101
|
Epidemiological and phylogenetic analysis of rabies virus isolated from humans in Henan province, China. Arch Virol 2019; 164:2811-2817. [DOI: 10.1007/s00705-019-04388-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
|
102
|
Sonthonnax F, Besson B, Bonnaud E, Jouvion G, Merino D, Larrous F, Bourhy H. Lyssavirus matrix protein cooperates with phosphoprotein to modulate the Jak-Stat pathway. Sci Rep 2019; 9:12171. [PMID: 31434934 PMCID: PMC6704159 DOI: 10.1038/s41598-019-48507-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/01/2019] [Indexed: 12/24/2022] Open
Abstract
Phosphoprotein (P) and matrix protein (M) cooperate to undermine the immune response to rabies virus (RABV) infections. While P is involved in the modulation of the Jak-Stat pathway through the cytoplasmic retention of interferon (IFN)-activated STAT1 (pSTAT1), M interacts with the RelAp43-p105-ABIN2-TPL2 complex, to efficiently inhibit the nuclear factor-κB (NF-κB) pathway. Using transfections, protein-complementation assays, reverse genetics and DNA ChIP, we identified a role of M protein in the control of Jak-Stat signaling pathway, in synergy with the P protein. In unstimulated cells, both M and P proteins were found to interact with JAK1. Upon type-I IFN stimulation, the M switches toward pSTAT1 interaction, which results in an enhanced capacity of P protein to interact with pSTAT1 and restrain it in the cytoplasm. Furthermore, the role for M-protein positions 77, 100, 104 and 110 was also demonstrated in interaction with both JAK1 and pY-STAT1, and confirmed in vivo. Together, these data indicate that M protein cooperates with P protein to restrain in parallel, and sequentially, NF-κB and Jak-Stat pathways.
Collapse
Affiliation(s)
- Florian Sonthonnax
- Unité Lyssavirus, Epidémiologie et Neuropathologie, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France.,Université Paris-Diderot, Sorbonne-Paris Cité, Cellule Pasteur, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | - Benoit Besson
- Unité Lyssavirus, Epidémiologie et Neuropathologie, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France.,Université Paris-Diderot, Sorbonne-Paris Cité, Cellule Pasteur, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | - Emilie Bonnaud
- Unité Lyssavirus, Epidémiologie et Neuropathologie, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | - Grégory Jouvion
- Unité de Neuropathologie expérimentale, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | - David Merino
- Unité Lyssavirus, Epidémiologie et Neuropathologie, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | - Florence Larrous
- Unité Lyssavirus, Epidémiologie et Neuropathologie, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France.
| | - Hervé Bourhy
- Unité Lyssavirus, Epidémiologie et Neuropathologie, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| |
Collapse
|
103
|
Centeno‐Cuadros A, Razgour O, García‐Mudarra JL, Mingo‐Casas P, Sandonís V, Redondo A, Ibáñez C, Paz O, Martinez‐Alós S, Pérez Suarez G, Echevarría JE, Juste J. Comparative phylogeography and asymmetric hybridization between cryptic bat species. J ZOOL SYST EVOL RES 2019. [DOI: 10.1111/jzs.12318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
| | - Orly Razgour
- Biological Sciences University of Southampton Southampton UK
| | | | | | | | - Adrián Redondo
- Departmento de Ecología Evolutiva Estación Biológica de Doñana (CSIC) Sevilla Spain
| | - Carlos Ibáñez
- Departmento de Ecología Evolutiva Estación Biológica de Doñana (CSIC) Sevilla Spain
| | - Oscar Paz
- Departamento de Ciencias de la Vida, Facultad de Ciencias Universidad de Alcalá Alcalá de Henares, Madrid Spain
| | - Susana Martinez‐Alós
- Departamento de Ciencias de la Vida, Facultad de Ciencias Universidad de Alcalá Alcalá de Henares, Madrid Spain
| | - Gonzalo Pérez Suarez
- Departamento de Ciencias de la Vida, Facultad de Ciencias Universidad de Alcalá Alcalá de Henares, Madrid Spain
| | - Juan E. Echevarría
- Instituto de Salud Carlos III Majadahonda, Madrid Spain
- CIBER de Epidemiología y Salud Pública, CIBERESP Madrid Spain
| | - Javier Juste
- Departmento de Ecología Evolutiva Estación Biológica de Doñana (CSIC) Sevilla Spain
- CIBER de Epidemiología y Salud Pública, CIBERESP Madrid Spain
| |
Collapse
|
104
|
Coertse J, Weyer J, Nel LH, Markotter W. Reverse transcription recombinase polymerase amplification assay for rapid detection of canine associated rabies virus in Africa. PLoS One 2019; 14:e0219292. [PMID: 31276479 PMCID: PMC6611627 DOI: 10.1371/journal.pone.0219292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/20/2019] [Indexed: 12/22/2022] Open
Abstract
Rabies is a neglected disease mostly affecting the developing world. Accurate and reliable diagnostic and surveillance data forms the foundation for the formulation and monitoring of control strategies. Although various sensitive and specific tests are available for detection of rabies virus, implementation of these tests in low-resource settings are challenging and remains limited. In this study, we describe the developed of a reverse transcription recombinase polymerase amplification assay for the detection of rabies virus. The analytical sensitivity of this assay was determined to be 562 RNA copies and was performed in 20 minutes. The diagnostic sensitivity of the RT-RPA was 100% for detection of rabies virus in field samples. In conclusion, the RT-RPA assay allowed for very quick and sensitive detection of rabies virus and could be adapted for use in low-source settings.
Collapse
Affiliation(s)
- Jessica Coertse
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Jacqueline Weyer
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- The Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, a Division of the National Health Laboratory Services, Sandringham, South Africa
| | - Louis H. Nel
- Centre for Viral Zoonoses, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
105
|
Zhao L, Duffy S. Gauging genetic diversity of generalists: A test of genetic and ecological generalism with RNA virus experimental evolution. Virus Evol 2019; 5:vez019. [PMID: 31275611 PMCID: PMC6599687 DOI: 10.1093/ve/vez019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Generalist viruses, those with a comparatively larger host range, are considered more likely to emerge on new hosts. The potential to emerge in new hosts has been linked to viral genetic diversity, a measure of evolvability. However, there is no consensus on whether infecting a larger number of hosts leads to higher genetic diversity, or whether diversity is better maintained in a homogeneous environment, similar to the lifestyle of a specialist virus. Using experimental evolution with the RNA bacteriophage phi6, we directly tested whether genetic generalism (carrying an expanded host range mutation) or environmental generalism (growing on heterogeneous hosts) leads to viral populations with more genetic variation. Sixteen evolved viral lineages were deep sequenced to provide genetic evidence for population diversity. When evolved on a single host, specialist and generalist genotypes both maintained the same level of diversity (measured by the number of single nucleotide polymorphisms (SNPs) above 1%, P = 0.81). However, the generalist genotype evolved on a single host had higher SNP levels than generalist lineages under two heterogeneous host passaging schemes (P = 0.001, P < 0.001). RNA viruses’ response to selection in alternating hosts reduces standing genetic diversity compared to those evolving in a single host to which the virus is already well-adapted.
Collapse
Affiliation(s)
- Lele Zhao
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ, USA
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ, USA
| |
Collapse
|
106
|
Comparison of intra- and inter-host genetic diversity in rabies virus during experimental cross-species transmission. PLoS Pathog 2019; 15:e1007799. [PMID: 31220188 PMCID: PMC6615636 DOI: 10.1371/journal.ppat.1007799] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 07/09/2019] [Accepted: 04/29/2019] [Indexed: 12/25/2022] Open
Abstract
The development of high-throughput genome sequencing enables accurate measurements of levels of sub-consensus intra-host virus genetic diversity and analysis of the role played by natural selection during cross-species transmission. We analysed the natural and experimental evolution of rabies virus (RABV), an important example of a virus that is able to make multiple host jumps. In particular, we (i) analyzed RABV evolution during experimental host switching with the goal of identifying possible genetic markers of host adaptation, (ii) compared the mutational changes observed during passage with those observed in natura, and (iii) determined whether the colonization of new hosts or tissues requires adaptive evolution in the virus. To address these aims, animal infection models (dog and fox) and primary cell culture models (embryo brain cells of dog and fox) were developed and viral variation was studied in detail through deep genome sequencing. Our analysis revealed a strong unidirectional host evolutionary effect, as dog-adapted rabies virus was able to replicate in fox and fox cells relatively easily, while dogs or neuronal dog cells were not easily susceptible to fox adapted-RABV. This suggests that dog RABV may be able to adapt to some hosts more easily than other host variants, or that when RABV switched from dogs to red foxes it lost its ability to adapt easily to other species. Although no difference in patterns of mutation variation between different host organs was observed, mutations were common following both in vitro and in vivo passage. However, only a small number of these mutations also appeared in natura, suggesting that adaptation during successful cross-species virus transmission is a complex, multifactorial evolutionary process. Understanding the mechanisms that underpin the cross-species transmission and host adaptation of rabies virus (RABV) remains an important part of the ongoing goal to reduce and eliminate rabies. We utilized next-generation sequencing to perform a deep comparative analysis of the genomic evolution of RABV subpopulations during host adaptation in culture and in animals, with the aim of determining the molecular mechanisms involved in the host-species or tissue adaptation of rabies virus. In particular, we aimed to determine whether experimental evolution can recapitulate evolution in nature. Our results suggest that a limited number of mutations that appeared following both in vitro and in vivo passage were observed in natura. This study also suggests that dog RABV may be able to adapt to some hosts more easily than other host variants.
Collapse
|
107
|
Rupprecht CE, Salahuddin N. Current status of human rabies prevention: remaining barriers to global biologics accessibility and disease elimination. Expert Rev Vaccines 2019; 18:629-640. [PMID: 31159618 DOI: 10.1080/14760584.2019.1627205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Rabies is a serious, neglected tropical disease. Zoonotic agents are RNA viruses (Genus Lyssavirus, Family Rhabdoviridae), global in distribution. As an acute, progressive, incurable encephalitis, rabies has the highest case fatality of any infectious disease. Warm-blooded vertebrates are susceptible hosts. Major mammalian reservoirs include mesocarnivores and bats. Given wildlife perpetuation, rabies is not eradicable, but is preventable and controllable, especially under newly available international guidelines. Areas covered: Literature review over the past 5 years reveals development of sensitive, specific diagnostic tests and safe and highly effective human and veterinary vaccines. Yet, tens of thousands of human fatalities occur annually, usually in Africa and Asia, primarily after canine exposure. Human and domestic animal vaccination, before or after exposure, is the single greatest preventative strategy following a rabid animal bite. Expert opinion: Significant progress occurred during the twenty-first century regarding vaccine development, doses, and schedules. Remaining barriers to widespread rabies vaccination include an inter-related set of economic, cultural, social, educational, ecological and technological factors. A basic understanding of local and regional root causes of cases historically allows for broader accessibility to vaccination in a trans-disciplinary fashion to meet the global elimination of human rabies caused via dogs (GEHRD) by 2030.
Collapse
Affiliation(s)
| | - Naseem Salahuddin
- b Infectious Disease Division, Department of Medicine , The Indus Hospital , Karachi , Pakistan
| |
Collapse
|
108
|
Wang L, Wu X, Bao J, Song C, Du J. Phylodynamic and transmission pattern of rabies virus in China and its neighboring countries. Arch Virol 2019; 164:2119-2129. [PMID: 31147766 DOI: 10.1007/s00705-019-04297-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/30/2019] [Indexed: 11/25/2022]
Abstract
Rabies is a fatal disease caused by infection with rabies virus (RABV), and human rabies is still a critical public-health concern in China. Although there have been some phylogenetic studies about RABV transmission patterns, with the accumulation of more rabies sequences in recent years, there is an urgent need to update and clarify the spatial and temporal patterns of RABV circulating in China on a national scale. In this study, we collected all available RABV nucleoprotein gene sequences from China and its neighboring countries and performed comparative analysis. We identified six significant subclades of RABV circulating in China and found that each of them has a specific geographical distribution, reflecting possible physical barriers to gene flow. The phylogeographic analysis revealed minimal viral movement among different geographical locations. An analysis using Bayesian coalescent methods indicated that the current RABV strains in China may come from a common ancestor about 400 years ago, and currently, China is amid the second event of increasing RABV population since the 1950s, but the population has decreased gradually. We did not detect any evidence of recombination in the sequence dataset, nor did we find any evidence for positive selection during the expansion of RABV. Overall, geographic location and neutral genetic drift may be the main factors in shaping the phylogeography of RABV transmission in China.
Collapse
Affiliation(s)
- Lina Wang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Neurology, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaoming Wu
- Department of Neurology, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Junpeng Bao
- Department of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Changxin Song
- Department of Computer, Qinghai Normal University, Xining, Qinghai, China
| | - Jianqiang Du
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
109
|
Gutierrez B, Escalera-Zamudio M, Pybus OG. Parallel molecular evolution and adaptation in viruses. Curr Opin Virol 2019; 34:90-96. [PMID: 30703578 PMCID: PMC7102768 DOI: 10.1016/j.coviro.2018.12.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/11/2018] [Indexed: 01/05/2023]
Abstract
Parallel molecular evolution is the independent evolution of the same genotype or phenotype from distinct ancestors. The simple genomes and rapid evolution of many viruses mean they are useful model systems for studying parallel evolution by natural selection. Parallel adaptation occurs in the context of several viral behaviours, including cross-species transmission, drug resistance, and host immune escape, and its existence suggests that at least some aspects of virus evolution and emergence are repeatable and predictable. We introduce examples of virus parallel evolution and summarise key concepts. We outline the difficulties in detecting parallel adaptation using virus genomes, with a particular focus on phylogenetic and structural approaches, and we discuss future approaches that may improve our understanding of the phenomenon.
Collapse
Affiliation(s)
| | | | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
110
|
Rupprecht CE, Kuzmin IV, Yale G, Nagarajan T, Meslin FX. Priorities in applied research to ensure programmatic success in the global elimination of canine rabies. Vaccine 2019; 37 Suppl 1:A77-A84. [PMID: 30685249 DOI: 10.1016/j.vaccine.2019.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/14/2018] [Accepted: 01/10/2019] [Indexed: 01/19/2023]
Abstract
The elimination of human rabies mediated by dogs is attainable in concept, based upon current sensitive and specific diagnostic methods, existing safe and effective human and veterinary vaccines and a sound virological, pathological and epidemiological understanding of the disease. Globally, all developed countries achieved this goal. Regionally, major progress occurred throughout the Americas. However, less advancement is evident in Africa and Asia. Our objective was to concentrate upon those salient improvements to extant tools and methods over the next five years which could assist and simplify the task for both those developing countries that have already begun the process, as well as other localities in the earlier stages of consideration. We considered several categories of applied research which could be accomplished in the short term, based upon the available scientific evidence and recent recommendations from subject matter experts and key opinion leaders, focused upon perceived major limitations to prior program success. Areas of concentration included: laboratory-based surveillance, pathogen detection and characterization; human rabies prophylaxis; veterinary biologics; implementation of canine vaccination; and oral vaccination of free-ranging community dogs. Further real-time application in these core areas with proven techniques and technology would simplify attaining not only the global goal focused subtly upon human mortality, but the actual elimination of canine rabies as well.
Collapse
Affiliation(s)
| | | | - Gowri Yale
- Mission Rabies, Panaji, Goa 403002, India
| | | | | |
Collapse
|
111
|
Cori A, Nouvellet P, Garske T, Bourhy H, Nakouné E, Jombart T. A graph-based evidence synthesis approach to detecting outbreak clusters: An application to dog rabies. PLoS Comput Biol 2018; 14:e1006554. [PMID: 30557340 PMCID: PMC6312344 DOI: 10.1371/journal.pcbi.1006554] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/31/2018] [Accepted: 10/09/2018] [Indexed: 11/23/2022] Open
Abstract
Early assessment of infectious disease outbreaks is key to implementing timely and effective control measures. In particular, rapidly recognising whether infected individuals stem from a single outbreak sustained by local transmission, or from repeated introductions, is crucial to adopt effective interventions. In this study, we introduce a new framework for combining several data streams, e.g. temporal, spatial and genetic data, to identify clusters of related cases of an infectious disease. Our method explicitly accounts for underreporting, and allows incorporating preexisting information about the disease, such as its serial interval, spatial kernel, and mutation rate. We define, for each data stream, a graph connecting all cases, with edges weighted by the corresponding pairwise distance between cases. Each graph is then pruned by removing distances greater than a given cutoff, defined based on preexisting information on the disease and assumptions on the reporting rate. The pruned graphs corresponding to different data streams are then merged by intersection to combine all data types; connected components define clusters of cases related for all types of data. Estimates of the reproduction number (the average number of secondary cases infected by an infectious individual in a large population), and the rate of importation of the disease into the population, are also derived. We test our approach on simulated data and illustrate it using data on dog rabies in Central African Republic. We show that the outbreak clusters identified using our method are consistent with structures previously identified by more complex, computationally intensive approaches. Early assessment of infectious disease outbreaks is key to implementing timely and effective control measures. In particular, rapidly recognising whether infected individuals stem from a single outbreak sustained by local transmission, or from repeated introductions, is crucial to adopt effective interventions. In this study, we introduce a new approach which combines different types of data to identify clusters of related cases of an infectious disease. This approach relies on representing each type of data (e.g. temporal, spatial, or genetic) as a graph where nodes are cases, and two nodes are connected if the corresponding cases are closely related for this data. Our method then identifies clusters of cases which likely stem from the same introduction. Furthermore, we can use the size of these clusters to infer transmissibility of the disease and the number of importations of the pathogen into the population. We apply this approach to analyse dog rabies epidemics in Central African Republic. We show that outbreak clusters identified using our method are consistent with structures previously identified by more complex and computationally intensive approaches. Using simulated rabies epidemics, we show that our method has excellent potential for optimally detecting outbreak clusters. We also identify promising areas of research for transforming our method into a routine analysis tool for processing disease surveillance data.
Collapse
Affiliation(s)
- Anne Cori
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- * E-mail: (AC); (TJ)
| | - Pierre Nouvellet
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Tini Garske
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Hervé Bourhy
- Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, Paris, France
| | - Emmanuel Nakouné
- Département fièvres hémorragiques virales, Institut Pasteur de Bangui, Bangui, République Centrafricaine
| | - Thibaut Jombart
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- * E-mail: (AC); (TJ)
| |
Collapse
|
112
|
Evolutionary evidence for multi-host transmission of cetacean morbillivirus. Emerg Microbes Infect 2018; 7:201. [PMID: 30514855 PMCID: PMC6279766 DOI: 10.1038/s41426-018-0207-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/05/2018] [Accepted: 11/11/2018] [Indexed: 11/09/2022]
Abstract
Cetacean morbillivirus (CeMV) has emerged as the pathogen that poses the greatest risk of triggering epizootics in cetacean populations worldwide, and has a high propensity for interspecies transmission, including sporadic infection of seals. In this study, we investigated the evolutionary history of CeMV by deep sequencing wild-type viruses from tissue samples representing cetacean species with different spatiotemporal origins. Bayesian phylogeographic analysis generated an estimated evolutionary rate of 2.34 × 10−4 nucleotide substitutions/site/year and showed that CeMV evolutionary dynamics are neither host-restricted nor location-restricted. Moreover, the dolphin morbillivirus strain of CeMV has undergone purifying selection without evidence of species-specific mutations. Cell-to-cell fusion and growth kinetics assays demonstrated that CeMV can use both dolphin and seal CD150 as a cellular receptor. Thus, it appears that CeMV can readily spread among multiple cetacean populations and may pose an additional spillover risk to seals.
Collapse
|
113
|
Isolation of Rabies Virus from the Salivary Glands of Wild and Domestic Carnivores during a Skunk Rabies Epizootic. J Wildl Dis 2018; 55:473-476. [PMID: 30226803 DOI: 10.7589/2018-05-127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rabies is a fatal zoonotic disease of global importance. Rabies virus is shed in the saliva of infected hosts and is primarily transmitted through bite contact. Canine rabies has been eliminated from the US, but wildlife constitutes more than 90% of the reported cases of animal rabies in the US each year. In the US, several wild carnivore species are reservoirs of distinct variants of rabies virus (RV). After decades of apparent absence, the south-central skunk (SCSK) RV variant was detected in Colorado in 2007 and resulted in a large-scale epizootic in striped skunk ( Mephitis mephitis) populations in northern Colorado starting in 2012. We attempted isolation of RV from salivary gland tissues from confirmed rabid carnivores, comprising 51 striped skunks and seven other wild and domestic carnivores collected during 2013 through 2015 in northern Colorado. We isolated RV from 84.0% (158/188; 95% confidence interval=78.1-88.6%) of striped skunk and 71% (17/24; 95% confidence interval =51-85%) of other carnivore salivary glands. These data suggested that infected reservoir and vector species were equally likely to shed the SCSK RV variant and posed a secondary transmission risk to humans and other animals.
Collapse
|
114
|
Parize P, Dacheux L, Larrous F, Bourhy H. The shift in rabies epidemiology in France: time to adjust rabies post-exposure risk assessment. Euro Surveill 2018; 23:1700548. [PMID: 30280687 PMCID: PMC6169203 DOI: 10.2807/1560-7917.es.2018.23.39.1700548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 02/11/2018] [Indexed: 12/25/2022] Open
Abstract
The epidemiology of rabies in France and western Europe has changed during the past 22 years. In France, rabies in non-flying terrestrial mammals was declared to be eliminated in 2001, and the risk of rabies is now limited to contact with bats, rabid animals illegally imported from rabies-enzootic countries and traveller exposure in enzootic areas. We analysed the epidemiology of rabies in France from 1995 to 2016, describing and analysing data on human rabies surveillance as well as data on post-exposure prophylaxis (PEP) collected from the network of French antirabies clinics. Over the study period, seven individuals were diagnosed with rabies in France, all of whom were infected outside mainland France. PEP data analysis revealed an expected overall decrease in PEP administration for individuals exposed in mainland France, but there was still overuse of anti-rabies drugs, given the very low epidemiological risk. On the other hand, a significant increase in PEP delivered to individuals exposed abroad was evidenced. These epidemiological trends indicate that clear guidelines should be provided to support physicians' efforts to adjust rabies risk assessment to the evolution of the epidemiological situation.
Collapse
Affiliation(s)
- Perrine Parize
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, National Reference Center for Rabies and WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Laurent Dacheux
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, National Reference Center for Rabies and WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Florence Larrous
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, National Reference Center for Rabies and WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Hervé Bourhy
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, National Reference Center for Rabies and WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| |
Collapse
|
115
|
Zhang YZ, Wu WC, Shi M, Holmes EC. The diversity, evolution and origins of vertebrate RNA viruses. Curr Opin Virol 2018; 31:9-16. [PMID: 30114593 PMCID: PMC7102767 DOI: 10.1016/j.coviro.2018.07.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/25/2018] [Accepted: 07/28/2018] [Indexed: 11/28/2022]
Abstract
Despite a substantial increase in our knowledge of the biodiversity and evolution of vertebrate RNA viruses, far less is known about the diversity, evolution and origin of RNA viruses across the diverse phylogenetic range of viruses, and particularly in healthy animals that are often only rarely utilized for virological sampling. Fortunately, recent advances in virus discovery using metagenomic approaches are beginning to reveal a multitude of RNA viruses in vertebrates other than birds and mammals. In particular, fish harbor a remarkable array of RNA viruses, including the relatives of important pathogens. In addition, despite frequent cross-species transmission, the RNA viruses in vertebrates generally follow the evolutionary history of their hosts, which began in the oceans and then moved to terrestrial habitats over timescales covering hundreds of millions of years.
Collapse
Affiliation(s)
- Yong-Zhen Zhang
- Shanghai Public Health Clinical Center & Institute of Biomedical Sciences, Fudan University, Shanghai, China; Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China.
| | - Wei-Chen Wu
- Shanghai Public Health Clinical Center & Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Mang Shi
- Shanghai Public Health Clinical Center & Institute of Biomedical Sciences, Fudan University, Shanghai, China; Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China; Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Edward C Holmes
- Shanghai Public Health Clinical Center & Institute of Biomedical Sciences, Fudan University, Shanghai, China; Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China; Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia
| |
Collapse
|
116
|
Tao XY, Li ML, Guo ZY, Yan JH, Zhu WY. Inner Mongolia: A Potential Portal for the Spread of Rabies to Western China. Vector Borne Zoonotic Dis 2018; 19:51-58. [PMID: 30020856 DOI: 10.1089/vbz.2017.2248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In recent years, the number of human rabies cases in China has decreased annually. However, some western provinces with no human cases for more than 10 years have begun to report rabies cases, and all of the rabies lineages that circulated in western China were found in Inner Mongolia as well. In this study, we generated a phylogenetic tree with all the Inner Mongolia rabies strains available in GenBank and our laboratory, as well as strains from western China and representative viruses from neighboring countries, based on the N gene sequence. Furthermore, the possible relationships underlying the spread of the virus within Inner Mongolia and neighboring regions were analyzed. Three of six rabies lineages of China (China I-VI) were shown to exist in Inner Mongolia, and a spatial cluster analysis supported that the China I lineage, the dominant cluster of China, likely spread to Ningxia from Inner Mongolia. Wild raccoon dog rabies (China IV/Arctic-like-2) may have spread to Inner Mongolia from Russia and likely continued to spread to Qinghai and Tibet. The red fox lineage (China III/Cosmopolitan), which likely spread from Russia and Mongolia, has been shown to circulate in Inner Mongolia and was a serious threat to Xinjiang, which is adjacent to Inner Mongolia. Thus, Inner Mongolia likely became a location where national and international rabies viruses collected and developed into a potential portal for the spread of rabies to western China. To effectively control the spread of rabies in China, both prevention and control of dog and wild animal rabies in Inner Mongolia should be a top priority.
Collapse
Affiliation(s)
- Xiao-Yan Tao
- 1 Key Laboratory for Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mu-Li Li
- 1 Key Laboratory for Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,2 Department of Pathology, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Zhen-Yang Guo
- 1 Key Laboratory for Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,3 School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jiang-Hong Yan
- 1 Key Laboratory for Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,4 Institute of Pediatric Research, Children's Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Wu-Yang Zhu
- 1 Key Laboratory for Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
117
|
Kadowaki H, Duc PP, Sato K, Phuong PTM, Hagiwara K, Makita K. Socio-economic factors associated with voluntary rabies control measures in Vietnam. Prev Vet Med 2018; 157:105-114. [PMID: 30086838 DOI: 10.1016/j.prevetmed.2018.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 06/16/2018] [Accepted: 06/20/2018] [Indexed: 11/26/2022]
Abstract
Rabies is a fatal zoonosis, and in Vietnam, it remains problematic despite the availability of dog rabies vaccination. The purpose of this study was to clarify the socio-economic factors associated with voluntary rabies control measures among the general population using a "Knowledge, Attitudes, and Practice" framework to provide health and veterinary authorities in Vietnam with baseline information for better planning of policy supports. A questionnaire survey with interviews was conducted in 495 households (64 mountainous and 431 plain-area households) in Thai Nguyen Province in September 2016. After the survey, uni- and multivariable analyses were performed to detect factors associated with the practices of dog rabies vaccination and tethering dogs. Structural equation modelling (SEM) was performed to understand the structures associated with practice decisions. Contingent valuation was performed to calculate willingness-to-pay for vaccination. Vaccination coverage was 77.4% (724/935 dogs), and was significantly lower in mountainous areas dominated by ethnic minorities (63.8%, 67/105) than in plains (79.2%, 657/830, x2 = 11.7, df = 1, p < 0.001). Mean estimation of willingness-to-pay for a vaccination was 2.30 USD (51,959 Vietnamese dong), which was more than double the current price. The willingness-to-pay in mountainous areas was 2.16 USD, while that in plain areas was 2.32 USD. The proportion that never confined dogs was significantly higher in mountainous areas (65.6%, 42/64 households) than in plain areas (26.5%, 114/430, x2 = 37.7, df = 1, p < 0.001). Despite the low proportion of households tethering dogs, the majority answered that they would confine (479/489, 98.0%) or leash while walking (482/491, 98.2%) if such orders were enforced. SEM result showed that higher social status promoted better knowledge (β, the coefficient, = 0.75, se = 0.05, p < 0.001), better knowledge positive attitudes (β = 1.0, se = 0.0, p value not calculated), and positive attitudes better practices of confinement (β = 0.4, se = 0.05, p < 0.001), vaccination (β = 0.52, se = 0.06, p < 0.001), and sterilization (β = 0.11, se = 0.04, p < 0.001). Our study suggested that rabies education targeted to mountainous areas using local languages for ethnic minority groups as well as the national language, and higher subsidies on dog rabies vaccination for poor households may improve vaccination coverage. Dog management may be improved by promotion campaigns.
Collapse
Affiliation(s)
- Hazumu Kadowaki
- Veterinary Epidemiology Unit, Division of Health and Environmental Sciences, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai Midorimachi, Ebetsu, Japan
| | - Phuc Pham Duc
- Center for Public Health and Ecosystem Research, Hanoi University of Public Health, 1A Duc Thang Street, Duc Thang Ward, North Tu Liem District, Hanoi, Vietnam
| | - Kazuo Sato
- Laboratory of Food Economic Analysis, Department of Sustainable Agriculture, College of Agriculture, Food and Environment Sciences, Rakuno Gakuen University, 582 Bunkyodai Midorimachi, Ebetsu, Japan
| | - Pham Thi Minh Phuong
- Center for Public Health and Ecosystem Research, Hanoi University of Public Health, 1A Duc Thang Street, Duc Thang Ward, North Tu Liem District, Hanoi, Vietnam
| | - Katsuro Hagiwara
- Veterinary Virology Unit, Division of Pathobiology, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai Midorimachi, Ebetsu, Japan
| | - Kohei Makita
- Veterinary Epidemiology Unit, Division of Health and Environmental Sciences, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai Midorimachi, Ebetsu, Japan.
| |
Collapse
|
118
|
El-Sayed A. Advances in rabies prophylaxis and treatment with emphasis on immunoresponse mechanisms. Int J Vet Sci Med 2018; 6:8-15. [PMID: 30255072 PMCID: PMC6149183 DOI: 10.1016/j.ijvsm.2018.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/08/2018] [Accepted: 05/08/2018] [Indexed: 12/25/2022] Open
Abstract
Rabies is a vaccine-preventable fatal disease in man and most mammals. Although rabies is recorded in 150 territories and is responsible for at least 60,000 human deaths every year worldwide, it is a neglected tropical problem. Most of the rabies free countries are considered to be fragile free as the disease may re-emerge easily through wild mammals. For the performance of effective rabies eradication programs, a complex set of strategies and activities is required. At the time, a joint project of WHO-OIE-FAO which was announced in 2015, plans to control animal-human-ecosystems rabies interface. For effective rabies control, prophylactic policies must be applied. These include various educational outreaches for farmers and people living in endemic areas, enforced legislation for responsible dog ownership, control programs for the free-ranging stray dog and cat populations, field large-scale vaccination campaigns, and the development of new vaccine delivery strategies for both humans and animals. The present work presents the advances in the development of new safe, effective and economic vaccines for domestic dogs, and oral vaccines for the control of the disease in wild animals. It presents also some therapeutic protocols used for the treatment of patients.
Collapse
Affiliation(s)
- A El-Sayed
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt
| |
Collapse
|
119
|
Fisher CR, Streicker DG, Schnell MJ. The spread and evolution of rabies virus: conquering new frontiers. Nat Rev Microbiol 2018; 16:241-255. [PMID: 29479072 PMCID: PMC6899062 DOI: 10.1038/nrmicro.2018.11] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rabies is a lethal zoonotic disease that is caused by lyssaviruses, most often rabies virus. Despite control efforts, sporadic outbreaks in wildlife populations are largely unpredictable, underscoring our incomplete knowledge of what governs viral transmission and spread in reservoir hosts. Furthermore, the evolutionary history of rabies virus and related lyssaviruses remains largely unclear. Robust surveillance efforts combined with diagnostics and disease modelling are now providing insights into the epidemiology and evolution of rabies virus. The immune status of the host, the nature of exposure and strain differences all clearly influence infection and transmission dynamics. In this Review, we focus on rabies virus infections in the wildlife and synthesize current knowledge in the rapidly advancing fields of rabies virus epidemiology and evolution, and advocate for multidisciplinary approaches to advance our understanding of this disease.
Collapse
Affiliation(s)
- Christine R. Fisher
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Daniel G. Streicker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, UK
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, UK
| | - Matthias J. Schnell
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Vaccine Center at Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
120
|
Deviatkin AA, Lukashev AN. Recombination in the rabies virus and other lyssaviruses. INFECTION GENETICS AND EVOLUTION 2018; 60:97-102. [PMID: 29477551 DOI: 10.1016/j.meegid.2018.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/06/2018] [Accepted: 02/18/2018] [Indexed: 12/15/2022]
Abstract
Recombination is a common event in RNA viruses; however, in the rabies virus there have been only a few reports of isolated recombination events. Comprehensive analysis found traces of recent recombination events within Arctic, Arctic-like and Africa 1b rabies virus groups, as well as recombination between distinct lyssaviruses. Recombination breakpoints were not linked to gene boundaries and could be detected all over the genome. However, there was no evidence that recombination is an important factor in the genetic variability of the rabies virus. It is therefore likely that recombination in the rabies virus is limited by ecological factors (e.g., rare co-circulation of distinguishable lineages and a narrow window for productive coinfection in most carnivore hosts), rather than molecular barriers (e.g., incompatibility of genome fragments).
Collapse
Affiliation(s)
- Andrei A Deviatkin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Preparations of Russian Academy of Sciences, Moscow, Russia.
| | - Alexander N Lukashev
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia; Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, Moscow, Russia; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Preparations of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
121
|
|
122
|
Fischer S, Freuling CM, Müller T, Pfaff F, Bodenhofer U, Höper D, Fischer M, Marston DA, Fooks AR, Mettenleiter TC, Conraths FJ, Homeier-Bachmann T. Defining objective clusters for rabies virus sequences using affinity propagation clustering. PLoS Negl Trop Dis 2018; 12:e0006182. [PMID: 29357361 PMCID: PMC5794188 DOI: 10.1371/journal.pntd.0006182] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 02/01/2018] [Accepted: 12/19/2017] [Indexed: 11/18/2022] Open
Abstract
Rabies is caused by lyssaviruses, and is one of the oldest known zoonoses. In recent years, more than 21,000 nucleotide sequences of rabies viruses (RABV), from the prototype species rabies lyssavirus, have been deposited in public databases. Subsequent phylogenetic analyses in combination with metadata suggest geographic distributions of RABV. However, these analyses somewhat experience technical difficulties in defining verifiable criteria for cluster allocations in phylogenetic trees inviting for a more rational approach. Therefore, we applied a relatively new mathematical clustering algorythm named ‘affinity propagation clustering’ (AP) to propose a standardized sub-species classification utilizing full-genome RABV sequences. Because AP has the advantage that it is computationally fast and works for any meaningful measure of similarity between data samples, it has previously been applied successfully in bioinformatics, for analysis of microarray and gene expression data, however, cluster analysis of sequences is still in its infancy. Existing (516) and original (46) full genome RABV sequences were used to demonstrate the application of AP for RABV clustering. On a global scale, AP proposed four clusters, i.e. New World cluster, Arctic/Arctic-like, Cosmopolitan, and Asian as previously assigned by phylogenetic studies. By combining AP with established phylogenetic analyses, it is possible to resolve phylogenetic relationships between verifiably determined clusters and sequences. This workflow will be useful in confirming cluster distributions in a uniform transparent manner, not only for RABV, but also for other comparative sequence analyses. Rabies is one of the oldest known zoonoses, caused by lyssaviruses. In recent years, more than 21,000 nucleotide sequences for rabies viruses (RABV) have been deposited in public databases. In this study, a novel mathematical approach called affinity propagation (AP) clustering, a highly powerful tool, to verifiably divide full genome RABV sequences into genetic clusters, was used. A panel of existing and novel RABV full genome sequences was used to demonstrate the application of AP for RABV clustering. Using a combination of AP with established phylogenetic analyses is useful in resolving phylogenetic relationships between more objectively determined clusters and sequences. This workflow will help to substantiate a transparent cluster distribution, not only for RABV, but also for other comparative sequence analyses.
Collapse
Affiliation(s)
- Susanne Fischer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Greifswald-Insel Riems, Germany
| | - Conrad M. Freuling
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, OIE Reference Laboratory for Rabies, WHO Collaborating Centre for Rabies Surveillance and Research, Greifswald-Insel Riems, Germany
| | - Thomas Müller
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, OIE Reference Laboratory for Rabies, WHO Collaborating Centre for Rabies Surveillance and Research, Greifswald-Insel Riems, Germany
- * E-mail:
| | - Florian Pfaff
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| | - Ulrich Bodenhofer
- Institute of Bioinformatics, Johannes Kepler University Linz, Linz, Austria
| | - Dirk Höper
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, OIE Reference Laboratory for Rabies, WHO Collaborating Centre for Rabies Surveillance and Research, Greifswald-Insel Riems, Germany
| | - Mareike Fischer
- Institute of Mathematics and Computer Science, University Greifswald, Greifswald, Germany
| | - Denise A. Marston
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), OIE Reference Laboratory for Rabies, WHO Collaborating Centre for Characterization of Lyssaviruses, Weybridge, United Kingdom
| | - Anthony R. Fooks
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), OIE Reference Laboratory for Rabies, WHO Collaborating Centre for Characterization of Lyssaviruses, Weybridge, United Kingdom
| | - Thomas C. Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, OIE Reference Laboratory for Rabies, WHO Collaborating Centre for Rabies Surveillance and Research, Greifswald-Insel Riems, Germany
| | - Franz J. Conraths
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Greifswald-Insel Riems, Germany
| | - Timo Homeier-Bachmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Greifswald-Insel Riems, Germany
| |
Collapse
|
123
|
McElhinney LM, Marston DA, Wise EL, Freuling CM, Bourhy H, Zanoni R, Moldal T, Kooi EA, Neubauer-Juric A, Nokireki T, Müller T, Fooks AR. Molecular Epidemiology and Evolution of European Bat Lyssavirus 2. Int J Mol Sci 2018; 19:ijms19010156. [PMID: 29303971 PMCID: PMC5796105 DOI: 10.3390/ijms19010156] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/26/2017] [Accepted: 12/29/2017] [Indexed: 12/25/2022] Open
Abstract
Bat rabies cases in Europe are mainly attributed to two lyssaviruses, namely European Bat Lyssavirus 1 (EBLV-1) and European Bat Lyssavirus 2 (EBLV-2). Prior to the death of a bat worker in Finland in 1985, very few bat rabies cases were reported. Enhanced surveillance in the two subsequent years (1986-1987) identified 263 cases (more than a fifth of all reported cases to date). Between 1977 and 2016, 1183 cases of bat rabies were reported, with the vast majority (>97%) being attributed to EBLV-1. In contrast, there have been only 39 suspected cases of EBLV-2, of which 34 have been confirmed by virus typing and presently restricted to just two bat species; Myotis daubentonii and Myotis dasycneme. The limited number of EBLV-2 cases in Europe prompted the establishment of a network of European reference laboratories to collate all available viruses and data. Despite the relatively low number of EBLV-2 cases, a large amount of anomalous data has been published in the scientific literature, which we have here reviewed and clarified. In this review, 29 EBLV-2 full genome sequences have been analysed to further our understanding of the diversity and molecular evolution of EBLV-2 in Europe. Analysis of the 29 complete EBLV-2 genome sequences clearly corroborated geographical relationships with all EBLV-2 sequences clustering at the country level irrespective of the gene studied. Further geographical clustering was also observed at a local level. There are high levels of homogeneity within the EBLV-2 species with nucleotide identities ranging from 95.5-100% and amino acid identities between 98.7% and 100%, despite the widespread distribution of the isolates both geographically and chronologically. The mean substitution rate for EBLV-2 across the five concatenated genes was 1.65 × 10-5, and evolutionary clock analysis confirms the slow evolution of EBLV-2 both between and within countries in Europe. This is further supported by the first detailed EBLV-2 intra-roost genomic analysis whereby a relatively high sequence homogeneity was found across the genomes of three EBLV-2 isolates obtained several years apart (2007, 2008, and 2014) from M. daubentonii at the same site (Stokesay Castle, Shropshire, UK).
Collapse
Affiliation(s)
- Lorraine M McElhinney
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency (APHA), Surrey KT15 3NB, UK.
- Institute of Global Health, University of Liverpool, Liverpool L69 3BX, UK.
| | - Denise A Marston
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency (APHA), Surrey KT15 3NB, UK.
| | - Emma L Wise
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency (APHA), Surrey KT15 3NB, UK.
| | - Conrad M Freuling
- Institute of Molecular Virology and Cell Biology, Friedrich Loeffler Institute, (FLI), 17493 Greifswald, Germany.
| | - Hervé Bourhy
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, 75015 Paris, France.
| | - Reto Zanoni
- Institute of Virology and Immunology, University of Berne, 3012 Berne, Switzerland.
| | | | - Engbert A Kooi
- Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands.
| | | | - Tiina Nokireki
- Finnish Food Safety Authority Evira, 00790 Helsinki, Finland.
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich Loeffler Institute, (FLI), 17493 Greifswald, Germany.
| | - Anthony R Fooks
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency (APHA), Surrey KT15 3NB, UK.
- Institute of Global Health, University of Liverpool, Liverpool L69 3BX, UK.
| |
Collapse
|
124
|
Rodríguez-Nevado C, Lam TTY, Holmes EC, Pagán I. The impact of host genetic diversity on virus evolution and emergence. Ecol Lett 2017; 21:253-263. [PMID: 29207441 DOI: 10.1111/ele.12890] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/23/2017] [Accepted: 11/02/2017] [Indexed: 01/16/2023]
Abstract
Accumulating evidence indicates that biodiversity has an important impact on parasite evolution and emergence. The vast majority of studies in this area have only considered the diversity of species within an environment as an overall measure of biodiversity, overlooking the role of genetic diversity within a particular host species. Although theoretical models propose that host genetic diversity in part shapes that of the infecting parasite population, and hence modulates the risk of parasite emergence, this effect has seldom been tested empirically. Using Rabies virus (RABV) as a model parasite, we provide evidence that greater host genetic diversity increases both parasite genetic diversity and the likelihood of a host being a donor in RABV cross-species transmission events. We conclude that host genetic diversity may be an important determinant of parasite evolution and emergence.
Collapse
Affiliation(s)
- Cristina Rodríguez-Nevado
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), Madrid, 28223, Spain
| | - Tommy T-Y Lam
- State Key Laboratory of Emerging Infectious Diseases, Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), Madrid, 28223, Spain
| |
Collapse
|
125
|
Dellicour S, Rose R, Faria NR, Vieira LFP, Bourhy H, Gilbert M, Lemey P, Pybus OG. Using Viral Gene Sequences to Compare and Explain the Heterogeneous Spatial Dynamics of Virus Epidemics. Mol Biol Evol 2017. [PMID: 28651357 DOI: 10.1093/molbev/msx176] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rabies is an important zoonotic disease distributed worldwide. A key question in rabies epidemiology is the identification of factors that impact virus dispersion. Here we apply new analytical methods, based on phylogeographic reconstructions of viral lineage movement, to undertake a comparative evolutionary-epidemiological study of the spatial dynamics of rabies virus (RABV) epidemics in different hosts and habitats. We compiled RABV data sets from skunk, raccoon, bat and domestic dog populations in order to investigate the viral diffusivity of different RABV epidemics, and to detect and compare the environmental factors that impact the velocity of viral spread in continuous spatial landscapes. We build on a recently developed statistical framework that uses spatially- and temporally-referenced phylogenies. We estimate several spatial statistics of virus spread, which reveal a higher diffusivity of RABV in domestic dogs compared with RABV in other mammals. This finding is explained by subsequent analyses of environmental heterogeneity, which indicate that factors relating to human geography play a significant role in RABV dispersion in domestic dogs. More generally, our results suggest that human-related factors are important worldwide in explaining RABV dispersion in terrestrial host species. Our study shows that phylogenetically informed viral movements can be used to elucidate the factors that impact virus dispersal, opening new opportunities for a better understanding of the impact of host species and environmental conditions on the spatial dynamics of rapidly evolving populations.
Collapse
Affiliation(s)
- Simon Dellicour
- Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute, KU Leuven-University of Leuven, Leuven, Belgium
| | | | | | - Luiz Fernando Pereira Vieira
- Department of Laboratorial Diagnosis, Institute of Agricultural and Forest Defense of Espírito Santo (IDAF), Vitoria, Brazil
| | - Hervé Bourhy
- Institut Pasteur, Lyssavirus Dynamics and Host Adaptation Unit, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Marius Gilbert
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
| | - Philippe Lemey
- Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute, KU Leuven-University of Leuven, Leuven, Belgium
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
126
|
Marston DA, Banyard AC, McElhinney LM, Freuling CM, Finke S, de Lamballerie X, Müller T, Fooks AR. The lyssavirus host-specificity conundrum-rabies virus-the exception not the rule. Curr Opin Virol 2017; 28:68-73. [PMID: 29182939 DOI: 10.1016/j.coviro.2017.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 12/29/2022]
Abstract
Lyssaviruses are a diverse range of viruses which all cause the disease rabies. Of the 16 recognized species, only rabies viruses (RABV) have multiple host reservoirs. Although lyssaviruses are capable of infecting all mammals, onward transmission in a new host population requires adaptation of the virus, in a number of stages with both host and virus factors determining the outcome. Due to an absence of recorded non-RABV host shifts, RABV data is extrapolated to draw conclusions for all lyssaviruses. In this article, we have focused on evidence of host shifts in the same insectivorous bat reservoir species in North America (RABV) and Europe (EBLV-1, EBLV-2 and BBLV). How RABV has successfully crossed species barriers and established infectious cycles in new hosts to be the global multi-host pathogen it is today, whilst other lyssaviruses appear restricted in host species is explored in this review. It hypothesized that RABV is the exception, rather than the rule, in this fascinating genus of viruses.
Collapse
Affiliation(s)
- Denise A Marston
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, United Kingdom; UMR 'Émergence des Pathologies Virales' (EPV: Aix-Marseille Univ - IRD 190 - Inserm 1207 - EHESP - IHU Méditerranée Infection), Marseille, France
| | - Ashley C Banyard
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, United Kingdom
| | - Lorraine M McElhinney
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, United Kingdom; Institute of Infection and Global Health, University of Liverpool, United Kingdom
| | - Conrad M Freuling
- Friedrich-Loeffler-Institute, (FLI), Institute of Molecular Virology and Cell Biology, Greifswald-Insel Riems, Germany
| | - Stefan Finke
- Friedrich-Loeffler-Institute, (FLI), Institute of Molecular Virology and Cell Biology, Greifswald-Insel Riems, Germany
| | - Xavier de Lamballerie
- UMR 'Émergence des Pathologies Virales' (EPV: Aix-Marseille Univ - IRD 190 - Inserm 1207 - EHESP - IHU Méditerranée Infection), Marseille, France
| | - Thomas Müller
- Friedrich-Loeffler-Institute, (FLI), Institute of Molecular Virology and Cell Biology, Greifswald-Insel Riems, Germany
| | - Anthony R Fooks
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, United Kingdom; Institute of Infection and Global Health, University of Liverpool, United Kingdom.
| |
Collapse
|
127
|
Troupin C, Picard-Meyer E, Dellicour S, Casademont I, Kergoat L, Lepelletier A, Dacheux L, Baele G, Monchâtre-Leroy E, Cliquet F, Lemey P, Bourhy H. Host Genetic Variation Does Not Determine Spatio-Temporal Patterns of European Bat 1 Lyssavirus. Genome Biol Evol 2017; 9:3202-3213. [PMID: 29165566 PMCID: PMC5721339 DOI: 10.1093/gbe/evx236] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2017] [Indexed: 12/22/2022] Open
Abstract
The majority of bat rabies cases in Europe are attributed to European bat 1 lyssavirus (EBLV-1), circulating mainly in serotine bats (Eptesicus serotinus). Two subtypes have been defined (EBLV-1a and EBLV-1b), each associated with a different geographical distribution. In this study, we undertake a comprehensive sequence analysis based on 80 newly obtained EBLV-1 nearly complete genome sequences from nine European countries over a 45-year period to infer selection pressures, rates of nucleotide substitution, and evolutionary time scale of these two subtypes in Europe. Our results suggest that the current lineage of EBLV-1 arose in Europe ∼600 years ago and the virus has evolved at an estimated average substitution rate of ∼4.19×10-5 subs/site/year, which is among the lowest recorded for RNA viruses. In parallel, we investigate the genetic structure of French serotine bats at both the nuclear and mitochondrial level and find that they constitute a single genetic cluster. Furthermore, Mantel tests based on interindividual distances reveal the absence of correlation between genetic distances estimated between viruses and between host individuals. Taken together, this indicates that the genetic diversity observed in our E. serotinus samples does not account for EBLV-1a and -1b segregation and dispersal in Europe.
Collapse
Affiliation(s)
- Cécile Troupin
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Evelyne Picard-Meyer
- Laboratory for Rabies and Wildlife ANSES, Nancy, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, WHO Collaborating Centre for Research and Management on Zoonoses, Malzeville, France
| | - Simon Dellicour
- Institut Pasteur, Laboratory for Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, Belgium
| | - Isabelle Casademont
- Unité de la Génétique Fonctionnelle des Maladies Infectieuses, Paris, France
| | - Lauriane Kergoat
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Anthony Lepelletier
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Laurent Dacheux
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Guy Baele
- Institut Pasteur, Laboratory for Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, Belgium
| | - Elodie Monchâtre-Leroy
- Laboratory for Rabies and Wildlife ANSES, Nancy, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, WHO Collaborating Centre for Research and Management on Zoonoses, Malzeville, France
| | - Florence Cliquet
- Laboratory for Rabies and Wildlife ANSES, Nancy, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, WHO Collaborating Centre for Research and Management on Zoonoses, Malzeville, France
| | - Philippe Lemey
- Institut Pasteur, Laboratory for Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, Belgium
| | - Hervé Bourhy
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| |
Collapse
|
128
|
Sadeuh-Mba SA, Momo JB, Besong L, Loul S, Njouom R. Molecular characterization and phylogenetic relatedness of dog-derived Rabies Viruses circulating in Cameroon between 2010 and 2016. PLoS Negl Trop Dis 2017; 11:e0006041. [PMID: 29084223 PMCID: PMC5679643 DOI: 10.1371/journal.pntd.0006041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/09/2017] [Accepted: 10/15/2017] [Indexed: 12/25/2022] Open
Abstract
Rabies is enzootic among dog populations in some parts of Cameroon and the risk of human rabies is thought to be steadily high in these regions. However, the molecular epidemiology of circulating Rabies Virus (RABV) has been hardly considered in Cameroon as well as in most neighboring central African countries. To address this fundamental gap, 76 nucleoprotein (N) gene sequences of dog-derived RABV were obtained from 100 brain specimens sampled in Cameroon from 2010 to 2016. Studied sequences were subjected to molecular and phylogenetic analyses with reference strains retrieved from databases. The 71 studied Africa-1 isolates displayed 93.5–100% nucleotide (nt) and 98.3–100% amino-acid (aa) identities to each other while, the 5 studied Africa-2 isolates shared 99.4–99.7% sequence similarities at nt and aa levels. Maximum Likelihood based phylogenies inferred from nucleotide sequences confirmed all studied RABV isolates as members of the dog-related species 1 of the Lyssavirus genus. Individual isolates could be unambiguously assigned as either the Africa-1 subclade of the Cosmopolitan clade or the Africa 2 clade. The Africa-1 subclade appeared to be more prevalent and diversified. Indeed, 70 studied isolates segregated into 3 distinct circulating variants within Africa-1a lineage while a unique isolate was strikingly related to the Africa-1b lineage known to be prevalent in the neighboring Central African Republic and eastern Africa. Interestingly, all five Africa-2 isolates fell into the group-E lineage even though they appeared to be loosely related to databases available reference RABV; including those previously documented in Cameroon. This study uncovered the co-circulation of several Africa-1 and Africa-2 lineages in the southern regions of Cameroon. Striking phylogenetic outcasts to the geographic differentiation of RABV variants indicated that importation from close regions or neighboring countries apparently contributes to the sustainment of the enzootic cycle of domestic rabies in Cameroon. Rabies has been repeatedly reported among dog populations in Cameroon, especially in Yaounde, its capital city. However, the relative rates and genetic variability of Rabies Virus (RABV) variants circulating among dog populations in Cameroon are still to be documented. This study aimed to estimate the frequency and genetic diversity of RABV isolates originating from rabid dogs in the southern regions of Cameroon from 2010 to 2016. Overall, 76 of the 100 dog-derived RABV isolates sampled in Cameroon from 2010 to 2016 were successfully characterized. Our findings revealed that studied isolates belonged to the dog-related species 1 of the Lyssavirus genus, specifically 70 Africa-1a, 1 Africa-1b and 5 Africa-2 group-E lineages. The general phylogenetic pattern suggested an in-country geographic differentiation of the circulating RABV variants. This apparent geographic differentiation was contradicted by striking outcasts indicating importation from close or distant regions. Overall, this study uncovered the co-circulation of several Africa-1 and Africa-2 lineages in some southern regions of Cameroon, thus providing base-line molecular data that would be of interest for future stages of implementation of the rabies surveillance and control plan that is being setup in Cameroon.
Collapse
Affiliation(s)
- Serge Alain Sadeuh-Mba
- Virology Service, Centre Pasteur du Cameroun, Yaounde, Centre region, Cameroon
- * E-mail: ,
| | - Jean Blaise Momo
- Virology Service, Centre Pasteur du Cameroun, Yaounde, Centre region, Cameroon
| | - Laura Besong
- Ministry of Livestock, Fisheries and Animal Industries (MINEPIA), Yaounde, Centre region, Cameroon
| | - Sévérin Loul
- Ministry of Livestock, Fisheries and Animal Industries (MINEPIA), Yaounde, Centre region, Cameroon
| | - Richard Njouom
- Virology Service, Centre Pasteur du Cameroun, Yaounde, Centre region, Cameroon
| |
Collapse
|
129
|
Marston DA, Horton DL, Nunez J, Ellis RJ, Orton RJ, Johnson N, Banyard AC, McElhinney LM, Freuling CM, Fırat M, Ünal N, Müller T, de Lamballerie X, Fooks AR. Genetic analysis of a rabies virus host shift event reveals within-host viral dynamics in a new host. Virus Evol 2017; 3:vex038. [PMID: 29255631 PMCID: PMC5729694 DOI: 10.1093/ve/vex038] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Host shift events play an important role in epizootics as adaptation to new hosts can profoundly affect the spread of the disease and the measures needed to control it. During the late 1990s, an epizootic in Turkey resulted in a sustained maintenance of rabies virus (RABV) within the fox population. We used Bayesian inferences to investigate whole genome sequences from fox and dog brain tissues from Turkey to demonstrate that the epizootic occurred in 1997 (±1 year). Furthermore, these data indicated that the epizootic was most likely due to a host shift from locally infected domestic dogs, rather than an incursion of a novel fox or dog RABV. No evidence was observed for genetic adaptation to foxes at consensus sequence level and dN/dS analysis suggested purifying selection. Therefore, the deep sequence data were analysed to investigate the sub-viral population during a host shift event. Viral heterogeneity was measured in all RABV samples; viruses from the early period after the host shift exhibited greater sequence variation in comparison to those from the later stage, and to those not involved in the host shift event, possibly indicating a role in establishing transmission within a new host. The transient increase in variation observed in the new host species may represent virus replication within a new environment, perhaps due to increased replication within the CNS, resulting in a larger population of viruses, or due to the lack of host constraints present in the new host reservoir.
Collapse
Affiliation(s)
- Denise A Marston
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, KT15 3NB, UK
- UMR “Émergence des Pathologies Virales” (EPV: Aix-Marseille Univ—IRD 190—Inserm 1207 – EHESP – IHU Méditerranée Infection), Faculté de Médecine de Marseille, 27, Bd Jean Moulin,13005 Marseille, cedex 05 France
| | - Daniel L Horton
- School of Veterinary Medicine, University of Surrey, Guildford, GU2 7AL UK
| | - Javier Nunez
- Surveillance and Laboratory Services Department, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, KT15 3NB UK
| | - Richard J Ellis
- Surveillance and Laboratory Services Department, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, KT15 3NB UK
| | - Richard J Orton
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
- Centre for Virus Research, MRC-University of Glasgow, University of Glasgow, Glasgow, G61 1QH UK
| | - Nicholas Johnson
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, KT15 3NB, UK
- Faculty of Health and Medical Science, University of Surrey, Guildford, GU2 7XH, UK
| | - Ashley C Banyard
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Lorraine M McElhinney
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, KT15 3NB, UK
- Institute of Infection and Global Health, University of Liverpool, UK
| | - Conrad M Freuling
- Friedrich-Loeffler-Institute, (FLI), Institute of Molecular Virology and Cell Biology, Greifswald-Insel Riems, D-17493, Germany
| | - Müge Fırat
- Etlik Veterinary Control Central Research Institute A.S.Kolayli Street. No.21-21/A, 06020, Etlik, Ankara, Turkey
| | - Nil Ünal
- Etlik Veterinary Control Central Research Institute A.S.Kolayli Street. No.21-21/A, 06020, Etlik, Ankara, Turkey
| | - Thomas Müller
- Friedrich-Loeffler-Institute, (FLI), Institute of Molecular Virology and Cell Biology, Greifswald-Insel Riems, D-17493, Germany
| | - Xavier de Lamballerie
- UMR “Émergence des Pathologies Virales” (EPV: Aix-Marseille Univ—IRD 190—Inserm 1207 – EHESP – IHU Méditerranée Infection), Faculté de Médecine de Marseille, 27, Bd Jean Moulin,13005 Marseille, cedex 05 France
| | - Anthony R Fooks
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, KT15 3NB, UK
- Institute of Infection and Global Health, University of Liverpool, UK
| |
Collapse
|
130
|
Tarantola A. Four Thousand Years of Concepts Relating to Rabies in Animals and Humans, Its Prevention and Its Cure. Trop Med Infect Dis 2017; 2:E5. [PMID: 30270864 PMCID: PMC6082082 DOI: 10.3390/tropicalmed2020005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 12/11/2022] Open
Abstract
The epitome of the One Health paradigm-and of its shortcomings-rabies has been known to humankind for at least 4000 years. We review the evolution through history of concepts leading to our current understanding of rabies in dogs and humans and its prevention, as transmitted by accessible and surviving written texts. The tools and concepts currently available to control rabies were developed at the end of the 19th Century, including the first live, attenuated vaccine ever developed for humans and the first post-exposure prophylaxis (PEP) regimen. No progress, however, has been made in etiological treatment, leaving clinicians who provide care to animals or patients with symptomatic rabies as powerless today as their colleagues in Mesopotamia, 40 centuries ago. Rabies remains to date the most lethal infectious disease known to humans. Widespread access to timely, effective, and affordable PEP in rural areas of developing countries is urgently needed.
Collapse
Affiliation(s)
- Arnaud Tarantola
- Epidemiology & Public Health Unit, Institut Pasteur du Cambodge, BP983 Phnom Penh, Cambodia.
- Unité de Recherche et d'Expertise en Maladies Infectieuses (UREMI), Institut Pasteur de Nouvelle-Calédonie, 9800 Nouméa, New Caledonia.
| |
Collapse
|
131
|
Development and validation of sensitive real-time RT-PCR assay for broad detection of rabies virus. J Virol Methods 2017; 243:120-130. [PMID: 28174073 DOI: 10.1016/j.jviromet.2016.12.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/26/2016] [Accepted: 12/27/2016] [Indexed: 01/17/2023]
Abstract
Rabies virus (RABV) remains one of the most important global zoonotic pathogens. RABV causes rabies, an acute encephalomyelitis associated with a high rate of mortality in humans and animals and affecting different parts of the world, particularly in Asia and Africa. Confirmation of rabies diagnosis relies on laboratory diagnosis, in which molecular techniques such as detection of viral RNA by reverse transcription polymerase chain reaction (RT-PCR) are increasingly being used. In this study, two real-time quantitative RT-PCR assays were developed for large-spectrum detection of RABV, with a focus on African isolates. The primer and probe sets were targeted highly conserved regions of the nucleoprotein (N) and polymerase (L) genes. The results indicated the absence of non-specific amplification and cross-reaction with a range of other viruses belonging to the same taxonomic family, i.e. Rhabdoviridae, as well as negative brain tissues from various host species. Analytical sensitivity ranged between 100 to 10 standard RNA copies detected per reaction for N-gene and L-gene assays, respectively. Effective detection and high sensitivity of these assays on African isolates showed that they can be successfully applied in general research and used in diagnostic process and epizootic surveillance in Africa using a double-check strategy.
Collapse
|
132
|
Eggerbauer E, Troupin C, Passior K, Pfaff F, Höper D, Neubauer-Juric A, Haberl S, Bouchier C, Mettenleiter TC, Bourhy H, Müller T, Dacheux L, Freuling CM. The Recently Discovered Bokeloh Bat Lyssavirus: Insights Into Its Genetic Heterogeneity and Spatial Distribution in Europe and the Population Genetics of Its Primary Host. Adv Virus Res 2017; 99:199-232. [PMID: 29029727 DOI: 10.1016/bs.aivir.2017.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In 2010, a novel lyssavirus named Bokeloh bat lyssavirus (BBLV) was isolated from a Natterer's bat (Myotis nattereri) in Germany. Two further viruses were isolated in the same country and in France in recent years, all from the same bat species and all found in moribund or dead bats. Here we report the description and the full-length genome sequence of five additional BBLV isolates from Germany (n=4) and France (n=1). Interestingly, all of them were isolated from the Natterer's bat, except one from Germany, which was found in a common Pipistrelle bat (Pipistrellus pipistrellus), a widespread and abundant bat species in Europe. The latter represents the first case of transmission of BBLV to another bat species. Phylogenetic analysis clearly demonstrated the presence of two different lineages among this lyssavirus species: lineages A and B. The spatial distribution of these two lineages remains puzzling, as both of them comprised isolates from France and Germany; although clustering of isolates was observed on a regional scale, especially in Germany. Phylogenetic analysis based on the mitochondrial cytochrome b (CYTB) gene from positive Natterer's bat did not suggest a circulation of the respective BBLV sublineages in specific Natterer's bat subspecies, as all of them were shown to belong to the M. nattereri sensu stricto clade/subspecies and were closely related (German and French positive bats). At the bat host level, we demonstrated that the distribution of BBLV at the late stage of the disease seems large and massive, as viral RNA was detected in many different organs.
Collapse
|