101
|
Affiliation(s)
- M R Bennett
- Department of Physiology, Institute for Biomedical Research, University of Sydney, NSW, Australia
| |
Collapse
|
102
|
Nusser Z, Naylor D, Mody I. Synapse-specific contribution of the variation of transmitter concentration to the decay of inhibitory postsynaptic currents. Biophys J 2001; 80:1251-61. [PMID: 11222289 PMCID: PMC1301320 DOI: 10.1016/s0006-3495(01)76101-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Synaptic transmission is characterized by a remarkable trial-to-trial variability in the postsynaptic response, influencing the way in which information is processed in neuronal networks. This variability may originate from the probabilistic nature of quantal transmitter release, from the stochastic behavior of the receptors, or from the fluctuation of the transmitter concentration in the cleft. We combined nonstationary noise analysis and modeling techniques to estimate the contribution of transmitter fluctuation to miniature inhibitory postsynaptic current (mIPSC) variability. A substantial variability (approximately 30%) in mIPSC decay was found in all cell types studied (neocortical layer2/3 pyramidal cells, granule cells of the olfactory bulb, and interneurons of the cerebellar molecular layer). This large variability was not solely the consequence of the expression of multiple types of GABA(A) receptors, as a similar mIPSC decay variability was observed in cerebellar interneurons that express only a single type (alpha(1)beta(2)gamma(2)) of GABA(A) receptor. At large synapses on these cells, all variance in mIPSC decay could be accounted for by the stochastic behavior of approximately 36 pS channels, consistent with the conductance of alpha(1)beta(2)gamma(2) GABA(A) receptors at physiological temperatures. In contrast, at small synapses, a significant amount of variability in the synaptic cleft GABA transient had to be present to account for the additional variance in IPSC decay over that produced by stochastic channel openings. Thus, our results suggest a synapse-specific contribution of the variation of the spatiotemporal profile of GABA to the decay of IPSCs.
Collapse
Affiliation(s)
- Z Nusser
- Department of Neurology, UCLA School of Medicine, Los Angeles, California 90095-1769, USA
| | | | | |
Collapse
|
103
|
Sakaba T, Neher E. Quantitative relationship between transmitter release and calcium current at the calyx of held synapse. J Neurosci 2001; 21:462-76. [PMID: 11160426 PMCID: PMC6763832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
A newly developed deconvolution method (Neher and Sakaba, 2001) allowed us to resolve the time course of neurotransmitter release at the calyx of Held synapse and to quantify some basic aspects of transmitter release. First, we identified a readily releasable pool (RRP) of synaptic vesicles. We found that the size of the RRP, when tested with trains of strong stimuli, was constant regardless of the exact stimulus patterns, if stimuli were confined to a time interval of approximately 60 msec. For longer-lasting stimulus patterns, recruitment of new vesicles to the RRP made a substantial contribution to the total release. Second, the cooperativity of transmitter release as a function of Ca(2+) current was estimated to be 3-4, which confirmed previous results (Borst and Sakmann, 1999; Wu et al., 1999). Third, an initial small Ca(2+) influx increased the efficiency of Ca(2+) currents in subsequent transmitter release. This type of facilitation was blocked by a high concentration of EGTA (0.5 mm). Fourth, the release rates of synaptic vesicles at this synapse turned out to be heterogeneous: once a highly Ca(2+)-sensitive population of vesicles was consumed, the remaining vesicles released at lower rates. These components of release were more clearly separated in the presence of 0.5 mm EGTA, which prevented the buildup of residual Ca(2+). Conversely, raising the extracellular Ca(2+) concentration facilitated the slower population such that its release characteristics became more similar to those of the faster population under standard conditions. Heterogeneous release probabilities are expected to support the maintenance of synaptic transmission during high-frequency stimulation.
Collapse
Affiliation(s)
- T Sakaba
- Max-Planck-Institute for Biophysical Chemistry, Department of Membrane Biophysics, D-37077, Göttingen, Germany
| | | |
Collapse
|
104
|
Abstract
Glutamate transporters are believed to remove glutamate from the synaptic cleft only slowly because they cycle slowly. However, we show that when glutamate binds to postsynaptic transporters at the cerebellar climbing fiber synapse, it evokes a conformation change and inward current that reflect glutamate removal from the synaptic cleft within a few milliseconds, a time scale much faster than the overall cycle time. Contrary to present models, glutamate removal does not require binding of an extracellular proton, and the time course of transporter anion conductance activation differs from that of glutamate removal. The charge movement associated with glutamate removal is consistent with the majority of synaptically released glutamate being removed from the synaptic cleft by postsynaptic transporters.
Collapse
Affiliation(s)
- C Auger
- Department of Physiology, University College London, United Kingdom
| | | |
Collapse
|
105
|
Kraushaar U, Jonas P. Efficacy and stability of quantal GABA release at a hippocampal interneuron-principal neuron synapse. J Neurosci 2000; 20:5594-607. [PMID: 10908596 PMCID: PMC6772523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2000] [Revised: 04/24/2000] [Accepted: 04/29/2000] [Indexed: 02/17/2023] Open
Abstract
We have examined factors that determine the strength and dynamics of GABAergic synapses between interneurons [dentate gyrus basket cells (BCs)] and principal neurons [dentate gyrus granule cells (GCs)] using paired recordings in rat hippocampal slices at 34 degrees C. Unitary IPSCs recorded from BC-GC pairs in high intracellular Cl(-) concentration showed a fast rise and a biexponential decay, with mean time constants of 2 and 9 msec. The mean quantal conductance change, determined directly at reduced extracellular Ca(2+)/Mg(2+) concentration ratios, was 1.7 nS. Quantal release at the BC-GC synapse occurred with short delay and was highly synchronized. Analysis of IPSC peak amplitudes and numbers of failures by multiple probability compound binomial analysis indicated that synaptic transmission at the BC-GC synapse involves three to seven release sites, each of which releases transmitter with high probability ( approximately 0.5 in 2 mm Ca(2+)/1 mm Mg(2+)). Unitary BC-GC IPSCs showed paired-pulse depression (PPD); maximal depression, measured for 10 msec intervals, was 37%, and recovery from depression occurred with a time constant of 2 sec. Paired-pulse depression was mainly presynaptic in origin but appeared to be independent of previous release. Synaptic transmission at the BC-GC synapse showed frequency-dependent depression, with half-maximal decrease at 5 Hz after a series of 1000 presynaptic action potentials. The relative stability of transmission at the BC-GC synapse is consistent with a model in which an activity-dependent gating mechanism reduces release probability and thereby prevents depletion of the releasable pool of synaptic vesicles. Thus several mechanisms converge on the generation of powerful and sustained transmission at interneuron-principal neuron synapses in hippocampal circuits.
Collapse
Affiliation(s)
- U Kraushaar
- Physiologisches Institut der Universität Freiburg, Germany
| | | |
Collapse
|
106
|
Abstract
Exocytosis is commonly viewed as the only secretory process able to account for quantal forms of fast synaptic transmission. However, the demonstrated variability and composite properties of miniature postsynaptic signals are not easily explained by all-or-none exocytotic discharge of transmitter in solution from inside vesicles. Recent studies of endocrine secretion have shown that hormone release does not coincide with exocytosis due to its trapping in the core matrix of the granule. Thus, we tested whether the synaptic transmitter GABA could also be held in a matrix before being released. Using confocal microscopy and flow cytometry of embryonic rat hippocampal neurons, we found a GABA immunoreaction at the surface of live cell bodies and growth cones that coincided spatially and quantitatively with the binding of tetanus toxin fragment C (TTFC). TTFC binds predominantly at membrane sites containing the trisialoglycosphingolipid GT1b. Using flow cytometry, GT1b-containing liposomes preincubated in 100 nM GABA exhibited the same relationship between GABA and TTFC surface binding as found on neurons and growth cones. Embryonic neurons differentiated in culture expressed initially a tonic, and after 3-5 days, transient, postsynaptic signals mediated by GABA acting at GABA(A) receptor/Cl(-) channels. A stream of saline applied to the neuronal surface rapidly and reversibly suppressed both tonic and transient signals. A brief application of the GABAmimetic isoguvacine immediately transformed both tonic and transient GABAergic signals into tonic and transient isoguvacinergic signals. These results and those in the literature are consistent with an immediately releasable compartment of transmitter accessible from the presynaptic surface.
Collapse
Affiliation(s)
- J Vautrin
- Laboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
107
|
Abstract
We investigate through theoretical analysis and computer simulations the consequences of unreliable synapses for fast analog computations in networks of spiking neurons, with analog variables encoded by the current firing activities of pools of spiking neurons. Our results suggest a possible functional role for the well-established unreliability of synaptic transmission on the network level. We also investigate computations on time series and Hebbian learning in this context of space-rate coding in networks of spiking neurons with unreliable synapses.
Collapse
Affiliation(s)
- W Maass
- Institute for Theoretical Computer Science, Technische Universität Graz, Austria
| | | |
Collapse
|
108
|
Abstract
The mode of operation of synaptic transmission has been primarily worked out at the vertebrate neuromuscular junction, thus providing a framework for the interpretation of studies at central synapses. However, differences have been found between the two systems, and a coherent model is still lacking for central synapses. Research in this area revolves around several questions. (1) Is the variability of quantal amplitudes determined pre- or postsynaptically? (2) What is the occupancy of postsynaptic receptors following the release of a synaptic vesicle? And (3) does multivesicular release occur at single release sites following one presynaptic action potential? To answer these questions, it is essential to investigate synaptic processes at the level of single release sites. This is technically difficult because of the complex morphology and small dimensions of central synapses. Nevertheless significant advances have been made in the past few years.
Collapse
Affiliation(s)
- C Auger
- Department of Physiology, University College London, London, UK.
| | | |
Collapse
|
109
|
Kombian SB, Hirasawa M, Mouginot D, Chen X, Pittman QJ. Short-term potentiation of miniature excitatory synaptic currents causes excitation of supraoptic neurons. J Neurophysiol 2000; 83:2542-53. [PMID: 10805656 DOI: 10.1152/jn.2000.83.5.2542] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Magnocellular neurons (MCNs) of the hypothalamic supraoptic nucleus (SON) secrete vasopressin and oxytocin. With the use of whole-cell and nystatin-perforated patch recordings of MCNs in current- and voltage-clamp modes, we show that high-frequency stimulation (HFS, 10-200 Hz) of excitatory afferents induces increases in the frequency and amplitude of 2,3-dioxo-6-nitro-1,2,3, 4-tetrahydrobenzo(f)quinoxaline-7-sulfonamide (NBQX)-sensitive miniature excitatory postsynaptic currents (mEPSCs) lasting up to 20 min. This synaptic enhancement, referred to as short-term potentiation (STP), could be induced repeatedly; required tetrodotoxin (TTX)-dependent action potentials to initiate, but not to maintain; and was independent of postsynaptic membrane potential, N-methyl-D-aspartate (NMDA) receptors, or retrograde neurohypophyseal neuropeptide release. STP was not accompanied by changes in the conductance of the MCNs or in the responsiveness of the postsynaptic non-NMDA receptors, as revealed by brief application of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate. mEPSCs showed similar rise times before and after HFS and analysis of amplitude distributions of mEPSCs revealed one or more peaks pre-HFS and the appearance of additional peaks post-HFS, which were equidistant from the first peak. STP of mEPSCs was not associated with enhanced evoked responses, but was associated with an NBQX-sensitive increase in spontaneous activity of MCNs. Thus we have identified a particularly long-lasting potentiation of excitatory synapses in the SON, which has a presynaptic locus, is dissociated from changes in evoked release, and which regulates postsynaptic cell excitability.
Collapse
Affiliation(s)
- S B Kombian
- Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
| | | | | | | | | |
Collapse
|
110
|
Abstract
Quantal size is often modeled as invariant, although it is now well established that the number of transmitter molecules released per synaptic vesicle during exocytosis can be modulated in central and peripheral synapses. In this review, we suggest why presynaptically altered quantal size would be important at social synapses that provide extrasynaptic neurotransmitter. Current techniques used to measure quantal size are reviewed with particular attention to amperometry, the first approach to provide direct measurement of the number of molecules and kinetics of presynaptic quantal release, and to CNS dopamine neuronal terminals. The known interventions that alter quantal size at the presynaptic locus are reviewed and categorized as (1) alteration of transvesicular free energy gradients, (2) modulation of vesicle transmitter transporter activity, (3) modulation of fusion pore kinetics, (4) altered transmitter degranulation, and (5) changes in synaptic vesicle volume. Modulation of the number of molecules released per quantum underlies mechanisms of drug action of L-DOPA and the amphetamines, and seems likely to be involved in both normal synaptic modification and disease states. Statistical analysis for examining quantal size and data presentation is discussed. We include detailed information on performing nonparametric resampling statistical analysis, the Kolmogorov-Smirnov test for two populations, and random walk simulations using spreadsheet programs.
Collapse
Affiliation(s)
- D Sulzer
- Department of Neurology, Columbia University, New York, USA.
| | | |
Collapse
|
111
|
Maccaferri G, Roberts JD, Szucs P, Cottingham CA, Somogyi P. Cell surface domain specific postsynaptic currents evoked by identified GABAergic neurones in rat hippocampus in vitro. J Physiol 2000; 524 Pt 1:91-116. [PMID: 10747186 PMCID: PMC2269850 DOI: 10.1111/j.1469-7793.2000.t01-3-00091.x] [Citation(s) in RCA: 287] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. Inhibitory postsynaptic currents (IPSCs) evoked in CA1 pyramidal cells (n = 46) by identified interneurones (n = 43) located in str. oriens were recorded in order to compare their functional properties and to determine the effect of synapse location on the apparent IPSC kinetics as recorded using somatic voltage clamp at -70 mV and nearly symmetrical [Cl-]. 2. Five types of visualised presynaptic interneurone, oriens-lacunosum moleculare (O-LMC), basket (BC), axo-axonic (AAC), bistratified (BiC) and oriens-bistratified (O-BiC) cells, were distinguished by immunocytochemistry and/or synapse location using light and electron microscopy. 3. Somatostatin immunoreactive O-LMCs, innervating the most distal dendritic shafts and spines, evoked the smallest amplitude (26 +/- 10 pA, s.e.m., n = 8) and slowest IPSCs (10-90 % rise time, 6.2 +/- 0.6 ms; decay, 20.8 +/- 1.7 ms, n = 8), with no paired-pulse modulation of the second IPSC (93 +/- 4 %) at 100 ms interspike interval. In contrast, parvalbumin-positive AACs evoked larger amplitude (308 +/- 103 pA, n = 7) and kinetically faster (rise time, 0.8 +/- 0.1 ms; decay 11.2 +/- 0.9 ms, n = 7) IPSCs showing paired-pulse depression (to 68 +/- 5 %, n = 6). Parvalbumin- or CCK-positive BCs (n = 9) terminating on soma/dendrites, BiCs (n = 4) and O-BiCs (n = 7) innervating dendrites evoked IPSCs with intermediate kinetic parameters. The properties of IPSCs and sensitivity to bicuculline indicated that they were mediated by GABAA receptors. 4. In three cases, kinetically complex, multiphasic IPSCs, evoked by an action potential in the recorded basket cells, suggested that coupled interneurones, possibly through electrotonic junctions, converged on the same postsynaptic neurone. 5. The population of O-BiCs (4 of 4 somatostatin positive) characterised in this study had horizontal dendrites restricted to str. oriens/alveus and innervated stratum radiatum and oriens. Other BiCs had radial dendrites as described earlier. The parameters of IPSCs evoked by BiCs and O-BiCs showed the largest cell to cell variation, and a single interneurone could evoke both small and slow as well as large and relatively fast IPSCs. 6. The kinetic properties of the somatically recorded postsynaptic current are correlated with the innervated cell surface domain. A significant correlation of rise and decay times for the overall population of unitary IPSCs suggests that electrotonic filtering of distal responses is a major factor for the location and cell type specific differences of unitary IPSCs, but molecular heterogeneity of postsynaptic GABAA receptors may also contribute to the observed kinetic differences. Furthermore, domain specific differences in the short-term plasticity of the postsynaptic response indicate a differentiation of interneurones in activity-dependent responses.
Collapse
Affiliation(s)
- G Maccaferri
- MRC Anatomical Neuropharmacology Unit, Oxford University, Mansfield Road, Oxford OX1 3TH, UK.
| | | | | | | | | |
Collapse
|
112
|
Abstract
Short-term synaptic plasticity has a key role in information processing in the CNS, whereas memories can be formed through long-lasting changes in synaptic strength. Despite the importance of these phenomena, it remains difficult to determine whether a synaptic modulation is expressed at a presynaptic or postsynaptic site. This article describes a new approach that, in its simplest form, can identify the site of expression by direct graphical means. A more-sophisticated form of the technique can quantify functional synaptic properties and determine which of these properties is altered following a modulation of synaptic strength.
Collapse
Affiliation(s)
- J D Clements
- Division of Biochemistry and Molecular Biology, Australian National University, Canberra, ACT 0200, Australia
| | | |
Collapse
|
113
|
Matveev V, Wang XJ. Implications of all-or-none synaptic transmission and short-term depression beyond vesicle depletion: a computational study. J Neurosci 2000; 20:1575-88. [PMID: 10662847 PMCID: PMC6772369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
The all-or-none character of transmission at central synapses is commonly viewed as evidence that only one vesicle can be released per action potential at a single release site. This interpretation is still a matter of debate; its resolution is important for our understanding of the nature of quantal response. In this work we explore observable consequences of the univesicular release hypothesis by studying a stochastic model of synaptic transmission. We investigated several alternative mechanisms for the all-or-none response: (1) the univesicular release constraint realized through lateral inhibition across presynaptic membrane, (2) the constraint of a single releasable vesicle per active zone, and (3) the postsynaptic receptor saturation. We show that both the univesicular release constraint and the postsynaptic receptor saturation lead to a limited amount of depression by vesicle depletion, so that depletion alone cannot account for the strong paired-pulse depression observed at some cortical synapses. Although depression can be rapid if there is only one releasable vesicle per active zone, this scenario leads to a limit on the transmission probability. We evaluate additional mechanisms beyond vesicle depletion, and our results suggest that the strong paired-pulse depression may be a result of activity-dependent inactivation of the exocytosis machinery. Furthermore, we found that the statistical analysis of release events, in response to a long stimulus train, might allow one to distinguish experimentally between univesicular and multivesicular release scenarios. We show that without the univesicular release constraint, the temporal correlation between release events is always negative, whereas it is typically positive with such a constraint if the vesicle fusion probability is sufficiently large.
Collapse
Affiliation(s)
- V Matveev
- Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, USA
| | | |
Collapse
|
114
|
Rohrbough J, Spitzer NC. Ca(2+)-permeable AMPA receptors and spontaneous presynaptic transmitter release at developing excitatory spinal synapses. J Neurosci 1999; 19:8528-41. [PMID: 10493753 PMCID: PMC6783006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
At many mature vertebrate glutamatergic synapses, excitatory transmission strength and plasticity are regulated by AMPA and NMDA receptor (AMPA-R and NMDA-R) activation and by patterns of presynaptic transmitter release. Both receptors potentially direct neuronal differentiation by mediating postsynaptic Ca(2+) influx during early development. However, the development of synaptic receptor expression and colocalization has been examined developmentally in only a few systems, and changes in release properties at neuronal synapses have not been characterized extensively. We recorded miniature EPSCs (mEPSCs) from spinal interneurons in Xenopus embryos and larvae. In mature 5-8 d larvae, approximately 70% of mEPSCs in Mg(2+)-free saline are composed of both a fast AMPA-R-mediated component and a slower NMDA-R-mediated decay, indicating receptor colocalization at most synapses. By contrast, in 39-40 hr embryos approximately 65% of mEPSCs are exclusively fast, suggesting that these synapses initially express predominantly AMPA-R. In a physiological Mg(2+) concentration (1 mM), mEPSCs throughout development are mainly AMPA-R-mediated at negative potentials. Embryonic synaptic AMPA-R are highly Ca(2+)-permeable, mEPSC amplitude is over twofold larger than at mature synapses, and mEPSCs frequently occur in bursts consistent with asynchronous multiquantal release. AMPA-R function in this motor pathway thus appears to be independent of previous NMDA-R activation, unlike other regions of the developing nervous system, ensuring a greater reliability for embryonic excitatory transmission. Early spontaneous excitatory activity is specialized to promote AMPA-R-mediated synaptic Ca(2+) influx, which likely has significant roles in neuronal development.
Collapse
Affiliation(s)
- J Rohrbough
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
115
|
Fedulova SA, Vasilyev DV, Isaeva EV, Romanyuk SG, Veselovsky NS. Possibility of multiquantal transmission at single inhibitory synapse in cultured rat hippocampal neurons. Neuroscience 1999; 92:1217-30. [PMID: 10426479 DOI: 10.1016/s0306-4522(99)00084-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Miniature, spontaneous and evoked inhibitory postsynaptic currents were studied using the whole-cell patch-clamp technique on synaptically connected cultured hippocampal neurons, at a holding potential of -75 mV. All experiments were done in tetrodotoxin-containing solution to exclude an action potential generation. Spontaneous miniature inhibitory postsynaptic currents were observed in Ca2+-free solution. The distribution of miniature inhibitory postsynaptic currents was skewed to larger current amplitudes and could be fitted reliably by one Gaussian with the mean at 10.0 +/- 1.2 pA (n = 7). Spontaneously occurring whole-cell spontaneous inhibitory postsynaptic currents were recorded in physiological solution (Ca2+ 2 mM). The average amplitude of spontaneously occurring currents depended on membrane potential and reversed at -18 +/- 5 mV (n = 5). The amplitude distribution of spontaneous inhibitory postsynaptic currents had one peak clearly detectable with the mean of 20.0 +/- 2.0 pA (n = 6) or 10.0 +/- 2.0 pA (n = 2). Inhibitory postsynaptic stimulus-evoked currents arose in responses to gradual activation of neurotransmitter release by direct extracellular electrical stimulation of a single presynaptic bouton by short depolarizing pulses. The current-voltage relation of the averaged amplitudes of evoked inhibitory postsynaptic currents was linear and reversed at potential predicted by the Nernst equation for corresponding intra- and extracellular Cl- concentrations. The time-course of decay of miniature, spontaneous and evoked inhibitory postsynaptic currents was fitted by a sum of two exponents and their time-constants were the same in the range of standard deviation. The stimulus-evoked inhibitory postsynaptic currents fluctuated with regard to the discrete aliquot values of their peak amplitudes in all the investigated synapses from a measurable minimum of about 8 pA to 200 pA. The evoked inhibitory postsynaptic currents were assumed as superimposition of statistically independent quantal events. Fitting amplitude histograms of evoked inhibitory postsynaptic currents with several Gaussian curves resulted in peaks that were equidistant with the mean space of 20 +/- 3 pA (n = 10), which was assumed as one quantum (quantum size) to construct the Poisson's distribution. A possibility of simultaneous multiquantal release at single inhibitory synapses of rat hippocampal neurons was discussed.
Collapse
Affiliation(s)
- S A Fedulova
- Center of Molecular Physiology, National Academy of Science, Kiev, Ukraine
| | | | | | | | | |
Collapse
|
116
|
Kirischuk S, Veselovsky N, Grantyn R. Relationship between presynaptic calcium transients and postsynaptic currents at single gamma-aminobutyric acid (GABA)ergic boutons. Proc Natl Acad Sci U S A 1999; 96:7520-5. [PMID: 10377447 PMCID: PMC22118 DOI: 10.1073/pnas.96.13.7520] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Postsynaptic responses to stereotyped activation of single axons are known to fluctuate, but the origin of synaptic variability in the vertebrate central nervous system is still unclear. To test the hypothesis that fluctuations of inhibitory postsynaptic currents reflect variations in presynaptic Ca2+ concentration, we examined single GABAergic axodendritic contacts in low-density cultures. Collicular neurons from rat embryos were loaded with the Ca2+ indicator Oregon Green 488 BAPTA-1. Presynaptic axon terminals were visualized by staining with the styryl dye RH414. Under the condition of action potential block, RH414-labeled boutons were activated selectively by current pulses applied through a fine-tipped glass pipette. Short (1- to 3-ms) depolarization of isolated boutons resulted in stimulus-locked changes of presynaptic Ca2+ concentration ([Ca2+]pre) and in evoked inhibitory postsynaptic currents (eIPSCs). Varying the strength of the stimulating currents produced a wide amplitude range of both presynaptic fluorescence transients (up to 220% of the resting value) and postsynaptic conductance changes (up to 2-3 nS). It was found that average eIPSCs displayed an approximately third-power dependency on [Ca2+]pre. Transmitter release retained its probabilistic character throughout the range of observed [Ca2+]pre values. In any tested single bouton, maximal eIPSCs occurred in association with the largest [Ca2+]pre transients, but failures were present at any [Ca2+]pre. The increase of maximal eIPSC amplitudes in connection with higher [Ca2+]pre supports the hypothesis that GABAergic boutons have the capacity to regulate synaptic strength by changing the number of simultaneously released vesicles.
Collapse
Affiliation(s)
- S Kirischuk
- Arbeitsgruppe Entwicklungsphysiologie, Institut für Physiologie, Medizinische Fakultät (Charité) der Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | | | | |
Collapse
|
117
|
Mainen ZF, Malinow R, Svoboda K. Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated. Nature 1999; 399:151-5. [PMID: 10335844 DOI: 10.1038/20187] [Citation(s) in RCA: 253] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
At excitatory synapses in the central nervous system, the number of glutamate molecules released from a vesicle is much larger than the number of postsynaptic receptors. But does release of a single vesicle normally saturate these receptors? Answering this question is critical to understanding how the amplitude and variability of synaptic transmission are set and regulated. Here we describe the use of two-photon microscopy to image transient increases in Ca2+ concentration mediated by NMDA (N-methyl-D-aspartate) receptors in single dendritic spines of CA1 pyramidal neurons in hippocampal slices. To test for NMDA-receptor saturation, we compared responses to stimulation with single and double pulses. We find that a single release event does not saturate spine NMDA receptors; a second release occurring 10 ms later produces approximately 80% more NMDA-receptor activation. The amplitude of spine NMDA-receptor-mediated [Ca2+] transients (and the synaptic plasticity which depends on this) may thus be sensitive to the number of quanta released by a burst of action potentials and to changes in the concentration profile of glutamate in the synaptic cleft.
Collapse
Affiliation(s)
- Z F Mainen
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | | | |
Collapse
|
118
|
Zhang CL, Messing A, Chiu SY. Specific alteration of spontaneous GABAergic inhibition in cerebellar purkinje cells in mice lacking the potassium channel Kv1. 1. J Neurosci 1999; 19:2852-64. [PMID: 10191303 PMCID: PMC6782268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
In the cerebellum, the basket cell innervation on Purkinje cells provides a major GABAergic inhibitory control of the single efferent output from the cerebellum. The Shaker-type K channel Kv1.1 is localized at the axon arborization preceding the terminal of the basket cells and is therefore a potential candidate for regulating the GABAergic inhibition. In this study, we directly assess this role of Kv1.1 by electrophysiological analysis of Kv1.1 null mutant mice. Whole-cell patch-clamp recordings of spontaneous IPSCs (sIPSCs) were made from Purkinje cells in thin cerebellar slices from postnatal day (P)10-15 Kv1.1-null mutants using wild-type littermates as controls. The null mutation confers a very specific change in the sIPSC: the frequency increases about twofold, without accompanying changes in the mean and variance of its amplitude distribution. The frequency and amplitude of the miniature IPSCs (mIPSCs) are unaffected. Spontaneous firing rate of the basket cells is unaltered. Evoked IPSC does not show multiple activity in the mutants. Motor skills tests show that Kv1.1 null mice display a compromised ability to maintain balance on a thin stationary rod. We conclude that the Kv1.1 null mutation results in a persistent elevation of the tonic inhibitory tone on the cerebellum Purkinje cell efferent and that this is not fully compensated for by residual Shaker-type channels. We further suggest that the increase in inhibitory tone in the mutants might underlie the behavioral deficits. At the cellular level, we propose that Kv1.1 deletion enhances excitability of the basket cells by selectively enhancing the likelihood of action potential propagation past axonal branch points.
Collapse
Affiliation(s)
- C L Zhang
- Department of Physiology, University of Wisconsin School of Medicine, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
119
|
Prange O, Murphy TH. Analysis of multiquantal transmitter release from single cultured cortical neuron terminals. J Neurophysiol 1999; 81:1810-7. [PMID: 10200215 DOI: 10.1152/jn.1999.81.4.1810] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Application of single synapse recording methods indicates that the amplitude of postsynaptic responses of single CNS synapses can vary greatly among repeated stimuli. To determine whether this observation could be attributed to synapses releasing a variable number of transmitter quanta, we assessed the prevalence of multiquantal transmitter release in primary cultures of cortical neurons with the action potential (AP)-dependent presynaptic turnover of the styryl dye FM1-43 (,; ). It was assumed that if a high proportion of vesicles within a terminal were loaded with FM1-43 the amount of dye released per stimulus would be proportional to the number of quanta released and/or the probability of release at a terminal. To rule out differences in the amount of release (between terminals) caused by release probability or incomplete loading of terminals, conditions were chosen to maximize both release probability and terminal loading. Three-dimensional reconstruction of terminals was employed to ensure that bouton fluorescence was accurately measured. Analysis of the relationship between the loading of terminals and release indicated that presumed larger terminals (>FM1-43 uptake) release a greater amount of dye per stimulus than smaller terminals, suggesting multiquantal release. The distribution of release amounts across terminals was significantly skewed toward higher values, with 13-17% of synaptic terminals apparently releasing multiple quanta per AP. In conclusion, our data suggest that most synaptic terminals release a relatively constant amount of transmitter per stimulus; however, a subset of terminals releases amounts of FM1-43 that are greater than that expected from a unimodal release process.
Collapse
Affiliation(s)
- O Prange
- Graduate Program in Neuroscience, Kinsmen Laboratory, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | |
Collapse
|
120
|
Kullmann DM, Min MY, Asztely F, Rusakov DA. Extracellular glutamate diffusion determines the occupancy of glutamate receptors at CA1 synapses in the hippocampus. Philos Trans R Soc Lond B Biol Sci 1999; 354:395-402. [PMID: 10212489 PMCID: PMC1692494 DOI: 10.1098/rstb.1999.0392] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Following exocytosis at excitatory synapses in the brain, glutamate binds to several subtypes of postsynaptic receptors. The degree of occupancy of AMPA and NMDA receptors at hippocampal synapses is, however, not known. One approach to estimate receptor occupancy is to examine quantal amplitude fluctuations of postsynaptic signals in hippocampal neurons studied in vitro. The results of such experiments suggest that NMDA receptors at CA1 synapses are activated not only by glutamate released from the immediately apposed presynaptic terminals, but also by glutamate spillover from neighbouring terminals. Numerical simulations point to the extracellular diffusion coefficient as a critical parameter that determines the extent of activation of receptors positioned at different distances from the release site. We have shown that raising the viscosity of the extracellular medium can modulate the diffusion coefficient, providing an experimental tool to investigate the role of diffusion in activation of synaptic and extrasynaptic receptors. Whether intersynaptic cross-talk mediated by NMDA receptors occurs in vivo remains to be determined. The theoretical and experimental approaches described here also promise to shed light on the roles of metabotropic and kainate receptors, which often occur in an extrasynaptic distribution, and are therefore positioned to sense glutamate escaping from the synaptic cleft.
Collapse
Affiliation(s)
- D M Kullmann
- University Department of Clinical Neurology, Institute of Neurology, London, UK
| | | | | | | |
Collapse
|