101
|
Kim DM, Leem YH. Chronic stress-induced memory deficits are reversed by regular exercise via AMPK-mediated BDNF induction. Neuroscience 2016; 324:271-85. [PMID: 26975895 DOI: 10.1016/j.neuroscience.2016.03.019] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/07/2016] [Accepted: 03/07/2016] [Indexed: 01/30/2023]
Abstract
Chronic stress has a detrimental effect on neurological insults, psychiatric deficits, and cognitive impairment. In the current study, chronic stress was shown to impair learning and memory functions, in addition to reducing in hippocampal Adenosine monophosphate-activated protein kinase (AMPK) activity. Similar reductions were also observed for brain-derived neurotrophic factor (BDNF), synaptophysin, and post-synaptic density-95 (PSD-95) levels, all of which was counter-regulated by a regime of regular and prolonged exercise. A 21-day restraint stress regimen (6 h/day) produced learning and memory deficits, including reduced alternation in the Y-maze and decreased memory retention in the water maze test. These effects were reversed post-administration by a 3-week regime of treadmill running (19 m/min, 1 h/day, 6 days/week). In hippocampal primary culture, phosphorylated-AMPK (phospho-AMPK) and BDNF levels were enhanced in a dose-dependent manner by 5-amimoimidazole-4-carboxamide riboside (AICAR) treatment, and AICAR-treated increase was blocked by Compound C. A 7-day period of AICAR intraperitoneal injections enhanced alternation in the Y-maze test and reduced escape latency in water maze test, along with enhanced phospho-AMPK and BDNF levels in the hippocampus. The intraperitoneal injection of Compound C every 4 days during exercise intervention diminished exercise-induced enhancement of memory improvement during the water maze test in chronically stressed mice. Also, chronic stress reduced hippocampal neurogenesis (lower Ki-67- and doublecortin-positive cells) and mRNA levels of BDNF, synaptophysin, and PSD-95. Our results suggest that regular and prolonged exercise can alleviate chronic stress-induced hippocampal-dependent memory deficits. Hippocampal AMPK-engaged BDNF induction is at least in part required for exercise-induced protection against chronic stress.
Collapse
Affiliation(s)
- D-M Kim
- Department of Society of Sports & Leisure Studies, Wonkwang University, 460 Iksandea-ro, Iksan, Jeonbuk, Republic of Korea
| | - Y-H Leem
- Department of Molecular Medicine and TIDRC, School of Medicine, Ewha Women's University, Seoul 158-710, Republic of Korea.
| |
Collapse
|
102
|
Eom JW, Lee JM, Koh JY, Kim YH. AMP-activated protein kinase contributes to zinc-induced neuronal death via activation by LKB1 and induction of Bim in mouse cortical cultures. Mol Brain 2016; 9:14. [PMID: 26856538 PMCID: PMC4746814 DOI: 10.1186/s13041-016-0194-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/01/2016] [Indexed: 12/25/2022] Open
Abstract
Background We reported that zinc neurotoxicity, a key mechanism of ischemic neuronal death, was mediated by poly ADP-ribose polymerase (PARP) over-activation following NAD+/ATP depletion in cortical cultures. Because AMP-activated protein kinase (AMPK) can be activated by ATP depletion, and AMPK plays a key role in excitotoxicity and ischemic neuronal death, we examined whether AMPK could be involved in zinc neurotoxicity in mouse cortical neuronal cultures. Results Compound C, an AMPK inhibitor, significantly attenuated zinc-induced neuronal death. Activation of AMPK was detected beginning 2 h after a 10-min exposure of mouse cortical neurons to 300 μM zinc, although a significant change in AMP level was not detected until 4 h after zinc treatment. Thus, AMPK activation might not have been induced by an increase in intracellular AMP in zinc neurotoxicity. Furthermore, we observed that liver kinase B1 (LKB1) but not Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ), was involved in AMPK activation. Although STO-609, a chemical inhibitor of CaMKKβ, significantly attenuated zinc neurotoxicity, zinc-induced AMPK activation was not affected, which suggested that CaMKKβ was not involved in AMPK activation. Knockdown of LKB1 by siRNA significantly reduced zinc neurotoxicity, as well as zinc-induced AMPK activation, which indicated a possible role for LKB1 as an upstream kinase for AMPK activation. In addition, mRNA and protein levels of Bim, a pro-apoptotic Bcl-2 family member, were noticeably increased by zinc in an AMPK-dependent manner. Finally, caspase-3 activation in zinc-induced neuronal death was mediated by LKB1 and AMPK activation. Conclusions The results suggested that AMPK mediated zinc-induced neuronal death via up-regulation of Bim and activation of caspase-3. Rapid activation of AMPK was detected after exposure of cortical neuronal cultures to zinc, which was induced by LKB1 activation but not increased intracellular AMP levels or CaMKKβ activation. Hence, blockade of AMPK in the brain may protect against zinc neurotoxicity, which is likely to occur after acute brain injury.
Collapse
Affiliation(s)
- Jae-Won Eom
- Department of Molecular Biology, Sejong University, Seoul, 143-747, South Korea.
| | - Jong-Min Lee
- Department of Molecular Biology, Sejong University, Seoul, 143-747, South Korea. .,Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, 143-747, South Korea.
| | - Jae-Young Koh
- Neural Injury Research Lab & Department of Neurology, University of Ulsan College of Medicine, Seoul, 138-736, South Korea.
| | - Yang-Hee Kim
- Department of Molecular Biology, Sejong University, Seoul, 143-747, South Korea. .,Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, 143-747, South Korea.
| |
Collapse
|
103
|
Computational Analysis of AMPK-Mediated Neuroprotection Suggests Acute Excitotoxic Bioenergetics and Glucose Dynamics Are Regulated by a Minimal Set of Critical Reactions. PLoS One 2016; 11:e0148326. [PMID: 26840769 PMCID: PMC4740490 DOI: 10.1371/journal.pone.0148326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/15/2016] [Indexed: 11/22/2022] Open
Abstract
Loss of ionic homeostasis during excitotoxic stress depletes ATP levels and activates the AMP-activated protein kinase (AMPK), re-establishing energy production by increased expression of glucose transporters on the plasma membrane. Here, we develop a computational model to test whether this AMPK-mediated glucose import can rapidly restore ATP levels following a transient excitotoxic insult. We demonstrate that a highly compact model, comprising a minimal set of critical reactions, can closely resemble the rapid dynamics and cell-to-cell heterogeneity of ATP levels and AMPK activity, as confirmed by single-cell fluorescence microscopy in rat primary cerebellar neurons exposed to glutamate excitotoxicity. The model further correctly predicted an excitotoxicity-induced elevation of intracellular glucose, and well resembled the delayed recovery and cell-to-cell heterogeneity of experimentally measured glucose dynamics. The model also predicted necrotic bioenergetic collapse and altered calcium dynamics following more severe excitotoxic insults. In conclusion, our data suggest that a minimal set of critical reactions may determine the acute bioenergetic response to transient excitotoxicity and that an AMPK-mediated increase in intracellular glucose may be sufficient to rapidly recover ATP levels following an excitotoxic insult.
Collapse
|
104
|
Huang XP, Ding H, Wang B, Qiu YY, Tang YH, Zeng R, Deng CQ. Effects of the main active components combinations of Astragalus and Panax notoginseng on energy metabolism in brain tissues after cerebral ischemia-reperfusion in mice. Pharmacogn Mag 2015; 11:732-9. [PMID: 26600717 PMCID: PMC4621641 DOI: 10.4103/0973-1296.165572] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background: Astragalus and Panax notoginseng are traditional Chinese medicines used for the treatments of cardio-cerebrovascular ischemic diseases, astragaloside IV (AST IV) and ginsenoside Rg1 (Rg1), ginsenoside Rb1 (Rb1), notoginsenoside R1 (R1) are their active components. Objective: The purpose of this work was to investigate the effect of AST IV combined with Rg1, Rb1, R1 on energy metabolism in brain tissues after cerebral ischemia-reperfusion in mice. Materials and Methods: C57BL/6 mice were randomly divided into 11 groups, treated for 3 days. At 1 h after the last administration, the model of cerebral ischemia-reperfusion injury was established, and brain tissues were detected. Results: All drugs increased the contents of adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP) and the level of total adenine nucleotides (TAN), the combinations increased energy charge (EC), the effects of four active components combination were better. The phosphorylation of AMP-activated protein kinaseα1/2 (p-AMPKα1/2) was increased in AST IV, R1, four active components combination, AST IV + Rg1 and AST IV + R1 groups, the increased effect of four active components combination was greater than that of the active components alone and AST IV + Rb1. All drugs increased glucose transporter 3 (GLUT3) mRNA and protein, and the increases of four active components combination were more obvious than those of the active components alone or some two active components combinations. Conclusion: Four active components combination of Astragalus and P. notoginseng have the potentiation on improving of energy metabolism, the mechanism underlying might be associated with promoting the activation of AMPKα1/2, enhancing the expression of GLUT3, thus mediating glucose into nerve cells, increasing the supply and intake of glucose.
Collapse
Affiliation(s)
- Xiao-Ping Huang
- Molecular Pathology Laboratory, Hunan University of Chinese Medicine, People's Republic of China ; Key Laboratory of Hunan Province for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, People's Republic of China ; Key Laboratory of Hunan Universities for Cell Biology and Molecular Techniques, Changsha, Hunan Province, People's Republic of China
| | - Huang Ding
- Key Laboratory of Hunan Universities for Cell Biology and Molecular Techniques, Changsha, Hunan Province, People's Republic of China
| | - Bei Wang
- Key Laboratory of Hunan Province for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, People's Republic of China
| | - Yong-Yuan Qiu
- Key Laboratory of Hunan Province for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, People's Republic of China
| | - Ying-Hong Tang
- Key Laboratory of Hunan Universities for Cell Biology and Molecular Techniques, Changsha, Hunan Province, People's Republic of China
| | - Rong Zeng
- Key Laboratory of Hunan Province for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, People's Republic of China
| | - Chang-Qing Deng
- Molecular Pathology Laboratory, Hunan University of Chinese Medicine, People's Republic of China ; Key Laboratory of Hunan Province for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, People's Republic of China ; Key Laboratory of Hunan Universities for Cell Biology and Molecular Techniques, Changsha, Hunan Province, People's Republic of China
| |
Collapse
|
105
|
Yang SH, Li W, Sumien N, Forster M, Simpkins JW, Liu R. Alternative mitochondrial electron transfer for the treatment of neurodegenerative diseases and cancers: Methylene blue connects the dots. Prog Neurobiol 2015; 157:273-291. [PMID: 26603930 DOI: 10.1016/j.pneurobio.2015.10.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/10/2015] [Accepted: 10/20/2015] [Indexed: 12/21/2022]
Abstract
Brain has exceptional high requirement for energy metabolism with glucose as the exclusive energy source. Decrease of brain energy metabolism and glucose uptake has been found in patients of Alzheimer's, Parkinson's and other neurodegenerative diseases, providing a clear link between neurodegenerative disorders and energy metabolism. On the other hand, cancers, including glioblastoma, have increased glucose uptake and rely on aerobic glycolysis for energy metabolism. The switch of high efficient oxidative phosphorylation to low efficient aerobic glycolysis pathway (Warburg effect) provides macromolecule for biosynthesis and proliferation. Current research indicates that methylene blue, a century old drug, can receive electron from NADH in the presence of complex I and donates it to cytochrome c, providing an alternative electron transfer pathway. Methylene blue increases oxygen consumption, decrease glycolysis, and increases glucose uptake in vitro. Methylene blue enhances glucose uptake and regional cerebral blood flow in rats upon acute treatment. In addition, methylene blue provides protective effect in neuron and astrocyte against various insults in vitro and in rodent models of Alzheimer's, Parkinson's, and Huntington's disease. In glioblastoma cells, methylene blue reverses Warburg effect by enhancing mitochondrial oxidative phosphorylation, arrests glioma cell cycle at s-phase, and inhibits glioma cell proliferation. Accordingly, methylene blue activates AMP-activated protein kinase, inhibits downstream acetyl-coA carboxylase and cyclin-dependent kinases. In summary, there is accumulating evidence providing a proof of concept that enhancement of mitochondrial oxidative phosphorylation via alternative mitochondrial electron transfer may offer protective action against neurodegenerative diseases and inhibit cancers proliferation.
Collapse
Affiliation(s)
- Shao-Hua Yang
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | - Wenjun Li
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Nathalie Sumien
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Michael Forster
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - James W Simpkins
- Department of Physiology and Pharmacology, Center for Neuroscience, Health Science Center, West Virginia University, Medical Center Drive, Morgantown, WV 26506, USA
| | - Ran Liu
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
106
|
Weisová P, Pfeiffer S, Prehn JHM. AMP‐Activated Protein Kinase (AMPK) as a Cellular Energy Sensor and Therapeutic Target for Neuroprotection. THE FUNCTIONS, DISEASE‐RELATED DYSFUNCTIONS, AND THERAPEUTIC TARGETING OF NEURONAL MITOCHONDRIA 2015:130-145. [DOI: 10.1002/9781119017127.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
107
|
Zhou D, Ai Q, Lin L, Gong X, Ge P, Che Q, Wan J, Wen A, Zhang L. 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside-attenuates LPS/D-Gal-induced acute hepatitis in mice. Innate Immun 2015; 21:698-705. [PMID: 25979627 DOI: 10.1177/1753425915586231] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/16/2015] [Indexed: 01/18/2023] Open
Abstract
The AMP-activated protein kinase (AMPK)-mediated energy-sensing signals play important roles in reprogramming the expression of inflammatory genes. In the present study, the potential effects of the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) were investigated in a mouse model with LPS/D-Gal-induced acute hepatitis. Our experimental data indicated that treatment with AICAR suppressed the elevation of plasma aminotransferases and alleviated the histopathological abnormalities in mice exposed to LPS/D-Gal. Treatment with AICAR also inhibited the LPS/D-Gal-induced up-regulation of TNF-α, NO and myeloperoxidase. In addition, the LPS/D-Gal-induced expression of pro-apoptotic factor Bax, cleavage of caspase-3, elevation of hepatic caspase-3, caspase-8, caspase-9 activities and induction of terminal deoxynucleotidyl transferase-mediated nucleotide nick-end labeling-positive cells were all suppressed by AICAR. These results suggested that the AMPK activator AICAR could attenuate LPS/D-Gal-induced acute hepatitis, which implies that AMPK might become a novel target for the treatment of inflammation-based liver disorders.
Collapse
Affiliation(s)
- Dan Zhou
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Qing Ai
- Department of Physiology, Chongqing Medical University, Chongqing, China
| | - Ling Lin
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Xianqiong Gong
- Hepatology Center, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian Province, China
| | - Pu Ge
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Qian Che
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Jingyuan Wan
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Aiqing Wen
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China Laboratory of Stem cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
108
|
Ran QQ, Chen HL, Liu YL, Yu HX, Shi F, Wang MS. Electroacupuncture preconditioning attenuates ischemic brain injury by activation of the adenosine monophosphate-activated protein kinase signaling pathway. Neural Regen Res 2015; 10:1069-75. [PMID: 26330828 PMCID: PMC4541236 DOI: 10.4103/1673-5374.160095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2015] [Indexed: 01/16/2023] Open
Abstract
Electroacupuncture has therapeutic effects on ischemic brain injury, but its mechanism is still poorly understood. In this study, mice were stimulated by electroacupuncture at the Baihui (GV20) acupoint for 30 minutes at 1 mA and 2/15 Hz for 5 consecutive days. A cerebral ischemia model was established by ligating the bilateral common carotid artery for 15 minutes. At 72 hours after injury, neuronal injury in the mouse hippocampus had lessened, and the number of terminal deoxynucleotide transferase-mediated dUTP nick-end labeling-positive cells reduced after electroacupuncture treatment. Moreover, expression of adenosine monophosphate-activated protein kinase α (AMPKα) and phosphorylated AMPKα was up-regulated. Intraperitoneal injection of the AMPK antagonist, compound C, suppressed this phenomenon. Our findings suggest that electroacupuncture preconditioning alleviates ischemic brain injury via AMPK activation.
Collapse
Affiliation(s)
- Qiang-Qiang Ran
- Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Huai-Long Chen
- Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Yan-Li Liu
- Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Hai-Xia Yu
- Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Fei Shi
- Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Ming-Shan Wang
- Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
109
|
Cai L, Hu K, Lin L, Ai Q, Ge P, Liu Y, Dai J, Ye B, Zhang L. AMPK dependent protective effects of metformin on tumor necrosis factor-induced apoptotic liver injury. Biochem Biophys Res Commun 2015; 465:381-6. [DOI: 10.1016/j.bbrc.2015.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 08/03/2015] [Indexed: 12/14/2022]
|
110
|
Cho BM, Kim W, Yoo DY, Jung HY, Choi JH, Won MH, Hwang IK, Moon SM. Effects of adenosine monophosphate-activated kinase in the ventral horn of rabbit spinal cord after transient ischemia. J Spinal Cord Med 2015; 38:538-43. [PMID: 24793647 PMCID: PMC4612210 DOI: 10.1179/2045772314y.0000000198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVE To investigate the effect compound C, an adenosine monophosphate-activated kinase (AMPK) inhibitor, has on motor neurons of rabbit spinal cord after ischemia/reperfusion. DESIGN Compound C (30 mg/kg) was administered intraperitoneally to rabbits 30 minutes before ischemia and the animals were sacrificed at 15 minutes after ischemia/reperfusion to measure lactate levels and at 72 hours after ischemia/reperfusion for morphological study. RESULTS The administration of compound C did not produce any significant changes in physiological parameters such as pH, arterial blood gas (PaCO(2) and PaO(2)), and blood glucose in rabbit either at 10 minutes before ischemia or at 10 minutes after reperfusion. However, the administration of compound C did significantly ameliorate lactate acidosis at 15 minutes after reperfusion. In addition, the administration of compound C significantly improved the neurological scores of the rabbits and reduced the neuronal death seen in the ventral horn of their spinal cords at 72 hours after ischemia/reperfusion. CONCLUSIONS Inhibition of AMPK can ameliorate the ischemia-induced neuronal death in the spinal cord via the reduction of early lactate acidosis.
Collapse
Affiliation(s)
- Byung Moon Cho
- Department of Neurosurgery, Kangdong Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 134-701, Republic of Korea
| | - Woosuk Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - Seung Myung Moon
- Department of Neurosurgery, Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, Hwaseong 445-170, Republic of Korea,Correspondence to: Seung Myung Moon, Department of Neurosurgery, Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, Hwaseong 445-170, Republic of Korea. ;
| |
Collapse
|
111
|
Hang L, Thundyil J, Lim KL. Mitochondrial dysfunction and Parkinson disease: a Parkin-AMPK alliance in neuroprotection. Ann N Y Acad Sci 2015; 1350:37-47. [DOI: 10.1111/nyas.12820] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Liting Hang
- Neurodegeneration Research Laboratory; National Neuroscience Institute; Singapore
- NUS Graduate School for Integrative Sciences and Engineering; Singapore
| | - John Thundyil
- Neurodegeneration Research Laboratory; National Neuroscience Institute; Singapore
| | - Kah-Leong Lim
- Neurodegeneration Research Laboratory; National Neuroscience Institute; Singapore
- NUS Graduate School for Integrative Sciences and Engineering; Singapore
- Neuroscience and Behavioral Disorders Program; Duke-NUS Graduate Medical School; Singapore
- Department of Physiology; National University of Singapore; Singapore
| |
Collapse
|
112
|
Liu D, Zhang Y, Gharavi R, Park HR, Lee J, Siddiqui S, Telljohann R, Nassar MR, Cutler RG, Becker KG, Mattson MP. The mitochondrial uncoupler DNP triggers brain cell mTOR signaling network reprogramming and CREB pathway up-regulation. J Neurochem 2015; 134:677-92. [PMID: 26010875 DOI: 10.1111/jnc.13176] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 05/07/2015] [Accepted: 05/13/2015] [Indexed: 12/13/2022]
Abstract
Mitochondrial metabolism is highly responsive to nutrient availability and ongoing activity in neuronal circuits. The molecular mechanisms by which brain cells respond to an increase in cellular energy expenditure are largely unknown. Mild mitochondrial uncoupling enhances cellular energy expenditure in mitochondria and can be induced with 2,4-dinitrophenol (DNP), a proton ionophore previously used for weight loss. We found that DNP treatment reduces mitochondrial membrane potential, increases intracellular Ca(2+) levels and reduces oxidative stress in cerebral cortical neurons. Gene expression profiling of the cerebral cortex of DNP-treated mice revealed reprogramming of signaling cascades that included suppression of the mammalian target of rapamycin (mTOR) and insulin--PI3K - MAPK pathways, and up-regulation of tuberous sclerosis complex 2, a negative regulator of mTOR. Genes encoding proteins involved in autophagy processes were up-regulated in response to DNP. CREB (cAMP-response element-binding protein) signaling, Arc and brain-derived neurotrophic factor, which play important roles in synaptic plasticity and adaptive cellular stress responses, were up-regulated in response to DNP, and DNP-treated mice exhibited improved performance in a test of learning and memory. Immunoblot analysis verified that key DNP-induced changes in gene expression resulted in corresponding changes at the protein level. Our findings suggest that mild mitochondrial uncoupling triggers an integrated signaling response in brain cells characterized by reprogramming of mTOR and insulin signaling, and up-regulation of pathways involved in adaptive stress responses, molecular waste disposal, and synaptic plasticity. Physiological bioenergetic challenges such as exercise and fasting can enhance neuroplasticity and protect neurons against injury and neurodegeneration. Here, we show that the mitochondrial uncoupling agent 2,4-dinitrophenol (DNP) elicits adaptive signaling responses in the cerebral cortex involving activation of Ca(2+) -CREB and autophagy pathways, and inhibition of mTOR and insulin signaling pathways. The molecular reprogramming induced by DNP, which is similar to that of exercise and fasting, is associated with improved learning and memory, suggesting potential therapeutic applications for DNP.
Collapse
Affiliation(s)
- Dong Liu
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Robert Gharavi
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Hee Ra Park
- Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, Korea
| | - Jaewon Lee
- Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, Korea
| | - Sana Siddiqui
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Richard Telljohann
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Matthew R Nassar
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Roy G Cutler
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Kevin G Becker
- Gene Expression and Genomics Unit, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| |
Collapse
|
113
|
Glucose regulates amyloid β production via AMPK. J Neural Transm (Vienna) 2015; 122:1381-90. [PMID: 26071020 DOI: 10.1007/s00702-015-1413-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/03/2015] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly. Accumulation of Aβ peptides in the brain has been suggested as the cause of AD (amyloid cascade hypothesis); however, the mechanism for the abnormal accumulation of Aβ in the brains of AD patients remains unclear. A plethora of evidence has emerged to support a link between metabolic disorders and AD. This study was designed to examine the relationship between energy status and Aβ production. Neuro 2a neuroblastoma cells overexpressing human amyloid precursor protein 695 (APP cells) were cultured in media containing different concentrations of glucose and agonist or antagonist of AMP-activated-protein-kinase (AMPK), a metabolic master sensor. The results showed that concentrations of glucose in the culture media were negatively associated with the activation statuses of AMPK in APP cells, but positively correlated with the levels of secreted Aβ. Modulating AMPK activities affected the production of Aβ. If APP cells were cultured in high glucose medium (i.e., AMPK was inactive), stimulation of AMPK activity decreased the production levels of Aβ. On the contrary, if APP cells were incubated in medium containing no glucose (i.e., AMPK was activated), inhibition of AMPK activity largely increased Aβ production. As AMPK activation is a common defect in metabolic abnormalities, our study supports the premise that metabolic disorders may aggravate AD pathogenesis.
Collapse
|
114
|
Lee CG, Koo JH, Kim SG. Phytochemical regulation of Fyn and AMPK signaling circuitry. Arch Pharm Res 2015; 38:2093-105. [PMID: 25951818 DOI: 10.1007/s12272-015-0611-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 04/27/2015] [Indexed: 01/03/2023]
Abstract
During the past decades, phytochemical terpenoids, polyphenols, lignans, flavonoids, and alkaloids have been identified as antioxidative and cytoprotective agents. Adenosine monophosphate-activated protein kinase (AMPK) is a kinase that controls redox-state and oxidative stress in the cell, and serves as a key molecule regulating energy metabolism. Many phytochemicals directly or indirectly alter the AMPK pathway in distinct manners, exerting catabolic metabolism. Some of them are considered promising in the treatment of metabolic diseases such as type II diabetes, obesity, and hyperlipidemia. Another important kinase that regulates energy metabolism is Fyn kinase, a member of the Src family kinases that plays a role in various cellular responses such as insulin signaling, cell growth, oxidative stress and apoptosis. Phytochemical inhibition of Fyn leads to AMPK-mediated protection of the cell in association with increased antioxidative capacity and mitochondrial biogenesis. The kinases may work together to form a signaling circuitry for the homeostasis of energy conservation and expenditure, and may serve as targets of phytochemicals. This review is intended as a compilation of recent advancements in the pharmacological research of phytochemicals targeting Fyn and AMPK circuitry, providing information for the prevention and treatment of metabolic diseases and the accompanying tissue injuries.
Collapse
Affiliation(s)
- Chan Gyu Lee
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Korea.
| | - Ja Hyun Koo
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Korea.
| | - Sang Geon Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Korea.
| |
Collapse
|
115
|
Kim HS, Moon S, Paik JH, Shin DW, Kim LS, Park CS, Ha J, Kang JH. Activation of the 5′-AMP-Activated Protein Kinase in the Cerebral Cortex of Young Senescence-Accelerated P8 Mice and Association with GSK3β- and PP2A-Dependent Inhibition of p-tau396 Expression. J Alzheimers Dis 2015; 46:249-59. [DOI: 10.3233/jad-150035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Hak-Su Kim
- Department of Pharmacology and Medicinal Toxicology Research Center, Inha University, Incheon, Republic of Korea
- Hypoxia-related Diseases Research Center, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Sohee Moon
- Department of Pharmacology and Medicinal Toxicology Research Center, Inha University, Incheon, Republic of Korea
- Hypoxia-related Diseases Research Center, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Jin-Hwe Paik
- Department of Emergency Medicine, Inha University Hospital, Incheon, Republic of Korea
| | - Dong Wun Shin
- Department of Emergency Medicine, Inje University Ilsan Paik Hospital, Gyeonggi-Do, Republic of Korea
| | - Lindsay S. Kim
- College of Arts and Science, Boston College, Boston, MA, USA
| | - Chang-Shin Park
- Department of Pharmacology and Medicinal Toxicology Research Center, Inha University, Incheon, Republic of Korea
- Hypoxia-related Diseases Research Center, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ju-Hee Kang
- Department of Pharmacology and Medicinal Toxicology Research Center, Inha University, Incheon, Republic of Korea
- Hypoxia-related Diseases Research Center, College of Medicine, Inha University, Incheon, Republic of Korea
| |
Collapse
|
116
|
An JY, Zhou LL, Sun P, Pang HG, Li DD, Li Y, Zhang M, Song JN. Role of the AMPK signaling pathway in early brain injury after subarachnoid hemorrhage in rats. Acta Neurochir (Wien) 2015; 157:781-92. [PMID: 25697836 DOI: 10.1007/s00701-015-2370-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/05/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) is a key metabolic and stress sensor/effector. Few investigations have been performed to study the role of AMPK in subarachnoid hemorrhage (SAH)-induced early brain injury (EBI). This study was undertaken to investigate the time course of AMPK activation in the early stage of SAH and to evaluate the influence of AICAR (which is known to mimic AMP and activates AMPK) and compound C (a commonly used AMPK inhibitor) on EBI in rats following SAH. METHODS Adult male rats were divided into six groups: control, sham, SAH, SAH + vehicle, SAH + AICAR and SAH + compound C. SAHs were induced by a modified endovascular perforation method. Immunohistochemistry, real-time PCR and Western blot were used to detect the spatial and dynamic expression of AMPK after SAH. Cortical apoptosis and the expressions of apoptosis-related proteins such as FOXO3a (forkhead box, class O, 3a) and Bim (Bcl-2-interacting mediator of cell death) were detected after different drug interventions. RESULTS We found SAH induced prolonged activation of AMPK. Treatment with AICAR markedly induced overactivation of AMPK and upregulation of FOXO3a and Bim. AICAR also significantly exacerbated cerebral apoptosis and neurological impairment following SAH. On the other hand, pre-administration of compound C attenuated EBI in this SAH model by modulating cerebral apoptosis by inhibiting FOXO3a and Bim. CONCLUSIONS Our findings suggest that the AMPK pathway may play an important role in SAH-induced neuronal apoptosis, and the use of AMPK inhibitors can provide neuroprotection in EBI after SAH.
Collapse
Affiliation(s)
- Ji-Yang An
- Department of Neurosurgery, the First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Lin C, Lin HY, Chen JH, Tseng WP, Ko PY, Liu YS, Yeh WL, Lu DY. Effects of paeonol on anti-neuroinflammatory responses in microglial cells. Int J Mol Sci 2015; 16:8844-60. [PMID: 25906473 PMCID: PMC4425112 DOI: 10.3390/ijms16048844] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/07/2015] [Accepted: 04/14/2015] [Indexed: 12/17/2022] Open
Abstract
Increasing studies suggest that inflammatory processes in the central nervous system mediated by microglial activation plays an important role in numerous neurodegenerative diseases. Development of planning for microglial suppression is considered a key strategy in the search for neuroprotection. Paeonol is a major phenolic component of Moutan Cortex, widely used as a nutrient supplement in Chinese medicine. In this study, we investigated the effects of paeonol on microglial cells stimulated by inflammagens. Paeonol significantly inhibited the release of nitric oxide (NO) and the expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Treatment with paeonol also reduced reactive oxygen species (ROS) production and inhibited an ATP-induced increased cell migratory activity. Furthermore, the inhibitory effects of neuroinflammation by paeonol were found to be regulated by phosphorylated adenosine monophosphate-activated protein kinase-α (AMPK-α) and glycogen synthase kinase 3 α/β (GSK 3α/β). Treatment with AMPK or GSK3 inhibitors reverse the inhibitory effect of neuroinflammation by paeonol in microglial cells. Furthermore, paeonol treatment also showed significant improvement in the rotarod performance and microglial activation in the mouse model as well. The present study is the first to report a novel inhibitory role of paeonol on neuroinflammation, and presents a new candidate agent for the development of therapies for inflammation-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Chingju Lin
- Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Hsiao-Yun Lin
- Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung 40402, Taiwan.
| | - Jia-Hong Chen
- Department of General Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan.
| | - Wen-Pei Tseng
- Graduate Institute of Sports and Health, National Changhua University of Education, Changhua 500, Taiwan.
| | - Pei-Ying Ko
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan.
| | - Yu-Shu Liu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
| | - Wei-Lan Yeh
- Department of Cell and Tissue Engineering, Changhua Christian Hospital, Changhua 500, Taiwan.
| | - Dah-Yuu Lu
- Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung 40402, Taiwan.
- Department of Photonics and Communication Engineering, Asia University, Taichung 40402, Taiwan.
| |
Collapse
|
118
|
Rousset CI, Leiper FC, Kichev A, Gressens P, Carling D, Hagberg H, Thornton C. A dual role for AMP-activated protein kinase (AMPK) during neonatal hypoxic-ischaemic brain injury in mice. J Neurochem 2015; 133:242-52. [PMID: 25598140 PMCID: PMC4855681 DOI: 10.1111/jnc.13034] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/23/2014] [Accepted: 01/05/2015] [Indexed: 02/03/2023]
Abstract
Perinatal hypoxic–ischaemic encephalopathy (HIE) occurs in 1–2 in every 1000 term infants and the devastating consequences range from cerebral palsy, epilepsy and neurological deficit to death. Cellular damage post insult occurs after a delay and is mediated by a secondary neural energy failure. AMP‐activated protein kinase (AMPK) is a sensor of cellular stress resulting from ATP depletion and/or calcium dysregulation, hallmarks of the neuronal cell death observed after HIE. AMPK activation has been implicated in the models of adult ischaemic injury but, as yet, there have been no studies defining its role in neonatal asphyxia. Here, we find that in an in vivo model of neonatal hypoxia–ischaemic and in oxygen/glucose deprivation in neurons, there is pathological activation of the calcium/calmodulin‐dependent protein kinase kinase β (CaMKKβ)‐AMPKα1 signalling pathway. Pharmacological inhibition of AMPK during the insult promotes neuronal survival but, conversely, inhibiting AMPK activity prior to the insult sensitizes neurons, exacerbating cell death. Our data have pathological relevance for neonatal HIE as prior sensitization such as exposure to bacterial infection (reported to reduce AMPK activity) produces a significant increase in injury.
![]() We show that in an in vivo model of neonatal hypoxia–ischaemic and in oxygen/glucose deprivation in neurons, there is a pathological activation of the CaMKKβ‐AMPKα1 signalling pathway. Inhibiting AMPK during OGD promotes neuronal survival; conversely, inhibiting AMPK prior to OGD exacerbates cell death. Our data have clinical relevance as prior sensitization (e.g. exposure to bacterial infection reducing AMPK activity) increases injury. AMPK, AMP‐activated protein kinase; HI, hypoxia–ischaemia; OGD, oxygen–glucose deprivation.
Collapse
Affiliation(s)
- Catherine I Rousset
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | | | | | | | | | | | | |
Collapse
|
119
|
Neuroglobin Overexpression Inhibits AMPK Signaling and Promotes Cell Anabolism. Mol Neurobiol 2015; 53:1254-1265. [PMID: 25616953 DOI: 10.1007/s12035-014-9077-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/29/2014] [Indexed: 01/20/2023]
Abstract
Neuroglobin (Ngb) is a recently discovered globin with preferential localization to neurons. Growing evidence indicates that Ngb has distinct physiological functions separate from the oxygen storage and transport roles of other globins, such as hemoglobin and myoglobin. We found increased ATP production and decreased glycolysis in Ngb-overexpressing immortalized murine hippocampal cell line (HT-22), in parallel with inhibition of AMP-activated protein kinase (AMPK) signaling and activation of acetyl-CoA carboxylase (ACC). In addition, lipid and glycogen content was increased in Ngb-overexpressing HT-22 cells. AMPK signaling was also inhibited in the brain and heart from Ngb-overexpressing transgenic mice. Although Ngb overexpression did not change glycogen content in whole brain, glycogen synthase was activated in cortical neurons of Ngb-overexpressing mouse brain and Ngb overexpression primary neurons. Moreover, lipid and glycogen content was increased in hearts derived from Ngb-overexpressing mice. These findings suggest that Ngb functions as a metabolic regulator and enhances cellular anabolism through the inhibition of AMPK signaling.
Collapse
|
120
|
Zhao Z, Sui Y, Gao W, Cai B, Fan D. Effects of diet on adenosine monophosphate-activated protein kinase activity and disease progression in an amyotrophic lateral sclerosis model. J Int Med Res 2014; 43:67-79. [PMID: 25534414 DOI: 10.1177/0300060514554725] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES To study the effects of diet on disease progression and activity levels of adenosine monophosphate-activated protein kinase (AMPK), and its downstream targets, in an amyotrophic lateral sclerosis (ALS) animal model. METHODS AMPK activity was measured in cerebral cortex, spinal cord, cerebellum and hindlimb muscle tissue using immunohistochemistry in transgenic mice overexpressing human superoxide dismutase-1 (SOD1(G93A)) fed a high-fat (HFD), standard ad libitum (AL) or calorie-restricted (CR) diet; AMPK activity was also measured in wild-type (SOD1(WT)) mice. Activity of AMPK and phospho-AMPK, acetyl coenzyme-A carboxylase (ACC), phospho-ACC and heat shock protein-70 (Hsp70) were also measured using Western blot. Food intake and grip strength were recorded; body composition was analysed using dual energy X-ray absorptiometry. Motor neuron survival was observed using Nissl staining. RESULTS AMPK activity increased and Hsp70 expression decreased in AL SOD1(G93A) mice compared with SOD1(WT) mice in spinal cord and hindlimb muscle. Compared with AL SOD1(G93A) mice, CR SOD1(G93A) mice showed increased AMPK activity, downregulated Hsp70 expression, reduced motor neuron survival in spinal cord and hindlimb muscle and reduced lifespan; HFD SOD1(G93A) mice showed opposite effects. CONCLUSIONS In this mouse model, increased AMPK activity seems to play a negative role in motor neuron survival, possibly through a novel mechanism involving Hsp70 downregulation. These changes can be modified by diet. Inhibition of AMPK may provide a therapeutic strategy for ALS.
Collapse
Affiliation(s)
- Zichun Zhao
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Yanling Sui
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Wenchao Gao
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Bin Cai
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
121
|
Sui Y, Zhao Z, Liu R, Cai B, Fan D. Adenosine monophosphate-activated protein kinase activation enhances embryonic neural stem cell apoptosis in a mouse model of amyotrophic lateral sclerosis. Neural Regen Res 2014; 9:1770-8. [PMID: 25422638 PMCID: PMC4238165 DOI: 10.4103/1673-5374.143421] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2014] [Indexed: 12/12/2022] Open
Abstract
Alterations in embryonic neural stem cells play crucial roles in the pathogenesis of amyotrophic lateral sclerosis. We hypothesized that embryonic neural stem cells from SOD1(G93A) individuals might be more susceptible to oxidative injury, resulting in a propensity for neurodegeneration at later stages. In this study, embryonic neural stem cells obtained from human superoxide dismutase 1 mutant (SOD1(G93A)) and wild-type (SOD1(WT)) mouse models were exposed to H2O2. We assayed cell viability with mitochondrial succinic dehydrogenase colorimetric reagent, and measured cell apoptosis by flow cytometry. Moreover, we evaluated the expression of the adenosine monophosphate-activated protein kinase (AMPK) α-subunit, paired box 3 (Pax3) protein, and p53 in western blot analyses. Compared with SOD1(WT) cells, SOD1(G93A) embryonic neural stem cells were more likely to undergo H2O2-induced apoptosis. Phosphorylation of AMPKα in SOD1(G93A) cells was higher than that in SOD1(WT) cells. Pax3 expression was inversely correlated with the phosphorylation levels of AMPKα. p53 protein levels were also correlated with AMPKα phosphorylation levels. Compound C, an inhibitor of AMPKα, attenuated the effects of H2O2. These results suggest that embryonic neural stem cells from SOD1(G93A) mice are more susceptible to apoptosis in the presence of oxidative stress compared with those from wild-type controls, and the effects are mainly mediated by Pax3 and p53 in the AMPKα pathway.
Collapse
Affiliation(s)
- Yanling Sui
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Zichun Zhao
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Rong Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Bin Cai
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
122
|
Amato S, Man HY. AMPK links cellular bioenergy status to the decision making of axon initiation in neurons. CELLULAR LOGISTICS 2014; 1:103-105. [PMID: 21922074 DOI: 10.4161/cl.1.3.16815] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/01/2011] [Accepted: 07/06/2011] [Indexed: 01/20/2023]
Abstract
Neuronal polarization begins by the selection of a single minor neurite that subsequently undergoes rapid extension until reaching a formidable length. To ensure that the highly active growth can be sustained by a sufficient energy supply, neurons are supposed to sense their energy status prior to initiating polarization. Our recent work shows that the bioenergy sensor, AMPK, plays a crucial role in the regulation of axon initiation. Activation of AMPK to mimic energy-lacking conditions results in a halt in axon selection and growth, leading to a loss of neuronal polarization.
Collapse
Affiliation(s)
- Stephen Amato
- Department of Biology; Boston University; Boston, MA USA
| | | |
Collapse
|
123
|
Cortical Spreading Depression Increases the Phosphorylation of AMP-Activated Protein Kinase in the Cerebral Cortex. Neurochem Res 2014; 39:2431-9. [DOI: 10.1007/s11064-014-1447-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/23/2014] [Accepted: 09/29/2014] [Indexed: 12/16/2022]
|
124
|
Bastianetto S, Ménard C, Quirion R. Neuroprotective action of resveratrol. Biochim Biophys Acta Mol Basis Dis 2014; 1852:1195-201. [PMID: 25281824 DOI: 10.1016/j.bbadis.2014.09.011] [Citation(s) in RCA: 268] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/09/2014] [Accepted: 09/16/2014] [Indexed: 11/30/2022]
Abstract
Low-to-moderate red wine consumption appeared to reduce age-related neurological disorders including macular degeneration, stroke, and cognitive deficits with or without dementia. Resveratrol has been considered as one of the key ingredients responsible for the preventive action of red wine since the stilbene displays a neuroprotective action in various models of toxicity. Besides its well documented free radical scavenging and anti-inflammatory properties, resveratrol has been shown to increase the clearance of beta-amyloid, a key feature of Alzheimer's disease, and to modulate intracellular effectors associated with oxidative stress (e.g. heme oxygenase), neuronal energy homeostasis (e.g. AMP kinase), program cell death (i.e. AIF) and longevity (i.e. sirtuins). This article summarizes the most recent findings on mechanisms of action involved in the protective effects of this multi target polyphenol, and discusses its possible roles in the prevention of various age-related neurological disorders. This article is part of a Special Issue entitled: Resveratrol: Challenges in translating pre-clinical findings to improved patient outcomes.
Collapse
Affiliation(s)
- Stéphane Bastianetto
- Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Caroline Ménard
- Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada; Laboratory of Neuroendocrinology of Aging, Centre Hospitalier de l'Université de Montréal Research Center, Montreal, QC H2X 0A9, Canada; Department of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Rémi Quirion
- Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada.
| |
Collapse
|
125
|
Coughlan KS, Mitchem MR, Hogg MC, Prehn JHM. "Preconditioning" with latrepirdine, an adenosine 5'-monophosphate-activated protein kinase activator, delays amyotrophic lateral sclerosis progression in SOD1(G93A) mice. Neurobiol Aging 2014; 36:1140-50. [PMID: 25443289 DOI: 10.1016/j.neurobiolaging.2014.09.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 08/28/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022]
Abstract
Adenosine 5'-monophosphate-activated protein kinase (AMPK) is a master regulator of energy balance. As energy imbalance is documented as a key pathologic feature of amyotrophic lateral sclerosis (ALS), we investigated AMPK as a pharmacologic target in SOD1(G93A) mice. We noted a strong activation of AMPK in lumbar spinal cords of SOD1(G93A) mice. Pharmacologic activation of AMPK has shown protective effects in neuronal "preconditioning" models. We tested the hypothesis that "preconditioning" with a small molecule activator of AMPK, latrepirdine, exerts beneficial effects on disease progression. SOD1(G93A) mice (n = 24 animals per group; sex and litter matched) were treated with latrepirdine (1 μg/kg, intraperitoneal) or vehicle from postnatal day 70 to 120. Treatment with latrepirdine increased AMPK activity in primary mouse motor neuron cultures and in SOD1(G93A) lumbar spinal cords. Mice "preconditioned" with latrepirdine showed a delayed symptom onset and a significant increase in life span (p < 0.01). Our study suggests that "preconditioning" with latrepirdine may represent a possible therapeutic strategy for individuals harboring ALS-associated gene mutations who are at risk for developing ALS.
Collapse
Affiliation(s)
- Karen S Coughlan
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mollie R Mitchem
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Marion C Hogg
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
126
|
Swamy M, Suhaili D, Sirajudeen KNS, Mustapha Z, Govindasamy C. Propolis ameliorates tumor nerosis factor-α, nitric oxide levels, caspase-3 and nitric oxide synthase activities in kainic acid mediated excitotoxicity in rat brain. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2014; 11:48-53. [PMID: 25395704 DOI: 10.4314/ajtcam.v11i5.8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Increased nitric oxide (NO), neuronal inflammation and apoptosis have been proposed to be involved in excitotoxicity plays a part in many neurodegenerative diseases. To understand the neuro-protective effects of propolis, activities of Nitric oxide synthase (NOS) and caspase-3 along with NO and tumor necrosis factor-α (TNF-α) levels were studied in cerebral cortex (CC), cerebellum (CB) and brain stem (BS) in rats supplemented with propolis prior to excitotoxic injury with kainic acid (KA). MATERIALS AND METHODS Male Sprague-Dawley rats were divided into four groups (n=6 rats per group) as Control, KA, Propolis and KA+Propolis. The control group and KA group have received vehicle and saline. Propolis group and propolis + KA group were orally administered with propolis (150 mg/kg body weight), five times every 12 hours. KA group and propolis +KA group were injected subcutaneously with kainic acid (15 mg/kg body weight) and were sacrificed after 2 hrs. CC, CB and BS were separated, homogenized and used for estimation of NOS, caspase-3, NO and TNF-α by commercial kits. Results were analyzed by one way ANOVA, reported as mean + SD (n=6 rats), and p<0.05 was considered statistically significant. RESULTS The concentration of NO, TNF-α, NOS and caspase-3 activity were increased significantly (p<0.001) in all the three brain regions tested in KA group compared to the control. Propolis supplementation significantly (p<0.001) prevented the increase in NOS, NO, TNF-α and caspase-3 due to KA. CONCLUSION Results of this study clearly demonstrated that the propolis supplementation attenuated the NOS, caspase-3 activities, NO, and TNF-α concentration and in KA mediated excitotoxicity. Hence propolis can be a possible potential protective agent against excitotoxicity and neurodegenerative disorders.
Collapse
Affiliation(s)
- Mummedy Swamy
- Department of Chemical Pathology, School of Medical Sciences, Health campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Dian Suhaili
- Department of Chemical Pathology, School of Medical Sciences, Health campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - K N S Sirajudeen
- Department of Chemical Pathology, School of Medical Sciences, Health campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Zulkarnain Mustapha
- Department of Chemical Pathology, School of Medical Sciences, Health campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Chandran Govindasamy
- Department of Chemical Pathology, School of Medical Sciences, Health campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
127
|
Frasch MG. Putative Role of AMPK in Fetal Adaptive Brain Shut-Down: Linking Metabolism and Inflammation in the Brain. Front Neurol 2014; 5:150. [PMID: 25157238 PMCID: PMC4127551 DOI: 10.3389/fneur.2014.00150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 07/25/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Martin G Frasch
- Department of Obstetrics and Gynaecology, CHU Ste-Justine Research Center, Université de Montréal , Montreal, QC , Canada ; Department of Neurosciences, CHU Ste-Justine Research Center, Université de Montréal , Montreal, QC , Canada
| |
Collapse
|
128
|
Abstract
Recent discoveries of AMPK activators point to the large number of therapeutic candidates that can be transformed to successful designs of novel drugs. AMPK is a universal energy sensor and influences almost all physiological processes in the cells. Thus, regulation of the cellular energy metabolism can be achieved in selective tissues via the artificial activation of AMPK by small molecules. Recently, special attention has been given to direct activators of AMPK that are regulated by several nonspecific upstream factors. The direct activation of AMPK, by definition, should lead to more specific biological activities and as a result minimize possible side effects.
Collapse
|
129
|
Abstract
When energy supply is low, organisms respond by slowing aging and increasing resistance to diverse age-related pathologies. Targeting the mechanisms underpinning this response may therefore treat multiple disorders through a single intervention. Here, we discuss AMP-activated protein kinase (AMPK) as an integrator and mediator of several pathways and processes linking energetics to longevity. Activated by low energy, AMPK is both prolongevity and druggable, but its role in some pathologies may not be beneficial. As such, activating AMPK may modulate multiple longevity pathways to promote healthy aging, but unlocking its full potential may require selective targeting toward substrates involved in longevity assurance.
Collapse
Affiliation(s)
| | - Yue Zhang
- Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - William B Mair
- Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
130
|
Zhu S, Wang J, Zhang Y, Li V, Kong J, He J, Li XM. Unpredictable chronic mild stress induces anxiety and depression-like behaviors and inactivates AMP-activated protein kinase in mice. Brain Res 2014; 1576:81-90. [PMID: 24971831 DOI: 10.1016/j.brainres.2014.06.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 05/30/2014] [Accepted: 06/03/2014] [Indexed: 01/02/2023]
Abstract
The unpredictable chronic mild stress (UCMS) model was developed based upon the stress-diathesis hypothesis of depression. Most effects of UCMS can be reversed by antidepressants, demonstrating a strong predictive validity of this model for depression. However, the mechanisms underlying the effects induced by UCMS remain incompletely understood. Increasing evidence has shown that AMP-activated protein kinase (AMPK) regulates intracellular energy metabolism and is especially important for neurons because neurons are known to have small energy reserves. Abnormalities in the AMPK pathway disturb normal brain functions and synaptic integrity. In the present study, we first investigated the effects of UCMS on a battery of different tests measuring anxiety and depression-like behaviors in female C57BL/6N mice after 4 weeks of UCMS exposure. Stressed mice showed suppressed body weight gain, heightened anxiety, and increased immobility in the forced swim and tail suspension tests. These results are representative of some of the core symptoms of depression. Simultaneously, we observed decrease of synaptic proteins in the cortex of mice subjected to UCMS, which is associated with decreased levels of phosphorylated AMP-activated protein kinase α (AMPKα) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase). Our findings suggest that AMPKα inactivation might be a mechanism by which UCMS causes anxiety/depression-like behaviors in mice.
Collapse
Affiliation(s)
- Shenghua Zhu
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Junhui Wang
- Mental Health Center, Shantou University, Shantou, Guangdong, China; Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Yanbo Zhang
- Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Victor Li
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jue He
- First Affiliated Hospital, Henan University, Kaifeng, Henan, China
| | - Xin-Min Li
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
131
|
Gabryel B, Kost A, Kasprowska D, Liber S, Machnik G, Wiaderkiewicz R, Łabuzek K. AMP-activated protein kinase is involved in induction of protective autophagy in astrocytes exposed to oxygen-glucose deprivation. Cell Biol Int 2014; 38:1086-97. [PMID: 24798185 DOI: 10.1002/cbin.10299] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/14/2014] [Indexed: 01/12/2023]
Abstract
AMP-activated kinase (AMPK) acts as the intracellular ATP depletion sensor, which detects and limits increases in the AMP/ATP ratio. AMPK may be significantly activated under stress conditions that deplete cellular ATP levels such as ischemia/hypoxia or glucose deprivation. Recent studies strongly suggest that AMPK participates in autophagy regulation, but it is not known whether AMPK activated by ischemia regulates autophagy in astrocytes and the consequence of autophagy activation in ischemic astrocytes are unclear. We have investigated the contribution of AMPK to autophagy activation in rat primary astrocyte cultures subjected to ischemia-simulating conditions (combined oxygen glucose deprivation, OGD) and its potential effects on astrocyte damage induced by OGD (1-12 h). The evidence supports the conclusion that AMPK activation at early stages of OGD is involved in induction of protective autophagy in astrocytes. Inhibition of AMPK, either by siAMPKα1 or by compound C, significantly attenuated the expression of autophagy-related proteins and decrease of astrocyte viability following OGD. The findings provide additional data about the role of AMPK in ischemic astrocytes and downstream responses that may be involved in OGD-induced protective autophagy.
Collapse
Affiliation(s)
- Bożena Gabryel
- Department of Pharmacology, Medical University of Silesia, Medyków 18, PL 40-752 Katowice, Poland
| | | | | | | | | | | | | |
Collapse
|
132
|
Iwabuchi S, Kawahara K, Harata NC. Effects of pharmacological inhibition of AMP-activated protein kinase on GLUT3 expression and the development of ischemic tolerance in astrocytes. Neurosci Res 2014; 84:68-71. [PMID: 24815515 DOI: 10.1016/j.neures.2014.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 02/08/2023]
Abstract
Ischemic tolerance resulting from preconditioning ischemia is a neuroprotective mechanism. In cultured astrocytes, its development depends on regulation of the expression of glucose transporter 3 (GLUT3) by the stress sensor/effector AMP-activated protein kinase (AMPK). Here we demonstrate that GLUT3 is upregulated during preconditioning and then downregulated during recovery. We also found that, although AMPK inhibition during preconditioning initially suppressed the upregulation of GLUT3 as shown previously, this was followed by a period of GLUT3 upregulation, enhanced glycogen accumulation, and enhanced tolerance to a subsequent ischemic challenge. These results reveal that AMPK has a complex influence on ischemic tolerance.
Collapse
Affiliation(s)
- Sadahiro Iwabuchi
- Department of Molecular Physiology & Biophysics, University of Iowa Carver College of Medicine, Iowa City, USA; Laboratory of Cellular Cybernetics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan.
| | - Koichi Kawahara
- Laboratory of Cellular Cybernetics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - N Charles Harata
- Department of Molecular Physiology & Biophysics, University of Iowa Carver College of Medicine, Iowa City, USA
| |
Collapse
|
133
|
Dief AE, Kamha ES, Baraka AM, Elshorbagy AK. Monosodium glutamate neurotoxicity increases beta amyloid in the rat hippocampus: A potential role for cyclic AMP protein kinase. Neurotoxicology 2014; 42:76-82. [DOI: 10.1016/j.neuro.2014.04.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/25/2014] [Accepted: 04/16/2014] [Indexed: 10/25/2022]
|
134
|
Al-Moujahed A, Nicolaou F, Brodowska K, Papakostas TD, Marmalidou A, Ksander BR, Miller JW, Gragoudas E, Vavvas DG. Uveal melanoma cell growth is inhibited by aminoimidazole carboxamide ribonucleotide (AICAR) partially through activation of AMP-dependent kinase. Invest Ophthalmol Vis Sci 2014; 55:4175-85. [PMID: 24781943 PMCID: PMC4089421 DOI: 10.1167/iovs.13-12856] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 04/13/2014] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To evaluate the effects and mechanism of aminoimidazole carboxamide ribonucleotide (AICAR), an AMP-dependent kinase (AMPK) activator, on the growth of uveal melanoma cell lines. METHODS Four different cell lines were treated with AICAR (1-4 mM). Cell growth was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay. Cell cycle analysis was conducted by flow cytometry; additionally, expression of cell-cycle control proteins, cell growth transcription factors, and downstream effectors of AMPK were determined by RT-PCR and Western blot. RESULTS Aminoimidazole carboxamide ribonucleotide inhibited cell growth, induced S-phase arrest, and led to AMPK activation. Aminoimidazole carboxamide ribonucleotide treatment was associated with inhibition of eukaryotic translation initiation factor 4E-BP1 phosphorylation, a marker of mammalian target of rapamycin (mTOR) pathway activity. Aminoimidazole carboxamide ribonucleotide treatment was also associated with downregulation of cyclins A and D, but had minimal effects on the phosphorylation of ribosomal protein S6 or levels of the macroautophagy marker LC3B. The effects of AICAR were abolished by treatment with dipyridamole, an adenosine transporter inhibitor that blocks the entry of AICAR into cells. Treatment with adenosine kinase inhibitor 5-iodotubericidin, which inhibits the conversion of AICAR to its 5'-phosphorylated ribotide 5-aminoimidazole-4-carboxamide-1-D-ribofuranosyl-5'-monophosphate (ZMP; the direct activator of AMPK), reversed most of the growth-inhibitory effects, indicating that some of AICAR's antiproliferative effects are mediated at least partially through AMPK activation. CONCLUSIONS Aminoimidazole carboxamide ribonucleotide inhibited uveal melanoma cell proliferation partially through activation of the AMPK pathway and downregulation of cyclins A1 and D1.
Collapse
Affiliation(s)
- Ahmad Al-Moujahed
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Fotini Nicolaou
- Pediatric Surgery Laboratories, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Katarzyna Brodowska
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Thanos D. Papakostas
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Anna Marmalidou
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Bruce R. Ksander
- The Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Joan W. Miller
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Evangelos Gragoudas
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Demetrios G. Vavvas
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
135
|
Niu X, Chen J, Wang P, Zhou H, Li S, Zhang M. The Effects of Hispidulin on Bupivacaine-Induced Neurotoxicity: Role of AMPK Signaling Pathway. Cell Biochem Biophys 2014; 70:241-9. [DOI: 10.1007/s12013-014-9888-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
136
|
Cook M, Bolkan BJ, Kretzschmar D. Increased actin polymerization and stabilization interferes with neuronal function and survival in the AMPKγ mutant Loechrig. PLoS One 2014; 9:e89847. [PMID: 24587072 PMCID: PMC3934941 DOI: 10.1371/journal.pone.0089847] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 01/27/2014] [Indexed: 11/18/2022] Open
Abstract
loechrig (loe) mutant flies are characterized by progressive neuronal degeneration, behavioral deficits, and early death. The mutation is due to a P-element insertion in the gene for the γ-subunit of the trimeric AMP-activated protein kinase (AMPK) complex, whereby the insertion affects only one of several alternative transcripts encoding a unique neuronal isoform. AMPK is a cellular energy sensor that regulates a plethora of signaling pathways, including cholesterol and isoprenoid synthesis via its downstream target hydroxy-methylglutaryl (HMG)-CoA reductase. We recently showed that loe interferes with isoprenoid synthesis and increases the prenylation and thereby activation of RhoA. During development, RhoA plays an important role in neuronal outgrowth by activating a signaling cascade that regulates actin dynamics. Here we show that the effect of loe/AMPKγ on RhoA prenylation leads to a hyperactivation of this signaling pathway, causing increased phosphorylation of the actin depolymerizating factor cofilin and accumulation of filamentous actin. Furthermore, our results show that the resulting cytoskeletal changes in loe interfere with neuronal growth and disrupt axonal integrity. Surprisingly, these phenotypes were enhanced by expressing the Slingshot (SSH) phosphatase, which during development promotes actin depolymerization by dephosphorylating cofilin. However, our studies suggest that in the adult SSH promotes actin polymerization, supporting in vitro studies using human SSH1 that suggested that SSH can also stabilize and bundle filamentous actin. Together with the observed increase in SSH levels in the loe mutant, our experiments suggest that in mature neurons SSH may function as a stabilization factor for filamentous actin instead of promoting actin depolymerization.
Collapse
Affiliation(s)
- Mandy Cook
- Oregon Institute of Occupational Health Sciences, Oregon Health & Sciences University, Portland, Oregon, United States of America
| | - Bonnie J. Bolkan
- Oregon Institute of Occupational Health Sciences, Oregon Health & Sciences University, Portland, Oregon, United States of America
| | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, Oregon Health & Sciences University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
137
|
Reduction in neural performance following recovery from anoxic stress is mimicked by AMPK pathway activation. PLoS One 2014; 9:e88570. [PMID: 24533112 PMCID: PMC3922926 DOI: 10.1371/journal.pone.0088570] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 01/08/2014] [Indexed: 01/06/2023] Open
Abstract
Nervous systems are energetically expensive to operate and maintain. Both synaptic and action potential signalling require a significant investment to maintain ion homeostasis. We have investigated the tuning of neural performance following a brief period of anoxia in a well-characterized visual pathway in the locust, the LGMD/DCMD looming motion-sensitive circuit. We hypothesised that the energetic cost of signalling can be dynamically modified by cellular mechanisms in response to metabolic stress. We examined whether recovery from anoxia resulted in a decrease in excitability of the electrophysiological properties in the DCMD neuron. We further examined the effect of these modifications on behavioural output. We show that recovery from anoxia affects metabolic rate, flight steering behaviour, and action potential properties. The effects of anoxia on action potentials can be mimicked by activation of the AMPK metabolic pathway. We suggest this is evidence of a coordinated cellular mechanism to reduce neural energetic demand following an anoxic stress. Together, this represents a dynamically-regulated means to link the energetic demands of neural signaling with the environmental constraints faced by the whole animal.
Collapse
|
138
|
Ullah I, Park HY, Kim MO. Anthocyanins protect against kainic acid-induced excitotoxicity and apoptosis via ROS-activated AMPK pathway in hippocampal neurons. CNS Neurosci Ther 2014; 20:327-38. [PMID: 24393263 DOI: 10.1111/cns.12218] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/20/2013] [Accepted: 11/24/2013] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Excitotoxicity is an important mechanism involved in neurodegeneration. Kainic acid (KA)-induced excitotoxicity results an unfavorable stress, and we investigated the signaling pathways activated in such conditions. AIMS Here, we sought to determine the cellular and biochemical benefits of anthocyanins extracted from Korean black bean against KA-induced excitotoxicity and neuronal cell death. METHODS AND RESULTS Mouse hippocampal cell line (HT22) and primary prenatal rat hippocampal neurons were treated with KA to induce excitotoxicity. Incubation of the cells with KA alone significantly decreased cell viability, elevated intracellular Ca(2+) level, increased generation of reactive oxygen species (ROS) and loss of mitochondrial membrane potential (Δψ(M)). These events were accompanied by sustained phosphorylation and activation of AMP-activated protein kinase (AMPK). Kainic acid induced upregulation of Bax, decrease in Bcl-2, release of cytochrome-c, and activation of caspase-3 in both cell types. Anthocyanins attenuated KA-induced dysregulation of Ca(2+), ROS accumulation, activation of AMPK, and increase in percentage of apoptotic cells. Pretreatment of the cells with compound C, an inhibitor of AMPK, diminished the KA-induced activation of AMPK and caspase-3. The activation of AMPK through elevation of cellular ROS and Ca(2+) levels is required for KA-induced apoptosis in hippocampal neurons. CONCLUSIONS In summary, our data suggest that although anthocyanins have diverse activities, at least part of their beneficial effects against KA-induced hippocampal degeneration can be attributed to their well-recognized antioxidant properties.
Collapse
Affiliation(s)
- Ikram Ullah
- Department of Biology, College of Natural Sciences (RINS), Applied Life Science (BK 21) Gyeongsang National University, Jinju, Korea
| | | | | |
Collapse
|
139
|
Khatri N, Man HY. Synaptic activity and bioenergy homeostasis: implications in brain trauma and neurodegenerative diseases. Front Neurol 2013; 4:199. [PMID: 24376435 PMCID: PMC3858785 DOI: 10.3389/fneur.2013.00199] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/26/2013] [Indexed: 12/14/2022] Open
Abstract
Powered by glucose metabolism, the brain is the most energy-demanding organ in our body. Adequate ATP production and regulation of the metabolic processes are essential for the maintenance of synaptic transmission and neuronal function. Glutamatergic synaptic activity utilizes the largest portion of bioenergy for synaptic events including neurotransmitter synthesis, vesicle recycling, and most importantly, the postsynaptic activities leading to channel activation and rebalancing of ionic gradients. Bioenergy homeostasis is coupled with synaptic function via activities of the sodium pumps, glutamate transporters, glucose transport, and mitochondria translocation. Energy insufficiency is sensed by the AMP-activated protein kinase (AMPK), a master metabolic regulator that stimulates the catalytic process to enhance energy production. A decline in energy supply and a disruption in bioenergy homeostasis play a critical role in multiple neuropathological conditions including ischemia, stroke, and neurodegenerative diseases including Alzheimer’s disease and traumatic brain injuries.
Collapse
Affiliation(s)
- Natasha Khatri
- Department of Biology, Boston University , Boston, MA , USA ; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine , Boston, MA , USA
| | - Heng-Ye Man
- Department of Biology, Boston University , Boston, MA , USA ; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine , Boston, MA , USA
| |
Collapse
|
140
|
Ramamurthy S, Chang E, Cao Y, Zhu J, Ronnett GV. AMPK activation regulates neuronal structure in developing hippocampal neurons. Neuroscience 2013; 259:13-24. [PMID: 24295634 DOI: 10.1016/j.neuroscience.2013.11.048] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/21/2013] [Accepted: 11/23/2013] [Indexed: 12/25/2022]
Abstract
AMP-activated protein kinase (AMPK) is a serine/threonine kinase that functions as a cellular and whole organism energy sensor to regulate ATP-consuming (anabolic) and ATP-generating (catabolic) pathways. The heterotrimeric AMPK complex consists of a catalytic α-subunit, regulatory β-subunit, and an AMP/ATP-binding γ-subunit. Several alternate isoforms exist for each subunit (α1, α2, β1, β2, γ1, γ2 and γ3). However, little is known of the expression pattern or function of the individual catalytic complexes in regulating neuronal structure. In this study, we examined the role of AMPK subunits in differentiating hippocampal neurons. We found that during development, the expression of AMPK subunits increase and that activation of AMPK by energetic stress inhibits neuronal development at multiple stages, not only during axon outgrowth, but also during dendrite growth and arborization. The presence of a single functional AMPK catalytic complex was sufficient to mediate these inhibitory effects of energetic stress. Activation of AMPK mediates these effects by suppressing both the mTOR and Akt signaling pathways. These findings demonstrate that the energy-sensing AMPK pathway regulates neuronal structure in distinct regions of developing neurons at multiple stages of development.
Collapse
Affiliation(s)
- S Ramamurthy
- Department of Neuroscience, Johns Hopkins University School of Medicine, 855 N Wolfe Street, Baltimore, MD 21205, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, 855 N Wolfe Street, Baltimore, MD 21205, USA
| | - E Chang
- Department of Neuroscience, Johns Hopkins University School of Medicine, 855 N Wolfe Street, Baltimore, MD 21205, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, 855 N Wolfe Street, Baltimore, MD 21205, USA
| | - Y Cao
- Department of Neuroscience, Johns Hopkins University School of Medicine, 855 N Wolfe Street, Baltimore, MD 21205, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, 855 N Wolfe Street, Baltimore, MD 21205, USA
| | - J Zhu
- Department of Neuroscience, Johns Hopkins University School of Medicine, 855 N Wolfe Street, Baltimore, MD 21205, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, 855 N Wolfe Street, Baltimore, MD 21205, USA
| | - G V Ronnett
- Department of Neuroscience, Johns Hopkins University School of Medicine, 855 N Wolfe Street, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, 855 N Wolfe Street, Baltimore, MD 21205, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, 855 N Wolfe Street, Baltimore, MD 21205, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, 855 N Wolfe Street, Baltimore, MD 21205, USA; Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea.
| |
Collapse
|
141
|
Nam HGW, Kim W, Yoo DY, Choi JH, Won MH, Hwang IK, Jeong JH, Hwang HS, Moon SM. Chronological changes and effects of AMP-activated kinase in the hippocampal CA1 region after transient forebrain ischemia in gerbils. Neurol Res 2013; 35:395-405. [DOI: 10.1179/1743132813y.0000000158] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Han Ga Wi Nam
- Department of NeurosurgeryHangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, South Korea,
| | - Woosuk Kim
- Department of Anatomy and Cell BiologyCollege of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea,
| | - Dae Young Yoo
- Department of Anatomy and Cell BiologyCollege of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea,
| | - Jung Hoon Choi
- Department of AnatomyCollege of Veterinary Medicine, Kangwon National University, Chuncheon, South Korea,
| | - Moo-Ho Won
- Department of NeurobiologySchool of Medicine, Kangwon National University, Chuncheon, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell BiologyCollege of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea,
| | - Je Hoon Jeong
- Department of NeurosurgeryHangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, South Korea,
| | - Hyung Sik Hwang
- Department of NeurosurgeryHangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, South Korea,
| | - Seung-Myung Moon
- Department of NeurosurgeryHangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, South Korea,
| |
Collapse
|
142
|
Li X, Geng J, Liu J. Adiponectin offers protection against L166P mutant DJ-1-induced neuronal cytotoxicity mediated by APPL1-dependent AMPK activation. Int J Neurosci 2013; 124:350-61. [PMID: 24047115 DOI: 10.3109/00207454.2013.846340] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease in the world. L166P mutant DJ-1 has been linked with a genetic form of the disease. Preventing neurotoxicity of DJ-1 familial mutations has become a new therapeutic target for PD. Adiponectin, the most abundantly secreted adipokine, has displayed its protective roles in pathologies of various types of diseases. In this study, we investigate whether adiponectin is protective against neurotoxicity induced by familial L166P mutant DJ-1 in PD. Our results demonstrate that adiponectin treatment could attenuate increased levels of reactive oxygen species and nitric oxide induced by the DJ-1L166P mutation. In addition, adiponectin could rescue impaired mitochondrial membrane potential induced by DJ-1L166P. Importantly, we verified that both adiponectin receptors, type 1 (AdipoR1) and type 2 (AdipoR2), are expressed in human neuroblastoma M17 cells. Our results also demonstrate that the protective effects of adiponectin against DJ-1L166P-induced neuronal cytotoxicity under 1-methyl-4-phenylpyridinium ion (MPP+) treatment require binding of adiponectin to its cell surface receptors. Finally, we found that the protective effects of adiponectin against DJ-1L166P depend on AMP-activated protein kinase (AMPK) activation mediated by the endosomal adaptor protein, APPL1 (adaptor protein with phosphotyrosine binding, pleckstrin homology domains and leucine zipper motif). These data suggest that adiponectin may have potential for implementation in novel therapies against PD.
Collapse
Affiliation(s)
- Xuemei Li
- 1Department of Neurology, Affiliated Hospital of Weifang Medical University , Weifang, Shangdong Province , China and
| | | | | |
Collapse
|
143
|
Weisová P, Alvarez SP, Kilbride SM, Anilkumar U, Baumann B, Jordán J, Bernas T, Huber HJ, Düssmann H, Prehn JHM. Latrepirdine is a potent activator of AMP-activated protein kinase and reduces neuronal excitability. Transl Psychiatry 2013; 3:e317. [PMID: 24150226 PMCID: PMC3818013 DOI: 10.1038/tp.2013.92] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 09/09/2013] [Indexed: 12/18/2022] Open
Abstract
Latrepirdine/Dimebon is a small-molecule compound with attributed neurocognitive-enhancing activities, which has recently been tested in clinical trials for the treatment of Alzheimer's and Huntington's disease. Latrepirdine has been suggested to be a neuroprotective agent that increases mitochondrial function, however the molecular mechanisms underlying these activities have remained elusive. We here demonstrate that latrepirdine, at (sub)nanomolar concentrations (0.1 nM), activates the energy sensor AMP-activated protein kinase (AMPK). Treatment of primary neurons with latrepirdine increased intracellular ATP levels and glucose transporter 3 translocation to the plasma membrane. Latrepirdine also increased mitochondrial uptake of the voltage-sensitive probe TMRM. Gene silencing of AMPKα or its upstream kinases, LKB1 and CaMKKβ, inhibited this effect. However, studies using the plasma membrane potential indicator DisBAC2(3) demonstrated that the effects of latrepirdine on TMRM uptake were largely mediated by plasma membrane hyperpolarization, precluding a purely 'mitochondrial' mechanism of action. In line with a stabilizing effect of latrepirdine on plasma membrane potential, pretreatment with latrepirdine reduced spontaneous Ca(2+) oscillations as well as glutamate-induced Ca(2+) increases in primary neurons, and protected neurons against glutamate toxicity. In conclusion, our experiments demonstrate that latrepirdine is a potent activator of AMPK, and suggest that one of the main pharmacological activities of latrepirdine is a reduction in neuronal excitability.
Collapse
Affiliation(s)
- P Weisová
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin, Ireland,Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - S P Alvarez
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin, Ireland,Dpto Ciencias Médicas-Farmacología, Faculdad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - S M Kilbride
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - U Anilkumar
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - B Baumann
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - J Jordán
- Dpto Ciencias Médicas-Farmacología, Faculdad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - T Bernas
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin, Ireland,Institute of Experimental Biology PAS, Warsaw, Poland
| | - H J Huber
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - H Düssmann
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - J H M Prehn
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin, Ireland,Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, 123 Saint Stephen's Green, Dublin, 2, Ireland. E-mail:
| |
Collapse
|
144
|
Manwani B, McCullough LD. Function of the master energy regulator adenosine monophosphate-activated protein kinase in stroke. J Neurosci Res 2013; 91:1018-29. [PMID: 23463465 PMCID: PMC4266469 DOI: 10.1002/jnr.23207] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 12/24/2012] [Accepted: 01/05/2013] [Indexed: 01/09/2023]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is an evolutionarily conserved signaling molecule that is emerging as one of the most important energy sensors in the body. AMPK monitors cellular energy status and is activated via phosphorylation when energy stores are low. This allows for maintenance of energy homeostasis by promoting catabolic pathways for ATP production and limiting processes that consume ATP. Growing number of stimuli have been shown to activate AMPK, and AMPK has been implicated in many diverse biological processes, including cell polarity, autophagy, and senescence. The effect of AMPK activation and its biological functions are extremely diverse and depend on both the overall energy "milieu" and the location and duration of activation. AMPK has tissue- and isoform-specific functions in the brain vs. periphery. These functions and the pathways activated also appear to differ by cell location (hypothalamus vs. cortex), cell type (astrocyte vs. neuron), and duration of exposure. Short bursts of AMPK activation have been found to be involved in ischemic preconditioning and neuronal survival; however, prolonged AMPK activity during ischemia leads to neuronal cell death. AMPK may also underlie some of the beneficial effects of hypothermia, a potential therapy for ischemic brain injury. This review discusses the role of AMPK in ischemic stroke, a condition of severe energy depletion.
Collapse
Affiliation(s)
- Bharti Manwani
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| | - Louise D. McCullough
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
- Department of Neurology, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
145
|
Kim SJ, Lee JH, Chung HS, Song JH, Ha J, Bae H. Neuroprotective Effects of AMP-Activated Protein Kinase on Scopolamine Induced Memory Impairment. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2013; 17:331-8. [PMID: 23946693 PMCID: PMC3741490 DOI: 10.4196/kjpp.2013.17.4.331] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/27/2013] [Accepted: 07/02/2013] [Indexed: 12/18/2022]
Abstract
AMP-activated protein kinase (AMPK), an important regulator of energy metabolism, is activated in response to cellular stress when intracellular levels of AMP increase. We investigated the neuroprotective effects of AMPK against scopolamine-induced memory impairment in vivo and glutamate-induced cytotoxicity in vitro. An adenovirus expressing AMPK wild type alpha subunit (WT) or a dominant negative form (DN) was injected into the hippocampus of rats using a stereotaxic apparatus. The AMPK WT-injected rats showed significant reversal of the scopolamine induced cognitive deficit as evaluated by escape latency in the Morris water maze. In addition, they showed enhanced acetylcholinesterase (AChE)-reactive neurons in the hippocampus, implying increased cholinergic activity in response to AMPK. We also studied the cellular mechanism by which AMPK protects against glutamate-induced cell death in primary cultured rat hippocampal neurons. We further demonstrated that AMPK WT-infected cells increased cell viability and reduced Annexin V positive hippocampal neurons. Western blot analysis indicated that AMPK WT-infected cells reduced the expression of Bax and had no effects on Bcl-2, which resulted in a decreased Bax/Bcl-2 ratio. These data suggest that AMPK is a useful cognitive impairment treatment target, and that its beneficial effects are mediated via the protective capacity of hippocampal neurons.
Collapse
Affiliation(s)
- Soo-Jeong Kim
- College of Korean Medicine, Kyung Hee University, Seoul 130-701, Korea
| | | | | | | | | | | |
Collapse
|
146
|
Xu SX, Zhou ZQ, Li XM, Ji MH, Zhang GF, Yang JJ. The activation of adenosine monophosphate-activated protein kinase in rat hippocampus contributes to the rapid antidepressant effect of ketamine. Behav Brain Res 2013; 253:305-9. [PMID: 23906767 DOI: 10.1016/j.bbr.2013.07.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/16/2013] [Accepted: 07/20/2013] [Indexed: 12/22/2022]
Abstract
Recent studies have shown a rapid, robust, and lasting antidepressant effect of ketamine that makes ketamine a promising antidepressant drug. However, the mechanisms underlying this rapid antidepressant effect remain incompletely understood. The goal of the present study was to determine whether adenosine monophosphate-activated protein kinase (AMPK) was involved in ketamine's rapid antidepressant effect during the forced swimming test (FST). In the first stage of experiment, a lower level of phosphorylated form of AMPK (p-AMPK) in the hippocampus and a longer immobility time were observed in the depressed rats during FST; whereas ketamine reversed these changes at 30min after the administration. In the second stage of experiment, we observed that, ketamine up-regulated the levels of p-AMPK and brain-derived neurotrophic factor (BDNF) in the hippocampus of the depressed rats. Moreover, AMPK agonist strengthened the antidepressant effect of ketamine with an up-regulation of BDNF, while AMPK antagonist attenuated the antidepressant effect of ketamine with a down-regulation of BDNF. In conclusion, our results suggest that the activation of AMPK in rat hippocampus is involved in the procedure of ketamine exerting rapid antidepressant effect through the up-regulation of BDNF.
Collapse
Affiliation(s)
- Shi X Xu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
147
|
Daniel B, Green O, Viskind O, Gruzman A. Riluzole increases the rate of glucose transport in L6 myotubes and NSC-34 motor neuron-like cells via AMPK pathway activation. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14:434-43. [DOI: 10.3109/21678421.2013.808226] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
148
|
Mairet-Coello G, Courchet J, Pieraut S, Courchet V, Maximov A, Polleux F. The CAMKK2-AMPK kinase pathway mediates the synaptotoxic effects of Aβ oligomers through Tau phosphorylation. Neuron 2013; 78:94-108. [PMID: 23583109 DOI: 10.1016/j.neuron.2013.02.003] [Citation(s) in RCA: 284] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2013] [Indexed: 12/25/2022]
Abstract
Amyloid-β 1-42 (Aβ42) oligomers are synaptotoxic for excitatory cortical and hippocampal neurons and might play a role in early stages of Alzheimer's disease (AD) progression. Recent results suggested that Aβ42 oligomers trigger activation of AMP-activated kinase (AMPK), and its activation is increased in the brain of patients with AD. We show that increased intracellular calcium [Ca²⁺](i) induced by NMDA receptor activation or membrane depolarization activates AMPK in a CAMKK2-dependent manner. CAMKK2 or AMPK overactivation is sufficient to induce dendritic spine loss. Conversely, inhibiting their activity protects hippocampal neurons against synaptotoxic effects of Aβ42 oligomers in vitro and against the loss of dendritic spines observed in the human APP(SWE,IND)-expressing transgenic mouse model in vivo. AMPK phosphorylates Tau on KxGS motif S262, and expression of Tau S262A inhibits the synaptotoxic effects of Aβ42 oligomers. Our results identify a CAMKK2-AMPK-Tau pathway as a critical mediator of the synaptotoxic effects of Aβ42 oligomers.
Collapse
Affiliation(s)
- Georges Mairet-Coello
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
149
|
Activation of AMP-activated protein kinase alleviates homocysteine-mediated neurotoxicity in SH-SY5Y cells. Neurochem Res 2013; 38:1561-71. [PMID: 23624826 DOI: 10.1007/s11064-013-1057-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 04/11/2013] [Accepted: 04/19/2013] [Indexed: 10/26/2022]
Abstract
Mammalian AMP-activated protein kinase (AMPK) acts as a metabolite-sensing protein kinase in multiple tissues. Recent studies have shown that AMPK activation also regulates intracellular signaling pathways involved in cellular survival and apoptosis. Previously, we have reported that AMPK activation alleviates the endoplasmic reticulum (ER) stress-mediated neurotoxicity and tau hyperphosphorylation caused by palmitate. Therefore, we investigated whether AMPK activation alleviates ER stress-mediated neurotoxicity in SH-SY5Y human neuroblastoma cells incubated with homocysteine. Regulation of AMPK activity by isoflavone was also determined to investigate the underlying mechanism of its neuroprotective effect. Treatment of SH-SY5Y human neuroblastoma cells with N (1)-(β-D-ribofuranosyl)-5-aminoimidazole-4-carboxamide (AICAR), a pharmacological activator of AMPK, significantly protected cells against cytotoxicity imposed by tunicamycin and homocysteine. Homocysteine significantly suppressed AMPK activation, which was alleviated by AICAR. We observed a significant inhibition of the unfolded protein response by AICAR in cells incubated with homocysteine, suggesting a protective role of AMPK activation against ER stress-mediated neurotoxicity. AICAR also significantly reduced tau hyperphosphorylation by inactivating glycogen synthase kinase-3β and c-Jun N-terminal kinase in cells incubated with homocysteine. Furthermore, treatment of cells with soy isoflavone, genistein and daidzein significantly activated AMPK, which was repressed by tunicamycin and homocysteine. Therefore, our results suggest that AMPK activation by isoflavone as well as AICAR alleviates homocysteine-mediated neurotoxicity in SH-SY5Y cells.
Collapse
|
150
|
Choi IY, Ju C, Anthony Jalin AM, Lee DI, Prather PL, Kim WK. Activation of Cannabinoid CB2 Receptor–Mediated AMPK/CREB Pathway Reduces Cerebral Ischemic Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:928-39. [DOI: 10.1016/j.ajpath.2012.11.024] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 10/29/2012] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
|