101
|
Denham ST, Wambaugh MA, Brown JCS. How Environmental Fungi Cause a Range of Clinical Outcomes in Susceptible Hosts. J Mol Biol 2019; 431:2982-3009. [PMID: 31078554 PMCID: PMC6646061 DOI: 10.1016/j.jmb.2019.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/18/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022]
Abstract
Environmental fungi are globally ubiquitous and human exposure is near universal. However, relatively few fungal species are capable of infecting humans, and among fungi, few exposure events lead to severe systemic infections. Systemic infections have mortality rates of up to 90%, cost the US healthcare system $7.2 billion annually, and are typically associated with immunocompromised patients. Despite this reputation, exposure to environmental fungi results in a range of outcomes, from asymptomatic latent infections to severe systemic infection. Here we discuss different exposure outcomes for five major fungal pathogens: Aspergillus, Blastomyces, Coccidioides, Cryptococcus, and Histoplasma species. These fungi include a mold, a budding yeast, and thermal dimorphic fungi. All of these species must adapt to dramatically changing environments over the course of disease. These dynamic environments include the human lung, which is the first exposure site for these organisms. Fungi must defend themselves against host immune cells while germinating and growing, which risks further exposing microbe-associated molecular patterns to the host. We discuss immune evasion strategies during early infection, from disruption of host immune cells to major changes in fungal cell morphology.
Collapse
Affiliation(s)
- Steven T Denham
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Morgan A Wambaugh
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Jessica C S Brown
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| |
Collapse
|
102
|
Role of Amino Acid Metabolism in the Virulence of Human Pathogenic Fungi. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019. [DOI: 10.1007/s40588-019-00124-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
103
|
Studying fungal pathogens of humans and fungal infections: fungal diversity and diversity of approaches. Microbes Infect 2019; 21:237-245. [PMID: 31255676 DOI: 10.1016/j.micinf.2019.06.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/26/2022]
Abstract
Seminal work by Louis Pasteur revealed the contribution of fungi - yeasts and microsporidia to agroindustry and disease in animals, respectively. More than 150 years later, the impact of fungi on human health and beyond is an ever-increasing issue, although often underestimated. Recent studies estimate that fungal infections, especially those caused by Candida, Cryptococcus and Aspergillus species, kill more than one million people annually. Indeed, these neglected infections are in general very difficult to cure and the associated mortality remains very high even when antifungal treatments exist. The development of new antifungals and diagnostic tools that are both necessary to fight fungal diseases efficiently, requires greater insights in the biology of the fungal pathogens of humans in the context of the infection, on their epidemiology, and on their role in the human mycobiota. We also need a better understanding of the host immune responses to fungal pathogens as well as the genetic basis for the increased sensitivity of some individuals to fungal infections. Here, we highlight some recent progress made in these different areas of research, in particular based on work conducted in our own laboratories. These progresses should lay the ground for better management of fungal infections, as they provide opportunities for better diagnostic, vaccination, the development of classical antifungals but also strategies for targeting virulence factors or the host.
Collapse
|
104
|
Caza M, Kronstad JW. The cAMP/Protein Kinase a Pathway Regulates Virulence and Adaptation to Host Conditions in Cryptococcus neoformans. Front Cell Infect Microbiol 2019; 9:212. [PMID: 31275865 PMCID: PMC6592070 DOI: 10.3389/fcimb.2019.00212] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/31/2019] [Indexed: 12/28/2022] Open
Abstract
Nutrient sensing is critical for adaptation of fungi to environmental and host conditions. The conserved cAMP/PKA signaling pathway contributes to adaptation by sensing the availability of key nutrients such as glucose and directing changes in gene expression and metabolism. Interestingly, the cAMP/PKA pathway in fungal pathogens also influences the expression of virulence determinants in response to nutritional and host signals. For instance, protein kinase A (PKA) in the human pathogen Cryptococcus neoformans plays a central role in orchestrating phenotypic changes, such as capsule elaboration and melanin production, that directly impact disease development. In this review, we focus first on insights into the role of the cAMP/PKA pathway in nutrient sensing for the model yeast Saccharomyces cerevisiae to provide a foundation for understanding the pathway in C. neoformans. We then discuss key features of cAMP/PKA signaling in C. neoformans including new insights emerging from the analysis of transcriptional and proteomic changes in strains with altered PKA activity and expression. Finally, we highlight recent studies that connect the cAMP/PKA pathway to cell surface remodeling and the formation of titan cells.
Collapse
Affiliation(s)
- Mélissa Caza
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - James W Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
105
|
Maryam M, Fu MS, Alanio A, Camacho E, Goncalves DS, Faneuff EE, Grossman NT, Casadevall A, Coelho C. The enigmatic role of fungal annexins: the case of Cryptococcus neoformans. MICROBIOLOGY-SGM 2019; 165:852-862. [PMID: 31140968 DOI: 10.1099/mic.0.000815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Annexins are multifunctional proteins that bind to phospholipid membranes in a calcium-dependent manner. Annexins play a myriad of critical and well-characterized roles in mammals, ranging from membrane repair to vesicular secretion. The role of annexins in the kingdoms of bacteria, protozoa and fungi have been largely overlooked. The fact that there is no known homologue of annexins in the yeast model organism Saccharomyces cerevisiae may contribute to this gap in knowledge. However, annexins are found in most medically important fungal pathogens, with the notable exception of Candida albicans. In this study we evaluated the function of the one annexin gene in Cryptococcus neoformans, a causative agent of cryptococcosis. This gene CNAG_02415, is annotated in the C. neoformans genome as a target of calcineurin through its transcription factor Crz1, and we propose to update its name to cryptococcal annexin, AnnexinC1. C. neoformans strains deleted for AnnexinC1 revealed no difference in survival after exposure to various chemical stressors relative to wild-type strain, as well as no major alteration in virulence or mating. The only alteration observed in strains deleted for AnnexinC1 was a small increase in the titan cells' formation in vitro. The preservation of annexins in many different fungal species suggests an important function, and therefore the lack of a strong phenotype for annexin-deficient C. neoformans indicates either the presence of redundant genes that can compensate for the absence of AnnexinC1 function or novel functions not revealed by standard assays of cell function and pathogenicity.
Collapse
Affiliation(s)
- Maria Maryam
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore MD, USA
| | - Man Shun Fu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore MD, USA
| | - Alexandre Alanio
- Institut Pasteur, Molecular Mycology Unit, CNRS UMR2000, Université Paris Diderot, Sorbonne Paris Cité ; Laboratoire de Parasitologie-Mycologie, Hôpital Saint-Louis, Groupe Hospitalier Lariboisière, Saint-Louis, Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore MD, USA
| | - Emma Camacho
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore MD, USA
| | - Diego S Goncalves
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore MD, USA.,Universidade Federal Fluminense, Rio Janeiro, Brazil
| | - Eden E Faneuff
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore MD, USA.,Department of Biological Sciences, California State Polytechnic University, Pomona CA, USA
| | - Nina T Grossman
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore MD, USA
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore MD, USA
| | - Carolina Coelho
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore MD, USA.,College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.,Medical Research Council Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Aberdeen AB252ZD, UK
| |
Collapse
|
106
|
de Oliveira HC, Trevijano-Contador N, Garcia-Rodas R. Cryptococcal Pathogenicity and Morphogenesis. CURRENT FUNGAL INFECTION REPORTS 2019. [DOI: 10.1007/s12281-019-00340-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
107
|
Studying fungal pathogens of humans and fungal infections: fungal diversity and diversity of approaches. Genes Immun 2019; 20:403-414. [PMID: 31019254 DOI: 10.1038/s41435-019-0071-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/24/2022]
Abstract
Seminal work by Louis Pasteur revealed the contribution of fungi-yeasts and microsporidia to agroindustry and disease in animals, respectively. More than 150 years later, the impact of fungi on human health and beyond is an ever-increasing issue, although often underestimated. Recent studies estimate that fungal infections, especially those caused by Candida, Cryptococcus and Aspergillus species, kill more than one million people annually. Indeed, these neglected infections are in general very difficult to cure and the associated mortality remains very high even when antifungal treatments exist. The development of new antifungals and diagnostic tools that are both necessary to fight fungal diseases efficiently, requires greater insights in the biology of the fungal pathogens of humans in the context of the infection, on their epidemiology, and on their role in the human mycobiota. We also need a better understanding of the host immune responses to fungal pathogens as well as the genetic basis for the increased sensitivity of some individuals to fungal infections. Here, we highlight some recent progress made in these different areas of research, in particular based on work conducted in our own laboratories. These progress should lay the ground for better management of fungal infections, as they provide opportunities for better diagnostic, vaccination, the development of classical antifungals but also strategies for targeting virulence factors or the host.
Collapse
|
108
|
The Mouse Inhalation Model of Cryptococcus neoformans Infection Recapitulates Strain Virulence in Humans and Shows that Closely Related Strains Can Possess Differential Virulence. Infect Immun 2019; 87:IAI.00046-19. [PMID: 30833336 DOI: 10.1128/iai.00046-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/22/2019] [Indexed: 12/30/2022] Open
Abstract
Cryptococcal meningitis (CM) causes high rates of HIV-related mortality, yet the Cryptococcus factors influencing patient outcome are not well understood. Pathogen-specific traits, such as the strain genotype and degree of antigen shedding, are associated with the clinical outcome, but the underlying biology remains elusive. In this study, we examined factors determining disease outcome in HIV-infected cryptococcal meningitis patients infected with Cryptococcus neoformans strains with the same multilocus sequence type (MLST). Both patient mortality and survival were observed during infections with the same sequence type. Disease outcome was not associated with the patient CD4 count. Patient mortality was associated with higher cryptococcal antigen levels, the cerebrospinal fluid (CSF) fungal burden by quantitative culture, and low CSF fungal clearance. The virulence of a subset of clinical strains with the same sequence type was analyzed using a mouse inhalation model of cryptococcosis. We showed a strong association between human and mouse mortality rates, demonstrating that the mouse inhalation model recapitulates human infection. Similar to human infection, the ability to multiply in vivo, demonstrated by a high fungal burden in lung and brain tissues, was associated with mouse mortality. Mouse survival time was not associated with single C. neoformans virulence factors in vitro or in vivo; rather, a trend in survival time correlated with a suite of traits. These observations show that MLST-derived genotype similarities between C. neoformans strains do not necessarily translate into similar virulence either in the mouse model or in human patients. In addition, our results show that in vitro assays do not fully reproduce in vivo conditions that influence C. neoformans virulence.
Collapse
|
109
|
The Spectrum of Interactions between Cryptococcus neoformans and Bacteria. J Fungi (Basel) 2019; 5:jof5020031. [PMID: 31013706 PMCID: PMC6617360 DOI: 10.3390/jof5020031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 01/08/2023] Open
Abstract
Cryptococcus neoformans is a major fungal pathogen that infects immunocompromised people and causes life-threatening meningoencephalitis. C. neoformans does not occur in isolation either in the environment or in the human host, but is surrounded by other microorganisms. Bacteria are ubiquitously distributed in nature, including soil, and make up the dominant part of the human microbiota. Pioneering studies in the 1950s demonstrated antifungal activity of environmental bacteria against C. neoformans. However, the mechanisms and implications of these interactions remain largely unknown. Recently, interest in polymicrobial interaction studies has been reignited by the development of improved sequencing methodologies, and by the realization that such interactions may have a huge impact on ecology and human health. In this review, we summarize our current understanding of the interaction of bacteria with C. neoformans.
Collapse
|
110
|
Chapuis AF, Ballou ER, MacCallum DM. A Bright Future for Fluorescence Imaging of Fungi in Living Hosts. J Fungi (Basel) 2019; 5:jof5020029. [PMID: 30987114 PMCID: PMC6616859 DOI: 10.3390/jof5020029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 12/24/2022] Open
Abstract
Traditional in vivo investigation of fungal infection and new antifungal therapies in mouse models is usually carried out using post mortem methodologies. However, biomedical imaging techniques focusing on non-invasive techniques using bioluminescent and fluorescent proteins have become valuable tools. These new techniques address ethical concerns as they allow reduction in the number of animals required to evaluate new antifungal therapies. They also allow better understanding of the growth and spread of the pathogen during infection. In this review, we concentrate on imaging technologies using different fungal reporter proteins. We discuss the advantages and limitations of these different reporters and compare the efficacy of bioluminescent and fluorescent proteins for fungal research.
Collapse
Affiliation(s)
- Ambre F Chapuis
- MRC Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Elizabeth R Ballou
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Donna M MacCallum
- MRC Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
111
|
Probert M, Zhou X, Goodall M, Johnston SA, Bielska E, Ballou ER, May RC. A Glucuronoxylomannan Epitope Exhibits Serotype-Specific Accessibility and Redistributes towards the Capsule Surface during Titanization of the Fungal Pathogen Cryptococcus neoformans. Infect Immun 2019; 87:IAI.00731-18. [PMID: 30670549 PMCID: PMC6434129 DOI: 10.1128/iai.00731-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/23/2018] [Indexed: 11/20/2022] Open
Abstract
Disseminated infections with the fungal species Cryptococcus neoformans or, less frequently, Cryptococcus gattii are an important cause of mortality in immunocompromised individuals. Central to the virulence of both species is an elaborate polysaccharide capsule that consists predominantly of glucuronoxylomannan (GXM). Due to its abundance, GXM is an ideal target for host antibodies, and several monoclonal antibodies (mAbs) have previously been derived using purified GXM or whole capsular preparations as antigens. In addition to their application in the diagnosis of cryptococcosis, anti-GXM mAbs are invaluable tools for studying capsule structure. In this study, we report the production and characterization of a novel anti-GXM mAb, Crp127, that unexpectedly reveals a role for GXM remodeling during the process of fungal titanization. We show that Crp127 recognizes a GXM epitope in an O-acetylation-dependent, but xylosylation-independent, manner. The epitope is differentially expressed by the four main serotypes of Cryptococcus neoformans and C. gattii, is heterogeneously expressed within clonal populations of C. gattii serotype B strains, and is typically confined to the central region of the enlarged capsule. Uniquely, however, this epitope redistributes to the capsular surface in titan cells, a recently characterized morphotype where haploid 5-μm cells convert to highly polyploid cells of >10 μm with distinct but poorly understood capsular characteristics. Titan cells are produced in the host lung and critical for successful infection. Crp127 therefore advances our understanding of cryptococcal morphological change and may hold significant potential as a tool to differentially identify cryptococcal strains and subtypes.
Collapse
Affiliation(s)
- Mark Probert
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Xin Zhou
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Margaret Goodall
- Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Simon A Johnston
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Ewa Bielska
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Elizabeth R Ballou
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Robin C May
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
112
|
Brown AJP, Gow NAR, Warris A, Brown GD. Memory in Fungal Pathogens Promotes Immune Evasion, Colonisation, and Infection. Trends Microbiol 2019; 27:219-230. [PMID: 30509563 DOI: 10.1016/j.tim.2018.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/19/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022]
Abstract
By analogy with Pavlov's dogs, certain pathogens have evolved anticipatory behaviours that exploit specific signals in the human host to prepare themselves against imminent host challenges. This adaptive prediction, a type of history-dependent microbial behaviour, represents a primitive form of microbial memory. For fungal pathogens, adaptive prediction helps them circumvent nutritional immunity, protects them against phagocytic killing, and activates immune evasion strategies. We describe how these anticipatory responses, and the contrasting lifestyles and evolutionary trajectories of fungal pathogens, have influenced the evolution of such adaptive behaviours, and how these behaviours affect host colonisation and infection.
Collapse
Affiliation(s)
- Alistair J P Brown
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | - Neil A R Gow
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK; Current Address: School of Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Adilia Warris
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Gordon D Brown
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
113
|
Phenotypic Variability Correlates with Clinical Outcome in Cryptococcus Isolates Obtained from Botswanan HIV/AIDS Patients. mBio 2018; 9:mBio.02016-18. [PMID: 30352938 PMCID: PMC6199498 DOI: 10.1128/mbio.02016-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pathogenic species of Cryptococcus cause hundreds of thousands of deaths annually. Considerable phenotypic variation is exhibited during infection, including increased capsule size, capsule shedding, giant cells (≥15 μm), and micro cells (≤1 μm). We examined 70 clinical isolates of Cryptococcus neoformans and Cryptococcus tetragattii from HIV/AIDS patients in Botswana to determine whether the capacity to produce morphological variants was associated with clinical parameters. Isolates were cultured under conditions designed to simulate in vivo stresses. Substantial variation was seen across morphological and clinical data. Giant cells were more common in C. tetragattii, while micro cells and shed capsule occurred in C. neoformans only. Phenotypic variables fell into two groups associated with differing symptoms. The production of "large" phenotypes (greater cell and capsule size and giant cells) was associated with higher CD4 count and was negatively correlated with intracranial pressure indicators, suggesting that these are induced in early stage infection. "Small" phenotypes (micro cells and shed capsule) were associated with lower CD4 counts, negatively correlated with meningeal inflammation indicators, and positively correlated with intracranial pressure indicators, suggesting that they are produced later during infection and may contribute to immune suppression and promote proliferation and dissemination. These trends persisted at the species level, indicating that they were not driven by association with particular Cryptococcus species. Isolates possessing giant cells, micro cells, and shed capsule were rare, but strikingly, they were associated with patient death (P = 0.0165). Our data indicate that pleomorphism is an important driver in Cryptococcus infection.IMPORTANCE Cryptococcosis results in hundreds of thousands of deaths annually, predominantly in sub-Saharan Africa. Cryptococcus is an encapsulated yeast, and during infection, cells have the capacity for substantial morphological changes, including capsule enlargement and shedding and variations in cell shape and size. In this study, we examined 70 Cryptococcus isolates causing meningitis in HIV/AIDS patients in Botswana in order to look for associations between phenotypic variation and clinical symptoms. Four variant phenotypes were seen across strains: giant cells of ≥15 µm, micro cells of ≤1 µm, shed extracellular capsule, and irregularly shaped cells. We found that "large" and "small" phenotypes were associated with differing disease symptoms, indicating that their production may be important during the disease process. Overall, our study indicates that Cryptococcus strains that can switch on cell types under different situations may be more able to sustain infection and resist the host response.
Collapse
|
114
|
Zhou X, Ballou ER. The Cryptococcus neoformans Titan Cell: From In Vivo Phenomenon to In Vitro Model. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018. [DOI: 10.1007/s40588-018-0107-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
115
|
Hommel B, Mukaremera L, Cordero RJB, Coelho C, Desjardins CA, Sturny-Leclère A, Janbon G, Perfect JR, Fraser JA, Casadevall A, Cuomo CA, Dromer F, Nielsen K, Alanio A. Titan cells formation in Cryptococcus neoformans is finely tuned by environmental conditions and modulated by positive and negative genetic regulators. PLoS Pathog 2018; 14:e1006982. [PMID: 29775480 PMCID: PMC5959062 DOI: 10.1371/journal.ppat.1006982] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/19/2018] [Indexed: 01/06/2023] Open
Abstract
The pathogenic fungus Cryptococcus neoformans exhibits morphological changes in cell size during lung infection, producing both typical size 5 to 7 μm cells and large titan cells (> 10 μm and up to 100 μm). We found and optimized in vitro conditions that produce titan cells in order to identify the ancestry of titan cells, the environmental determinants, and the key gene regulators of titan cell formation. Titan cells generated in vitro harbor the main characteristics of titan cells produced in vivo including their large cell size (>10 μm), polyploidy with a single nucleus, large vacuole, dense capsule, and thick cell wall. Here we show titan cells derived from the enlargement of progenitor cells in the population independent of yeast growth rate. Change in the incubation medium, hypoxia, nutrient starvation and low pH were the main factors that trigger titan cell formation, while quorum sensing factors like the initial inoculum concentration, pantothenic acid, and the quorum sensing peptide Qsp1p also impacted titan cell formation. Inhibition of ergosterol, protein and nucleic acid biosynthesis altered titan cell formation, as did serum, phospholipids and anti-capsular antibodies in our settings. We explored genetic factors important for titan cell formation using three approaches. Using H99-derivative strains with natural genetic differences, we showed that titan cell formation was dependent on LMP1 and SGF29 genes. By screening a gene deletion collection, we also confirmed that GPR4/5-RIM101, and CAC1 genes were required to generate titan cells and that the PKR1, TSP2, USV101 genes negatively regulated titan cell formation. Furthermore, analysis of spontaneous Pkr1 loss-of-function clinical isolates confirmed the important role of the Pkr1 protein as a negative regulator of titan cell formation. Through development of a standardized and robust in vitro assay, our results provide new insights into titan cell biogenesis with the identification of multiple important factors/pathways.
Collapse
Affiliation(s)
- Benjamin Hommel
- Institut Pasteur, Molecular Mycology Unit, Département de Mycologie, Paris, France
- CNRS UMR2000, Paris, France
- Laboratoire de Parasitologie-Mycologie, Hôpital Saint-Louis, Groupe Hospitalier Lariboisière, Saint-Louis, Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Liliane Mukaremera
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Radames J. B. Cordero
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD., United States of America
| | - Carolina Coelho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD., United States of America
| | | | - Aude Sturny-Leclère
- Institut Pasteur, Molecular Mycology Unit, Département de Mycologie, Paris, France
- CNRS UMR2000, Paris, France
| | - Guilhem Janbon
- Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Paris, France
| | - John R. Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - James A. Fraser
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD., United States of America
| | - Christina A. Cuomo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Françoise Dromer
- Institut Pasteur, Molecular Mycology Unit, Département de Mycologie, Paris, France
- CNRS UMR2000, Paris, France
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Alexandre Alanio
- Institut Pasteur, Molecular Mycology Unit, Département de Mycologie, Paris, France
- CNRS UMR2000, Paris, France
- Laboratoire de Parasitologie-Mycologie, Hôpital Saint-Louis, Groupe Hospitalier Lariboisière, Saint-Louis, Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD., United States of America
- * E-mail:
| |
Collapse
|
116
|
Abstract
Cryptococcus neoformans is a human pathogenic yeast that causes hundreds of thousands of deaths worldwide among susceptible individuals, in particular, HIV+ patients. This yeast has developed several adaptation mechanisms that allow replication within the host. During decades, this yeast has been well known for a very peculiar and unique structure that contributes to virulence, a complex polysaccharide capsule that surrounds the cell wall. In contrast to other fungal pathogens, such as Candida albicans or Aspergillus fumigatus, the role of morphological transitions has not been studied in the virulence of Cryptococcus neoformans since this yeast does not form hyphae during infection. However, in the last years, different groups have described the ability of this fungus to change its size during infection. In particular, Cryptococcus can form "titan cells," which are blastoconidia of an abnormal large size. Since their discovery, there is increasing evidence that these cells contribute, not only to long-term persistence in the host, but they can also actively participate in the development of the disease. Recently, several groups have simultaneously described different media that induce the appearance of titan cells in laboratory conditions. Using these conditions, new inducing factors and signaling pathways involved in this transition have been described. In this article, we will review the main phenotypic features of these cells, factors, and transduction pathways that induce cell growth, and how titan cells contribute to the disease caused by this pathogen.
Collapse
|