantly, T cells in the gut have phenotypic, functional, and survival properties that are distinct from T cells in other tissues. The mechanisms by which latency is established and maintained will likely depend on the location and cytokine milieu surrounding the latently infected cells in each compartment. Therefore, successful HIV cure strategies require identification and characterization of the exact cell types that support viral persistence, particularly in the gut. In this review, we describe the seeding of the latent HIV reservoir in the gut mucosa; highlight the evidence for compartmentalization and depletion of T cells; summarize the immunologic consequences of HIV infection within the gut milieu; propose how the damaged gut environment may promote the latent HIV reservoir; and explore several immune cell targets in the gut and their place on the path toward HIV cure.
Collapse
Affiliation(s)
- Shahzada Khan
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, California
| | - Sushama Telwatte
- San Francisco VA Health Care System and University of California, San Francisco (UCSF), San Francisco, California
| | - Martin Trapecar
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, California
| | - Steven Yukl
- San Francisco VA Health Care System and University of California, San Francisco (UCSF), San Francisco, California
| | - Shomyseh Sanjabi
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, California
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
138
|
Beigier-Bompadre M, Montagna GN, Kühl AA, Lozza L, Weiner J, Kupz A, Vogelzang A, Mollenkopf HJ, Löwe D, Bandermann S, Dorhoi A, Brinkmann V, Matuschewski K, Kaufmann SHE. Mycobacterium tuberculosis infection modulates adipose tissue biology. PLoS Pathog 2017; 13:e1006676. [PMID: 29040326 PMCID: PMC5695609 DOI: 10.1371/journal.ppat.1006676] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/02/2017] [Accepted: 10/03/2017] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) primarily resides in the lung but can also persist in extrapulmonary sites. Macrophages are considered the prime cellular habitat in all tissues. Here we demonstrate that Mtb resides inside adipocytes of fat tissue where it expresses stress-related genes. Moreover, perigonadal fat of Mtb-infected mice disseminated the infection when transferred to uninfected animals. Adipose tissue harbors leukocytes in addition to adipocytes and other cell types and we observed that Mtb infection induces changes in adipose tissue biology depending on stage of infection. Mice infected via aerosol showed infiltration of inducible nitric oxide synthase (iNOS) or arginase 1 (Arg1)-negative F4/80+ cells, despite recruitment of CD3+, CD4+ and CD8+ T cells. Gene expression analysis of adipose tissue of aerosol Mtb-infected mice provided evidence for upregulated expression of genes associated with T cells and NK cells at 28 days post-infection. Strikingly, IFN-γ-producing NK cells and Mtb-specific CD8+ T cells were identified in perigonadal fat, specifically CD8+CD44-CD69+ and CD8+CD44-CD103+ subpopulations. Gene expression analysis of these cells revealed that they expressed IFN-γ and the lectin-like receptor Klrg1 and down-regulated CD27 and CD62L, consistent with an effector phenotype of Mtb-specific CD8+ T cells. Sorted NK cells expressed higher abundance of Klrg1 upon infection, as well. Our results reveal the ability of Mtb to persist in adipose tissue in a stressed state, and that NK cells and Mtb-specific CD8+ T cells infiltrate infected adipose tissue where they produce IFN-γ and assume an effector phenotype. We conclude that adipose tissue is a potential niche for Mtb and that due to infection CD8+ T cells and NK cells are attracted to this tissue. In 2015, tuberculosis (TB) affected 10.4 million individuals causing 1.8 million deaths per year. Yet, a much larger group– 2 billion people–harbors latent TB infection (LTBI) without clinical symptoms, but at lifelong risk of reactivation. The physiological niches of Mycobacterium tuberculosis (Mtb) persistence remain incompletely defined and both pulmonary and extrapulmonary sites have been proposed. Adipose tissue constitutes 15–25% of total body mass and is an active production site for hormones and inflammatory mediators. The increasing prevalence of obesity, has led to greater incidence of type 2 diabetes. These patients suffer from three times higher risk of developing TB, pointing to a potential link between adipose tissue and TB pathogenesis. In individuals with LTBI, Mtb survives in a stressed, non-replicating state with low metabolic activity and resting macrophages serve as preferred habitat and become effectors after appropriate stimulation. Here we demonstrate that Mtb can infect and persist within adipocytes where it upregulates stress-related genes. In vivo, relative proportions of leukocyte subsets infiltrating adipose tissue varied under different conditions of infection. During natural aerosol Mtb infection, distinct leukocyte subsets, including mononuclear phagocytes, Mtb-specific CD8+ T cells and NK cells infiltrated adipose tissue and became activated. Thus, our study shows that adipose tissue is not only a potential reservoir for this pathogen but also undergoes significant alteration during TB infection.
Collapse
Affiliation(s)
| | | | - Anja A. Kühl
- Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité - University Medicine, Berlin, Germany
| | - Laura Lozza
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - January Weiner
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Andreas Kupz
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Alexis Vogelzang
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | - Delia Löwe
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Silke Bandermann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Anca Dorhoi
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Volker Brinkmann
- Core Facility, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Kai Matuschewski
- Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Stefan H. E. Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
- * E-mail:
| |
Collapse
|
139
|
Asahchop EL, Meziane O, Mamik MK, Chan WF, Branton WG, Resch L, Gill MJ, Haddad E, Guimond JV, Wainberg MA, Baker GB, Cohen EA, Power C. Reduced antiretroviral drug efficacy and concentration in HIV-infected microglia contributes to viral persistence in brain. Retrovirology 2017; 14:47. [PMID: 29037245 PMCID: PMC5644262 DOI: 10.1186/s12977-017-0370-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/01/2017] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND In patients with HIV/AIDS receiving antiretroviral therapy (ART), HIV-1 persistence in brain tissue is a vital and unanswered question. HIV-1 infects and replicates in resident microglia and trafficking macrophages within the brain although the impact of individual ART drugs on viral infection within these brain myeloid cells is unknown. Herein, the effects of contemporary ART drugs were investigated using in vitro and in vivo models of HIV-1 brain infection. RESULTS The EC50 values for specific ART drugs in HIV-infected human microglia were significantly higher compared to bone marrow-derived macrophages and peripheral blood mononuclear cells. Intracellular ART drug concentrations in microglia were significantly lower than in human lymphocytes. In vivo brain concentrations of ART drugs in mice were 10 to 100-fold less in brain tissues compared with plasma and liver levels. In brain tissues from untreated HIV-infected BLT mice, HIV-encoded RNA, DNA and p24 were present in human leukocytes while ART eradicated viral RNA and DNA in both brain and plasma. Interruption of ART resulted in detectable viral RNA and DNA and increased human CD68 expression in brains of HIV-infected BLT mice. In aviremic HIV/AIDS patients receiving effective ART, brain tissues that were collected within hours of last ART dosing showed HIV-encoded RNA and DNA with associated neuroinflammatory responses. CONCLUSIONS ART drugs show variable concentrations and efficacies in brain myeloid cells and tissues in drug-specific manner. Despite low drug concentrations in brain, experimental ART suppressed HIV-1 infection in brain although HIV/AIDS patients receiving effective ART had detectable HIV-1 in brain. These findings suggest that viral suppression in brain is feasible but new approaches to enhancing ART efficacy and concentrations in brain are required for sustained HIV-1 eradication from brain.
Collapse
Affiliation(s)
- Eugene L Asahchop
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | | | - Manmeet K Mamik
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | - Wing F Chan
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | - William G Branton
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | - Lothar Resch
- Department of Pathology, University of Calgary, Calgary, AB, Canada
| | - M John Gill
- Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Elie Haddad
- CHU Sainte-Justine, Montréal, Canada.,Department of Pediatrics, Université de Montréal, Montréal, Canada
| | - Jean V Guimond
- CIUSSS du Centre-Sud-de-l'ile-Montréal, CLSC des Faubourgs, Montréal, QC, Canada
| | - Mark A Wainberg
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Glen B Baker
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Eric A Cohen
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, Canada.,Montreal Clinical Research Institute, Montréal, Canada
| | - Christopher Power
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada. .,Department of Psychiatry, University of Alberta, Edmonton, AB, Canada. .,Department of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
140
|
Fourman LT, Lu MT, Lee H, Fitch KV, Hallett TR, Park J, Czerwonka N, Weiss J, Stanley TL, Lo J, Grinspoon SK. Differential relationships of hepatic and epicardial fat to body composition in HIV. Physiol Rep 2017; 5:5/19/e13386. [PMID: 29038352 PMCID: PMC5641927 DOI: 10.14814/phy2.13386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 07/22/2017] [Indexed: 12/15/2022] Open
Abstract
HIV-infected patients commonly experience changes in central and peripheral fat content as well as ectopic fat accumulation. However, whether hepatic and epicardial fat stores relate differentially to body composition or how these associations are modified by HIV status has not been well explored. A previously recruited sample of 124 HIV-infected patients and 58 healthy controls had undergone dual energy X-ray absorptiometry (DEXA) and computed tomography (CT) from which body composition measures, liver-spleen ratio, and epicardial fat volume were obtained. Unique to the HIV-infected group, there was a parabolic association between abdominal subcutaneous adipose tissue (SAT) area and liver-spleen ratio (P = 0.03, inflection point 324 cm2) such that hepatic fat content was greatest at the extremes of low and high SAT A quadratic model also closely described the relationship between mean leg fat and liver-spleen ratio among patients with HIV (P = 0.02, inflection point 4.7 kg), again suggesting greater liver fat content with both low and high leg fat. Notably, an analogous relationship of epicardial fat with SAT was not evident among HIV-infected individuals or healthy controls. In contrast, visceral adipose tissue (VAT) linearly related to both liver-spleen ratio in HIV and epicardial fat volume irrespective of HIV status in multivariable models. In conclusion, our analyses implicate both low and high SAT as risk factors for hepatic fat accumulation in HIV These findings add to growing evidence of SAT dysfunction in the setting of HIV infection, and highlight key physiologic differences between hepatic and epicardial fat depots.
Collapse
Affiliation(s)
- Lindsay T Fourman
- Department of Medicine, Endocrine Division, Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Michael T Lu
- Department of Radiology, Cardiac PET MR CT Program, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hang Lee
- MGH Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Kathleen V Fitch
- Department of Medicine, Endocrine Division, Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Travis R Hallett
- Department of Radiology, Cardiac PET MR CT Program, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jakob Park
- Department of Radiology, Cardiac PET MR CT Program, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Natalia Czerwonka
- Department of Medicine, Endocrine Division, Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Julian Weiss
- Department of Medicine, Endocrine Division, Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Takara L Stanley
- Department of Medicine, Endocrine Division, Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Janet Lo
- Department of Medicine, Endocrine Division, Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Steven K Grinspoon
- Department of Medicine, Endocrine Division, Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
141
|
Madelain V, Le MP, Champenois K, Charpentier C, Landman R, Joly V, Yeni P, Descamps D, Yazdanpanah Y, Peytavin G. Impact of obesity on antiretroviral pharmacokinetics and immuno-virological response in HIV-infected patients: a case-control study. J Antimicrob Chemother 2017; 72:1137-1146. [PMID: 28065890 DOI: 10.1093/jac/dkw527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/07/2016] [Indexed: 12/11/2022] Open
Abstract
Background Obesity has high prevalence among HIV-infected patients. Increased adipose tissue mass affects the pharmacokinetics of numerous drugs, but few data are available for antiretroviral drugs. Objectives In this study we aimed to explore the pharmacokinetics of antiretroviral drugs and the immuno-virological response in obese patients with HIV infection. Patients and methods We examined data from 2009 to 2012 in our hospital's database for HIV-1-infected patients who received an antiretroviral drug (abacavir, emtricitabine, lamivudine, tenofovir, efavirenz, etravirine, nevirapine, atazanavir/ritonavir, darunavir/ritonavir, lopinavir/ritonavir or raltegravir). Obese patients were defined as those with BMI ≥30 kg/m 2 and normal-weight patients as those with BMI 19-25 kg/m 2 . Plasma concentrations ( C 12/24 ) were compared for each antiretroviral drug using a Mann-Whitney test. Suboptimal dosing and virological outcome were assessed by logistic regression, adjusting on covariates. Results We enrolled 291 obese and 196 normal-weight patients. Among the 12 analysed antiretroviral drugs, tenofovir, efavirenz and lopinavir C 12 values were significantly lower in obese than normal-weight patients: 66 versus 86 ng/mL, 1498 versus 2034 ng/mL and 4595 versus 6420 ng/mL, respectively ( P < 0.001). Antiretroviral drug C 12/24 values were more frequently below efficacy thresholds for obese than for normal-weight patients after adjustment for other covariates ( P < 0.001). Although obese patients showed a higher CD4 count than normal-weight patients (510 versus 444 cells/mm 3 , P < 0.001), the groups did not differ in virological failure rate. Conclusions This study highlights the impact of obesity on antiretroviral drug plasma exposure, but identifies no consequence of this suboptimal exposure on the immuno-virological control in this population.
Collapse
Affiliation(s)
- Vincent Madelain
- IAME, UMR 1137, Université Paris Diderot, Sorbonne Paris Cité and INSERM, Paris F-75018, France.,AP-HP, Hôpital Bichat-Claude Bernard, Laboratoire de Pharmaco-Toxicologie, Paris F-75018, France
| | - Minh P Le
- IAME, UMR 1137, Université Paris Diderot, Sorbonne Paris Cité and INSERM, Paris F-75018, France.,AP-HP, Hôpital Bichat-Claude Bernard, Laboratoire de Pharmaco-Toxicologie, Paris F-75018, France
| | - Karen Champenois
- IAME, UMR 1137, Université Paris Diderot, Sorbonne Paris Cité and INSERM, Paris F-75018, France
| | - Charlotte Charpentier
- IAME, UMR 1137, Université Paris Diderot, Sorbonne Paris Cité and INSERM, Paris F-75018, France.,AP-HP, Hôpital Bichat-Claude Bernard, Laboratoire de Virologie, Paris F-75018, France
| | - Roland Landman
- IAME, UMR 1137, Université Paris Diderot, Sorbonne Paris Cité and INSERM, Paris F-75018, France.,AP-HP, Hôpital Bichat-Claude Bernard, Service de Maladies Infectieuses et Tropicales, Paris F-75018, France
| | - Veronique Joly
- IAME, UMR 1137, Université Paris Diderot, Sorbonne Paris Cité and INSERM, Paris F-75018, France.,AP-HP, Hôpital Bichat-Claude Bernard, Service de Maladies Infectieuses et Tropicales, Paris F-75018, France
| | - Patrick Yeni
- IAME, UMR 1137, Université Paris Diderot, Sorbonne Paris Cité and INSERM, Paris F-75018, France.,AP-HP, Hôpital Bichat-Claude Bernard, Service de Maladies Infectieuses et Tropicales, Paris F-75018, France
| | - Diane Descamps
- IAME, UMR 1137, Université Paris Diderot, Sorbonne Paris Cité and INSERM, Paris F-75018, France.,AP-HP, Hôpital Bichat-Claude Bernard, Laboratoire de Virologie, Paris F-75018, France
| | - Yazdan Yazdanpanah
- IAME, UMR 1137, Université Paris Diderot, Sorbonne Paris Cité and INSERM, Paris F-75018, France.,AP-HP, Hôpital Bichat-Claude Bernard, Service de Maladies Infectieuses et Tropicales, Paris F-75018, France
| | - Gilles Peytavin
- IAME, UMR 1137, Université Paris Diderot, Sorbonne Paris Cité and INSERM, Paris F-75018, France.,AP-HP, Hôpital Bichat-Claude Bernard, Laboratoire de Pharmaco-Toxicologie, Paris F-75018, France
| |
Collapse
|
142
|
Abstract
HIV infection and antiretroviral therapy (ART) treatment exert diverse effects on adipocytes and stromal-vascular fraction cells, leading to changes in adipose tissue quantity, distribution, and energy storage. A HIV-associated lipodystrophic condition was recognized early in the epidemic, characterized by clinically apparent changes in subcutaneous, visceral, and dorsocervical adipose depots. Underlying these changes is altered adipose tissue morphology and expression of genes central to adipocyte maturation, regulation, metabolism, and cytokine signaling. HIV viral proteins persist in circulation and locally within adipose tissue despite suppression of plasma viremia on ART, and exposure to these proteins impairs preadipocyte maturation and reduces adipocyte expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) and other genes involved in cell regulation. Several early nucleoside reverse transcriptase inhibitor and protease inhibitor antiretroviral drugs demonstrated substantial adipocyte toxicity, including reduced mitochondrial DNA content and respiratory chain enzymes, reduced PPAR-γ and other regulatory gene expression, and increased proinflammatory cytokine production. Newer-generation agents, such as integrase inhibitors, appear to have fewer adverse effects. HIV infection also alters the balance of CD4+ and CD8+ T cells in adipose tissue, with effects on macrophage activation and local inflammation, while the presence of latently infected CD4+ T cells in adipose tissue may constitute a protected viral reservoir. This review provides a synthesis of the literature on how HIV virus, ART treatment, and host characteristics interact to affect adipose tissue distribution, immunology, and contribution to metabolic health, and adipocyte maturation, cellular regulation, and energy storage. © 2017 American Physiological Society. Compr Physiol 7:1339-1357, 2017.
Collapse
Affiliation(s)
- John R Koethe
- Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
143
|
Keating SM, Pilcher CD, Jain V, Lebedeva M, Hampton D, Abdel-Mohsen M, Deng X, Murphy G, Welte A, Facente SN, Hecht F, Deeks SG, Pillai SK, Busch MP. HIV Antibody Level as a Marker of HIV Persistence and Low-Level Viral Replication. J Infect Dis 2017; 216:72-81. [PMID: 28498985 DOI: 10.1093/infdis/jix225] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/08/2017] [Indexed: 12/20/2022] Open
Abstract
Background Human immunodeficiency virus (HIV) antibodies are generated and maintained by ongoing systemic expression of HIV antigen. We investigated whether HIV antibody responses as measured by high-throughput quantitative and qualitative assays could be used to indirectly measure persistent HIV replication in individuals receiving antiretroviral therapy (ART). Methods HIV antibody responses were measured over time in the presence or absence of suppressive ART and were compared to the HIV reservoir size and expression of antiviral restriction factors. Results Among untreated individuals, including both elite controllers (ie, persons with a viral load of ≤40 copies/mL) and noncontrollers, antibody parameters were stable over time and correlated with the individual viral load. Viral suppression with ART led to a progressive decline in antibody responses after treatment induction that persisted for 5-7 years. Higher levels of HIV antibodies during suppressive therapy were associated with later initiation of ART after infection, with higher DNA and cell-associated RNA levels, and with lower expression of multiple anti-HIV host restriction factors. Discussion These findings suggest that declining antibody levels during ART reflect lower levels of antigen production and/or viral replication in the persistent HIV reservoir. Results of relatively inexpensive and quantitative HIV antibody assays may be useful indirect markers that enable efficient monitoring of the viral reservoir and suppression during functional-cure interventions.
Collapse
Affiliation(s)
- Sheila M Keating
- Blood Systems Research Institute.,Department of Laboratory Medicine
| | | | - Vivek Jain
- Department of Medicine, University of California, San Francisco, California
| | | | | | | | | | - Gary Murphy
- Public Health England, London, United Kingdom
| | - Alex Welte
- South African Department of Science and Technology, National Research Foundation Centre of Excellence in Epidemiological Modelling and Analysis, Stellenbosch, South Africa
| | - Shelley N Facente
- Department of Medicine, University of California, San Francisco, California
| | - Frederick Hecht
- Department of Medicine, University of California, San Francisco, California
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, California
| | - Satish K Pillai
- Blood Systems Research Institute.,Department of Laboratory Medicine
| | - Michael P Busch
- Blood Systems Research Institute.,Department of Laboratory Medicine
| |
Collapse
|
144
|
Damouche A, Pourcher G, Pourcher V, Benoist S, Busson E, Lataillade JJ, Le Van M, Lazure T, Adam J, Favier B, Vaslin B, Müller-Trutwin M, Lambotte O, Bourgeois C. High proportion of PD-1-expressing CD4 + T cells in adipose tissue constitutes an immunomodulatory microenvironment that may support HIV persistence. Eur J Immunol 2017; 47:2113-2123. [PMID: 28762530 DOI: 10.1002/eji.201747060] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/14/2017] [Accepted: 07/26/2017] [Indexed: 11/11/2022]
Abstract
We and others have demonstrated that adipose tissue is a reservoir for HIV. Evaluation of the mechanisms responsible for viral persistence may lead to ways of reducing these reservoirs. Here, we evaluated the immune characteristics of adipose tissue in HIV-infected patients receiving antiretroviral therapy (ART) and in non-HIV-infected patients. We notably sought to determine whether adipose tissue's intrinsic properties and/or HIV induced alteration of the tissue environment may favour viral persistence. ART-controlled HIV infection was associated with a difference in the CD4/CD8 T-cell ratio and an elevated proportion of Treg cells in subcutaneous adipose tissue. No changes in Th1, Th2 and Th17 cell proportions or activation markers expression on T cell (Ki-67, HLA-DR) could be detected, and the percentage of CD69-expressing resident memory CD4+ T cells was not affected. Overall, our results indicate that adipose-tissue-resident CD4+ T cells are not extensively activated during HIV infection. PD-1 was expressed by a high proportion of tissue-resident memory CD4+ T cells in both HIV-infected patients and non-HIV-infected patients. Our findings suggest that adipose tissue's intrinsic immunomodulatory properties may limit immune activation and thus may strongly contribute to viral persistence.
Collapse
Affiliation(s)
- Abderaouf Damouche
- Univ Paris Sud, UMR INSERM 1184, Le Kremlin-Bicêtre, France.,CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
| | - Guillaume Pourcher
- Department of Digestive Diseases, Obesity center, Institut Mutualiste Montsouris, Paris-sud University, Paris, France
| | - Valérie Pourcher
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Service de Maladies Infectieuses et Tropicales, Sorbonne Universités, UPMC Université Paris 06, France
| | - Stéphane Benoist
- Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, Service de Chirurgie Digestive et Oncologique, Le Kremlin-Bicêtre, France
| | - Elodie Busson
- Hôpital d'Instruction des Armées Percy, Centre de Transfusion Sanguine des Armées, Clamart, France
| | - Jean-Jacques Lataillade
- Hôpital d'Instruction des Armées Percy, Centre de Transfusion Sanguine des Armées, Clamart, France
| | - Mélanie Le Van
- Univ Paris Sud, UMR INSERM 1184, Le Kremlin-Bicêtre, France.,CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
| | - Thierry Lazure
- Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, Service d'anatomo-pathologie, Le Kremlin-Bicêtre, France
| | - Julien Adam
- Institut Gustave Roussy, Plateforme d'évaluation préclinique, Villejuif, France
| | - Benoit Favier
- Univ Paris Sud, UMR INSERM 1184, Le Kremlin-Bicêtre, France.,CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
| | - Bruno Vaslin
- Univ Paris Sud, UMR INSERM 1184, Le Kremlin-Bicêtre, France.,CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
| | | | - Olivier Lambotte
- Univ Paris Sud, UMR INSERM 1184, Le Kremlin-Bicêtre, France.,CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France.,Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, Service de Médecine Interne et Immunologie clinique, Le Kremlin-Bicêtre, France
| | - Christine Bourgeois
- Univ Paris Sud, UMR INSERM 1184, Le Kremlin-Bicêtre, France.,CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
| |
Collapse
|
145
|
Abstract
PURPOSE OF REVIEW A central question for the HIV cure field is to determine new ways to target clinically relevant, latently and actively replicating HIV-infected cells beyond resting memory CD4 T cells, particularly in anatomical areas of low drug penetrability. RECENT FINDINGS HIV eradication strategies being positioned for targeting HIV for extinction in the CD4 T-cell compartment may also show promise in non-CD4 T-cells reservoirs. Furthermore, several exciting novel therapeutic approaches specifically focused on HIV clearance from non-CD4 T-cell populations are being developed. SUMMARY Although reservoir validity in these non-CD4 T cells continues to remain debated, this review will highlight recent advances and make an argument as to their clinical relevancy as we progress towards an HIV cure.
Collapse
|
146
|
Abstract
PURPOSE OF REVIEW This article provides an overview of anticancer therapies in various stages of clinical development as potential interventions to target HIV persistence. RECENT FINDINGS Epigenetic drugs developed for cancer have been investigated in vitro, ex vivo and in clinical trials as interventions aimed at reversing HIV latency and depleting the amount of virus that persists on antiretroviral therapy. Treatment with histone deacetylase inhibitors induced HIV expression in patients on antiretroviral therapy but did not reduce the frequency of infected cells. Other interventions that may accelerate the decay of latently infected cells, in the presence or absence of latency-reversing therapy, are now being explored. These include apoptosis-promoting agents, nonhistone deacetylase inhibitor compounds to reverse HIV latency and immunotherapy interventions to enhance antiviral immunity such as immune checkpoint inhibitors and Toll-like receptor agonists. SUMMARY A curative strategy in HIV will likely need to both reduce the amount of virus that persists on antiretroviral therapy and improve anti-HIV immune surveillance. Although we continue to explore advances in the field of oncology including cancer immunotherapy, there are major differences in the risk-benefit assessment between HIV-infected individuals and patients with malignancies. Drug development specifically targeting HIV persistence will be the key to developing effective interventions with an appropriate safety profile.
Collapse
|
147
|
Abstract
PURPOSE OF REVIEW Tissue reservoirs of HIV may promote the persistent immunopathology responsible for non-AIDS morbidity and data support multifocal reactivation from tissues as the source of viral rebound during antiretroviral therapy (ART) interruption. The heterogeneity of tissue reservoirs and incomplete knowledge about their composition are obstacles to an HIV cure. RECENT FINDINGS In addition to the higher concentration of infected CD4 T cells found in both central lymphoid tissues and gut, specific subsets of CD4 T cells appear to play a disproportionate role in HIV persistence. Recently, a subset of central memory T cells enriched in lymph node germinal centers called T-follicular helper cells has been identified that expresses more viral RNA and occupies an anatomic niche inaccessible to cytotoxic T lymphocyte killing. Additional observations suggest that antiretroviral drug (ARV) concentrations may be lower in some tissues, raising the possibility for localized, low-level viral replication. Finally, some recent data implicate the persistence of infected, non-CD4 T-cell types in tissues during ART. SUMMARY The retention of infected cells in a wide variety of tissues, often with distinct viral and cellular characteristics, underscores the importance of studying tissue reservoirs in the development and assessment of cure strategies. Both inhibitory ARVs and latency-reversing drugs must reach these sites, and novel strategies may be needed to attack virus in cells as variable as T-follicular helper cells and macrophages.
Collapse
|
148
|
Abstract
PURPOSE OF REVIEW HIV-1 is able to create lasting reservoirs of virally infected cells that persist life-long and are extremely difficult to eradicate, thus necessitating indefinite antiretroviral therapy. Large numbers of studies suggest that CD4 T cells represent the major, and possibly the only cell type supporting HIV-1 long-term persistence. However, the ability to serve as long-term viral reservoirs may be confined to certain subpopulations of CD4 T cells with specific functional and developmental characteristics that HIV-1 can selectively exploit to propagate long-term viral survival within the host. Identification of CD4 T-cell subtypes that serve as hotspots for viral persistence may be critical for designing strategies to purge the immune system of persisting viral reservoirs. RECENT FINDINGS Developmentally immature, long-lasting CD4 memory T-cell populations seem to contain the majority of latently HIV-1-infected cells that persist despite antiretroviral therapy in the peripheral blood. Emerging data suggest that functional polarization toward a T helper 17 (Th17), a T follicular helper cell or a regulatory T-cell lineage may also be associated with an increased ability to serve as a viral reservoir site. Atypical T cells such a γδ CD4 T cells or tissue-resident memory CD4 T cells may be predestined to serve as sites for HIV-1 persistence in specific tissues, but will require additional exploration in future studies. SUMMARY Recent advances have increased awareness for the profound diversity and complexity of CD4 T-cell subpopulations serving as sites for HIV-1 persistence. Continuous technological and methodological improvements to interrogate viral reservoirs in distinct CD4 T-cell subpopulations may allow to define a more complete landscape of the HIV-1 reservoir composition in different T-cell subpopulations.
Collapse
|
149
|
Schwartz C, Bouchat S, Marban C, Gautier V, Van Lint C, Rohr O, Le Douce V. On the way to find a cure: Purging latent HIV-1 reservoirs. Biochem Pharmacol 2017; 146:10-22. [PMID: 28687465 DOI: 10.1016/j.bcp.2017.07.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/03/2017] [Indexed: 12/29/2022]
Abstract
Introduction of cART in 1996 has drastically increased the life expectancy of people living with HIV-1. However, this treatment has not allowed cure as cessation of cART is associated with a rapid viral rebound. The main barrier to the eradication of the virus is related to the persistence of latent HIV reservoirs. Evidence is now accumulating that purging the HIV-1 reservoir might lead to a cure or a remission. The most studied strategy is the so called "shock and kill" therapy. This strategy is based on reactivation of dormant viruses from the latently-infected reservoirs (the shock) followed by the eradication of the reservoirs (the kill). This review focuses mainly on the recent advances made in the "shock and kill" therapy. We believe that a cure or a remission will come from combinatorial approaches i.e. combination of drugs to reactivate the dormant virus from all the reservoirs including the one located in sanctuaries, and combination of strategies boosting the immune system. Alternative strategies based on cell and gene therapy or based in inducing deep latency, which are evoked in this review reinforce the idea that at least a remission is attainable.
Collapse
Affiliation(s)
- Christian Schwartz
- University of Strasbourg, EA7292, DHPI, Institute of Parasitology and Tropical Pathology, Strasbourg, France; University of Strasbourg, IUT Louis Pasteur, Schiltigheim, France.
| | - Sophie Bouchat
- Université Libre de Bruxelles (ULB), Service of Molecular Virology, Institute for Molecular Biology and Medicine (IBMM), 12 rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Céline Marban
- University of Strasbourg, Inserm UMR 1121 Faculté de Chirurgie Dentaire Pavillon Leriche 1, place de l'Hôpital Strasbourg, France
| | - Virginie Gautier
- UCD, Centre for Research in Infectious Diseases (CRID), School of Medicine University College Dublin, Belfield, Dublin 4, Ireland
| | - Carine Van Lint
- Université Libre de Bruxelles (ULB), Service of Molecular Virology, Institute for Molecular Biology and Medicine (IBMM), 12 rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Olivier Rohr
- University of Strasbourg, EA7292, DHPI, Institute of Parasitology and Tropical Pathology, Strasbourg, France; University of Strasbourg, IUT Louis Pasteur, Schiltigheim, France
| | - Valentin Le Douce
- UCD, Centre for Research in Infectious Diseases (CRID), School of Medicine University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
150
|
Abstract
: The increased prevalence of age-related comorbidities and mortality is worrisome in ageing HIV-infected patients. Here, we aim to analyse the different ageing mechanisms with regard to HIV infection. Ageing results from the time-dependent accumulation of random cellular damage. Epigenetic modifications and mitochondrial DNA haplogroups modulate ageing. In antiretroviral treatment-controlled patients, epigenetic clock appears to be advanced, and some haplogroups are associated with HIV infection severity. Telomere shortening is enhanced in HIV-infected patients because of HIV and some nucleoside analogue reverse transcriptase inhibitors. Mitochondria-related oxidative stress and mitochondrial DNA mutations are increased during ageing and also by some nucleoside analogue reverse transcriptase inhibitors. Overall, increased inflammation or 'inflammageing' is a major driver of ageing and could result from cell senescence with secreted proinflammatory mediators, altered gut microbiota, and coinfections. In HIV-infected patients, the level of inflammation and innate immunity activation is enhanced and related to most comorbidities and to mortality. This status could result, in addition to age, from the virus itself or viral protein released from reservoirs, from HIV-enhanced gut permeability and dysbiosis, from antiretroviral treatment, from frequent cytomegalovirus and hepatitis C virus coinfections, and also from personal and environmental factors, as central fat accumulation or smoking. Adaptive immune activation and immunosenescence are associated with comorbidities and mortality in the general population but are less predictive in HIV-infected patients. Biomarkers to evaluate ageing in HIV-infected patients are required. Numerous systemic or cellular inflammatory, immune activation, oxidative stress, or senescence markers can be tested in serum or peripheral blood mononuclear cells. The novel European Study to Establish Biomarkers of Human Ageing MARK-AGE algorithm, evaluating the biological age, is currently assessed in HIV-infected patients and reveals an advanced biological age. Some enhanced inflammatory or innate immune activation markers are interesting but still not validated for the patient's follow-up. To be able to assess patients' biological age is an important objective to improve their healthspan.
Collapse
|