101
|
Neurocircuit regulation of the hypothalamo–pituitary–adrenocortical stress response – an overview. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0921-0709(05)80023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
|
102
|
Baggio LL, Drucker DJ. Clinical endocrinology and metabolism. Glucagon-like peptide-1 and glucagon-like peptide-2. Best Pract Res Clin Endocrinol Metab 2004; 18:531-54. [PMID: 15533774 DOI: 10.1016/j.beem.2004.08.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The glucagon-like peptides (glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2)) are released from enteroendocrine cells in response to nutrient ingestion. GLP-1 enhances glucose-stimulated insulin secretion and inhibits glucagon secretion, gastric emptying and feeding. GLP-1 also has proliferative, neogenic and antiapoptotic effects on pancreatic beta-cells. More recent studies illustrate a potential protective role for GLP-1 in the cardiovascular and central nervous systems. GLP-2 is an intestinal trophic peptide that stimulates cell proliferation and inhibits apoptosis in the intestinal crypt compartment. GLP-2 also regulates intestinal glucose transport, food intake and gastric acid secretion and emptying, and improves intestinal barrier function. Thus, GLP-1 and GLP-2 exhibit a diverse array of metabolic, proliferative and cytoprotective actions with important clinical implications for the treatment of diabetes and gastrointestinal disease, respectively. This review will highlight our current understanding of the biology of GLP-1 and GLP-2, with an emphasis on both well-characterized and more novel therapeutic applications of these peptides.
Collapse
Affiliation(s)
- Laurie L Baggio
- Department of Medicine, The Banting and Best Diabetes Centre, University of Toronto, Toronto General Hospital, 200 Elizabeth Street, MBRW 4R-402, Toronto, Ontario, Canada M5G 2C4
| | | |
Collapse
|
103
|
|
104
|
Yi F, Brubaker PL, Jin T. TCF-4 mediates cell type-specific regulation of proglucagon gene expression by beta-catenin and glycogen synthase kinase-3beta. J Biol Chem 2004; 280:1457-64. [PMID: 15525634 DOI: 10.1074/jbc.m411487200] [Citation(s) in RCA: 297] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The proglucagon gene (glu) encodes glucagon, expressed in pancreatic islets, and the insulinotropic hormone GLP-1, expressed in the intestines. These two hormones exert critical and opposite effects on blood glucose homeostasis. An intriguing question that remains to be answered is whether and how glu gene expression is regulated in a cell type-specific manner. We reported previously that the glu gene promoter in gut endocrine cell lines was stimulated by beta-catenin, the major effector of the Wnt signaling pathway, whereas glu mRNA expression and GLP-1 synthesis were activated via inhibition of glycogen synthase kinase-3beta, the major negative modulator of the Wnt pathway (Ni, Z., Anini, Y., Fang, X., Mills, G. B., Brubaker, P. L., & Jin, T. (2003) J. Biol. Chem. 278, 1380-1387). We now show that beta-catenin and the glycogen synthase kinase-3beta inhibitor lithium do not activate glu mRNA or glu promoter expression in pancreatic cell lines. In the intestinal GLUTag cell line, but not in the pancreatic InR1-G9 cell line, the glu promoter G2 enhancer-element was activated by lithium treatment via a TCF-binding motif. TCF-4 is abundantly expressed in the gut but not in pancreatic islets. Furthermore, both TCF-4 and beta-catenin bind to the glu gene promoter, as detected by chromatin immunoprecipitation. Finally, stable introduction of dominant-negative TCF-4 into the GLUTag cell line repressed basal glu mRNA expression and abolished the effect of lithium on glu mRNA expression and GLP-1 synthesis. We have therefore identified a unique mechanism that regulates glu expression in gut endocrine cells only. Tissue-specific expression of TCF factors thus may play a role in the diversity of the Wnt pathway.
Collapse
Affiliation(s)
- Fenghua Yi
- Division of Cell & Molecular Biology, Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, M5G 2M1, Canada
| | | | | |
Collapse
|
105
|
Abstract
Satiation for food comprises the physiological processes that result in the termination of eating. Satiation is evoked by physical and chemical qualities of ingested food, which trigger afferent signals to the brain from multiple sites in the GI tract, including the stomach, the proximal small intestine, the distal small intestine and the colon. The physiological nature of each signal's contribution to satiation and overall control of food intake is likely to vary, depending on the level of the GI tract from which the signal arises. This article is a critical, though non-exhaustive, review of our current understanding of the mechanisms and adaptive value of satiation signals from the stomach and intestine.
Collapse
Affiliation(s)
- Robert C Ritter
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, and Programs in Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520, USA.
| |
Collapse
|
106
|
Lovshin JA, Huang Q, Seaberg R, Brubaker PL, Drucker DJ. Extrahypothalamic expression of the glucagon-like peptide-2 receptor is coupled to reduction of glutamate-induced cell death in cultured hippocampal cells. Endocrinology 2004; 145:3495-506. [PMID: 15059959 DOI: 10.1210/en.2004-0100] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Proglucagon-derived glucagon-like peptide-2 (GLP-2) is liberated in enteroendocrine cells and neurons. GLP-2 regulates energy absorption and epithelial integrity in the gastrointestinal tract, whereas GLP-2 action in the central nervous system remains poorly defined. We identified proglucagon and GLP-2 receptor (GLP-2R) mRNA transcripts by RT-PCR in multiple regions of the developing and adult rat central nervous system. GLP-2R mRNA transcripts were localized by in situ hybridization to the hippocampus, hypothalamus, nucleus of the solitary tract, parabrachial nucleus, supramammillary nucleus, and substantia nigra. The bioactive form of GLP-2, GLP-2-(1-33) was detected by RIA and HPLC analysis in the fetal and adult brainstem and hypothalamus. GLP-2 stimulated increases in cAMP accumulation in postnatal d 8, but not embryonic d 14, dispersed neonatal rat brainstem tissues. The actions of GLP-2 were independent of the GLP-1R antagonist exendin-(9-39), and GLP-2 stimulated cAMP accumulation in hippocampal cell cultures from both wild-type and GLP-1R(-/-) mice. GLP-2 significantly reduced glutamate-induced excitotoxic injury in hippocampal cells via a protein kinase A-dependent pathway, but had no effect on the rate of cell proliferation. These findings establish the presence of a functional GLP-2-GLP-2R axis in the developing rodent brain and demonstrate that GLP-2 exerts cytoprotective actions in cells derived from the central nervous system.
Collapse
Affiliation(s)
- J A Lovshin
- Department of Medicine, University of Toronto, Toronto General Hospital, Banting and Best Diabetes Center, Canada
| | | | | | | | | |
Collapse
|
107
|
Grill HJ, Carmody JS, Amanda Sadacca L, Williams DL, Kaplan JM. Attenuation of lipopolysaccharide anorexia by antagonism of caudal brain stem but not forebrain GLP-1-R. Am J Physiol Regul Integr Comp Physiol 2004; 287:R1190-3. [PMID: 15231492 DOI: 10.1152/ajpregu.00163.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The central glucagon-like peptide-1 (GLP-1) system has been implicated in the control of feeding behavior. Here we explore GLP-1 mediation of the anorexic response to administration of systemic LPS and address the relative importance of caudal brain stem and forebrain GLP-1 receptor (GLP-1-R) for the mediation of the response. Fourth-intracerebroventricular delivery of the GLP-1-R antagonist exendin-(9-39) (10 microg) did not itself affect food intake in the 24 h after injection but significantly attenuated the otherwise robust (approximately 60%) reduction in food intake obtained after LPS (100 microg/kg) treatment. This result highlights a role for caudal brain stem GLP-1-R in the mediation of LPS anorexia but does not rule out the possibility that forebrain receptors also contribute to the response. Forebrain contribution was addressed by delivery of the GLP-1-R antagonist to the third ventricle with the caudal flow of cerebrospinal fluid blocked by occlusion of the cerebral aqueduct. Exendin-(9-39) delivery thus limited to forebrain did not attenuate the anorexic response to LPS. These data suggest that LPS anorexia is mediated, in part, by release of the native peptide acting on GLP-1-R within the caudal brain stem.
Collapse
Affiliation(s)
- Harvey J Grill
- Graduate Groups of Psychology and Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
108
|
D'Alessio DA, Vahl TP. Glucagon-like peptide 1: evolution of an incretin into a treatment for diabetes. Am J Physiol Endocrinol Metab 2004; 286:E882-90. [PMID: 15140755 DOI: 10.1152/ajpendo.00014.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Glucagon-like peptide 1 (GLP-1) is a product of proglucagon that is secreted by specialized intestinal endocrine cells after meals. GLP-1 is insulinotropic and plays a role in the incretin effect, the augmented insulin response observed when glucose is absorbed through the gut. GLP-1 also appears to regulate a number of processes that reduce fluctuations in blood glucose, such as gastric emptying, glucagon secretion, food intake, and possibly glucose production and glucose uptake. These effects, in addition to the stimulation of insulin secretion, suggest a broad role for GLP-1 as a mediator of postprandial glucose homeostasis. Consistent with this role, the most prominent effect of experimental blockade of GLP-1 signaling is an increase in blood glucose. Recent data also suggest that GLP-1 is involved in the regulation of beta-cell mass. Whereas other insulinotropic gastrointestinal hormones are relatively ineffective in stimulating insulin secretion in persons with type 2 diabetes, GLP-1 retains this action and is very effective in lowering blood glucose levels in these patients. There are currently a number of products in development that utilize the GLP-1-signaling system as a mechanism for the treatment of diabetes. These compounds, GLP-1 receptor agonists and agents that retard the metabolism of native GLP-1, have shown promising results in clinical trials. The application of GLP-1 to clinical use fulfills a long-standing interest in adapting endogenous insulinotropic hormones to the treatment of diabetes.
Collapse
Affiliation(s)
- David A D'Alessio
- University of Cincinnati, Division of Endocrinology, ML 0547, Cincinnati, OH 45267, USA.
| | | |
Collapse
|
109
|
Abstract
OBJECTIVE To examine the mechanisms of action, therapeutic potential, and challenges inherent in the use of incretin peptides and dipeptidyl peptidase-IV (DPP-IV) inhibitors for the treatment of type 2 diabetes. RESEARCH DESIGN AND METHODS The scientific literature describing the biological importance of incretin peptides and DPP-IV inhibitors in the control of glucose homeostasis has been reviewed, with an emphasis on mechanisms of action, experimental diabetes, human physiological experiments, and short-term clinical studies in normal and diabetic human subjects. RESULTS Glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) exert important effects on beta-cells to stimulate glucose-dependent insulin secretion. Both peptides also regulate beta-cell proliferation and cytoprotection. GLP-1, but not GIP, inhibits gastric emptying, glucagon secretion, and food intake. The glucose-lowering actions of GLP-1, but not GIP, are preserved in subjects with type 2 diabetes. However, native GLP-1 is rapidly degraded by DPP-IV after parenteral administration; hence, degradation-resistant, long-acting GLP-1 receptor (GLP-1R) agonists are preferable agents for the chronic treatment of human diabetes. Alternatively, inhibition of DPP-IV-mediated incretin degradation represents a complementary therapeutic approach, as orally available DPP-IV inhibitors have been shown to lower glucose in experimental diabetic models and human subjects with type 2 diabetes. CONCLUSIONS GLP-1R agonists and DPP-IV inhibitors have shown promising results in clinical trials for the treatment of type 2 diabetes. The need for daily injections of potentially immunogenic GLP-1-derived peptides and the potential for unanticipated side effects with chronic use of DPP-IV inhibitors will require ongoing scrutiny of the risk-benefit ratio for these new therapies as they are evaluated in the clinic.
Collapse
Affiliation(s)
- Daniel J Drucker
- Department of Medicine, Toronto General Hospital, University of Toronto, Ontario, Canada.
| |
Collapse
|
110
|
Vrang N, Phifer CB, Corkern MM, Berthoud HR. Gastric distension induces c-Fos in medullary GLP-1/2-containing neurons. Am J Physiol Regul Integr Comp Physiol 2003; 285:R470-8. [PMID: 12714357 DOI: 10.1152/ajpregu.00732.2002] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A group of neurons in the caudal nucleus of the solitary tract (NTS) processes preproglucagon to glucagon-like peptides (GLP)-1 and -2, peptides that inhibit food intake when administered intracerebroventricularly. The GLP-1/2-containing neural pathways have been suggested to play a role in taste aversion and nausea because LiCl activates these neurons, and LiCl-induced suppression of food intake can be blocked by the GLP-1 receptor antagonist exendin-9. As many gastrointestinal signals related to both satiety and nausea/illness travel via the vagus nerve to the caudal medulla, the present study assessed the capacity of different types of gastric distension (a purely mechanical stimulus) to activate GLP-1 neurons in the caudal NTS. Gastric balloon distension (1.4 ml/min first 5 min, 0.4 ml/min next 5 min, 9 ml total, held for 60 min) in nonanesthetized, freely moving rats produced 12- and 17-fold increases in c-Fos-expressing NTS neurons when distension was mainly in the fundus or corpus, respectively. Fundus and corpus distension increased the percentage of c-Fos-activated GLP-1 neurons to 21 +/- 9% and 32 +/- 5% compared with 1 +/- 1% with sham distension (P < 0.01). Thus gastric distension that may be considered within the physiological range activates GLP-1/2-containing neurons, suggesting some role in normal satiety. The results support the view that the medullary GLP system is involved in appetite control and is activated by stimuli within the behavioral continuum, ranging from satiety to nausea.
Collapse
|
111
|
Kinzig KP, D'Alessio DA, Herman JP, Sakai RR, Vahl TP, Figueiredo HF, Murphy EK, Seeley RJ, Figueredo HF. CNS glucagon-like peptide-1 receptors mediate endocrine and anxiety responses to interoceptive and psychogenic stressors. J Neurosci 2003; 23:6163-70. [PMID: 12867498 PMCID: PMC6740553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2002] [Revised: 05/01/2003] [Accepted: 05/07/2003] [Indexed: 03/03/2023] Open
Abstract
Responses to stressors serve to adjust physiology and behavior to increase short-term survival at the potential expense of increasing susceptibility to disease over the long term. We show that glucagon-like peptide-1 (7-36) amide (GLP-1) increases levels of the stress-activated hormones ACTH and corticosterone when administered directly into the rat brain and increases levels of anxiety as measured by the elevated plus maze. The endocrine response is preferentially activated by GLP-1 administration in the paraventricular nucleus of the hypothalamus, whereas the anxiety response is preferentially activated by administration in the central nucleus of the amygdala. Furthermore, GLP-1 antagonists block increases in stress hormones associated with the toxin LiCl and both the endocrine and anxiety responses to vertical heights. Although diverse neural circuits must necessarily process disparate stressors, the current data implicate a role for the GLP-1 system as a critical mediator of multiple stress responses.
Collapse
Affiliation(s)
- Kimberly P Kinzig
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Gros R, You X, Baggio LL, Kabir MG, Sadi AM, Mungrue IN, Parker TG, Huang Q, Drucker DJ, Husain M. Cardiac function in mice lacking the glucagon-like peptide-1 receptor. Endocrinology 2003; 144:2242-52. [PMID: 12746281 DOI: 10.1210/en.2003-0007] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) acts via its G protein-coupled receptor (GLP-1R) to regulate blood glucose. Although the GLP-1R is widely expressed in peripheral tissues, including the heart, and exogenous GLP-1 administration increases heart rate and blood pressure in rodents, the physiological importance of GLP-1R action in the cardiovascular system remains unclear. We now show that 2-month-old mice with genetic deletion of the GLP-1R (GLP-1R(-/-)) exhibit reduced resting heart rate and elevated left ventricular (LV) end diastolic pressure compared with CD-1 wild-type controls. At the age of 5 months, echocardiography and histology demonstrate increased LV thickness in GLP-1R(-/-) mice. Although baseline hemodynamic parameters of GLP-1R(-/-) did not differ significantly from those of wild type, GLP-1R(-/-) mice displayed impaired LV contractility and diastolic function after insulin administration. The defective cardiovascular response to insulin was not attributable to a generalized defect in the stress response, because GLP-1R(-/-) mice responded appropriately to insulin with increased c-fos expression in the hypothalamus and increased circulating levels of glucagon and epinephrine. Furthermore, LV contractility after exogenous epinephrine infusion was also reduced in GLP-1R(-/-) mice. These findings provide new evidence implicating an essential role for GLP-1R in the control of murine cardiac structure and function in vivo.
Collapse
Affiliation(s)
- Robert Gros
- Heart and Stroke Richard Lewar Center of Excellence, University of Toronto, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Abstract
Lithium is used as the primary treatment for bipolar disorder but has the common side effects of diuresis and thirst. In the present study, the effects of lithium on water balance responses of male Sprague-Dawley rats to thermal dehydration were examined. Rats ate either unadulterated food or food containing 2 g/kg lithium carbonate for 10 days. Then the control and lithium-treated rats were exposed to either 25 or 37.5 degrees C without food or water for 4 h. The rats were then allowed access to water for 3 h at 25 degrees C or were anesthetized and blood samples were taken. Lithium treatment caused an initial decrease in food intake, a decrease in body weight, and an increase in urine output. Heat exposure caused similar increases in evaporative water loss in control and lithium-treated rats. Heat exposure led to changes in blood indicators of body water status indicative of dehydration, whereas lithium had no effects on blood indicators of body water status. Water intake was increased by both heat exposure and by lithium treatment with the lithium-treated rats being more responsive to the thirst-inducing effects of thermal dehydration. Lithium treatment does not appear to impair water balance responses to heat exposure.
Collapse
Affiliation(s)
- Christopher C Barney
- Department of Biology, Hope College, 35 East 12th Street, Holland, MI 49423, USA.
| | | | | |
Collapse
|
114
|
Yamamoto H, Kishi T, Lee CE, Choi BJ, Fang H, Hollenberg AN, Drucker DJ, Elmquist JK. Glucagon-like peptide-1-responsive catecholamine neurons in the area postrema link peripheral glucagon-like peptide-1 with central autonomic control sites. J Neurosci 2003; 23:2939-46. [PMID: 12684481 PMCID: PMC6742071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2002] [Revised: 01/16/2003] [Accepted: 01/17/2003] [Indexed: 03/01/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1) released from the gut is an incretin that stimulates insulin secretion. GLP-1 is also a brain neuropeptide that has diverse central actions, including inhibition of food and water intake, gastric emptying, and stimulation of neuroendocrine responses characteristic of visceral illness. Both intravenous and intracerebroventricular administration of GLP-1 receptor (GLP-1R) agonists increase blood pressure and heart rate and induce Fos-like immunoreactivity (Fos-IR) in autonomic regulatory sites in the rat brain. The area postrema (AP) is a circumventricular organ and has been implicated in processing visceral sensory information. GLP-1Rs are densely expressed in the AP, and peripheral GLP-1R agonists induce Fos-IR in AP neurons to a greater degree than intracerebroventricular administration. Because the AP lacks a blood-brain barrier, we hypothesized that the AP is a key site for peripheral GLP-1 to activate central autonomic regulatory sites. In this study, we found that many tyrosine hydroxylase (TH)-containing neurons in the AP expressed GLP-1Rs and Fos-IR after intravenous GLP-1R agonists. Furthermore, intravenous but not intracerebroventricular GLP-1R agonists induced TH transcription in the AP in vivo. In addition, GLP-1R agonists directly activated TH transcription in an in vitro cell system. Finally, we found that GLP-1-responsive TH neurons in the AP innervate autonomic control sites, including the parabrachial nucleus, nucleus of solitary tract, and ventrolateral medulla. These findings suggest that catecholamine neurons in the AP link peripheral GLP-1 and central autonomic control sites that mediate the diverse neuroendocrine and autonomic actions of peripheral GLP-1.
Collapse
Affiliation(s)
- Hiroshi Yamamoto
- Department of Medicine and Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Inoue K, Valdez GR, Reyes TM, Reinhardt LE, Tabarin A, Rivier J, Vale WW, Sawchenko PE, Koob GF, Zorrilla EP. Human urocortin II, a selective agonist for the type 2 corticotropin-releasing factor receptor, decreases feeding and drinking in the rat. J Pharmacol Exp Ther 2003; 305:385-93. [PMID: 12649393 DOI: 10.1124/jpet.102.047712] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Corticotropin-releasing factor (CRF) has been hypothesized to modulate consummatory behavior through the Type 2 CRF (CRF(2)) receptor. However, behavioral functions subserved by the CRF(2) receptor remain poorly understood. Recently, human urocortin II (hUcn II), a selective CRF(2) receptor agonist, was identified. To study the effects of this neuropeptide on ingestive behavior, we examined the effects of centrally infused hUcn II (i.c.v. 0, 0.01, 0.1, 1.0, 10.0 micro g) on the microstructure of nose-poke responding for food and water in nondeprived, male rats. Malaise-inducing properties of the peptide were monitored using conditioned taste aversion (CTA) testing. To identify potential sites of action, central induction of Fos protein expression was examined. hUcn II dose dependently reduced the quantity and duration of responding for food and water at doses lower (0.01-1.0 micro g) than that forming a CTA (10 micro g). Effects were most evident during hours 4 to 6 of the dark cycle. Meal pattern analysis showed that hUcn II potently (0.1 micro g) increased the satiating value of food. Rats ate and drank smaller and shorter meals without changing meal frequency. Rats also ate more slowly. hUcn II induced Fos in regions involved in visceral sensory processing and autonomic/neuroendocrine regulation and resembling those activated by appetite suppressants. hUcn II is a promising neuropeptide for investigating the role of the CRF(2) receptor in ingestive behavior.
Collapse
Affiliation(s)
- Koki Inoue
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Abstract
Eating a meal is a mechanical process involving autonomous pathways that relay sensory and motor information between the whole length of the digestive tract and the central nervous system. This circuitry is able to initiate and terminate the meal, primarily by gut-brainstem-gut reflex arcs, and is independent of the caloric content of a meal. However, as part of our ability to regulate body weight over time, we must be able to modulate the amount of energy that we take in as food and the amount of energy that we expend. Thus, the gut-brainstem axis must be coupled to other systems that take account of factors such as food availability and preference, changing energy requirements and our social habits. Here, we review the importance of the brainstem nucleus of the tractus solitarius as a site of integration and the routes by which it connects the gut-brainstem axis with regulatory neuronal and endocrine networks that allow for strict body weight management.
Collapse
Affiliation(s)
- Simon M Luckman
- School of Biological Sciences, University of Manchester, 1.124 Stopford Building, Oxford Road, UK.
| | | |
Collapse
|
117
|
Ni Z, Anini Y, Fang X, Mills G, Brubaker PL, Jin T. Transcriptional activation of the proglucagon gene by lithium and beta-catenin in intestinal endocrine L cells. J Biol Chem 2003; 278:1380-7. [PMID: 12421827 DOI: 10.1074/jbc.m206006200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proglucagon gene encodes several peptide hormones that regulate blood glucose homeostasis, growth of the small intestine, and satiety. Among them, glucagon-like peptide 1 (GLP-1) lowers blood glucose levels in patients with diabetes and inhibits eating and drinking in fasted rats. Although proglucagon transcription and GLP-1 synthesis were shown to be activated by forskolin and other protein kinase A (PKA) activators, deleting or mutating the cAMP-response element (CRE) only moderately attenuates the proglucagon gene promoter in response to PKA activation. Therefore, PKA may activate proglucagon transcription via a mechanism independent of the CRE motif. Recently, PKA was shown to phosphorylate and inactivate GSK-3beta, a key mediator in the Wnt signaling pathway. We show here that lithium, an inhibitor of GSK-3beta, activates proglucagon gene transcription and stimulates GLP-1 synthesis in an intestinal endocrine L cell line, GLUTag. The activation was also observed in primary fetal rat intestinal cell (FRIC) cultures, but not in a pancreatic A cell line. Co-transfection of beta-catenin, a downstream effector of GSK-3beta activities, activated the proglucagon gene promoter without a CRE. Furthermore, forskolin and 8-Br-cAMP phosphorylated GSK-3beta at serine 9 in intestinal proglucagon-producing cells, and both lithium and forskolin induced the accumulation of free beta-catenin in these cell lines. These observations indicate that the proglucagon gene is among the targets of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Zuyao Ni
- Division of Cell & Molecular Biology, Toronto General Research Institute, University Health Network, Ontario M5G 2M1, Canada
| | | | | | | | | | | |
Collapse
|
118
|
Kinzig KP, D'Alessio DA, Seeley RJ. The diverse roles of specific GLP-1 receptors in the control of food intake and the response to visceral illness. J Neurosci 2002; 22:10470-6. [PMID: 12451146 PMCID: PMC6758755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2002] [Revised: 09/18/2002] [Accepted: 09/18/2002] [Indexed: 02/27/2023] Open
Abstract
Intracerebroventricular administration of glucagon-like peptide-1 (7-36) amide (GLP-1) reduces food intake and produces symptoms of visceral illness, such as a conditioned taste aversion (CTA). The central hypothesis of the present work is that separate populations of GLP-1 receptors mediate the anorexia and taste aversion associated with GLP-1 administration. To test this hypothesis, we first compared the ability of various doses of GLP-1 to induce anorexia or CTA when administered into either the lateral or fourth ventricle. Lateral and fourth ventricular GLP-1 resulted in reduction of food intake at similar doses, whereas only lateral ventricular GLP-1 resulted in a CTA. Such data indicate that both hypothalamic and caudal brainstem GLP-1 receptors are likely to participate in the ability of GLP-1 to reduce food intake. We also hypothesized that the site that must mediate the ability of GLP-1 to induce visceral illness is in the central nucleus of the amygdala (CeA). Administration of 0.2 or 1.0 microg of GLP-1 (7-36) but not the inactive GLP-1 (9-36) resulted in a strong CTA with no accompanying anorexia. In addition, bilateral CeA administration of 2.5 microg of a GLP-1 receptor antagonist before intraperitoneal administration of the toxin lithium chloride resulted in a diminished CTA. Together, these data indicate that separate GLP-1 receptor populations mediate the multiple responses to GLP-1. These results indicate that GLP-1 is a flexible system that can be activated under various circumstances to alter the ingestion of nutrients and/or produce other visceral illness responses, depending on the ascending pathways of the GLP-1 system that are recruited.
Collapse
Affiliation(s)
- Kimberly P Kinzig
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0559, USA.
| | | | | |
Collapse
|
119
|
Abstract
Feeding provides substrate for energy metabolism, which is vital to the survival of every living animal and therefore is subject to intense regulation by brain homeostatic and hedonic systems. Over the last decade, our understanding of the circuits and molecules involved in this process has changed dramatically, in large part due to the availability of animal models with genetic lesions. In this review, we examine the role played in homeostatic regulation of feeding by systemic mediators such as leptin and ghrelin, which act on brain systems utilizing neuropeptide Y, agouti-related peptide, melanocortins, orexins, and melanin concentrating hormone, among other mediators. We also examine the mechanisms for taste and reward systems that provide food with its intrinsically reinforcing properties and explore the links between the homeostatic and hedonic systems that ensure intake of adequate nutrition.
Collapse
Affiliation(s)
- Clifford B Saper
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | | | |
Collapse
|
120
|
Rinaman L, Rothe EE. GLP-1 receptor signaling contributes to anorexigenic effect of centrally administered oxytocin in rats. Am J Physiol Regul Integr Comp Physiol 2002; 283:R99-106. [PMID: 12069935 DOI: 10.1152/ajpregu.00008.2002] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study examined possible interactions between central glucagon-like peptide-1 (GLP-1) and oxytocin (OT) neural systems by determining whether blockade of GLP-1 receptors attenuates OT-induced anorexia and vice versa. Male rats were acclimated to daily 4-h food access. In the first experiment, rats were infused centrally with GLP-1 receptor antagonist or vehicle, followed by an anorexigenic dose of synthetic OT. Access to food began 20 min later. Cumulative food intake was measured every 30 min for 4 h. In the second experiment, rats were infused with OT receptor blocker or vehicle, followed by synthetic GLP-1 [(7-36) amide]. Subsequent food intake was monitored as before. The anorexigenic effect of OT was eliminated in rats pretreated with the GLP-1 receptor antagonist. Conversely, GLP-1-induced anorexia was not affected by blockade of OT receptors. In a separate immunocytochemical study, OT-positive terminals were found closely apposed to GLP-1-positive perikarya, and central infusion of OT activated c-Fos expression in GLP-1 neurons. These findings implicate endogenous GLP-1 receptor signaling as an important downstream mediator of anorexia in rats after activation of central OT neural pathways.
Collapse
Affiliation(s)
- Linda Rinaman
- Department of Neuroscience, University of Pittsburgh, 446 Crawford Hall, Pittsburgh, PA 15260, USA.
| | | |
Collapse
|
121
|
Yamamoto H, Lee CE, Marcus JN, Williams TD, Overton JM, Lopez ME, Hollenberg AN, Baggio L, Saper CB, Drucker DJ, Elmquist JK. Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons. J Clin Invest 2002. [DOI: 10.1172/jci0215595] [Citation(s) in RCA: 370] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
122
|
Lawrence CB, Ellacott KLJ, Luckman SM. PRL-releasing peptide reduces food intake and may mediate satiety signaling. Endocrinology 2002; 143:360-7. [PMID: 11796487 DOI: 10.1210/endo.143.2.8609] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PRL-releasing peptide (PrRP) administered centrally inhibits food intake and body weight gain. To elucidate the role of PrRP, its actions were compared with those of a homeostatic regulator of food intake, the satiety factor, cholecystokinin (CCK), and a nonhomeostatic regulator, lithium chloride (LiCl), which reduces food intake due to visceral illness. Immunohistochemical analysis of the protein product of the c-fos gene, showed that central administration of PrRP activated some areas of the brain in common with both CCK and LiCl administered peripherally. However, PrRP was more similar to CCK than to LiCl in its behavioral effects. PrRP did not cause conditioned taste aversion, but instead enhanced the normal behavioral satiety sequence. Furthermore, brainstem PrRP neurons were strongly activated by CCK, but not by LiCl. These data provide evidence that pathways from the gut to the brain that are involved in signaling satiety and visceral illness may have some independent components and suggest that PrRP may mediate some of the central satiating actions of CCK.
Collapse
Affiliation(s)
- Catherine B Lawrence
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | |
Collapse
|
123
|
Larsen PJ, Fledelius C, Knudsen LB, Tang-Christensen M. Systemic administration of the long-acting GLP-1 derivative NN2211 induces lasting and reversible weight loss in both normal and obese rats. Diabetes 2001; 50:2530-9. [PMID: 11679431 DOI: 10.2337/diabetes.50.11.2530] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Postprandial release of the incretin glucagon-like peptide-1 (GLP-1) has been suggested to act as an endogenous satiety factor in humans. In rats, however, the evidence for this is equivocal probably because of very high endogenous activity of the GLP-1 degrading enzyme dipeptidyl peptidase-IV. In the present study, we show that intravenously administered GLP-1 (100 and 500 microg/kg) decreases food intake for 60 min in hungry rats. This effect is pharmacologically specific as it is inhibited by previous administration of 100 microg/kg exendin(9-39), and biologically inactive GLP-1(1-37) had no effect on food intake when administered alone (500 microg/kg). Acute intravenous administration of GLP-1 also caused dose-dependent inhibition of water intake, and this effect was equally well abolished by previous administration of exendin(9-39). A profound increase in diuresis was observed after intravenous administration of both 100 and 500 microg/kg GLP-1. Using a novel long-acting injectable GLP-1 derivative, NN2211, the acute and subchronic anorectic potentials of GLP-1 and derivatives were studied in both normal rats and rats made obese by neonatal monosodium glutamate treatment (MSG). We showed previously that MSG-treated animals are insensitive to the anorectic effects of centrally administered GLP-1(7-37). Both normal and MSG-lesioned rats were randomly assigned to groups to receive NN2211 or vehicle. A single bolus injection of NN2211 caused profound dose-dependent inhibition of overnight food and water intake and increased diuresis in both normal and MSG-treated rats. Subchronic multiple dosing of NN2211 (200 microg/kg) twice daily for 10 days to normal and MSG-treated rats caused profound inhibition of food intake. The marked decrease in food intake was accompanied by reduced body weight in both groups, which at its lowest stabilized at approximately 85% of initial body weight. Initial excursions in water intake and diuresis were transient as they were normalized within a few days of treatment. Lowered plasma levels of triglycerides and leptin were observed during NN2211 treatment in both normal and MSG-treated obese rats. In a subsequent study, a 7-day NN2211 treatment period of normal rats ended with measurement of energy expenditure (EE) and body composition determined by indirect calorimetry and dual energy X-ray absorptiometry, respectively. Compared with vehicle-treated rats, NN2211 and pair-fed rats decreased their total EE corresponding to the observed weight loss, such that EE per weight unit of lean body mass was unaffected. Despite its initial impact on body fluid balance, NN2211 had no debilitating effects on body water homeostasis as confirmed by analysis of body composition, plasma electrolytes, and hematocrit. This is in contrast to pair-fed animals, which displayed hemoconcentration and tendency toward increased percentage of fat mass. The present series of experiments show that GLP-1 is fully capable of inhibiting food intake in rats via a peripherally accessible site. The loss in body weight is accompanied by decreased levels of circulating leptin indicative of loss of body fat. The profound weight loss caused by NN2211 treatment was without detrimental effects on body water homeostasis. Thus, long-acting GLP-1 derivatives may prove efficient as weight-reducing therapeutic agents for overweight patients with type 2 diabetes.
Collapse
Affiliation(s)
- P J Larsen
- Laboratory of Obesity Research, Center for Clinical and Basic Research, Ballerup, Denmark.
| | | | | | | |
Collapse
|
124
|
Billig I, Yates BJ, Rinaman L. Plasma hormone levels and central c-Fos expression in ferrets after systemic administration of cholecystokinin. Am J Physiol Regul Integr Comp Physiol 2001; 281:R1243-55. [PMID: 11557633 DOI: 10.1152/ajpregu.2001.281.4.r1243] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Posterior pituitary hormone secretion and central neural expression of the immediate-early gene product c-Fos was examined in adult ferrets after intravenous administration of CCK octapeptide. Pharmacological doses of CCK (1, 5, 10, or 50 microg/kg) did not induce emesis, but elicited behavioral signs of nausea and dose-related increases in plasma vasopressin (AVP) levels without significant increases in plasma oxytocin (OT) levels. CCK activated neuronal c-Fos expression in several brain stem viscerosensory regions, including a dose-related activation of neurons in the dorsal vagal complex (DVC). Activated brain stem neurons included catecholaminergic and glucagon-like peptide-1-positive cells in the DVC and ventrolateral medulla. In the forebrain, activated neurons were prevalent in the paraventricular and supraoptic nuclei of the hypothalamus and also were observed in the central nucleus of the amygdala and bed nucleus of the stria terminalis. Activated hypothalamic neurons included cells that were immunoreactive for AVP, OT, and corticotropin-releasing factor. Comparable patterns of brain stem and forebrain c-Fos activation were observed in ferrets after intraperitoneal injection of lithium chloride (LiCl; 86 mg/kg), a classic emetic agent. However, LiCl activated more neurons in the area postrema and fewer neurons in the nucleus of the solitary tract compared with CCK. Together with results from previous studies in rodents, our findings support the view that nauseogenic treatments activate similar central neural circuits in emetic and nonemetic species, despite differences in treatment-induced emesis and pituitary hormone secretion.
Collapse
Affiliation(s)
- I Billig
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | | | | |
Collapse
|
125
|
Lovshin J, Estall J, Yusta B, Brown TJ, Drucker DJ. Glucagon-like peptide (GLP)-2 action in the murine central nervous system is enhanced by elimination of GLP-1 receptor signaling. J Biol Chem 2001; 276:21489-99. [PMID: 11262390 DOI: 10.1074/jbc.m009382200] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Glucagon-like peptide-2 (GLP-2) regulates energy homeostasis via effects on nutrient absorption and maintenance of gut mucosal epithelial integrity. The biological actions of GLP-2 in the central nervous system (CNS) remain poorly understood. We studied the sites of endogenous GLP-2 receptor (GLP-2R) expression, the localization of transgenic LacZ expression under the control of the mouse GLP-2R promoter, and the actions of GLP-2 in the murine CNS. GLP-2R expression was detected in multiple extrahypothalamic regions of the mouse and rat CNS, including cell groups in the cerebellum, medulla, amygdala, hippocampus, dentate gyrus, pons, cerebral cortex, and pituitary. A 1.5-kilobase fragment of the mouse GLP-2R promoter directed LacZ expression to the gastrointestinal tract and CNS regions in the mouse that exhibited endogenous GLP-2R expression, including the cerebellum, amygdala, hippocampus, and dentate gyrus. Intracerebroventricular injection of GLP-2 significantly inhibited food intake during dark-phase feeding in wild-type mice. Disruption of glucagon-like peptide-1 receptor (GLP-1R) signaling with the antagonist exendin-(9-39) in wild-type mice or genetically in GLP-1R(-)/- mice significantly potentiated the anorectic actions of GLP-2. These findings illustrate that CNS GLP-2R expression is not restricted to hypothalamic nuclei and demonstrate that the anorectic effects of GLP-2 are transient and modulated by the presence or absence of GLP-1R signaling in vivo.
Collapse
Affiliation(s)
- J Lovshin
- Department of Medicine, Banting and Best Diabetes Centre, Toronto General Hospital, Toronto, Ontario M5G 2C4, Canada
| | | | | | | | | |
Collapse
|
126
|
Abstract
The search for anti-obesity agents has become one of the most exciting areas in drug discovery. Subsequent to an enormous increase in the number of possible molecular targets, the focus has shifted from target identification to target validation. Because important biological functions such as the regulation of energy intake and expenditure are controlled by complex systems, an improved understanding of pathophysiology is a prerequisite for the selection of successful development candidates for the treatment of obesity. Although most of the information on the regulation of energy balance has been obtained from rodents, various monogenic forms of human obesity provide clinical proof of concept for some of these mechanisms. However, it is still not known which are the most promising clinical approaches to lowering body weight and subsequently reducing morbidity and mortality.
Collapse
Affiliation(s)
- M Chiesi
- Cardiovascular and Metabolic Diseases Research, Novartis Pharma AG, CH 4002 Basel, Switzerland
| | | | | |
Collapse
|
127
|
Abstract
The glucagon-like peptides GLP-1 and GLP-2 are produced in enteroendocrine L cells of the small and large intestine and secreted in a nutrient-dependent manner. GLP-1 regulates nutrient assimilation via inhibition of gastric emptying and food intake. GLP-1 controls blood glucose following nutrient absorption via stimulation of glucose-dependent insulin secretion, insulin biosynthesis, islet proliferation, and neogenesis and inhibition of glucagon secretion. Experiments using GLP-1 antagonists and GLP-1 receptor-/- mice indicate that the glucoregulatory actions of GLP-1 are essential for glucose homeostasis. In the central nervous system, GLP-1 regulates hypothalamic-pituitary function and GLP-1-activated circuits mediate the CNS response to aversive stimulation. GLP-2 maintains the integrity of the intestinal mucosal epithelium via effects on gastric motility and nutrient absorption, crypt cell proliferation and apoptosis, and intestinal permeability. Both GLP-1 and GLP-2 are rapidly inactivated in the circulation as a consequence of amino-terminal cleavage by the enzyme dipeptidyl peptidase IV (DP IV). The actions of these peptides on nutrient absorption and energy homeostasis and the efficacy of GLP-1 and GLP-2 in animal models of diabetes and intestinal diseases, respectively, suggest that analogs of these peptides may be clinically useful for the treatment of human disease.
Collapse
Affiliation(s)
- D J Drucker
- Department of Medicine, Toronto General Hospital, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario M5G 2C4 Canada.
| |
Collapse
|
128
|
Holst JJ. Gut hormones as pharmaceuticals. From enteroglucagon to GLP-1 and GLP-2. REGULATORY PEPTIDES 2000; 93:45-51. [PMID: 11033052 DOI: 10.1016/s0167-0115(00)00185-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- J J Holst
- University of Copenhagen, The Panum Institute, Department of Medical Physiology, Blegdamsvej 3, DK 2200, Copenhagen N, Denmark.
| |
Collapse
|
129
|
Cubero I, Puerto A. Lateral parabrachial lesions impair intraperitoneal but not intraventricular methylscopolamine-induced taste aversion learning. Brain Res 2000; 871:113-9. [PMID: 10882790 DOI: 10.1016/s0006-8993(00)02453-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The role of the lateral parabrachial area (lPB) in the acquisition of a delayed taste aversion learning task (TAL) was examined by delivering the peripherally acting aversive compound, methylscopolamine (MSP), through two different routes, intraperitoneal and intraventricular. Consistent with previous anatomical, behavioral and molecular work, electrolytic lesions centered at the lPB did impair TAL when the MSP was injected intraperitoneally. However, lPB-lesioned animals exhibited intact learning capacities when MSP was administered intraventricularly. These results are interpreted in terms of the lPB as a critical anatomical relay involved in bottom-up visceral processing of aversive stimuli and also in relation to the relevance of forebrain structures in TAL.
Collapse
Affiliation(s)
- I Cubero
- Departamento de Psicología Experimental y Psicobiología, Universidad de Almería, 04120, Almería, Spain.
| | | |
Collapse
|
130
|
Lawrence CB, Celsi F, Brennand J, Luckman SM. Alternative role for prolactin-releasing peptide in the regulation of food intake. Nat Neurosci 2000; 3:645-6. [PMID: 10862694 DOI: 10.1038/76597] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prolactin-releasing peptide (PrRP) is a peptide ligand for the human orphan G-protein-coupled receptor hGR3/GPR10 and causes the secretion of prolactin from anterior pituitary cells. However, the lack of immunoreactive staining for PrRP in the external layer of the median eminence seems to rule out this peptide as a classical hypophysiotropic hormone and, furthermore, PrRP is less effective than another inducer of prolactin secretion, thyrotropin-releasing hormone, both in vitro and in vivo. Here we show a reduction in the expression of PrRP mRNA during lactation and fasting and an acute effect of PrRP on food intake and body weight, supporting the hypothesis of an alternative role for the peptide.
Collapse
Affiliation(s)
- C B Lawrence
- School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PT UK
| | | | | | | |
Collapse
|
131
|
Tang-Christensen M, Larsen PJ, Thulesen J, Rømer J, Vrang N. The proglucagon-derived peptide, glucagon-like peptide-2, is a neurotransmitter involved in the regulation of food intake. Nat Med 2000; 6:802-7. [PMID: 10888930 DOI: 10.1038/77535] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The dorsomedial hypothalamic nucleus harbors leptin sensitive neurons and is intrinsically connected to hypothalamic nuclei involved in feeding behavior. However, it also receives ascending input from the visceroceptive neurons of the brainstem. We have identified a unique glucagon-like-peptide-2 containing neuronal pathway connecting the nucleus of the solitary tract with the dorsomedial hypothalamic nucleus. A glucagon-like-peptide-2 fiber plexus targets neurons expressing its receptor within the dorsomedial hypothalamic nucleus. Pharmacological and behavioral studies confirmed that glucagon-like-peptide-2 signaling is a specific transmitter inhibiting rodent feeding behavior and with potential long-term effects on body weight homeostasis. The glucagon-like-peptide-1 receptor antagonist, Exendin (9-39) is also a functional antagonist of centrally applied glucagon-like-peptide-2.
Collapse
Affiliation(s)
- M Tang-Christensen
- Department of Medical Anatomy, Section B, The Panum Institute, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|