101
|
Nguyen T, Mao Y, Sutherland T, Gorrie CA. Neural progenitor cells but not astrocytes respond distally to thoracic spinal cord injury in rat models. Neural Regen Res 2017; 12:1885-1894. [PMID: 29239336 PMCID: PMC5745844 DOI: 10.4103/1673-5374.219051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a detrimental condition that causes loss of sensory and motor function in an individual. Many complex secondary injury cascades occur after SCI and they offer great potential for therapeutic targeting. In this study, we investigated the response of endogenous neural progenitor cells, astrocytes, and microglia to a localized thoracic SCI throughout the neuroaxis. Twenty-five adult female Sprague-Dawley rats underwent mild-contusion thoracic SCI (n = 9), sham surgery (n = 8), or no surgery (n = 8). Spinal cord and brain tissues were fixed and cut at six regions of the neuroaxis. Immunohistochemistry showed increased reactivity of neural progenitor cell marker nestin in the central canal at all levels of the spinal cord. Increased reactivity of astrocyte-specific marker glial fibrillary acidic protein was found only at the lesion epicenter. The number of activated microglia was significantly increased at the lesion site, and activated microglia extended to the lumbar enlargement. Phagocytic microglia and macrophages were significantly increased only at the lesion site. There were no changes in nestin, glial fibrillary acidic protein, microglia and macrophage response in the third ventricle of rats subjected to mild-contusion thoracic SCI compared to the sham surgery or no surgery. These findings indicate that neural progenitor cells, astrocytes and microglia respond differently to a localized SCI, presumably due to differences in inflammatory signaling. These different cellular responses may have implications in the way that neural progenitor cells can be manipulated for neuroregeneration after SCI. This needs to be further investigated.
Collapse
Affiliation(s)
- Tara Nguyen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Yilin Mao
- School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Theresa Sutherland
- School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Catherine Anne Gorrie
- School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia
| |
Collapse
|
102
|
Hamilton LK, Fernandes KJL. Neural stem cells and adult brain fatty acid metabolism: Lessons from the 3xTg model of Alzheimer's disease. Biol Cell 2017; 110:6-25. [DOI: 10.1111/boc.201700037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/24/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Laura K. Hamilton
- Department of Neurosciences; Faculty of Medicine; University of Montreal; Montreal Canada
- The Research Center of the University of Montreal Hospital (CRCHUM); Montreal Canada
| | - Karl J. L. Fernandes
- Department of Neurosciences; Faculty of Medicine; University of Montreal; Montreal Canada
- The Research Center of the University of Montreal Hospital (CRCHUM); Montreal Canada
| |
Collapse
|
103
|
McGrath EL, Gao J, Kuo YF, Dunn TJ, Ray MJ, Dineley KT, Cunningham KA, Kaphalia BS, Wu P. Spatial and Sex-Dependent Responses of Adult Endogenous Neural Stem Cells to Alcohol Consumption. Stem Cell Reports 2017; 9:1916-1930. [PMID: 29129682 PMCID: PMC5785672 DOI: 10.1016/j.stemcr.2017.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/12/2022] Open
Abstract
Chronic alcohol abuse results in alcohol-related neurodegeneration, and critical gaps in our knowledge hinder therapeutic development. Neural stem cells (NSCs) are a subpopulation of cells within the adult brain that contribute to brain maintenance and recovery. While it is known that alcohol alters NSCs, little is known about how NSC response to alcohol is related to sex, brain region, and stage of differentiation. Understanding these relationships will aid in therapeutic development. Here, we used an inducible transgenic mouse model to track the stages of differentiation of adult endogenous NSCs and observed distinct NSC behaviors in three brain regions (subventricular zone, subgranular zone, and tanycyte layer) after long-term alcohol consumption. Particularly, chronic alcohol consumption profoundly affected the survival of NSCs in the subventricular zone and altered NSC differentiation in all three regions. Significant differences between male and female mice were further discovered. Alcohol alters neural stem cell differentiation in a region-dependent manner Sex plays a role in neural stem cell response to alcohol consumption Sex contributes to regional differences of neural stem cell response to alcohol
Collapse
Affiliation(s)
- Erica L McGrath
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch at Galveston, Galveston 77555, USA; Institute for Translational Sciences, University of Texas Medical Branch at Galveston, Galveston 77555, USA; Center for Addiction Research, University of Texas Medical Branch at Galveston, Galveston 77555, USA; Department of Neurology, Johns Hopkins, Baltimore 21287, USA
| | - Junling Gao
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch at Galveston, Galveston 77555, USA
| | - Yong-Fang Kuo
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch at Galveston, Galveston 77555, USA
| | - Tiffany J Dunn
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch at Galveston, Galveston 77555, USA
| | - Moniqua J Ray
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch at Galveston, Galveston 77555, USA
| | - Kelly T Dineley
- Center for Addiction Research, University of Texas Medical Branch at Galveston, Galveston 77555, USA; Department of Neurology, University of Texas Medical Branch at Galveston, Galveston 77555, USA
| | - Kathryn A Cunningham
- Center for Addiction Research, University of Texas Medical Branch at Galveston, Galveston 77555, USA; Department of Pharmacology and Toxicology, University of Texas Medical Branch at Galveston, Galveston 77555, USA
| | - Bhupendra S Kaphalia
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston 77555, USA
| | - Ping Wu
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch at Galveston, Galveston 77555, USA; Center for Addiction Research, University of Texas Medical Branch at Galveston, Galveston 77555, USA; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
104
|
Lévy F, Batailler M, Meurisse M, Migaud M. Adult Neurogenesis in Sheep: Characterization and Contribution to Reproduction and Behavior. Front Neurosci 2017; 11:570. [PMID: 29109674 PMCID: PMC5660097 DOI: 10.3389/fnins.2017.00570] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/28/2017] [Indexed: 01/18/2023] Open
Abstract
Sheep have many advantages to study neurogenesis in comparison to the well-known rodent models. Their development and life expectancy are relatively long and they possess a gyrencephalic brain. Sheep are also seasonal breeders, a characteristic that allows studying the involvement of hypothalamic neurogenesis in the control of seasonal reproduction. Sheep are also able to individually recognize their conspecifics and develop selective and lasting bonds. Adult olfactory neurogenesis could be adapted to social behavior by supporting recognition of conspecifics. The present review reveals the distinctive features of the hippocampal, olfactory, and hypothalamic neurogenesis in sheep. In particular, the organization of the subventricular zone and the dynamic of neuronal maturation differs from that of rodents. In addition, we show that various physiological conditions, such as seasonal reproduction, gestation, and lactation differently modulate these three neurogenic niches. Last, we discuss recent evidence indicating that hypothalamic neurogenesis acts as an important regulator of the seasonal control of reproduction and that olfactory neurogenesis could be involved in odor processing in the context of maternal behavior.
Collapse
Affiliation(s)
- Frederic Lévy
- Institut National de la Recherche Agronomique, UMR85, Centre National de la Recherche Scientifique, UMR7247, Université F. Rabelais, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Martine Batailler
- Institut National de la Recherche Agronomique, UMR85, Centre National de la Recherche Scientifique, UMR7247, Université F. Rabelais, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Maryse Meurisse
- Institut National de la Recherche Agronomique, UMR85, Centre National de la Recherche Scientifique, UMR7247, Université F. Rabelais, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Martine Migaud
- Institut National de la Recherche Agronomique, UMR85, Centre National de la Recherche Scientifique, UMR7247, Université F. Rabelais, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| |
Collapse
|
105
|
Abstract
A hypercaloric diet combined with a sedentary lifestyle is a major risk factor for the development of insulin resistance, type 2 diabetes mellitus (T2DM) and associated comorbidities. Standard treatment for T2DM begins with lifestyle modification, and includes oral medications and insulin therapy to compensate for progressive β-cell failure. However, current pharmaceutical options for T2DM are limited in that they do not maintain stable, durable glucose control without the need for treatment intensification. Furthermore, each medication is associated with adverse effects, which range from hypoglycaemia to weight gain or bone loss. Unexpectedly, fibroblast growth factor 1 (FGF1) and its low mitogenic variants have emerged as potentially safe candidates for restoring euglycaemia, without causing overt adverse effects. In particular, a single peripheral injection of FGF1 can lower glucose to normal levels within hours, without the risk of hypoglycaemia. Similarly, a single intracerebroventricular injection of FGF1 can induce long-lasting remission of the diabetic phenotype. This Review discusses potential mechanisms by which centrally administered FGF1 improves central glucose-sensing and peripheral glucose uptake in a sustained manner. Specifically, we explore the potential crosstalk between FGF1 and glucose-sensing neuronal circuits, hypothalamic neural stem cells and synaptic plasticity. Finally, we highlight therapeutic considerations of FGF1 and compare its metabolic actions with FGF15 (rodents), FGF19 (humans) and FGF21.
Collapse
Affiliation(s)
- Emanuel Gasser
- Gene Expression Laboratory, Salk Institute for Biological Studies
| | - Christopher P Moutos
- Gene Expression Laboratory, Salk Institute for Biological Studies
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
- College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
106
|
Lazutkaite G, Soldà A, Lossow K, Meyerhof W, Dale N. Amino acid sensing in hypothalamic tanycytes via umami taste receptors. Mol Metab 2017; 6:1480-1492. [PMID: 29107294 PMCID: PMC5681271 DOI: 10.1016/j.molmet.2017.08.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022] Open
Abstract
Objective Hypothalamic tanycytes are glial cells that line the wall of the third ventricle and contact the cerebrospinal fluid (CSF). While they are known to detect glucose in the CSF we now show that tanycytes also detect amino acids, important nutrients that signal satiety. Methods Ca2+ imaging and ATP biosensing were used to detect tanycyte responses to l-amino acids. The downstream pathway of the responses was determined using ATP receptor antagonists and channel blockers. The receptors were characterized using mice lacking the Tas1r1 gene, as well as an mGluR4 receptor antagonist. Results Amino acids such as Arg, Lys, and Ala evoke Ca2+ signals in tanycytes and evoke the release of ATP via pannexin 1 and CalHM1, which amplifies the signal via a P2 receptor dependent mechanism. Tanycytes from mice lacking the Tas1r1 gene had diminished responses to lysine and arginine but not alanine. Antagonists of mGluR4 greatly reduced the responses to alanine and lysine. Conclusion Two receptors previously implicated in taste cells, the Tas1r1/Tas1r3 heterodimer and mGluR4, contribute to the detection of a range of amino acids by tanycytes in CSF. Hypothalamic tanycytes can detect amino acids in cerebrospinal fluid. The mechanism is taste receptor-dependent. Tas1r1/Tas1r3 mediates responses to l-arginine and l-lysine. mGluR4 mediates responses to l-alanine and partially those of l-lysine. ATP release from tanycytes evoked by amino acids reaches into the arcuate nucleus.
Collapse
Affiliation(s)
- Greta Lazutkaite
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Alice Soldà
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Kristina Lossow
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Wolfgang Meyerhof
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Nicholas Dale
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
107
|
Xie Y, Dorsky RI. Development of the hypothalamus: conservation, modification and innovation. Development 2017; 144:1588-1599. [PMID: 28465334 DOI: 10.1242/dev.139055] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hypothalamus, which regulates fundamental aspects of physiological homeostasis and behavior, is a brain region that exhibits highly conserved anatomy across vertebrate species. Its development involves conserved basic mechanisms of induction and patterning, combined with a more plastic process of neuronal fate specification, to produce brain circuits that mediate physiology and behavior according to the needs of each species. Here, we review the factors involved in the induction, patterning and neuronal differentiation of the hypothalamus, highlighting recent evidence that illustrates how changes in Wnt/β-catenin signaling during development may lead to species-specific form and function of this important brain structure.
Collapse
Affiliation(s)
- Yuanyuan Xie
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Richard I Dorsky
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
108
|
Mohr MA, DonCarlos LL, Sisk CL. Inhibiting Production of New Brain Cells during Puberty or Adulthood Blunts the Hormonally Induced Surge of Luteinizing Hormone in Female Rats. eNeuro 2017; 4:ENEURO.0133-17.2017. [PMID: 29098175 PMCID: PMC5666323 DOI: 10.1523/eneuro.0133-17.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 10/09/2017] [Accepted: 10/16/2017] [Indexed: 01/15/2023] Open
Abstract
New cells are added during both puberty and adulthood to hypothalamic regions that govern reproduction, homeostasis, and social behaviors, yet the functions of these late-born cells remain elusive. Here, we pharmacologically inhibited cell proliferation in ventricular zones during puberty or in adulthood and determined subsequent effects on the hormone-induced surge of luteinizing hormone (LH) in female rats. Initial neuroanatomical analyses focused on verifying incorporation, activation, and pharmacological inhibition of pubertally or adult born cells in the anteroventral periventricular nucleus (AVPV) of the hypothalamus because of the essential role of the AVPV in triggering the preovulatory LH surge in females. We first showed that approximately half of the pubertally born AVPV cells are activated by estradiol plus progesterone (P) treatment, as demonstrated by Fos expression, and that approximately 10% of pubertally born AVPV cells express estrogen receptor alpha (ERα). Next, we found that mitotic inhibition through intracerebroventricular (ICV) administration of cytosine β-D-arabinofuranoside (AraC), whether during puberty or in adulthood, decreased the number of new cells added to the AVPV and the suprachiasmatic nucleus (SCN), and also blunted and delayed the hormone-induced LH surge. These studies do not prove, but are highly suggestive, that ongoing postnatal addition of new cells in periventricular brain regions, including the AVPV and SCN, may be important to the integrity of female reproduction.
Collapse
Affiliation(s)
- Margaret A. Mohr
- Neuroscience Program, Michigan State University, East Lansing, MI 48824
| | - Lydia L. DonCarlos
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Cheryl L. Sisk
- Neuroscience Program, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
109
|
Butruille L, Batailler M, Mazur D, Prévot V, Migaud M. Seasonal reorganization of hypothalamic neurogenic niche in adult sheep. Brain Struct Funct 2017; 223:91-109. [DOI: 10.1007/s00429-017-1478-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/16/2017] [Indexed: 01/09/2023]
|
110
|
Collette JC, Choubey L, Smith KM. -Glial and stem cell expression of murine Fibroblast Growth Factor Receptor 1 in the embryonic and perinatal nervous system. PeerJ 2017; 5:e3519. [PMID: 28674667 PMCID: PMC5493973 DOI: 10.7717/peerj.3519] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/08/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Fibroblast growth factors (FGFs) and their receptors (FGFRs) are involved in the development and function of multiple organs and organ systems, including the central nervous system (CNS). FGF signaling via FGFR1, one of the three FGFRs expressed in the CNS, stimulates proliferation of stem cells during prenatal and postnatal neurogenesis and participates in regulating cell-type ratios in many developing regions of the brain. Anomalies in FGFR1 signaling have been implicated in certain neuropsychiatric disorders. Fgfr1 expression has been shown, via in situ hybridization, to vary spatially and temporally throughout embryonic and postnatal development of the brain. However, in situ hybridization lacks sufficient resolution to identify which cell-types directly participate in FGF signaling. Furthermore, because antibodies raised against FGFR1 commonly cross-react with other members of the FGFR family, immunocytochemistry is not alone sufficient to accurately document Fgfr1 expression. Here, we elucidate the identity of Fgfr1 expressing cells in both the embryonic and perinatal mouse brain. METHODS To do this, we utilized a tgFGFR1-EGFPGP338Gsat BAC line (tgFgfr1-EGFP+) obtained from the GENSAT project. The tgFgfr1-EGFP+ line expresses EGFP under the control of a Fgfr1 promoter, thereby causing cells endogenously expressing Fgfr1 to also present a positive GFP signal. Through simple immunostaining using GFP antibodies and cell-type specific antibodies, we were able to accurately determine the cell-type of Fgfr1 expressing cells. RESULTS This technique revealed Fgfr1 expression in proliferative zones containing BLBP+ radial glial stem cells, such as the cortical and hippocampal ventricular zones, and cerebellar anlage of E14.5 mice, in addition to DCX+ neuroblasts. Furthermore, our data reveal Fgfr1 expression in proliferative zones containing BLBP+ cells of the anterior midline, hippocampus, cortex, hypothalamus, and cerebellum of P0.5 mice, in addition to the early-formed GFAP+ astrocytes of the anterior midline. DISCUSSION Understanding when during development and where Fgfr1 is expressed is critical to improving our understanding of its function during neurodevelopment as well as in the mature CNS. This information may one day provide an avenue of discovery towards understanding the involvement of aberrant FGF signaling in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jantzen C Collette
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, United States of America
| | - Lisha Choubey
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, United States of America
| | - Karen Müller Smith
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, United States of America
| |
Collapse
|
111
|
Haddad-Tóvolli R, Dragano NRV, Ramalho AFS, Velloso LA. Development and Function of the Blood-Brain Barrier in the Context of Metabolic Control. Front Neurosci 2017; 11:224. [PMID: 28484368 PMCID: PMC5399017 DOI: 10.3389/fnins.2017.00224] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/04/2017] [Indexed: 12/21/2022] Open
Abstract
Under physiological conditions, the brain consumes over 20% of the whole body energy supply. The blood-brain barrier (BBB) allows dynamic interactions between blood capillaries and the neuronal network in order to provide an adequate control of molecules that are transported in and out of the brain. Alterations in the BBB structure and function affecting brain accessibility to nutrients and exit of toxins are found in a number of diseases, which in turn may disturb brain function and nutrient signaling. In this review we explore the major advances obtained in the understanding of the BBB development and how its structure impacts on function. Furthermore, we focus on the particularities of the barrier permeability in the hypothalamus, its role in metabolic control and the potential impact of hypothalamic BBB abnormities in metabolic related diseases.
Collapse
Affiliation(s)
- Roberta Haddad-Tóvolli
- Laboratory of Cell Signaling and Obesity and Comorbidities Research Center, Faculty of Medical Sciences, University of CampinasCampinas, Brazil
| | | | | | - Licio A. Velloso
- Laboratory of Cell Signaling and Obesity and Comorbidities Research Center, Faculty of Medical Sciences, University of CampinasCampinas, Brazil
| |
Collapse
|
112
|
Rizzoti K, Lovell-Badge R. Pivotal role of median eminence tanycytes for hypothalamic function and neurogenesis. Mol Cell Endocrinol 2017; 445:7-13. [PMID: 27530416 DOI: 10.1016/j.mce.2016.08.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/11/2016] [Indexed: 01/15/2023]
Abstract
Along with the sub-ventricular zone of the forebrain lateral ventricles and the sub-granular zone of the dentate gyrus in the hippocampus, the hypothalamus has recently emerged as a third gliogenic and neurogenic niche in the central nervous system. The hypothalamus is the main regulator of body homeostasis because it centralizes peripheral information to regulate crucial physiological functions through the pituitary gland and the autonomic nervous system. Its ability to sense signals originating outside the brain relies on its exposure to blood-born molecules through the median eminence, which is localized outside the blood brain barrier. Within the hypothalamus, a population of specialized radial glial cells, the tanycytes, control exposure to blood-born signals by acting both as sensors and regulators of the hypothalamic input and output. In addition, lineage-tracing experiments have recently revealed that tanycytes represent a population of hypothalamic stem cells, defining them as a pivotal cell type within the hypothalamus. Hypothalamic neurogenesis has moreover been shown to have an important role in feeding control and energy metabolism, which challenges previous knowledge and offers new therapeutic options.
Collapse
Affiliation(s)
- Karine Rizzoti
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | - Robin Lovell-Badge
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
113
|
Recabal A, Caprile T, García-Robles MDLA. Hypothalamic Neurogenesis as an Adaptive Metabolic Mechanism. Front Neurosci 2017; 11:190. [PMID: 28424582 PMCID: PMC5380718 DOI: 10.3389/fnins.2017.00190] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/21/2017] [Indexed: 12/12/2022] Open
Abstract
In the adult brain, well-characterized neurogenic niches are located in the subventricular zone (SVZ) of the lateral ventricles and in the subgranular zone (SGZ) of the hippocampus. In both regions, neural precursor cells (NPCs) share markers of embryonic radial glia and astroglial cells, and in vitro clonal expansion of these cells leads to neurosphere formation. It has also been more recently demonstrated that neurogenesis occurs in the adult hypothalamus, a brain structure that integrates peripheral signals to control energy balance and dietary intake. The NPCs of this region, termed tanycytes, are ependymal-glial cells, which comprise the walls of the infundibular recess of the third ventricle and contact the median eminence. Thus, tanycytes are in a privileged position to detect hormonal, nutritional and mitogenic signals. Recent studies reveal that in response to nutritional signals, tanycytes are capable of differentiating into orexigenic or anorexigenic neurons, suggesting that these cells are crucial for control of feeding behavior. In this review, we discuss evidence, which suggests that hypothalamic neurogenesis may act as an additional adaptive mechanism in order to respond to changes in diet.
Collapse
Affiliation(s)
- Antonia Recabal
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de ConcepciónConcepción, Chile.,Laboratorio de Guía Axonal, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de ConcepciónConcepción, Chile
| | - Teresa Caprile
- Laboratorio de Guía Axonal, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de ConcepciónConcepción, Chile
| | - María de Los Angeles García-Robles
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de ConcepciónConcepción, Chile
| |
Collapse
|
114
|
Freire-Regatillo A, Argente-Arizón P, Argente J, García-Segura LM, Chowen JA. Non-Neuronal Cells in the Hypothalamic Adaptation to Metabolic Signals. Front Endocrinol (Lausanne) 2017; 8:51. [PMID: 28377744 PMCID: PMC5359311 DOI: 10.3389/fendo.2017.00051] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/03/2017] [Indexed: 12/19/2022] Open
Abstract
Although the brain is composed of numerous cell types, neurons have received the vast majority of attention in the attempt to understand how this organ functions. Neurons are indeed fundamental but, in order for them to function correctly, they rely on the surrounding "non-neuronal" cells. These different cell types, which include glia, epithelial cells, pericytes, and endothelia, supply essential substances to neurons, in addition to protecting them from dangerous substances and situations. Moreover, it is now clear that non-neuronal cells can also actively participate in determining neuronal signaling outcomes. Due to the increasing problem of obesity in industrialized countries, investigation of the central control of energy balance has greatly increased in attempts to identify new therapeutic targets. This has led to interesting advances in our understanding of how appetite and systemic metabolism are modulated by non-neuronal cells. For example, not only are nutrients and hormones transported into the brain by non-neuronal cells, but these cells can also metabolize these metabolic factors, thus modifying the signals reaching the neurons. The hypothalamus is the main integrating center of incoming metabolic and hormonal signals and interprets this information in order to control appetite and systemic metabolism. Hence, the factors transported and released from surrounding non-neuronal cells will undoubtedly influence metabolic homeostasis. This review focuses on what is known to date regarding the involvement of different cell types in the transport and metabolism of nutrients and hormones in the hypothalamus. The possible involvement of non-neuronal cells, in particular glial cells, in physiopathological outcomes of poor dietary habits and excess weight gain are also discussed.
Collapse
Affiliation(s)
- Alejandra Freire-Regatillo
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Pilar Argente-Arizón
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- IMDEA Food Institute, Campus of International Excellence (CEI) UAM + CSIC, Madrid, Spain
| | - Luis Miguel García-Segura
- Laboratory of Neuroactive Steroids, Department of Functional and Systems Neurobiology, Instituto Cajal, CSIC (Consejo Superior de Investigaciones Científicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Julie A. Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| |
Collapse
|
115
|
Lewis JE, Ebling FJP. Tanycytes As Regulators of Seasonal Cycles in Neuroendocrine Function. Front Neurol 2017; 8:79. [PMID: 28344570 PMCID: PMC5344904 DOI: 10.3389/fneur.2017.00079] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/20/2017] [Indexed: 12/31/2022] Open
Abstract
Annual cycles of physiology and behavior are highly prevalent in organisms inhabiting temperate and polar regions. Examples in mammals include changes in appetite and body fat composition, hibernation and torpor, growth of antlers, pelage and horns, and seasonal reproduction. The timing of these seasonal cycles reflects an interaction of changing environmental signals, such as daylength, and intrinsic rhythmic processes: circannual clocks. As neuroendocrine signals underlie these rhythmic processes, the focus of most mechanistic studies has been on neuronal systems in the hypothalamus. Recent studies also implicate the pituitary stalk (pars tuberalis) and hypothalamic tanycytes as key pathways in seasonal timing. The pars tuberalis expresses a high density of melatonin receptors, so is highly responsive to changes in the nocturnal secretion of melatonin from the pineal gland as photoperiod changes across the year. The pars tuberalis in turn regulates tanycyte function in the adjacent hypothalamus via paracrine signals. Tanycytes are radial glial cells that persist into adulthood and function as a stem cell niche. Their cell soma are embedded in the ependymal lining of the third ventricle, and they also send elaborate projections through the arcuate nucleus, many of which terminate on capillaries in the median eminence. This anatomy underlies their function as sensors of nutrients in the circulation, and as regulators of transport of hormones and metabolites into the hypothalamus. In situ hybridization studies reveal robust seasonal changes in gene expression in tanycytes, for example, those controlling transport and metabolism of thyroid hormone and retinoic acid. These hormonal signals play a key role in the initial development of the brain, and experimental manipulation of thyroid hormone availability in the adult hypothalamus can accelerate or block seasonal cyclicity in sheep and Siberian hamsters. We hypothesize that seasonal rhythms depends upon reuse of developmental mechanisms in the adult hypothalamus and that tanycytes are key orchestrators of these processes.
Collapse
Affiliation(s)
- Jo E Lewis
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre , Nottingham , UK
| | - Francis J P Ebling
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre , Nottingham , UK
| |
Collapse
|
116
|
Benford H, Bolborea M, Pollatzek E, Lossow K, Hermans-Borgmeyer I, Liu B, Meyerhof W, Kasparov S, Dale N. A sweet taste receptor-dependent mechanism of glucosensing in hypothalamic tanycytes. Glia 2017; 65:773-789. [PMID: 28205335 PMCID: PMC5363357 DOI: 10.1002/glia.23125] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 02/01/2023]
Abstract
Hypothalamic tanycytes are glial‐like glucosensitive cells that contact the cerebrospinal fluid of the third ventricle, and send processes into the hypothalamic nuclei that control food intake and body weight. The mechanism of tanycyte glucosensing remains undetermined. While tanycytes express the components associated with the glucosensing of the pancreatic β cell, they respond to nonmetabolisable glucose analogues via an ATP receptor‐dependent mechanism. Here, we show that tanycytes in rodents respond to non‐nutritive sweeteners known to be ligands of the sweet taste (Tas1r2/Tas1r3) receptor. The initial sweet tastant‐evoked response, which requires the presence of extracellular Ca2+, leads to release of ATP and a larger propagating Ca2+ response mediated by P2Y1 receptors. In Tas1r2 null mice the proportion of glucose nonresponsive tanycytes was greatly increased in these mice, but a subset of tanycytes retained an undiminished sensitivity to glucose. Our data demonstrate that the sweet taste receptor mediates glucosensing in about 60% of glucosensitive tanycytes while the remaining 40% of glucosensitive tanycytes use some other, as yet unknown mechanism.
Collapse
Affiliation(s)
- Heather Benford
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Matei Bolborea
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Eric Pollatzek
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Kristina Lossow
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany
| | - Irm Hermans-Borgmeyer
- Transgenic Animal Unit, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Beihui Liu
- School of Physiology and Pharmacology, University of Bristol, United Kingdom
| | - Wolfgang Meyerhof
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany
| | - Sergey Kasparov
- School of Physiology and Pharmacology, University of Bristol, United Kingdom
| | - Nicholas Dale
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
117
|
Mirzadeh Z, Kusne Y, Duran-Moreno M, Cabrales E, Gil-Perotin S, Ortiz C, Chen B, Garcia-Verdugo JM, Sanai N, Alvarez-Buylla A. Bi- and uniciliated ependymal cells define continuous floor-plate-derived tanycytic territories. Nat Commun 2017; 8:13759. [PMID: 28067220 PMCID: PMC5477523 DOI: 10.1038/ncomms13759] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/31/2016] [Indexed: 02/07/2023] Open
Abstract
Multiciliated ependymal (E1) cells line the brain ventricles and are essential for brain homeostasis. We previously identified in the lateral ventricles a rare ependymal subpopulation (E2) with only two cilia and unique basal bodies. Here we show that E2 cells form a distinct biciliated epithelium extending along the ventral third into the fourth ventricle. In the third ventricle floor, apical profiles with only primary cilia define an additional uniciliated (E3) epithelium. E2 and E3 cells' ultrastructure, marker expression and basal processes indicate that they correspond to subtypes of tanycytes. Using sonic hedgehog lineage tracing, we show that the third and fourth ventricle E2 and E3 epithelia originate from the anterior floor plate. E2 and E3 cells complete their differentiation 2-3 weeks after birth, suggesting a link to postnatal maturation. These data reveal discrete bands of E2 and E3 cells that may relay information from the CSF to underlying neural circuits along the ventral midline.
Collapse
Affiliation(s)
- Zaman Mirzadeh
- Division of Neurological Surgery, Barrow Neurological Institute, Phoenix, Arizona 85013, USA
| | - Yael Kusne
- Division of Neurological Surgery, Barrow Neurological Institute, Phoenix, Arizona 85013, USA
| | - Maria Duran-Moreno
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, CIBERNED, Universidad de Valencia, Valencia 46980, Spain
| | - Elaine Cabrales
- Division of Neurological Surgery, Barrow Neurological Institute, Phoenix, Arizona 85013, USA
| | - Sara Gil-Perotin
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, CIBERNED, Universidad de Valencia, Valencia 46980, Spain
| | - Christian Ortiz
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | - Bin Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | - Jose Manuel Garcia-Verdugo
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, CIBERNED, Universidad de Valencia, Valencia 46980, Spain
| | - Nader Sanai
- Division of Neurological Surgery, Barrow Neurological Institute, Phoenix, Arizona 85013, USA
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery and The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, 35 Medical Center Way, Room RMB-1036, Campus Box 0525, San Francisco, California 94143, USA
| |
Collapse
|
118
|
Wen CM, Chen MM, Nan FH, Wang CS. Immunocytochemical characterisation of neural stem-progenitor cells from green terror cichlid Aequidens rivulatus. JOURNAL OF FISH BIOLOGY 2017; 90:201-221. [PMID: 27730642 DOI: 10.1111/jfb.13170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
In this study, cultures of neural stem-progenitor cells (NSPC) from the brain of green terror cichlid Aequidens rivulatus were established and various NSPCs were demonstrated using immunocytochemistry. All of the NSPCs expressed brain lipid-binding protein, dopamine- and cAMP-regulated neuronal phosphoprotein 32 (DARPP-32), oligodendrocyte transcription factor 2, paired box 6 and sex determining region Y-box 2. The intensity and localisation of these proteins, however, varied among the different NSPCs. Despite being intermediate cells, NSPCs can be divided into radial glial cells, oligodendrocyte progenitor cells (OPC) and neuroblasts by expressing the astrocyte marker glial fibrillary acidic protein (GFAP), OPC marker A2B5 and neuronal markers, including acetyl-tubulin, βIII-tubulin, microtubule-associated protein 2 and neurofilament protein. Nevertheless, astrocytes were polymorphic and were the most dominant cells in the NSPC cultures. By using Matrigel, radial glia exhibiting a long GFAP+ or DARPP-32+ fibre and neurons exhibiting a significant acetyl-tubulin+ process were obtained. The results confirmed that NSPCs obtained from A. rivulatus brains can proliferate and differentiate into neurons in vitro. Clonal culture can be useful for further studying the distinct NSPCs.
Collapse
Affiliation(s)
- C M Wen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, 81148, Taiwan
| | - M M Chen
- School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - F H Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - C S Wang
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, 81148, Taiwan
| |
Collapse
|
119
|
Nesan D, Kurrasch DM. Genetic programs of the developing tuberal hypothalamus and potential mechanisms of their disruption by environmental factors. Mol Cell Endocrinol 2016; 438:3-17. [PMID: 27720896 DOI: 10.1016/j.mce.2016.09.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/22/2016] [Accepted: 09/29/2016] [Indexed: 12/15/2022]
Abstract
The hypothalamus is a critical regulator of body homeostasis, influencing the autonomic nervous system and releasing trophic hormones to modulate the endocrine system. The developmental mechanisms that govern formation of the mature hypothalamus are becoming increasingly understood as research in this area grows, leading us to gain appreciation for how these developmental programs are susceptible to disruption by maternal exposure to endocrine disrupting chemicals or other environmental factors in utero. These vulnerabilities, combined with the prominent roles of the various hypothalamic nuclei in regulating appetite, reproductive behaviour, mood, and other physiologies, create a window whereby early developmental disruption can have potent long-term effects. Here we broadly outline our current understanding of hypothalamic development, with a particular focus on the tuberal hypothalamus, including what is know about nuclear coalescing and maturation. We finish by discussing how exposure to environmental or maternally-derived factors can perhaps disrupt these hypothalamic developmental programs, and potentially lead to neuroendocrine disease states.
Collapse
Affiliation(s)
- Dinushan Nesan
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
120
|
Interrogation of a lacrimo-auriculo-dento-digital syndrome protein reveals novel modes of fibroblast growth factor 10 (FGF10) function. Biochem J 2016; 473:4593-4607. [PMID: 27742760 DOI: 10.1042/bcj20160441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/18/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022]
Abstract
Heterozygous mutations in the gene encoding fibroblast growth factor 10 (FGF10) or its cognate receptor, FGF-receptor 2 IIIb result in two human syndromes - LADD (lacrimo-auriculo-dento-digital) and ALSG (aplasia of lacrimal and salivary glands). To date, the partial loss-of-FGF10 function in these patients has been attributed solely to perturbed paracrine signalling functions between FGF10-producing mesenchymal cells and FGF10-responsive epithelial cells. However, the functioning of a LADD-causing G138E FGF10 mutation, which falls outside its receptor interaction interface, has remained enigmatic. In the present study, we interrogated this mutation in the context of FGF10's protein sequence and three-dimensional structure, and followed the subcellular fate of tagged proteins containing this or other combinatorial FGF10 mutations, in vitro We report that FGF10 harbours two putative nuclear localization sequences (NLSs), termed NLS1 and NLS2, which individually or co-operatively promote nuclear translocation of FGF10. Furthermore, FGF10 localizes to a subset of dense fibrillar components of the nucleolus. G138E falls within NLS1 and abrogates FGF10's nuclear translocation whilst attenuating its progression along the secretory pathway. Our findings suggest that in addition to its paracrine roles, FGF10 may normally play intracrine role/s within FGF10-producing cells. Thus, G138E may disrupt both paracrine and intracrine function/s of FGF10 through attenuated secretion and nuclear translocation, respectively.
Collapse
|
121
|
Hofmann K, Lamberz C, Piotrowitz K, Offermann N, But D, Scheller A, Al-Amoudi A, Kuerschner L. Tanycytes and a differential fatty acid metabolism in the hypothalamus. Glia 2016; 65:231-249. [PMID: 27726181 DOI: 10.1002/glia.23088] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 08/31/2016] [Accepted: 09/28/2016] [Indexed: 11/12/2022]
Abstract
Although the brain controls all main metabolic pathways in the whole organism, its lipid metabolism is partially separated from the rest of the body. Circulating lipids and other metabolites are taken up into brain areas like the hypothalamus and are locally metabolized and sensed involving several hypothalamic cell types. In this study we show that saturated and unsaturated fatty acids are differentially processed in the murine hypothalamus. The observed differences involve both lipid distribution and metabolism. Key findings were: (i) hypothalamic astrocytes are targeted by unsaturated, but not saturated lipids in lean mice; (ii) in obese mice labeling of these astrocytes by unsaturated oleic acid cannot be detected unless β-oxidation or ketogenesis is inhibited; (iii) the hypothalamus of obese animals increases ketone body and neutral lipid synthesis while tanycytes, hypothalamic cells facing the ventricle, increase their lipid droplet content; and (iv) tanycytes show different labeling for saturated or unsaturated lipids. Our data support a metabolic connection between tanycytes and astrocytes likely to impact hypothalamic lipid sensing. GLIA 2017;65:231-249.
Collapse
Affiliation(s)
- Kristina Hofmann
- Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, D-53115, Germany
| | - Christian Lamberz
- German Center for Neurodegenerative Diseases (DZNE), Bonn, D-53175, Germany
| | - Kira Piotrowitz
- Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, D-53115, Germany
| | - Nina Offermann
- Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, D-53115, Germany
| | - Diana But
- Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, D-53115, Germany
| | - Anja Scheller
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, D-66421, Germany
| | - Ashraf Al-Amoudi
- German Center for Neurodegenerative Diseases (DZNE), Bonn, D-53175, Germany
| | - Lars Kuerschner
- Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, D-53115, Germany
| |
Collapse
|
122
|
Adult Neurogenesis in the Female Mouse Hypothalamus: Estradiol and High-Fat Diet Alter the Generation of Newborn Neurons Expressing Estrogen Receptor α. eNeuro 2016; 3:eN-NWR-0027-16. [PMID: 27679811 PMCID: PMC5032890 DOI: 10.1523/eneuro.0027-16.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 11/21/2022] Open
Abstract
Estrogens and leptins act in the hypothalamus to maintain reproduction and energy homeostasis. Neurogenesis in the adult mammalian hypothalamus has been implicated in the regulation of energy homeostasis. Recently, high-fat diet (HFD) and estradiol (E2) have been shown to alter cell proliferation and the number of newborn leptin-responsive neurons in the hypothalamus of adult female mice. The current study tested the hypothesis that new cells expressing estrogen receptor α (ERα) are generated in the arcuate nucleus (ARC) and the ventromedial nucleus of the hypothalamus (VMH) of the adult female mouse, hypothalamic regions that are critical in energy homeostasis. Adult mice were ovariectomized and implanted with capsules containing E2 or oil. Within each hormone group, mice were fed an HFD or standard chow for 6 weeks and treated with BrdU to label new cells. Newborn cells that respond to estrogens were identified in the ARC and VMH, of which a subpopulation was leptin sensitive, indicating that the subpopulation consists of neurons. Moreover, there was an interaction between diet and hormone with an effect on the number of these newborn ERα-expressing neurons that respond to leptin. Regardless of hormone treatment, HFD increased the number of ERα-expressing cells in the ARC and VMH. E2 decreased hypothalamic fibroblast growth factor 10 (Fgf10) gene expression in HFD mice, suggesting a role for Fgf10 in E2 effects on neurogenesis. These findings of newly created estrogen-responsive neurons in the adult brain provide a novel mechanism by which estrogens can act in the hypothalamus to regulate energy homeostasis in females.
Collapse
|
123
|
Wittmann G, Farkas E, Szilvásy-Szabó A, Gereben B, Fekete C, Lechan RM. Variable proopiomelanocortin expression in tanycytes of the adult rat hypothalamus and pituitary stalk. J Comp Neurol 2016; 525:411-441. [PMID: 27503597 DOI: 10.1002/cne.24090] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 01/21/2023]
Abstract
It is generally believed that proopiomelanocortin (POMC) is expressed exclusively by neurons in the adult rodent brain. Unbeknownst to most researchers, however, Pomc in situ hybridization studies in the rat show specific labeling in the ventral wall of the hypothalamic third ventricle, which is formed by specialized ependymal cells, called tanycytes. Here we characterized this non-neuronal POMC expression in detail using in situ hybridization and immunohistochemical techniques, and report two unique characteristics. First, POMC mRNA and precursor protein expression in non-neuronal cells varies to a great degree as to the extent and abundance of expression. In brains with low-level expression, POMC mRNA and protein was largely confined to a population of tanycytes within the infundibular stalk/caudal median eminence, termed here γ tanycytes, and a subset of closely located β and α2 tanycytes. In brains with high-level expression, POMC mRNA and protein was observed in the vast majority of α2, β, and γ tanycytes. This variability was observed in both adult males and females; of 41 rats between 8 and 15 weeks of age, 17 had low-, 9 intermediate-, and 15 high-level POMC expression in tanycytes. Second, unlike other known POMC-expressing cells, tanycytes rarely contained detectable levels of adrenocorticotropin or α-melanocyte-stimulating hormone. The results indicate either a dynamic spatiotemporal pattern whereby low and high POMC syntheses in tanycytes occur periodically in each brain, or marked interindividual differences that may persist throughout adulthood. Future studies are required to examine these possibilities and elucidate the physiologic importance of POMC in tanycytes. J. Comp. Neurol. 525:411-441, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gábor Wittmann
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts, 02111
| | - Erzsébet Farkas
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, 1083, Hungary.,Pázmány Péter Catholic University, Multidisciplinary Doctoral School of Sciences and Technology, Budapest, 1083, Hungary
| | - Anett Szilvásy-Szabó
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, 1083, Hungary.,Semmelweis University, János Szentágothai PhD School of Neurosciences, Budapest, 1085, Hungary
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, 1083, Hungary
| | - Csaba Fekete
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts, 02111.,Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, 1083, Hungary
| | - Ronald M Lechan
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts, 02111.,Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111
| |
Collapse
|
124
|
Adult neurogenesis and reproductive functions in mammals. Theriogenology 2016; 86:313-23. [PMID: 27177964 DOI: 10.1016/j.theriogenology.2016.04.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 11/21/2022]
Abstract
During adulthood, the mammalian brain retains the capacity to generate new cells and new neurons in particular. It is now well established that the birth of these new neurons occurs in well-described sites: the hippocampus and the subventricular zone of the lateral ventricle, as well as in other brain regions including the hypothalamus. In this review, we describe the canonical neurogenic niches and illustrate the functional relevance of adult-born neurons of each neurogenic niche in the reproductive physiology. More specifically, we highlight the effect of reproductive social stimuli on the neurogenic processes and conversely, the contributions of adult-born neurons to the reproductive physiology and behavior. We next review the recent discovery of a novel neurogenic niche located in the hypothalamus and the median eminence and the compelling evidence of the link existing between the new-born hypothalamic neurons and the regulation of metabolism. In addition, new perspectives on the possible involvement of hypothalamic neurogenesis in the control of photoperiodic reproductive physiology in seasonal mammals are discussed. Altogether, the studies highlighted in this review demonstrate the potential role of neurogenesis in reproductive function and emphasize the importance of increasing our knowledge on the regulation processes and the physiological relevance of these adult-born neurons. This constitutes a necessary step toward a potential manipulation of these plasticity mechanisms.
Collapse
|
125
|
Valero J, Paris I, Sierra A. Lifestyle Shapes the Dialogue between Environment, Microglia, and Adult Neurogenesis. ACS Chem Neurosci 2016; 7:442-53. [PMID: 26971802 DOI: 10.1021/acschemneuro.6b00009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lifestyle modulates brain function. Diet, stress levels, and physical exercise among other factors influence the "brain cognitive reserve", that is, the capacity of the brain to maintain a normal function when confronting neurodegenerative diseases, injury, and/or aging. This cognitive reserve relays on several cellular and molecular elements that contribute to brain plasticity allowing adaptive responses to cognitive demands, and one of its key components is the hippocampal neurogenic reserve. Hippocampal neural stem cells give rise to new neurons that integrate into the local circuitry and contribute to hippocampal functions such as memory and learning. Importantly, adult hippocampal neurogenesis is well-known to be modulated by the demands of the environment and lifestyle factors. Diet, stress, and physical exercise directly act on neural stem cells and/or their progeny, but, in addition, they may also indirectly affect neurogenesis by acting on microglia. Microglia, the guardians of the brain, rapidly sense changes in the brain milieu, and it has been recently shown that their function is affected by lifestyle factors. However, few studies have analyzed the modulatory effect of microglia on adult neurogenesis in these conditions. Here, we review the current knowledge about the dialogue maintained between microglia and the hippocampal neurogenic cascade. Understanding how the communication between microglia and hippocampal neurogenesis is affected by lifestyle choices is crucial to maintain the brain cognitive reserve and prevent the maladaptive responses that emerge during disease or injury through adulthood and aging.
Collapse
Affiliation(s)
- Jorge Valero
- Achucarro Basque Center for Neuroscience, E-48170 Zamudio, Bizkaia Spain
- Ikerbasque Foundation, E-48013 Bilbao, Bizkaia Spain
| | - Iñaki Paris
- Achucarro Basque Center for Neuroscience, E-48170 Zamudio, Bizkaia Spain
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, E-48170 Zamudio, Bizkaia Spain
- Ikerbasque Foundation, E-48013 Bilbao, Bizkaia Spain
- University of the Basque Country EHU/UPV, E-48940 Leioa, Bizkaia Spain
| |
Collapse
|
126
|
Reductions in hypothalamic Gfap expression, glial cells and α-tanycytes in lean and hypermetabolic Gnasxl-deficient mice. Mol Brain 2016; 9:39. [PMID: 27080240 PMCID: PMC4832494 DOI: 10.1186/s13041-016-0219-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/08/2016] [Indexed: 01/31/2023] Open
Abstract
Background Neuronal and glial differentiation in the murine hypothalamus is not complete at birth, but continues over the first two weeks postnatally. Nutritional status and Leptin deficiency can influence the maturation of neuronal projections and glial patterns, and hypothalamic gliosis occurs in mouse models of obesity. Gnasxl constitutes an alternative transcript of the genomically imprinted Gnas locus and encodes a variant of the signalling protein Gαs, termed XLαs, which is expressed in defined areas of the hypothalamus. Gnasxl-deficient mice show postnatal growth retardation and undernutrition, while surviving adults remain lean and hypermetabolic with increased sympathetic nervous system (SNS) activity. Effects of this knock-out on the hypothalamic neural network have not yet been investigated. Results RNAseq analysis for gene expression changes in hypothalami of Gnasxl-deficient mice indicated Glial fibrillary acid protein (Gfap) expression to be significantly down-regulated in adult samples. Histological analysis confirmed a reduction in Gfap-positive glial cell numbers specifically in the hypothalamus. This reduction was observed in adult tissue samples, whereas no difference was found in hypothalami of postnatal stages, indicating an adaptation in adult Gnasxl-deficient mice to their earlier growth phenotype and hypermetabolism. Especially noticeable was a loss of many Gfap-positive α-tanycytes and their processes, which form part of the ependymal layer that lines the medial and dorsal regions of the 3rd ventricle, while β-tanycytes along the median eminence (ME) and infundibular recesses appeared unaffected. This was accompanied by local reductions in Vimentin and Nestin expression. Hypothalamic RNA levels of glial solute transporters were unchanged, indicating a potential compensatory up-regulation in the remaining astrocytes and tanycytes. Conclusion Gnasxl deficiency does not directly affect glial development in the hypothalamus, since it is expressed in neurons, and Gfap-positive astrocytes and tanycytes appear normal during early postnatal stages. The loss of Gfap-expressing cells in adult hypothalami appears to be a consequence of the postnatal undernutrition, hypoglycaemia and continued hypermetabolism and leanness of Gnasxl-deficient mice, which contrasts with gliosis observed in obese mouse models. Since α-tanycytes also function as adult neural progenitor cells, these findings might indicate further developmental abnormalities in hypothalamic formations of Gnasxl-deficient mice, potentially including neuronal composition and projections. Electronic supplementary material The online version of this article (doi:10.1186/s13041-016-0219-1) contains supplementary material, which is available to authorized users.
Collapse
|
127
|
Dabrowski A, Umemori H. Buttressing a balanced brain: Target-derived FGF signaling regulates excitatory/inhibitory tone and adult neurogenesis within the maturating hippocampal network. NEUROGENESIS 2016; 3:e1168504. [PMID: 27605441 DOI: 10.1080/23262133.2016.1168504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/06/2016] [Accepted: 03/15/2016] [Indexed: 12/24/2022]
Abstract
Brain development involves multiple levels of molecular coordination in forming a functional nervous system. The hippocampus is a brain area that is important for memory formation and spatial reasoning. During early postnatal development of the hippocampal circuit, Fibroblast growth factor 22 (FGF22) and FGF7 act to establish a balance of excitatory and inhibitory tone. Both FGFs are secreted from CA3 dendrites, acting on excitatory or inhibitory axon terminals formed onto CA3 dendrites, respectively. Mechanistically, FGF22 utilizes FGFR2b and FGFR1b to induce synaptic vesicle recruitment within axons of dentate granule cells (DGCs), and FGF7 utilizes FGFR2b to induce synaptic vesicle recruitment within interneuron axons. FGF signaling eventually induces gene expression in the presynaptic neurons; however, the effects of FGF22-induced gene expression within DGCs and FGF7-induced gene expression within interneurons in the context of a developing hippocampal circuit have yet to be explored. Here, we propose one hypothetical mechanism of FGF22-induced gene expression in controlling adult neurogenesis.
Collapse
Affiliation(s)
- Ania Dabrowski
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Hisashi Umemori
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
128
|
Ghrelin Regulates Glucose and Glutamate Transporters in Hypothalamic Astrocytes. Sci Rep 2016; 6:23673. [PMID: 27026049 PMCID: PMC4812252 DOI: 10.1038/srep23673] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/07/2016] [Indexed: 01/02/2023] Open
Abstract
Hypothalamic astrocytes can respond to metabolic signals, such as leptin and insulin, to modulate adjacent neuronal circuits and systemic metabolism. Ghrelin regulates appetite, adiposity and glucose metabolism, but little is known regarding the response of astrocytes to this orexigenic hormone. We have used both in vivo and in vitro approaches to demonstrate that acylated ghrelin (acyl-ghrelin) rapidly stimulates glutamate transporter expression and glutamate uptake by astrocytes. Moreover, acyl-ghrelin rapidly reduces glucose transporter (GLUT) 2 levels and glucose uptake by these glial cells. Glutamine synthetase and lactate dehydrogenase decrease, while glycogen phosphorylase and lactate transporters increase in response to acyl-ghrelin, suggesting a change in glutamate and glucose metabolism, as well as glycogen storage by astrocytes. These effects are partially mediated through ghrelin receptor 1A (GHSR-1A) as astrocytes do not respond equally to desacyl-ghrelin, an isoform that does not activate GHSR-1A. Moreover, primary astrocyte cultures from GHSR-1A knock-out mice do not change glutamate transporter or GLUT2 levels in response to acyl-ghrelin. Our results indicate that acyl-ghrelin may mediate part of its metabolic actions through modulation of hypothalamic astrocytes and that this effect could involve astrocyte mediated changes in local glucose and glutamate metabolism that alter the signals/nutrients reaching neighboring neurons.
Collapse
|
129
|
Nascimento LFR, Souza GFP, Morari J, Barbosa GO, Solon C, Moura RF, Victório SC, Ignácio-Souza LM, Razolli DS, Carvalho HF, Velloso LA. n-3 Fatty Acids Induce Neurogenesis of Predominantly POMC-Expressing Cells in the Hypothalamus. Diabetes 2016; 65:673-86. [PMID: 26512023 DOI: 10.2337/db15-0008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/17/2015] [Indexed: 11/13/2022]
Abstract
Apoptosis of hypothalamic neurons is believed to play an important role in the development and perpetuation of obesity. Similar to the hippocampus, the hypothalamus presents constitutive and stimulated neurogenesis, suggesting that obesity-associated hypothalamic dysfunction can be repaired. Here, we explored the hypothesis that n-3 polyunsaturated fatty acids (PUFAs) induce hypothalamic neurogenesis. Both in the diet and injected directly into the hypothalamus, PUFAs were capable of increasing hypothalamic neurogenesis to levels similar or superior to the effect of brain-derived neurotrophic factor (BDNF). Most of the neurogenic activity induced by PUFAs resulted in increased numbers of proopiomelanocortin but not NPY neurons and was accompanied by increased expression of BDNF and G-protein-coupled receptor 40 (GPR40). The inhibition of GPR40 was capable of reducing the neurogenic effect of a PUFA, while the inhibition of BDNF resulted in the reduction of global hypothalamic cell. Thus, PUFAs emerge as a potential dietary approach to correct obesity-associated hypothalamic neuronal loss.
Collapse
Affiliation(s)
| | | | - Joseane Morari
- Laboratory of Cell Signaling, University of Campinas, Campinas, Brazil
| | | | - Carina Solon
- Laboratory of Cell Signaling, University of Campinas, Campinas, Brazil
| | - Rodrigo F Moura
- Laboratory of Cell Signaling, University of Campinas, Campinas, Brazil
| | - Sheila C Victório
- Laboratory of Cell Signaling, University of Campinas, Campinas, Brazil
| | | | - Daniela S Razolli
- Laboratory of Cell Signaling, University of Campinas, Campinas, Brazil
| | | | - Lício A Velloso
- Laboratory of Cell Signaling, University of Campinas, Campinas, Brazil
| |
Collapse
|
130
|
Chaker Z, George C, Petrovska M, Caron JB, Lacube P, Caillé I, Holzenberger M. Hypothalamic neurogenesis persists in the aging brain and is controlled by energy-sensing IGF-I pathway. Neurobiol Aging 2016; 41:64-72. [PMID: 27103519 DOI: 10.1016/j.neurobiolaging.2016.02.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 12/17/2015] [Accepted: 02/08/2016] [Indexed: 11/19/2022]
Abstract
Hypothalamic tanycytes are specialized glial cells lining the third ventricle. They are recently identified as adult stem and/or progenitor cells, able to self-renew and give rise to new neurons postnatally. However, the long-term neurogenic potential of tanycytes and the pathways regulating lifelong cell replacement in the adult hypothalamus are largely unexplored. Using inducible nestin-CreER(T2) for conditional mutagenesis, we performed lineage tracing of adult hypothalamic stem and/or progenitor cells (HySC) and demonstrated that new neurons continue to be born throughout adult life. This neurogenesis was targeted to numerous hypothalamic nuclei and produced different types of neurons in the dorsal periventricular regions. Some adult-born neurons integrated the median eminence and arcuate nucleus during aging and produced growth hormone releasing hormone. We showed that adult hypothalamic neurogenesis was tightly controlled by insulin-like growth factors (IGF). Knockout of IGF-1 receptor from hypothalamic stem and/or progenitor cells increased neuronal production and enhanced α-tanycyte self-renewal, preserving this stem cell-like population from age-related attrition. Our data indicate that adult hypothalamus retains the capacity of cell renewal, and thus, a substantial degree of structural plasticity throughout lifespan.
Collapse
Affiliation(s)
- Zayna Chaker
- INSERM, Centre de Recherche UMR938, Hôpital Saint-Antoine, Paris, France; Sorbonne Universités, UPMC - Université Pierre et Marie Curie, Paris, France; Faculté de Médecine, Université Paris Descartes, Paris, France
| | - Caroline George
- INSERM, Centre de Recherche UMR938, Hôpital Saint-Antoine, Paris, France; Sorbonne Universités, UPMC - Université Pierre et Marie Curie, Paris, France
| | - Marija Petrovska
- Sorbonne Universités, UPMC - Université Pierre et Marie Curie, Paris, France
| | | | - Philippe Lacube
- INSERM, Centre de Recherche UMR938, Hôpital Saint-Antoine, Paris, France; Sorbonne Universités, UPMC - Université Pierre et Marie Curie, Paris, France
| | - Isabelle Caillé
- Sorbonne Universités, UPMC - Université Pierre et Marie Curie, Paris, France; IBPS, Team Development and Plasticity of Neural Networks, CNRS UMR8246, INSERM U1130, Paris, France
| | - Martin Holzenberger
- INSERM, Centre de Recherche UMR938, Hôpital Saint-Antoine, Paris, France; Sorbonne Universités, UPMC - Université Pierre et Marie Curie, Paris, France.
| |
Collapse
|
131
|
Neuron-derived FGF10 ameliorates cerebral ischemia injury via inhibiting NF-κB-dependent neuroinflammation and activating PI3K/Akt survival signaling pathway in mice. Sci Rep 2016; 6:19869. [PMID: 26813160 PMCID: PMC4728497 DOI: 10.1038/srep19869] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/18/2015] [Indexed: 12/19/2022] Open
Abstract
FGF10 is a member of fibroblast growth factors (FGFs). We previously showed that FGF10 protects neuron against oxygen-glucose deprivation injury in vitro; however, the effect of FGF10 in ischemic stroke in vivo is unknown. In the present study, we showed that FGF10 was mainly expressed in neurons but not astrocytes, and detected FGF10 in mouse cerebrospinal fluid. The FGF10 levels in neurons culture medium and cell lysate were much higher than those in astrocytes. FGF10 expression in brain tissue and FGF10 level in CSF were increased in mouse middle cerebral artery occlusion (MCAO) model. Administration of FGF10 into lateral cerebroventricle not only decreased MCAO-induced brain infarct volume and neurological deficit, but also reduced the number of TUNEL-positive cells and activities of Caspases. Moreover, FGF10 treatment depressed the triggered inflammatory factors (TNF-α and IL-6) and NF-κB signaling pathway, and increased phosphorylation of PI3K/Akt signaling pathway. Blockade of PI3K/Akt signaling pathway by wortmannin and Akt1/2-kinase inhibitor, partly compromised the neuroprotection of FGF10. However, blockade of PI3K/Akt signaling pathway did not impair the anti-inflammation action of FGF10. Collectively, our results demonstrate that neuron-derived FGF10 ameliorates cerebral ischemia injury via inhibiting NF-κB-dependent neuroinflammation and activating PI3K/Akt survival signaling pathway in mice.
Collapse
|
132
|
Abstract
The hypocretins (Hcrts), also known as orexins, have been among the most intensely studied neuropeptide systems since their discovery about two decades ago. Anatomical evidence shows that the hypothalamic neurons that produce hypocretins/orexins project widely throughout the entire brain, innervating the noradrenergic locus coeruleus, the cholinergic basal forebrain, the dopaminergic ventral tegmental area, the serotonergic raphe nuclei, the histaminergic tuberomammillary nucleus, and many other brain regions. By interacting with other neural systems, the Hcrt system profoundly modulates versatile physiological processes including arousal, food intake, emotion, attention, and reward. Importantly, interruption of the interactions between these systems has the potential to cause neurological and psychiatric diseases. Here, we review the modulation of diverse neural systems by Hcrts and summarize potential therapeutic strategies based on our understanding of the Hcrt system's role in physiology and pathophysiological processes.
Collapse
|
133
|
Jourdon A, Gresset A, Spassky N, Charnay P, Topilko P, Santos R. Prss56, a novel marker of adult neurogenesis in the mouse brain. Brain Struct Funct 2015; 221:4411-4427. [DOI: 10.1007/s00429-015-1171-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 12/07/2015] [Indexed: 12/25/2022]
|
134
|
Lin R, Iacovitti L. Classic and novel stem cell niches in brain homeostasis and repair. Brain Res 2015; 1628:327-342. [DOI: 10.1016/j.brainres.2015.04.029] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 02/07/2023]
|
135
|
Duncan RN, Xie Y, McPherson AD, Taibi AV, Bonkowsky JL, Douglass AD, Dorsky RI. Hypothalamic radial glia function as self-renewing neural progenitors in the absence of Wnt/β-catenin signaling. Development 2015; 143:45-53. [PMID: 26603385 DOI: 10.1242/dev.126813] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 11/18/2015] [Indexed: 12/12/2022]
Abstract
The vertebrate hypothalamus contains persistent radial glia that have been proposed to function as neural progenitors. In zebrafish, a high level of postembryonic hypothalamic neurogenesis has been observed, but the role of radial glia in generating these new neurons is unclear. We have used inducible Cre-mediated lineage labeling to show that a population of hypothalamic radial glia undergoes self-renewal and generates multiple neuronal subtypes at larval stages. Whereas Wnt/β-catenin signaling has been demonstrated to promote the expansion of other stem and progenitor cell populations, we find that Wnt/β-catenin pathway activity inhibits this process in hypothalamic radial glia and is not required for their self-renewal. By contrast, Wnt/β-catenin signaling is required for the differentiation of a specific subset of radial glial neuronal progeny residing along the ventricular surface. We also show that partial genetic ablation of hypothalamic radial glia or their progeny causes a net increase in their proliferation, which is also independent of Wnt/β-catenin signaling. Hypothalamic radial glia in the zebrafish larva thus exhibit several key characteristics of a neural stem cell population, and our data support the idea that Wnt pathway function may not be homogeneous in all stem or progenitor cells.
Collapse
Affiliation(s)
- Robert N Duncan
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Yuanyuan Xie
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Adam D McPherson
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Andrew V Taibi
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Joshua L Bonkowsky
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Adam D Douglass
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Richard I Dorsky
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
136
|
Stoney PN, Helfer G, Rodrigues D, Morgan PJ, McCaffery P. Thyroid hormone activation of retinoic acid synthesis in hypothalamic tanycytes. Glia 2015; 64:425-39. [PMID: 26527258 PMCID: PMC4949630 DOI: 10.1002/glia.22938] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/08/2015] [Accepted: 10/12/2015] [Indexed: 11/11/2022]
Abstract
Thyroid hormone (TH) is essential for adult brain function and its actions include several key roles in the hypothalamus. Although TH controls gene expression via specific TH receptors of the nuclear receptor class, surprisingly few genes have been demonstrated to be directly regulated by TH in the hypothalamus, or the adult brain as a whole. This study explored the rapid induction by TH of retinaldehyde dehydrogenase 1 (Raldh1), encoding a retinoic acid (RA)-synthesizing enzyme, as a gene specifically expressed in hypothalamic tanycytes, cells that mediate a number of actions of TH in the hypothalamus. The resulting increase in RA may then regulate gene expression via the RA receptors, also of the nuclear receptor class. In vivo exposure of the rat to TH led to a significant and rapid increase in hypothalamic Raldh1 within 4 hours. That this may lead to an in vivo increase in RA is suggested by the later induction by TH of the RA-responsive gene Cyp26b1. To explore the actions of RA in the hypothalamus as a potential mediator of TH control of gene regulation, an ex vivo hypothalamic rat slice culture method was developed in which the Raldh1-expressing tanycytes were maintained. These slice cultures confirmed that TH did not act on genes regulating energy balance but could induce Raldh1. RA has the potential to upregulate expression of genes involved in growth and appetite, Ghrh and Agrp. This regulation is acutely sensitive to epigenetic changes, as has been shown for TH action in vivo. These results indicate that sequential triggering of two nuclear receptor signalling systems has the capability to mediate some of the functions of TH in the hypothalamus.
Collapse
Affiliation(s)
- Patrick N Stoney
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, United Kingdom
| | - Gisela Helfer
- Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen, Scotland, AB21 9SB, United Kingdom
| | - Diana Rodrigues
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, United Kingdom
| | - Peter J Morgan
- Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen, Scotland, AB21 9SB, United Kingdom
| | - Peter McCaffery
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, United Kingdom
| |
Collapse
|
137
|
Goodman T, Hajihosseini MK. Hypothalamic tanycytes-masters and servants of metabolic, neuroendocrine, and neurogenic functions. Front Neurosci 2015; 9:387. [PMID: 26578855 PMCID: PMC4624852 DOI: 10.3389/fnins.2015.00387] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/05/2015] [Indexed: 11/13/2022] Open
Abstract
There is a resurgent interest in tanycytes, a radial glial-like cell population occupying the floor and ventro-lateral walls of the third ventricle (3V). Tanycytes reside in close proximity to hypothalamic neuronal nuclei that regulate appetite and energy expenditure, with a subset sending projections into these nuclei. Moreover, tanycytes are exposed to 3V cerebrospinal fluid and have privileged access to plasma metabolites and hormones, through fenestrated capillaries. Indeed, some tanycytes act as conduits for trafficking of these molecules into the brain parenchyma. Tanycytes can also act as neural stem/progenitor cells, supplying the postnatal and adult hypothalamus with new neurons. Collectively, these findings suggest that tanycytes regulate and integrate important trophic and metabolic processes and possibly endow functional malleability to neuronal circuits of the hypothalamus. Hence, manipulation of tanycyte biology could provide a valuable tool for modulating hypothalamic functions such as energy uptake and expenditure in order to tackle prevalent eating disorders such as obesity and anorexia.
Collapse
Affiliation(s)
- Timothy Goodman
- School of Biological Sciences, University of East Anglia Norwich, UK
| | | |
Collapse
|
138
|
El Agha E, Kosanovic D, Schermuly RT, Bellusci S. Role of fibroblast growth factors in organ regeneration and repair. Semin Cell Dev Biol 2015; 53:76-84. [PMID: 26459973 DOI: 10.1016/j.semcdb.2015.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/08/2015] [Indexed: 02/04/2023]
Abstract
In its broad sense, regeneration refers to the renewal of lost cells, tissues or organs as part of the normal life cycle (skin, hair, endometrium etc.) or as part of an adaptive mechanism that organisms have developed throughout evolution. For example, worms, starfish and amphibians have developed remarkable regenerative capabilities allowing them to voluntarily shed body parts, in a process called autotomy, only to replace the lost parts afterwards. The bizarre myth of the fireproof homicidal salamander that can survive fire and poison apple trees has persisted until the 20th century. Salamanders possess one of the most robust regenerative machineries in vertebrates and attempting to draw lessons from limb regeneration in these animals and extrapolate the knowledge to mammals is a never-ending endeavor. Fibroblast growth factors are potent morphogens and mitogens that are highly conserved among the animal kingdom. These growth factors play key roles in organogenesis during embryonic development as well as homeostatic balance during postnatal life. In this review, we provide a summary about the current knowledge regarding the involvement of fibroblast growth factor signaling in organ regeneration and repair. We also shed light on the use of these growth factors in previous and current clinical trials in a wide array of human diseases.
Collapse
Affiliation(s)
- Elie El Agha
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany
| | - Djuro Kosanovic
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany
| | - Ralph T Schermuly
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany
| | - Saverio Bellusci
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
| |
Collapse
|
139
|
Feliciano DM, Bordey A, Bonfanti L. Noncanonical Sites of Adult Neurogenesis in the Mammalian Brain. Cold Spring Harb Perspect Biol 2015; 7:a018846. [PMID: 26384869 DOI: 10.1101/cshperspect.a018846] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Two decades after the discovery that neural stem cells (NSCs) populate some regions of the mammalian central nervous system (CNS), deep knowledge has been accumulated on their capacity to generate new neurons in the adult brain. This constitutive adult neurogenesis occurs throughout life primarily within remnants of the embryonic germinal layers known as "neurogenic sites." Nevertheless, some processes of neurogliogenesis also occur in the CNS parenchyma commonly considered as "nonneurogenic." This "noncanonical" cell genesis has been the object of many claims, some of which turned out to be not true. Indeed, it is often an "incomplete" process as to its final outcome, heterogeneous by several measures, including regional location, progenitor identity, and fate of the progeny. These aspects also strictly depend on the animal species, suggesting that persistent neurogenic processes have uniquely adapted to the brain anatomy of different mammals. Whereas some examples of noncanonical neurogenesis are strictly parenchymal, others also show stem cell niche-like features and a strong link with the ventricular cavities. This work will review results obtained in a research field that expanded from classic neurogenesis studies involving a variety of areas of the CNS outside of the subventricular zone (SVZ) and subgranular zone (SGZ). It will be highlighted how knowledge concerning noncanonical neurogenic areas is still incomplete owing to its regional and species-specific heterogeneity, and to objective difficulties still hampering its full identification and characterization.
Collapse
Affiliation(s)
- David M Feliciano
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634
| | - Angélique Bordey
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510 Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Luca Bonfanti
- Department of Veterinary Sciences, University of Turin 10095, Italy Neuroscience Institute Cavalieri-Ottolenghi (NICO), University of Turin 10043, Italy
| |
Collapse
|
140
|
Segura S, Efthimiadi L, Porcher C, Courtes S, Coronas V, Krantic S, Moyse E. Leptin-dependent neurotoxicity via induction of apoptosis in adult rat neurogenic cells. Front Cell Neurosci 2015; 9:350. [PMID: 26441523 PMCID: PMC4561523 DOI: 10.3389/fncel.2015.00350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 08/21/2015] [Indexed: 12/30/2022] Open
Abstract
Adipocyte-derived hormone leptin has been recently implicated in the control of neuronal plasticity. To explore whether modulation of adult neurogenesis may contribute to leptin control of neuronal plasticity, we used the neurosphere assay of neural stem cells derived from the adult rat subventricular zone (SVZ). Endogenous expression of specific leptin receptor (ObRb) transcripts, as revealed by RT-PCR, is associated with activation of both ERK and STAT-3 pathways via phosphorylation of the critical ERK/STAT-3 amino acid residues upon addition of leptin to neurospheres. Furthermore, leptin triggered withdrawal of neural stem cells from the cell cycle as monitored by Ki67 labeling. This effect was blocked by pharmacological inhibition of ERK activation thus demonstrating that ERK mediates leptin effects on neural stem cell expansion. Leptin-dependent withdrawal of neural stem cells from the cell cycle was associated with increased apoptosis, as detected by TUNEL, which was preceded by cyclin D1 induction. Cyclin D1 was indeed extensively colocalized with TUNEL-positive, apoptotic nuclei. Cyclin-D1 silencing by specific shRNA prevented leptin-induced decrease of the cell number per neurosphere thus pointing to the causal relationship between leptin actions on apoptosis and cyclin D1 induction. Leptin target cells in SVZ neurospheres were identified by double TUNEL/phenotypic marker immunocytofluorescence as differentiating neurons mostly. The inhibition of neural stem cell expansion via ERK/cyclin D1-triggered apoptosis defines novel biological action of leptin which may be involved in adiposity-dependent neurotoxicity.
Collapse
Affiliation(s)
- Stéphanie Segura
- Physiologie de la Reproduction et des Comportements, UMR 85 Institut National de la Recherche Agronomique, Centre INRA de Tours, Université François Rabelais de Tours Nouzilly, France
| | - Laurie Efthimiadi
- Institut National de la Santé et de la Recherche Médicale Unité 901, Institut de Neurobiologie de la Méditerranée, Parc Scientifique de Luminy, Aix-Marseille Université Marseille, France
| | - Christophe Porcher
- Institut National de la Santé et de la Recherche Médicale Unité 901, Institut de Neurobiologie de la Méditerranée, Parc Scientifique de Luminy, Aix-Marseille Université Marseille, France
| | - Sandrine Courtes
- Institut National de la Santé et de la Recherche Médicale Unité 901, Institut de Neurobiologie de la Méditerranée, Parc Scientifique de Luminy, Aix-Marseille Université Marseille, France
| | - Valérie Coronas
- Signalisation et Transports Ioniques Membranaires, ERL 7368 Centre National de la Recherche Scientifique, Université de Poitiers Poitiers, France
| | - Slavica Krantic
- Institut National de la Santé et de la Recherche Médicale Unité 901, Institut de Neurobiologie de la Méditerranée, Parc Scientifique de Luminy, Aix-Marseille Université Marseille, France ; Centre de Recherche des Cordeliers, UMR_S 1138 INSERM, Paris Descartes University, Sorbonne Paris Cité, Pierre and Marie Curie University Paris, France
| | - Emmanuel Moyse
- Physiologie de la Reproduction et des Comportements, UMR 85 Institut National de la Recherche Agronomique, Centre INRA de Tours, Université François Rabelais de Tours Nouzilly, France
| |
Collapse
|
141
|
Sensitivity to the photoperiod and potential migratory features of neuroblasts in the adult sheep hypothalamus. Brain Struct Funct 2015; 221:3301-14. [DOI: 10.1007/s00429-015-1101-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 08/27/2015] [Indexed: 12/14/2022]
|
142
|
Burnstock G, Dale N. Purinergic signalling during development and ageing. Purinergic Signal 2015; 11:277-305. [PMID: 25989750 PMCID: PMC4529855 DOI: 10.1007/s11302-015-9452-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 01/28/2023] Open
Abstract
Extracellular purines and pyrimidines play major roles during embryogenesis, organogenesis, postnatal development and ageing in vertebrates, including humans. Pluripotent stem cells can differentiate into three primary germ layers of the embryo but may also be involved in plasticity and repair of the adult brain. These cells express the molecular components necessary for purinergic signalling, and their developmental fates can be manipulated via this signalling pathway. Functional P1, P2Y and P2X receptor subtypes and ectonucleotidases are involved in the development of different organ systems, including heart, blood vessels, skeletal muscle, urinary bladder, central and peripheral neurons, retina, inner ear, gut, lung and vas deferens. The importance of purinergic signalling in the ageing process is suggested by changes in expression of A1 and A2 receptors in old rat brains and reduction of P2X receptor expression in ageing mouse brain. By contrast, in the periphery, increases in expression of P2X3 and P2X4 receptors are seen in bladder and pancreas.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | |
Collapse
|
143
|
Haan N, Zhu B, Wang J, Wei X, Song B. Crosstalk between macrophages and astrocytes affects proliferation, reactive phenotype and inflammatory response, suggesting a role during reactive gliosis following spinal cord injury. J Neuroinflammation 2015; 12:109. [PMID: 26025034 PMCID: PMC4457974 DOI: 10.1186/s12974-015-0327-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/20/2015] [Indexed: 02/01/2023] Open
Abstract
Background Large-scale macrophage infiltration and reactive astrogliosis are hallmarks of early spinal cord injury (SCI) pathology. The exact nature of the macrophage response and relationship between these phenomena have not been explored in detail. Here, we have investigated these responses using a combination of in vivo SCI models, organotypic and primary cultures. Methods In vivo macrophage response was investigated using a contusive injury mouse model. Interactions between astrocytes and macrophages were studied in primary or organotypic cultures. Proliferation was assessed though MTT assay and nucleotide incorporation and gene expression changes through qPCR. Results Seven days following contusive SCI, a mixed M1/M2 macrophage response was seen in the injury site. Conditioned medium from primary M1, but not M2, macrophages are able to induce astrocyte proliferation in both organotypic spinal cord cultures and primary astrocytes. Soluble factors from M1 macrophages induce a reactive astrocyte gene expression pattern, whereas M2 factors inhibit expression of these genes. M2-stimulated astrocytes are also able to decrease both M1 and M2 macrophage proliferation and decrease TNFα production in M1 macrophages. Conclusions These results suggest a strong role of M1 macrophages in inducing reactive astrogliosis and the existence of an astrocyte-mediated negative feedback system in order to dampen the immune response. These results, combined with the poor outcomes of the current immunosuppressive steroid treatments in SCI, indicate the need for more targeted therapies, taking into account the significantly different effects of M1 and M2 macrophages, in order to optimise outcome. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0327-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Niels Haan
- Cardiff Institute of Tissue Engineering & Repair, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Campus, Cardiff, CF14 4XY, UK. .,Neuroscience and Mental Health Research Institute, College of Biomedical and Life Sciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| | - Bangfu Zhu
- Cardiff Institute of Tissue Engineering & Repair, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Campus, Cardiff, CF14 4XY, UK.
| | - Jian Wang
- Institute of Neurosciences, Fourth Military Medical University, 169 West Changle Road, Xi'an, 710032, China.
| | - Xiaoqing Wei
- Cardiff Institute of Tissue Engineering & Repair, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Campus, Cardiff, CF14 4XY, UK.
| | - Bing Song
- Cardiff Institute of Tissue Engineering & Repair, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Campus, Cardiff, CF14 4XY, UK. .,Department of Dermatology, No. 1 Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
144
|
Götz M, Sirko S, Beckers J, Irmler M. Reactive astrocytes as neural stem or progenitor cells: In vivo lineage, In vitro potential, and Genome-wide expression analysis. Glia 2015; 63:1452-68. [PMID: 25965557 PMCID: PMC5029574 DOI: 10.1002/glia.22850] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/01/2015] [Accepted: 04/15/2015] [Indexed: 12/25/2022]
Abstract
Here, we review the stem cell hallmarks of endogenous neural stem cells (NSCs) during development and in some niches of the adult mammalian brain to then compare these with reactive astrocytes acquiring stem cell hallmarks after traumatic and ischemic brain injury. Notably, even endogenous NSCs including the earliest NSCs, the neuroepithelial cells, generate in most cases only a single type of progeny and self‐renew only for a rather short time in vivo. In vitro, however, especially cells cultured under neurosphere conditions reveal a larger potential and long‐term self‐renewal under the influence of growth factors. This is rather well comparable to reactive astrocytes in the traumatic or ischemic brain some of which acquire neurosphere‐forming capacity including multipotency and long‐term self‐renewal in vitro, while they remain within their astrocyte lineage in vivo. Both reactive astrocytes and endogenous NSCs exhibit stem cell hallmarks largely in vitro, but their lineage differs in vivo. Both populations generate largely a single cell type in vivo, but endogenous NSCs generate neurons and reactive astrocytes remain in the astrocyte lineage. However, at some early postnatal stages or in some brain regions reactive astrocytes can be released from this fate restriction, demonstrating that they can also enact neurogenesis. Thus, reactive astrocytes and NSCs share many characteristic hallmarks, but also exhibit key differences. This conclusion is further substantiated by genome‐wide expression analysis comparing NSCs at different stages with astrocytes from the intact and injured brain parenchyma. GLIA 2015;63:1452–1468
Collapse
Affiliation(s)
- Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, Munich, Germany.,SYNERGY, Excellence Cluster of Systemic Neurology, LMU, Munich, Germany
| | - Swetlana Sirko
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, Munich, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Center Munich, Munich, Germany.,Department of Experimental Genetics, Technical University Munich, Freising-Weihenstephan, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
145
|
Migaud M, Butrille L, Batailler M. Seasonal regulation of structural plasticity and neurogenesis in the adult mammalian brain: focus on the sheep hypothalamus. Front Neuroendocrinol 2015; 37:146-57. [PMID: 25462590 DOI: 10.1016/j.yfrne.2014.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 01/19/2023]
Abstract
To cope with variations in the environment, most mammalian species exhibit seasonal cycles in physiology and behaviour. Seasonal plasticity during the lifetime contributes to seasonal physiology. Over the years, our ideas regarding adult brain plasticity and, more specifically, hypothalamic plasticity have greatly evolved. Along with the two main neurogenic regions, namely the hippocampal subgranular and lateral ventricle subventricular zones, the hypothalamus, which is the central homeostatic regulator of numerous physiological functions that comprise sexual behaviours, feeding and metabolism, also hosts neurogenic niches. Both endogenous and exogenous factors, including the photoperiod, modulate the hypothalamic neurogenic capacities. The present review describes the effects of season on adult morphological plasticity and neurogenesis in seasonal species, for which the photoperiod is a master environmental cue for the successful programming of seasonal functions. In addition, the potential functional significance of adult neurogenesis in the mediation of the seasonal control of reproduction and feeding is discussed.
Collapse
Affiliation(s)
- Martine Migaud
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université de Tours, F-37041 Tours, France; Haras Nationaux, F-37380 Nouzilly, France.
| | - Lucile Butrille
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université de Tours, F-37041 Tours, France; Haras Nationaux, F-37380 Nouzilly, France
| | - Martine Batailler
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université de Tours, F-37041 Tours, France; Haras Nationaux, F-37380 Nouzilly, France
| |
Collapse
|
146
|
Ebling FJP. Hypothalamic control of seasonal changes in food intake and body weight. Front Neuroendocrinol 2015; 37:97-107. [PMID: 25449796 DOI: 10.1016/j.yfrne.2014.10.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 12/22/2022]
Abstract
Seasonal cycles of fattening and body weight reflecting changes in both food intake and energy expenditure are a core aspect of the biology of mammals that have evolved in temperate and arctic latitudes. Identifying the neuroendocrine mechanisms that underlie these cycles has provided new insights into the hypothalamic control of appetite and fuel oxidation. Surprisingly, seasonal cycles do not result from changes in the leptin-responsive and homeostatic pathways located in the mediobasal and lateral hypothalamus that regulate meal timing and compensatory responses to starvation or caloric restriction. Rather, they result from changes in tanycyte function, which locally regulates transport and metabolism of thyroid hormone and retinoic acid. These signals are crucial for the initial development of the brain, so it is hypothesized that seasonal neuroendocrine cycles reflect developmental mechanisms in the adult hypothalamus, manifest as changes in neurogenesis and plasticity of connections.
Collapse
Affiliation(s)
- Francis J P Ebling
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
147
|
Bedont JL, Newman EA, Blackshaw S. Patterning, specification, and differentiation in the developing hypothalamus. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:445-68. [PMID: 25820448 DOI: 10.1002/wdev.187] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 12/21/2022]
Abstract
Owing to its complex structure and highly diverse cell populations, the study of hypothalamic development has historically lagged behind that of other brain regions. However, in recent years, a greatly expanded understanding of hypothalamic gene expression during development has opened up new avenues of investigation. In this review, we synthesize existing work to present a holistic picture of hypothalamic development from early induction and patterning through nuclear specification and differentiation, with a particular emphasis on determination of cell fate. We will also touch on special topics in the field including the prosomere model, adult neurogenesis, and integration of migratory cells originating outside the hypothalamic neuroepithelium, and how these topics relate to our broader theme.
Collapse
Affiliation(s)
- Joseph L Bedont
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth A Newman
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,High-Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
148
|
The LIM homeodomain factor Lhx2 is required for hypothalamic tanycyte specification and differentiation. J Neurosci 2015; 34:16809-20. [PMID: 25505333 DOI: 10.1523/jneurosci.1711-14.2014] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hypothalamic tanycytes, a radial glial-like ependymal cell population that expresses numerous genes selectively enriched in embryonic hypothalamic progenitors and adult neural stem cells, have recently been observed to serve as a source of adult-born neurons in the mammalian brain. The genetic mechanisms that regulate the specification and maintenance of tanycyte identity are unknown, but are critical for understanding how these cells can act as adult neural progenitor cells. We observe that LIM (Lin-11, Isl-1, Mec-3)-homeodomain gene Lhx2 is selectively expressed in hypothalamic progenitor cells and tanycytes. To test the function of Lhx2 in tanycyte development, we used an intersectional genetic strategy to conditionally delete Lhx2 in posteroventral hypothalamic neuroepithelium, both embryonically and postnatally. We observed that tanycyte development was severely disrupted when Lhx2 function was ablated during embryonic development. Lhx2-deficient tanycytes lost expression of tanycyte-specific genes, such as Rax, while also displaying ectopic expression of genes specific to cuboid ependymal cells, such as Rarres2. Ultrastructural analysis revealed that mutant tanycytes exhibited a hybrid identity, retaining radial morphology while becoming multiciliated. In contrast, postnatal loss of function of Lhx2 resulted only in loss of expression of tanycyte-specific genes. Using chromatin immunoprecipitation, we further showed that Lhx2 directly regulated expression of Rax, an essential homeodomain factor for tanycyte development. This study identifies Lhx2 as a key intrinsic regulator of tanycyte differentiation, sustaining Rax-dependent activation of tanycyte-specific genes while also inhibiting expression of ependymal cell-specific genes. These findings provide key insights into the transcriptional regulatory network specifying this still poorly characterized cell type.
Collapse
|
149
|
Multipotent stem cell factor UGS148 is a marker for tanycytes in the adult hypothalamus. Mol Cell Neurosci 2015; 65:21-30. [DOI: 10.1016/j.mcn.2015.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 01/12/2015] [Accepted: 02/02/2015] [Indexed: 11/22/2022] Open
|
150
|
Maggi R, Zasso J, Conti L. Neurodevelopmental origin and adult neurogenesis of the neuroendocrine hypothalamus. Front Cell Neurosci 2015; 8:440. [PMID: 25610370 PMCID: PMC4285089 DOI: 10.3389/fncel.2014.00440] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/06/2014] [Indexed: 11/13/2022] Open
Abstract
The adult hypothalamus regulates many physiological functions and homeostatic loops, including growth, feeding and reproduction. In mammals, the hypothalamus derives from the ventral diencephalon where two distinct ventricular proliferative zones have been described. Although a set of transcription factors regulating the hypothalamic development has been identified, the exact molecular mechanisms that drive the differentiation of hypothalamic neural precursor cells (NPCs) toward specific neuroendocrine neuronal subtypes is yet not fully disclosed. Neurogenesis has been also reported in the adult hypothalamus at the level of specific niches located in the ventrolateral region of ventricle wall, where NPCs have been identified as radial glia-like tanycytes. Here we review the molecular and cellular systems proposed to support the neurogenic potential of developing and adult hypothalamic NPCs. We also report new insights on the mechanisms by which adult hypothalamic neurogenesis modulates key functions of this brain region. Finally, we discuss how environmental factors may modulate the adult hypothalamic neurogenic cascade.
Collapse
Affiliation(s)
- Roberto Maggi
- Laboratory of Developmental Neuroendocrinology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano Milano, Italy ; Interuniversity Centre for the Research on the Molecular Bases of Reproductive Diseases (CIRMAR) Milano, Italy
| | - Jacopo Zasso
- Centre for Integrative Biology (CIBIO), Università degli Studi di Trento Povo, Italy
| | - Luciano Conti
- Centre for Integrative Biology (CIBIO), Università degli Studi di Trento Povo, Italy
| |
Collapse
|