101
|
Foltman M, Sanchez-Diaz A. TOR Complex 1: Orchestrating Nutrient Signaling and Cell Cycle Progression. Int J Mol Sci 2023; 24:15745. [PMID: 37958727 PMCID: PMC10647266 DOI: 10.3390/ijms242115745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The highly conserved TOR signaling pathway is crucial for coordinating cellular growth with the cell cycle machinery in eukaryotes. One of the two TOR complexes in budding yeast, TORC1, integrates environmental cues and promotes cell growth. While cells grow, they need to copy their chromosomes, segregate them in mitosis, divide all their components during cytokinesis, and finally physically separate mother and daughter cells to start a new cell cycle apart from each other. To maintain cell size homeostasis and chromosome stability, it is crucial that mechanisms that control growth are connected and coordinated with the cell cycle. Successive periods of high and low TORC1 activity would participate in the adequate cell cycle progression. Here, we review the known molecular mechanisms through which TORC1 regulates the cell cycle in the budding yeast Saccharomyces cerevisiae that have been extensively used as a model organism to understand the role of its mammalian ortholog, mTORC1.
Collapse
Affiliation(s)
- Magdalena Foltman
- Mechanisms and Regulation of Cell Division Research Unit, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, 39011 Santander, Spain
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain
| | - Alberto Sanchez-Diaz
- Mechanisms and Regulation of Cell Division Research Unit, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, 39011 Santander, Spain
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain
| |
Collapse
|
102
|
Gulias JF, Niesi F, Arán M, Correa-García S, Bermúdez-Moretti M. Gcn4 impacts metabolic fluxes to promote yeast chronological lifespan. PLoS One 2023; 18:e0292949. [PMID: 37831681 PMCID: PMC10575530 DOI: 10.1371/journal.pone.0292949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Aging is characterized by a gradual decline in physiological integrity, which impairs functionality and increases susceptibility to mortality. Dietary restriction, mimicking nutrient scarcity without causing malnutrition, is an intervention known to decelerate the aging process. While various hypotheses have been proposed to elucidate how dietary restriction influences aging, the underlying mechanisms remain incompletely understood. This project aimed to investigate the role of the primary regulator of the general amino acid control (GAAC) pathway, the transcription factor Gcn4, in the aging process of S. cerevisiae cells. Under conditions of amino acid deprivation, which activate Gcn4, the deletion of GCN4 led to a diverse array of physiological changes in the cells. Notably, the absence of Gcn4 resulted in heightened mitochondrial activity, likely contributing to the observed increase in reactive oxygen species (ROS) accumulation. Furthermore, these mutant gcn4Δ cells exhibited reduced ethanol production despite maintaining similar glucose consumption rates, suggesting a pivotal role for Gcn4 in regulating the Crabtree effect. Additionally, there was a marked reduction in trehalose, the storage carbohydrate, within the mutant cells compared to the wild-type strain. The intracellular content of free amino acids also exhibited disparities between the wild-type and GCN4-deficient strains. Taken together, our findings indicate that the absence of GCN4 disrupts cellular homeostasis, triggering significant alterations in interconnected intracellular metabolic pathways. These disruptions have far-reaching metabolic consequences that ultimately culminate in a shortened lifespan.
Collapse
Affiliation(s)
- Juan Facundo Gulias
- Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina–CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Florencia Niesi
- Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina–CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Martín Arán
- Fundación Instituto Leloir e Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA)—CONICET, Patricias Argentinas, Buenos Aires, Argentina
| | - Susana Correa-García
- Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina–CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Mariana Bermúdez-Moretti
- Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina–CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| |
Collapse
|
103
|
Agbemafle W, Wong MM, Bassham DC. Transcriptional and post-translational regulation of plant autophagy. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6006-6022. [PMID: 37358252 PMCID: PMC10575704 DOI: 10.1093/jxb/erad211] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/09/2023] [Indexed: 06/27/2023]
Abstract
In response to changing environmental conditions, plants activate cellular responses to enable them to adapt. One such response is autophagy, in which cellular components, for example proteins and organelles, are delivered to the vacuole for degradation. Autophagy is activated by a wide range of conditions, and the regulatory pathways controlling this activation are now being elucidated. However, key aspects of how these factors may function together to properly modulate autophagy in response to specific internal or external signals are yet to be discovered. In this review we discuss mechanisms for regulation of autophagy in response to environmental stress and disruptions in cell homeostasis. These pathways include post-translational modification of proteins required for autophagy activation and progression, control of protein stability of the autophagy machinery, and transcriptional regulation, resulting in changes in transcription of genes involved in autophagy. In particular, we highlight potential connections between the roles of key regulators and explore gaps in research, the filling of which can further our understanding of the autophagy regulatory network in plants.
Collapse
Affiliation(s)
- William Agbemafle
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Min May Wong
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
104
|
Lian L, Qiao J, Guo X, Xing Z, Ren A, Zhao M, Zhu J. The transcription factor GCN4 contributes to maintaining intracellular amino acid contents under nitrogen-limiting conditions in the mushroom Ganoderma lucidum. Microb Cell Fact 2023; 22:205. [PMID: 37817159 PMCID: PMC10563202 DOI: 10.1186/s12934-023-02213-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/26/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Edible mushrooms are delicious in flavour and rich in high-quality protein and amino acids required by humans. A transcription factor, general control nonderepressible 4 (GCN4), can regulate the expression of genes involved in amino acid metabolism in yeast and mammals. A previous study revealed that GCN4 plays a pivotal role in nitrogen utilization and growth in Ganoderma lucidum. However, its regulation is nearly unknown in mushrooms. RESULTS In this study, we found that the amino acid contents reached 120.51 mg per gram of mycelia in the WT strain under 60 mM asparagine (Asn) conditions, but decreased by 62.96% under 3 mM Asn conditions. Second, silencing of gcn4 resulted in a 54.2% decrease in amino acid contents under 60 mM Asn, especially for the essential and monosodium glutamate-like flavour amino acids. However, these effects were more pronounced under 3 mM Asn. Third, silencing of gcn4 markedly inhibited the expression of amino acid biosynthesis and transport genes. In addition, GCN4 enhanced the tricarboxylic acid cycle (TCA) and glycolytic pathway and inhibited the activity of target of rapamycin complex 1 (TORC1), thus being beneficial for maintaining amino acid homeostasis. CONCLUSION This study confirmed that GCN4 contributes to maintaining the amino acid contents in mushrooms under low concentrations of nitrogen. In conclusion, our study provides a research basis for GCN4 to regulate amino acid synthesis and improve the nutrient contents of edible mushrooms.
Collapse
Affiliation(s)
- Lingdan Lian
- Key Laboratory of Agricultural Environmental Microbiology, Microbiology Department, College of Life Sciences, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, PR China
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jinjin Qiao
- Key Laboratory of Agricultural Environmental Microbiology, Microbiology Department, College of Life Sciences, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, PR China
| | - Xiaoyu Guo
- Key Laboratory of Agricultural Environmental Microbiology, Microbiology Department, College of Life Sciences, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, PR China
| | - Zhenzhen Xing
- Key Laboratory of Agricultural Environmental Microbiology, Microbiology Department, College of Life Sciences, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, PR China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Microbiology Department, College of Life Sciences, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, PR China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Microbiology Department, College of Life Sciences, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, PR China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Microbiology Department, College of Life Sciences, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, PR China.
- College of Life Sciences, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
105
|
Okreglak V, Ling R, Ingaramo M, Thayer NH, Millett-Sikking A, Gottschling DE. Cell cycle-linked vacuolar pH dynamics regulate amino acid homeostasis and cell growth. Nat Metab 2023; 5:1803-1819. [PMID: 37640943 PMCID: PMC10590757 DOI: 10.1038/s42255-023-00872-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/21/2023] [Indexed: 08/31/2023]
Abstract
Amino acid homeostasis is critical for many cellular processes. It is well established that amino acids are compartmentalized using pH gradients generated between organelles and the cytoplasm; however, the dynamics of this partitioning has not been explored. Here we develop a highly sensitive pH reporter and find that the major amino acid storage compartment in Saccharomyces cerevisiae, the lysosome-like vacuole, alkalinizes before cell division and re-acidifies as cells divide. The vacuolar pH dynamics require the uptake of extracellular amino acids and activity of TORC1, the v-ATPase and the cycling of the vacuolar specific lipid phosphatidylinositol 3,5-bisphosphate, which is regulated by the cyclin-dependent kinase Pho85 (CDK5 in mammals). Vacuolar pH regulation enables amino acid sequestration and mobilization from the organelle, which is important for mitochondrial function, ribosome homeostasis and cell size control. Collectively, our data provide a new paradigm for the use of dynamic pH-dependent amino acid compartmentalization during cell growth/division.
Collapse
Affiliation(s)
- Voytek Okreglak
- Calico Life Sciences, LLC, South San Francisco, CA, USA.
- Altos Labs, Redwood City, CA, USA.
| | - Rachel Ling
- Calico Life Sciences, LLC, South San Francisco, CA, USA
| | | | | | | | | |
Collapse
|
106
|
Li Z, Zhang Y, Li W, Irwin AJ, Finkel ZV. Common environmental stress responses in a model marine diatom. THE NEW PHYTOLOGIST 2023; 240:272-284. [PMID: 37488721 DOI: 10.1111/nph.19147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/30/2023] [Indexed: 07/26/2023]
Abstract
Marine planktonic diatoms are among the most important contributors to phytoplankton blooms and marine net primary production. Their ecological success has been attributed to their ability to rapidly respond to changing environmental conditions. Here, we report common molecular mechanisms used by the model marine diatom Thalassiosira pseudonana to respond to 10 diverse environmental stressors using RNA-Seq analysis. We identify a specific subset of 1076 genes that are differentially expressed in response to stressors that induce an imbalance between energy or resource supply and metabolic capacity, which we termed the diatom environmental stress response (d-ESR). The d-ESR is primarily composed of genes that maintain proteome homeostasis and primary metabolism. Photosynthesis is strongly regulated in response to environmental stressors but chloroplast-encoded genes were predominantly upregulated while the nuclear-encoded genes were mostly downregulated in response to low light and high temperature. In aggregate, these results provide insight into the molecular mechanisms used by diatoms to respond to a range of environmental perturbations and the unique role of the chloroplast in managing environmental stress in diatoms. This study facilitates our understanding of the molecular mechanisms underpinning the ecological success of diatoms in the ocean.
Collapse
Affiliation(s)
- Zhengke Li
- School of Biological and Pharmaceutical Sciences, Shannxi University of Science and Technology, Xi'an, Shannxi, 710021, China
- Department of Oceanography, Dalhousie University, 1355 Oxford Street, Halifax, NS, B3H 4R2, Canada
| | - Yong Zhang
- Department of Oceanography, Dalhousie University, 1355 Oxford Street, Halifax, NS, B3H 4R2, Canada
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Wei Li
- College of Life and Environmental Sciences, Huangshan University, Huangshan, Anhui, 245041, China
| | - Andrew J Irwin
- Department of Mathematics & Statistics, Dalhousie University, 1355 Oxford Street, Halifax, NS, B3H 4R2, Canada
| | - Zoe V Finkel
- Department of Oceanography, Dalhousie University, 1355 Oxford Street, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
107
|
Land R, Fetter R, Liang X, Tzeng CP, Taylor CA, Shen K. Endoplasmic Reticulum Exit Sites scale with somato-dendritic size in neurons. Mol Biol Cell 2023; 34:ar106. [PMID: 37556208 PMCID: PMC10559313 DOI: 10.1091/mbc.e23-03-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/10/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023] Open
Abstract
Nervous systems exhibit dramatic diversity in cell morphology and size. How neurons regulate their biosynthetic and secretory machinery to support such diversity is not well understood. Endoplasmic reticulum exit sites (ERESs) are essential for maintaining secretory flux, and are required for normal dendrite development, but how neurons of different size regulate secretory capacity remains unknown. In Caenorhabditis elegans, we find that the ERES number is strongly correlated with the size of a neuron's dendritic arbor. The elaborately branched sensory neuron, PVD, has especially high ERES numbers. Asymmetric cell division provides PVD with a large initial cell size critical for rapid establishment of PVD's high ERES number before neurite outgrowth, and these ERESs are maintained throughout development. Maintenance of ERES number requires the cell fate transcription factor MEC-3, C. elegans TOR (ceTOR/let-363), and nutrient availability, with mec-3 and ceTOR/let-363 mutant PVDs both displaying reductions in ERES number, soma size, and dendrite size. Notably, mec-3 mutant animals exhibit reduced expression of a ceTOR/let-363 reporter in PVD, and starvation reduces ERES number and somato-dendritic size in a manner genetically redundant with ceTOR/let-363 perturbation. Our data suggest that both asymmetric cell division and nutrient sensing pathways regulate secretory capacities to support elaborate dendritic arbors.
Collapse
Affiliation(s)
- Ruben Land
- Department of Biology, Stanford University, Stanford, CA 94305
- Neurosciences IDP, Stanford University, Stanford, CA 94305
| | - Richard Fetter
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| | - Xing Liang
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Christopher P. Tzeng
- Department of Biology, Stanford University, Stanford, CA 94305
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| | - Caitlin A. Taylor
- Department of Biology, Stanford University, Stanford, CA 94305
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| | - Kang Shen
- Department of Biology, Stanford University, Stanford, CA 94305
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| |
Collapse
|
108
|
Livneh I, Cohen-Kaplan V, Fabre B, Abramovitch I, Lulu C, Nataraj NB, Lazar I, Ziv T, Yarden Y, Zohar Y, Gottlieb E, Ciechanover A. Regulation of nucleo-cytosolic 26S proteasome translocation by aromatic amino acids via mTOR is essential for cell survival under stress. Mol Cell 2023; 83:3333-3346.e5. [PMID: 37738964 DOI: 10.1016/j.molcel.2023.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 07/12/2023] [Accepted: 08/14/2023] [Indexed: 09/24/2023]
Abstract
The proteasome is responsible for removal of ubiquitinated proteins. Although several aspects of its regulation (e.g., assembly, composition, and post-translational modifications) have been unraveled, studying its adaptive compartmentalization in response to stress is just starting to emerge. We found that following amino acid starvation, the proteasome is translocated from its large nuclear pool to the cytoplasm-a response regulated by newly identified mTOR-agonistic amino acids-Tyr, Trp, and Phe (YWF). YWF relay their signal upstream of mTOR through Sestrin3 by disrupting its interaction with the GATOR2 complex. The triad activates mTOR toward its downstream substrates p62 and transcription factor EB (TFEB), affecting both proteasomal and autophagic activities. Proteasome translocation stimulates cytosolic proteolysis which replenishes amino acids, thus enabling cell survival. In contrast, nuclear sequestration of the proteasome following mTOR activation by YWF inhibits this proteolytic adaptive mechanism, leading to cell death, which establishes this newly identified pathway as a key stress-coping mechanism.
Collapse
Affiliation(s)
- Ido Livneh
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel; Institute of Pathology, Rambam Health Care Campus, Haifa 3109601, Israel.
| | - Victoria Cohen-Kaplan
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Bertrand Fabre
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Ifat Abramovitch
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Chen Lulu
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | | | - Ikrame Lazar
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Tamar Ziv
- Smoler Proteomic Center, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yaniv Zohar
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel; Institute of Pathology, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Eyal Gottlieb
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Aaron Ciechanover
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel.
| |
Collapse
|
109
|
Chen Y, Xu Z, Sun H, Ouyang X, Han Y, Yu H, Wu N, Xie Y, Su B. Regulation of CD8 + T memory and exhaustion by the mTOR signals. Cell Mol Immunol 2023; 20:1023-1039. [PMID: 37582972 PMCID: PMC10468538 DOI: 10.1038/s41423-023-01064-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/02/2023] [Indexed: 08/17/2023] Open
Abstract
CD8+ T cells are the key executioners of the adaptive immune arm, which mediates antitumor and antiviral immunity. Naïve CD8+ T cells develop in the thymus and are quickly activated in the periphery after encountering a cognate antigen, which induces these cells to proliferate and differentiate into effector cells that fight the initial infection. Simultaneously, a fraction of these cells become long-lived memory CD8+ T cells that combat future infections. Notably, the generation and maintenance of memory cells is profoundly affected by various in vivo conditions, such as the mode of primary activation (e.g., acute vs. chronic immunization) or fluctuations in host metabolic, inflammatory, or aging factors. Therefore, many T cells may be lost or become exhausted and no longer functional. Complicated intracellular signaling pathways, transcription factors, epigenetic modifications, and metabolic processes are involved in this process. Therefore, understanding the cellular and molecular basis for the generation and fate of memory and exhausted CD8+ cells is central for harnessing cellular immunity. In this review, we focus on mammalian target of rapamycin (mTOR), particularly signaling mediated by mTOR complex (mTORC) 2 in memory and exhausted CD8+ T cells at the molecular level.
Collapse
Affiliation(s)
- Yao Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ziyang Xu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongxiang Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinxing Ouyang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Tumor Biology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuheng Han
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haihui Yu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ningbo Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yiting Xie
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Tumor Biology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Key Laboratory of Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
110
|
Nicastro R, Brohée L, Alba J, Nüchel J, Figlia G, Kipschull S, Gollwitzer P, Romero-Pozuelo J, Fernandes SA, Lamprakis A, Vanni S, Teleman AA, De Virgilio C, Demetriades C. Malonyl-CoA is a conserved endogenous ATP-competitive mTORC1 inhibitor. Nat Cell Biol 2023; 25:1303-1318. [PMID: 37563253 PMCID: PMC10495264 DOI: 10.1038/s41556-023-01198-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/29/2023] [Indexed: 08/12/2023]
Abstract
Cell growth is regulated by the mammalian/mechanistic target of rapamycin complex 1 (mTORC1), which functions both as a nutrient sensor and a master controller of virtually all biosynthetic pathways. This ensures that cells are metabolically active only when conditions are optimal for growth. Notably, although mTORC1 is known to regulate fatty acid biosynthesis, how and whether the cellular lipid biosynthetic capacity signals back to fine-tune mTORC1 activity remains poorly understood. Here we show that mTORC1 senses the capacity of a cell to synthesise fatty acids by detecting the levels of malonyl-CoA, an intermediate of this biosynthetic pathway. We find that, in both yeast and mammalian cells, this regulation is direct, with malonyl-CoA binding to the mTOR catalytic pocket and acting as a specific ATP-competitive inhibitor. When fatty acid synthase (FASN) is downregulated/inhibited, elevated malonyl-CoA levels are channelled to proximal mTOR molecules that form direct protein-protein interactions with acetyl-CoA carboxylase 1 (ACC1) and FASN. Our findings represent a conserved and unique homeostatic mechanism whereby impaired fatty acid biogenesis leads to reduced mTORC1 activity to coordinately link this metabolic pathway to the overall cellular biosynthetic output. Moreover, they reveal the existence of a physiological metabolite that directly inhibits the activity of a signalling kinase in mammalian cells by competing with ATP for binding.
Collapse
Affiliation(s)
- Raffaele Nicastro
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Laura Brohée
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany
| | - Josephine Alba
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Julian Nüchel
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany
| | - Gianluca Figlia
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
| | | | - Peter Gollwitzer
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany
| | - Jesus Romero-Pozuelo
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
- Unidad de Investigación Biomedica, Universidad Alfonso X El Sabio (UAX), Madrid, Spain
| | | | - Andreas Lamprakis
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Heidelberg University, Heidelberg, Germany.
| | | | - Constantinos Demetriades
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany.
- University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.
| |
Collapse
|
111
|
Lu Z, Shen Q, Liu L, Talbo G, Speight R, Trau M, Dumsday G, Howard CB, Vickers CE, Peng B. Profiling proteomic responses to hexokinase-II depletion in terpene-producing Saccharomyces cerevisiae. ENGINEERING MICROBIOLOGY 2023; 3:100079. [PMID: 39628925 PMCID: PMC11610997 DOI: 10.1016/j.engmic.2023.100079] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/03/2023] [Accepted: 02/13/2023] [Indexed: 12/06/2024]
Abstract
Hexokinase II (Hxk2) is a master protein in glucose-mediated transcriptional repression signaling pathway. Degrading Hxk2 through an auxin-inducible protein degradation previously doubled sesquiterpene (nerolidol) production at gram-per-liter levels in Saccharomyces cerevisiae. Global transcriptomics/proteomics profiles in Hxk2-deficient background are important to understanding genetic and molecular mechanisms for improved nerolidol production and guiding further strain optimization. Here, proteomic responses to Hxk2 depletion are investigated in the yeast strains harboring a GAL promoters-controlled nerolidol synthetic pathway, at the exponential and ethanol growth phases and in GAL80-wildtype and gal80Δ backgrounds. Carbon metabolic pathways and amino acid metabolic pathways show diversified responses to Hxk2 depletion and growth on ethanol, including upregulation of alternative carbon catabolism and respiration as well as downregulation of amino acid synthesis. De-repression of GAL genes may contribute to improved nerolidol production in Hxk2-depleted strains. Seventeen transcription factors associated with upregulated genes are enriched. Validating Ash1-mediated repression on the RIM4 promoter shows the variation on the regulatory effects of different Ash1-binding sites and the synergistic effect of Ash1 and Hxk2-mediated repression. Further validation of individual promoters shows that HXT1 promoter activities are glucose-dependent in hxk2Δ background, but much weaker than those in HXK2-wildtype background. In summary, inactivating HXK2 may relieve glucose repression on respiration and GAL promoters for improved bioproduction under aerobic conditions in S. cerevisiae. The proteomics profiles provide a better genetics overview for a better metabolic engineering design in Hxk2-deficient backgrounds.
Collapse
Affiliation(s)
- Zeyu Lu
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- CSIRO Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT, 2601, Australia
| | - Qianyi Shen
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- School of Chemistry and Molecular Biosciences (SCMB), the University of Queensland, Brisbane, QLD, 4072, Australia
| | - Lian Liu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Metabolomics Australia (Queensland Node), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Gert Talbo
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Metabolomics Australia (Queensland Node), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Robert Speight
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Matt Trau
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemistry and Molecular Biosciences (SCMB), the University of Queensland, Brisbane, QLD, 4072, Australia
| | | | - Christopher B. Howard
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Claudia E. Vickers
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- CSIRO Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT, 2601, Australia
- Eden Brew Pty Ltd, Glenorie, NSW, 2157, Australia
| | - Bingyin Peng
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- CSIRO Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT, 2601, Australia
| |
Collapse
|
112
|
Lakin-Thomas P. The Case for the Target of Rapamycin Pathway as a Candidate Circadian Oscillator. Int J Mol Sci 2023; 24:13307. [PMID: 37686112 PMCID: PMC10488232 DOI: 10.3390/ijms241713307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The molecular mechanisms that drive circadian (24 h) rhythmicity have been investigated for many decades, but we still do not have a complete picture of eukaryotic circadian systems. Although the transcription/translation feedback loop (TTFL) model has been the primary focus of research, there are many examples of circadian rhythms that persist when TTFLs are not functioning, and we lack any good candidates for the non-TTFL oscillators driving these rhythms. In this hypothesis-driven review, the author brings together several lines of evidence pointing towards the Target of Rapamycin (TOR) signalling pathway as a good candidate for a non-TTFL oscillator. TOR is a ubiquitous regulator of metabolism in eukaryotes and recent focus in circadian research on connections between metabolism and rhythms makes TOR an attractive candidate oscillator. In this paper, the evidence for a role for TOR in regulating rhythmicity is reviewed, and the advantages of TOR as a potential oscillator are discussed. Evidence for extensive feedback regulation of TOR provides potential mechanisms for a TOR-driven oscillator. Comparison with ultradian yeast metabolic cycles provides an example of a potential TOR-driven self-sustained oscillation. Unanswered questions and problems to be addressed by future research are discussed.
Collapse
|
113
|
Wu Y, Li X, Dong L, Liu T, Tang Z, Lin R, Norvienyeku J, Xing M. A New Insight into 6-Pentyl-2H-pyran-2-one against Peronophythora litchii via TOR Pathway. J Fungi (Basel) 2023; 9:863. [PMID: 37623635 PMCID: PMC10515317 DOI: 10.3390/jof9080863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023] Open
Abstract
The litchi downy blight disease of litchi caused by Peronophythora litchii accounts for severe losses in the field and during storage. While ample quantitative studies have shown that 6-pentyl-2H-pyran-2-one (6PP) possesses antifungal activities against multiple plant pathogenic fungi, the regulatory mechanisms of 6PP-mediated inhibition of fungal pathogenesis and growth are still unknown. Here, we investigated the potential molecular targets of 6PP in the phytopathogenic oomycetes P. litchii through integrated deployment of RNA-sequencing, functional genetics, and biochemical techniques to investigate the regulatory effects of 6PP against P. litchii. Previously we demonstrated that 6PP exerted significant oomyticidal activities. Also, comparative transcriptomic evaluation of P. litchii strains treated with 6PP Revealed significant up-regulations in the expression profile of TOR pathway-related genes, including PlCytochrome C and the transcription factors PlYY1. We also noticed that 6PP treatment down-regulated putative negative regulatory genes of the TOR pathway, including PlSpm1 and PlrhoH12 in P. litchii. Protein-ligand binding analyses revealed stable affinities between PlYY1, PlCytochrome C, PlSpm1, PlrhoH12 proteins, and the 6PP ligand. Phenotypic characterization of PlYY1 targeted gene deletion strains generated in this study using CRISPR/Cas9 and homologous recombination strategies significantly reduced the vegetative growth, sporangium, encystment, zoospore release, and pathogenicity of P. litchii. These findings suggest that 6PP-mediated activation of PlYY1 expression positively regulates TOR-related responses and significantly influences vegetative growth and the virulence of P. litchii. The current investigations revealed novel targets for 6PP and underscored the potential of deploying 6PP in developing management strategies for controlling the litchi downy blight pathogen.
Collapse
Affiliation(s)
- Yinggu Wu
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.W.); (X.L.); (L.D.); (T.L.); (Z.T.); (R.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Xinyu Li
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.W.); (X.L.); (L.D.); (T.L.); (Z.T.); (R.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Li Dong
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.W.); (X.L.); (L.D.); (T.L.); (Z.T.); (R.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Tong Liu
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.W.); (X.L.); (L.D.); (T.L.); (Z.T.); (R.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Zhengbin Tang
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.W.); (X.L.); (L.D.); (T.L.); (Z.T.); (R.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Runmao Lin
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.W.); (X.L.); (L.D.); (T.L.); (Z.T.); (R.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Justice Norvienyeku
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.W.); (X.L.); (L.D.); (T.L.); (Z.T.); (R.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Mengyu Xing
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.W.); (X.L.); (L.D.); (T.L.); (Z.T.); (R.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| |
Collapse
|
114
|
Weith M, Großbach J, Clement‐Ziza M, Gillet L, Rodríguez‐López M, Marguerat S, Workman CT, Picotti P, Bähler J, Aebersold R, Beyer A. Genetic effects on molecular network states explain complex traits. Mol Syst Biol 2023; 19:e11493. [PMID: 37485750 PMCID: PMC10407735 DOI: 10.15252/msb.202211493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/25/2023] Open
Abstract
The complexity of many cellular and organismal traits results from the integration of genetic and environmental factors via molecular networks. Network structure and effect propagation are best understood at the level of functional modules, but so far, no concept has been established to include the global network state. Here, we show when and how genetic perturbations lead to molecular changes that are confined to small parts of a network versus when they lead to modulation of network states. Integrating multi-omics profiling of genetically heterogeneous budding and fission yeast strains with an array of cellular traits identified a central state transition of the yeast molecular network that is related to PKA and TOR (PT) signaling. Genetic variants affecting this PT state globally shifted the molecular network along a single-dimensional axis, thereby modulating processes including energy and amino acid metabolism, transcription, translation, cell cycle control, and cellular stress response. We propose that genetic effects can propagate through large parts of molecular networks because of the functional requirement to centrally coordinate the activity of fundamental cellular processes.
Collapse
Affiliation(s)
- Matthias Weith
- Excellence Cluster on Cellular Stress Responses in Aging Associated DiseasesUniversity of CologneCologneGermany
| | - Jan Großbach
- Excellence Cluster on Cellular Stress Responses in Aging Associated DiseasesUniversity of CologneCologneGermany
| | | | - Ludovic Gillet
- Department of BiologyInstitute of Molecular Systems Biology, ETH ZürichZürichSwitzerland
| | - María Rodríguez‐López
- Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentUniversity College LondonLondonUK
| | - Samuel Marguerat
- Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentUniversity College LondonLondonUK
| | - Christopher T Workman
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Paola Picotti
- Department of BiologyInstitute of Molecular Systems Biology, ETH ZürichZürichSwitzerland
| | - Jürg Bähler
- Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentUniversity College LondonLondonUK
| | - Ruedi Aebersold
- Department of BiologyInstitute of Molecular Systems Biology, ETH ZürichZürichSwitzerland
| | - Andreas Beyer
- Excellence Cluster on Cellular Stress Responses in Aging Associated DiseasesUniversity of CologneCologneGermany
| |
Collapse
|
115
|
Foltman M, Mendez I, Bech-Serra JJ, de la Torre C, Brace JL, Weiss EL, Lucas M, Queralt E, Sanchez-Diaz A. TOR complex 1 negatively regulates NDR kinase Cbk1 to control cell separation in budding yeast. PLoS Biol 2023; 21:e3002263. [PMID: 37647291 PMCID: PMC10468069 DOI: 10.1371/journal.pbio.3002263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/19/2023] [Indexed: 09/01/2023] Open
Abstract
The target of rapamycin (TOR) signalling pathway plays a key role in the coordination between cellular growth and the cell cycle machinery in eukaryotes. The underlying molecular mechanisms by which TOR might regulate events after anaphase remain unknown. We show for the first time that one of the 2 TOR complexes in budding yeast, TORC1, blocks the separation of cells following cytokinesis by phosphorylation of a member of the NDR (nuclear Dbf2-related) protein-kinase family, the protein Cbk1. We observe that TORC1 alters the phosphorylation pattern of Cbk1 and we identify a residue within Cbk1 activation loop, T574, for which a phosphomimetic substitution makes Cbk1 catalytically inactive and, indeed, reproduces TORC1 control over cell separation. In addition, we identify the exocyst component Sec3 as a key substrate of Cbk1, since Sec3 activates the SNARE complex to promote membrane fusion. TORC1 activity ultimately compromises the interaction between Sec3 and a t-SNARE component. Our data indicate that TORC1 negatively regulates cell separation in budding yeast by participating in Cbk1 phosphorylation, which in turn controls the fusion of secretory vesicles transporting hydrolase at the site of division.
Collapse
Affiliation(s)
- Magdalena Foltman
- Mechanisms and Regulation of Cell Division Research Unit, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Iván Mendez
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
- Structural Biology of Macromolecular Complexes Research Unit, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Joan J. Bech-Serra
- Josep Carreras Leukaemia Research Institute, IJC Building, Campus ICO-Germans Trias i Pujol, Barcelona, Spain
| | - Carolina de la Torre
- Josep Carreras Leukaemia Research Institute, IJC Building, Campus ICO-Germans Trias i Pujol, Barcelona, Spain
| | - Jennifer L. Brace
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois, United States of America
| | - Eric L. Weiss
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois, United States of America
| | - María Lucas
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
- Structural Biology of Macromolecular Complexes Research Unit, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Ethel Queralt
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Alberto Sanchez-Diaz
- Mechanisms and Regulation of Cell Division Research Unit, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
116
|
Tate JJ, Rai R, Cooper TG. TorC1 and nitrogen catabolite repression control of integrated GABA shunt and retrograde pathway gene expression. Yeast 2023; 40:318-332. [PMID: 36960709 PMCID: PMC10518031 DOI: 10.1002/yea.3849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
Despite our detailed understanding of how the lower GABA shunt and retrograde genes are regulated, there is a paucity of validated information concerning control of GAD1, the glutamate decarboxylase gene which catalyzes the first reaction of the GABA shunt. Further, integration of glutamate degradation via the GABA shunt has not been investigated. Here, we show that while GAD1 shares a response to rapamycin-inhibition of the TorC1 kinase, it does so independently of the Gln3 and Gat1 NCR-sensitive transcriptional activators that mediate transcription of the lower GABA shunt genes. We also show that GABA shunt gene expression increases dramatically in response to nickel ions. The α-ketoglutarate needed for the GABA shunt to cycle, thereby producing reduced pyridine nucleotides, derives from the retrograde pathway as shown by a similar high increase in the retrograde reporter, CIT2 when nickel is present in the medium. These observations demonstrate high integration of the GABA shunt, retrograde, peroxisomal glyoxylate cycle, and β-oxidation pathways.
Collapse
Affiliation(s)
- Jennifer J. Tate
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, U.S.A
| | - Rajendra Rai
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, U.S.A
| | - Terrance G. Cooper
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, U.S.A
| |
Collapse
|
117
|
Caligaris M, Sampaio-Marques B, Hatakeyama R, Pillet B, Ludovico P, De Virgilio C, Winderickx J, Nicastro R. The Yeast Protein Kinase Sch9 Functions as a Central Nutrient-Responsive Hub That Calibrates Metabolic and Stress-Related Responses. J Fungi (Basel) 2023; 9:787. [PMID: 37623558 PMCID: PMC10455444 DOI: 10.3390/jof9080787] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Yeast cells are equipped with different nutrient signaling pathways that enable them to sense the availability of various nutrients and adjust metabolism and growth accordingly. These pathways are part of an intricate network since most of them are cross-regulated and subject to feedback regulation at different levels. In yeast, a central role is played by Sch9, a protein kinase that functions as a proximal effector of the conserved growth-regulatory TORC1 complex to mediate information on the availability of free amino acids. However, recent studies established that Sch9 is more than a TORC1-effector as its activity is tuned by several other kinases. This allows Sch9 to function as an integrator that aligns different input signals to achieve accuracy in metabolic responses and stress-related molecular adaptations. In this review, we highlight the latest findings on the structure and regulation of Sch9, as well as its role as a nutrient-responsive hub that impacts on growth and longevity of yeast cells. Given that most key players impinging on Sch9 are well-conserved, we also discuss how studies on Sch9 can be instrumental to further elucidate mechanisms underpinning healthy aging in mammalians.
Collapse
Affiliation(s)
- Marco Caligaris
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (M.C.); (B.P.); (C.D.V.)
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (B.S.-M.); (P.L.)
- ICVS/3B’s-PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
| | - Riko Hatakeyama
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK;
| | - Benjamin Pillet
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (M.C.); (B.P.); (C.D.V.)
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (B.S.-M.); (P.L.)
- ICVS/3B’s-PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
| | - Claudio De Virgilio
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (M.C.); (B.P.); (C.D.V.)
| | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, B-3001 Heverlee, Belgium;
| | - Raffaele Nicastro
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (M.C.); (B.P.); (C.D.V.)
| |
Collapse
|
118
|
Yuan J, Mo Y, Zhang Y, Zhang Y, Zhang Q. Nickel nanoparticles induce autophagy and apoptosis via HIF-1α/mTOR signaling in human bronchial epithelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121670. [PMID: 37080518 PMCID: PMC10231338 DOI: 10.1016/j.envpol.2023.121670] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
With the rapid development of nanotechnology, the potential adverse health effects of nanoparticles have been caught more attention and become global concerns. However, the underlying mechanisms in metal nanoparticle-induced toxic effects are still largely obscure. In this study, we investigated whether exposure to nickel nanoparticles (Nano-Ni) and titanium dioxide nanoparticles (Nano-TiO2) would alter autophagy and apoptosis levels in normal human bronchial epithelial BEAS-2B cells and the underlying mechanisms involved in this process. Our results showed that the expressions of autophagy- and apoptosis-associated proteins were dysregulated in cells exposed to Nano-Ni. However, exposure to the same doses of Nano-TiO2 had no significant effects on these proteins. In addition, exposure to Nano-Ni, but not Nano-TiO2, led to nuclear accumulation of HIF-1α and decreased phosphorylation of mTOR in BEAS-2B cells. Inhibition of HIF-1α by CAY10585 abolished Nano-Ni-induced decreased phosphorylation of mTOR, while activation of mTOR by MHY1485 did not affect Nano-Ni-induced nuclear accumulation of HIF-1α. Furthermore, both HIF-1α inhibition and mTOR activation abolished Nano-Ni-induced autophagy but enhanced Nano-Ni-induced apoptosis. Blockage of autophagic flux by Bafilomycin A1 exacerbated Nano-Ni-induced apoptosis, while activation of autophagy by Rapamycin effectively rescued Nano-Ni-induced apoptosis. In conclusion, our results demonstrated that Nano-Ni exposure caused increased levels of autophagy and apoptosis via the HIF-1α/mTOR signaling axis. Nano-Ni-induced autophagy has a protective role against Nano-Ni-induced apoptosis. These findings provide us with further insight into Nano-Ni-induced toxicity.
Collapse
Affiliation(s)
- Jiali Yuan
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, 40202, USA
| | - Yiqun Mo
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, 40202, USA
| | - Yue Zhang
- Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yuanbao Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, 40202, USA
| | - Qunwei Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
119
|
Martínez-Chacón G, Paredes-Barquero M, Yakhine-Diop SM, Uribe-Carretero E, Bargiela A, Sabater-Arcis M, Morales-García J, Alarcón-Gil J, Alegre-Cortés E, Canales-Cortés S, Rodríguez-Arribas M, Camello PJ, Pedro JMBS, Perez-Castillo A, Artero R, Gonzalez-Polo RA, Fuentes JM, Niso-Santano M. Neuroprotective properties of queen bee acid by autophagy induction. Cell Biol Toxicol 2023; 39:751-770. [PMID: 34448959 PMCID: PMC10406658 DOI: 10.1007/s10565-021-09625-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022]
Abstract
Autophagy is a conserved intracellular catabolic pathway that removes cytoplasmic components to contribute to neuronal homeostasis. Accumulating evidence has increasingly shown that the induction of autophagy improves neuronal health and extends longevity in several animal models. Therefore, there is a great interest in the identification of effective autophagy enhancers with potential nutraceutical or pharmaceutical properties to ameliorate age-related diseases, such as neurodegenerative disorders, and/or promote longevity. Queen bee acid (QBA, 10-hydroxy-2-decenoic acid) is the major fatty acid component of, and is found exclusively in, royal jelly, which has beneficial properties for human health. It is reported that QBA has antitumor, anti-inflammatory, and antibacterial activities and promotes neurogenesis and neuronal health; however, the mechanism by which QBA exerts these effects has not been fully elucidated. The present study investigated the role of the autophagic process in the protective effect of QBA. We found that QBA is a novel autophagy inducer that triggers autophagy in various neuronal cell lines and mouse and fly models. The beclin-1 (BECN1) and mTOR pathways participate in the regulation of QBA-induced autophagy. Moreover, our results showed that QBA stimulates sirtuin 1 (SIRT1), which promotes autophagy by the deacetylation of critical ATG proteins. Finally, QBA-mediated autophagy promotes neuroprotection in Parkinson's disease in vitro and in a mouse model and extends the lifespan of Drosophila melanogaster. This study provides detailed evidences showing that autophagy induction plays a critical role in the beneficial health effects of QBA.
Collapse
Affiliation(s)
- Guadalupe Martínez-Chacón
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Marta Paredes-Barquero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Sokhna M.S Yakhine-Diop
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Elisabet Uribe-Carretero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Ariadna Bargiela
- Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia, Spain
- CIPF-INCLIVA Joint Unit, Valencia, Spain
| | - María Sabater-Arcis
- Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia, Spain
- CIPF-INCLIVA Joint Unit, Valencia, Spain
| | - José Morales-García
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigaciones Biomédicas (CSIC-UAM) “Alberto Sols” (CSIC-UAM), Madrid, Spain
| | - Jesús Alarcón-Gil
- Instituto de Investigaciones Biomédicas (CSIC-UAM) “Alberto Sols” (CSIC-UAM), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Eva Alegre-Cortés
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Saray Canales-Cortés
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Mario Rodríguez-Arribas
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Pedro Javier Camello
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
- Instituto Universitario de Biomarcadores de Patologías Metabólicas, Cáceres, Spain
| | - José Manuel Bravo-San Pedro
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Perez-Castillo
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Investigaciones Biomédicas (CSIC-UAM) “Alberto Sols” (CSIC-UAM), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Rubén Artero
- Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia, Spain
- CIPF-INCLIVA Joint Unit, Valencia, Spain
| | - Rosa A. Gonzalez-Polo
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - José M. Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Mireia Niso-Santano
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| |
Collapse
|
120
|
Benavides-Serrato A, Saunders JT, Kumar S, Holmes B, Benavides KE, Bashir MT, Nishimura RN, Gera J. m 6A-modification of cyclin D1 and c-myc IRESs in glioblastoma controls ITAF activity and resistance to mTOR inhibition. Cancer Lett 2023; 562:216178. [PMID: 37061119 PMCID: PMC10805108 DOI: 10.1016/j.canlet.2023.216178] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/17/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023]
Abstract
A major mechanism conferring resistance to mTOR inhibitors is activation of a salvage pathway stimulating internal ribosome entry site (IRES)-mediated mRNA translation, driving the synthesis of proteins promoting resistance of glioblastoma (GBM). Previously, we found this pathway is stimulated by the requisite IRES-trans-acting factor (ITAF) hnRNP A1, which itself is subject to phosphorylation and methylation events regulating cyclin D1 and c-myc IRES activity. Here we describe the requirement for m6A-modification of IRES RNAs for efficient translation and resistance to mTOR inhibition. DRACH-motifs within these IRES RNAs upon m6A modification resulted in enhanced IRES activity via increased hnRNP A1-binding following mTOR inhibitor exposure. Inhibitor exposure stimulated the expression of m6A-methylosome components resulting in increased activity in GBM. Silencing of METTL3-14 complexes reduced IRES activity upon inhibitor exposure and sensitized resistant GBM lines. YTHDF3 associates with m6A-modified cyclin D1 or c-myc IRESs, regulating IRES activity, and mTOR inhibitor sensitivity in vitro and in xenograft experiments. YTHDF3 interacted directly with hnRNP A1 and together stimulated hnRNP A1-dependent nucleic acid strand annealing activity. These data demonstrate that m6A-methylation of IRES RNAs regulate GBM responses to this class of inhibitors.
Collapse
Affiliation(s)
- Angelica Benavides-Serrato
- Department of Medicine, University of California, Los Angeles, CA, USA; Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| | - Jacquelyn T Saunders
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| | - Sunil Kumar
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| | - Brent Holmes
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| | - Kennedy E Benavides
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| | - Muhammad T Bashir
- Department of Medicine, University of California, Los Angeles, CA, USA; Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| | - Robert N Nishimura
- Neurology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA; Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| | - Joseph Gera
- Department of Medicine, University of California, Los Angeles, CA, USA; Jonnson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA; Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA.
| |
Collapse
|
121
|
Liu GY, Jouandin P, Bahng RE, Perrimon N, Sabatini DM. An evolutionary mechanism to assimilate new nutrient sensors into the mTORC1 pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.541239. [PMID: 37292894 PMCID: PMC10245982 DOI: 10.1101/2023.05.25.541239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Animals must sense and respond to nutrient availability in their local niche. This task is coordinated in part by the mTOR complex 1 (mTORC1) pathway, which regulates growth and metabolism in response to nutrients1-5. In mammals, mTORC1 senses specific amino acids through specialized sensors that act through the upstream GATOR1/2 signaling hub6-8. To reconcile the conserved architecture of the mTORC1 pathway with the diversity of environments that animals can occupy, we hypothesized that the pathway might maintain plasticity by evolving distinct nutrient sensors in different metazoan phyla1,9,10. Whether such customization occurs-and how the mTORC1 pathway might capture new nutrient inputs-is not known. Here, we identify the Drosophila melanogaster protein Unmet expectations (Unmet, formerly CG11596) as a species-restricted nutrient sensor and trace its incorporation into the mTORC1 pathway. Upon methionine starvation, Unmet binds to the fly GATOR2 complex to inhibit dTORC1. S-adenosylmethionine (SAM), a proxy for methionine availability, directly relieves this inhibition. Unmet expression is elevated in the ovary, a methionine-sensitive niche11, and flies lacking Unmet fail to maintain the integrity of the female germline under methionine restriction. By monitoring the evolutionary history of the Unmet-GATOR2 interaction, we show that the GATOR2 complex evolved rapidly in Dipterans to recruit and repurpose an independent methyltransferase as a SAM sensor. Thus, the modular architecture of the mTORC1 pathway allows it to co-opt preexisting enzymes and expand its nutrient sensing capabilities, revealing a mechanism for conferring evolvability on an otherwise highly conserved system.
Collapse
Affiliation(s)
- Grace Y. Liu
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology; 455 Main Street, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Koch Institute for Integrative Cancer Research and Massachusetts Institute of Technology, Department of Biology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Patrick Jouandin
- Department of Genetics, Blavatnik Institute, Harvard Medical School; Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School; Boston, MA 02115, USA
- Present address: Institut de Recherche en Cancérologie de Montpellier, Inserm U1194-UM-ICM; Campus Val d’Aurelle, F-34298 Montpellier Cedex 5, France
| | - Raymond E. Bahng
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology; 455 Main Street, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Koch Institute for Integrative Cancer Research and Massachusetts Institute of Technology, Department of Biology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School; Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School; Boston, MA 02115, USA
| | | |
Collapse
|
122
|
Parate S, Kumar V, Hong JC, Lee KW. Investigation of Macrocyclic mTOR Modulators of Rapamycin Binding Site via Pharmacoinformatics Approaches. Comput Biol Chem 2023; 104:107875. [PMID: 37148678 DOI: 10.1016/j.compbiolchem.2023.107875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/08/2023]
Abstract
The PI3K/Akt/mTOR is an essential intracellular signaling pathway in which the serine/threonine mTOR kinase portrays a major role in cell growth, proliferation and survival. The mTOR kinase is frequently dysregulated in a broad spectrum of cancers, thus making it a potential target. Rapamycin and its analogs (rapalogs) allosterically inhibit mTOR, thereby dodging the deleterious effects prompted by ATP-competitive mTOR inhibitors. However, the available mTOR allosteric site inhibitors exhibit low oral bioavailability and suboptimal solubility. Bearing in mind this narrow therapeutic window of the current allosteric mTOR inhibitors, an in silico study was designed in search of new macrocyclic inhibitors. The macrocycles from the ChemBridge database (12,677 molecules) were filtered for their drug-likeness properties and the procured compounds were subjected for molecular docking within the binding cleft between FKBP25 and FRB domains of mTOR. The docking analysis resulted with 15 macrocycles displaying higher scores than the selective mTOR allosteric site inhibitor, DL001. The docked complexes were refined by subsequent molecular dynamics simulations for a period of 100 ns. Successive binding free energy computation revealed a total of 7 macrocyclic compounds (HITS) demonstrating better binding affinity than DL001, towards mTOR. The consequent assessment of pharmacokinetic properties resulted in HITS with similar or better properties than the selective inhibitor, DL001. The HITS from this investigation could act as effective mTOR allosteric site inhibitors and serve as macrocyclic scaffolds for developing compounds targeting the dysregulated mTOR.
Collapse
Affiliation(s)
- Shraddha Parate
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Division of Applied Life Science, Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, South Korea; Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden.
| | - Vikas Kumar
- Department of Bio & Medical Big Data (BK4 Program), Division of Life Sciences, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, South Korea
| | - Jong Chan Hong
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Division of Applied Life Science, Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, South Korea.
| | - Keun Woo Lee
- Department of Bio & Medical Big Data (BK4 Program), Division of Life Sciences, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, South Korea.
| |
Collapse
|
123
|
Yalcin G, Kim J, Seo D, Lee CK. FPR1 is essential for rapamycin-induced lifespan extension in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2023; 653:76-82. [PMID: 36857903 DOI: 10.1016/j.bbrc.2023.02.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/01/2023]
Abstract
FK506-sensitive proline rotamase 1 protein (Fpr1p), which is a homologue of the mammalian prolyl isomerase FK506-binding protein of 12 kDa (FKBP12), is known to play important roles in protein folding and prevention of protein aggregation. Although rapamycin is known to bind to Fpr1p to inhibit Tor1p mediated-mechanistic Target Of Rapamycin (mTOR) activity, the physiological functions of Fpr1p on lifespan remain unclear. In this study, we used the eukaryotic model Saccharomyces cerevisiae to demonstrate that deletion of FPR1 reduced yeast chronological lifespan (CLS), and there was no benefit on lifespan upon rapamycin treatment, indicating that lifespan extension mechanism of rapamycin in yeast is exclusively dependent on FPR1. Furthermore, there was a significant increase in CLS of fpr1Δ cells during caloric restriction (CR), suggesting that rapamycin affects lifespan in a different way compared to CR. This study highlights the importance of FPR1 for rapamycin-induced lifespan extension.
Collapse
Affiliation(s)
- Gulperi Yalcin
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02481, Republic of Korea
| | - Juri Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02481, Republic of Korea
| | - Dongseong Seo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02481, Republic of Korea
| | - Cheol-Koo Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02481, Republic of Korea.
| |
Collapse
|
124
|
Ingargiola C, Jéhanno I, Forzani C, Marmagne A, Broutin J, Clément G, Leprince AS, Meyer C. The Arabidopsis Target of Rapamycin (TOR) kinase regulates ammonium assimilation and glutamine metabolism. PLANT PHYSIOLOGY 2023:kiad216. [PMID: 37042394 DOI: 10.1093/plphys/kiad216] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/01/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
In eukaryotes, Target of Rapamycin (TOR) is a well conserved kinase that controls cell metabolism and growth in response to nutrients and environmental factors. Nitrogen (N) is an essential element for plants, and TOR functions as a crucial N and amino acid sensor in animals and yeast. However, knowledge on the connections between TOR and the overall N metabolism and assimilation in plants is still limited. In this study, we investigated the regulation of TOR in Arabidopsis (Arabidopsis thaliana) by the N source as well as the impact of TOR deficiency on N metabolism. Inhibition of TOR globally decreased ammonium uptake while triggering a massive accumulation of amino acids, such as Gln, but also of polyamines. Consistently, TOR complex mutants were hypersensitive to Gln. We also showed that the glutamine synthetase inhibitor glufosinate abolishes Gln accumulation resulting from TOR inhibition and improves the growth of TOR complex mutants. These results suggest that a high level of Gln contributes to the reduction in plant growth resulting from TOR inhibition. Glutamine synthetase activity was reduced by TOR inhibition while the enzyme amount increased. In conclusion, our findings show that the TOR pathway is intimately connected to N metabolism and that a decrease in TOR activity results in glutamine synthetase-dependent Gln and amino acid accumulation.
Collapse
Affiliation(s)
- Camille Ingargiola
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Isabelle Jéhanno
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Céline Forzani
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Anne Marmagne
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Justine Broutin
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Gilles Clément
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Anne-Sophie Leprince
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
- Faculté des Sciences et d'Ingénierie, Sorbonne Université, UFR 927, 4 Place Jussieu, 75252 Paris, France
| | - Christian Meyer
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
125
|
Terhorst A, Sandikci A, Whittaker CA, Szórádi T, Holt LJ, Neurohr GE, Amon A. The environmental stress response regulates ribosome content in cell cycle-arrested S. cerevisiae. Front Cell Dev Biol 2023; 11:1118766. [PMID: 37123399 PMCID: PMC10130656 DOI: 10.3389/fcell.2023.1118766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Prolonged cell cycle arrests occur naturally in differentiated cells and in response to various stresses such as nutrient deprivation or treatment with chemotherapeutic agents. Whether and how cells survive prolonged cell cycle arrests is not clear. Here, we used S. cerevisiae to compare physiological cell cycle arrests and genetically induced arrests in G1-, meta- and anaphase. Prolonged cell cycle arrest led to growth attenuation in all studied conditions, coincided with activation of the Environmental Stress Response (ESR) and with a reduced ribosome content as determined by whole ribosome purification and TMT mass spectrometry. Suppression of the ESR through hyperactivation of the Ras/PKA pathway reduced cell viability during prolonged arrests, demonstrating a cytoprotective role of the ESR. Attenuation of cell growth and activation of stress induced signaling pathways also occur in arrested human cell lines, raising the possibility that the response to prolonged cell cycle arrest is conserved.
Collapse
Affiliation(s)
- Allegra Terhorst
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Arzu Sandikci
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Charles A. Whittaker
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Tamás Szórádi
- Institute for Systems Genetics, New York University Langone Health, New York City, NY, United States
| | - Liam J. Holt
- Institute for Systems Genetics, New York University Langone Health, New York City, NY, United States
| | - Gabriel E. Neurohr
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, United States
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
126
|
Zhang P, Fu HJ, Lv LX, Liu CF, Han C, Zhao XF, Wang JX. WSSV exploits AMPK to activate mTORC2 signaling for proliferation by enhancing aerobic glycolysis. Commun Biol 2023; 6:361. [PMID: 37012372 PMCID: PMC10070494 DOI: 10.1038/s42003-023-04735-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
AMPK plays significant roles in the modulation of metabolic reprogramming and viral infection. However, the detailed mechanism by which AMPK affects viral infection is unclear. The present study aims to determine how AMPK influences white spot syndrome virus (WSSV) infection in shrimp (Marsupenaeus japonicus). Here, we find that AMPK expression and phosphorylation are significantly upregulated in WSSV-infected shrimp. WSSV replication decreases remarkably after knockdown of Ampkα and the shrimp survival rate of AMPK-inhibitor injection shrimp increases significantly, suggesting that AMPK is beneficial for WSSV proliferation. Mechanistically, WSSV infection increases intracellular Ca2+ level, and activates CaMKK, which result in AMPK phosphorylation and partial nuclear translocation. AMPK directly activates mTORC2-AKT signaling pathway to phosphorylate key enzymes of glycolysis in the cytosol and promotes expression of Hif1α to mediate transcription of key glycolytic enzyme genes, both of which lead to increased glycolysis to provide energy for WSSV proliferation. Our findings reveal a novel mechanism by which WSSV exploits the host CaMKK-AMPK-mTORC2 pathway for its proliferation, and suggest that AMPK might be a target for WSSV control in shrimp aquaculture.
Collapse
Affiliation(s)
- Peng Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
| | - Hai-Jing Fu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
| | - Li-Xia Lv
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
| | - Chen-Fei Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
| | - Chang Han
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China.
- State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China.
| |
Collapse
|
127
|
Gutiérrez-Santiago F, Navarro F. Transcription by the Three RNA Polymerases under the Control of the TOR Signaling Pathway in Saccharomyces cerevisiae. Biomolecules 2023; 13:biom13040642. [PMID: 37189389 DOI: 10.3390/biom13040642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023] Open
Abstract
Ribosomes are the basis for protein production, whose biogenesis is essential for cells to drive growth and proliferation. Ribosome biogenesis is highly regulated in accordance with cellular energy status and stress signals. In eukaryotic cells, response to stress signals and the production of newly-synthesized ribosomes require elements to be transcribed by the three RNA polymerases (RNA pols). Thus, cells need the tight coordination of RNA pols to adjust adequate components production for ribosome biogenesis which depends on environmental cues. This complex coordination probably occurs through a signaling pathway that links nutrient availability with transcription. Several pieces of evidence strongly support that the Target of Rapamycin (TOR) pathway, conserved among eukaryotes, influences the transcription of RNA pols through different mechanisms to ensure proper ribosome components production. This review summarizes the connection between TOR and regulatory elements for the transcription of each RNA pol in the budding yeast Saccharomyces cerevisiae. It also focuses on how TOR regulates transcription depending on external cues. Finally, it discusses the simultaneous coordination of the three RNA pols through common factors regulated by TOR and summarizes the most important similarities and differences between S. cerevisiae and mammals.
Collapse
Affiliation(s)
- Francisco Gutiérrez-Santiago
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
| | - Francisco Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
- Centro de Estudios Avanzados en Aceite de Oliva y Olivar, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
| |
Collapse
|
128
|
Chen Q, Qu M, Chen Q, Meng X, Fan H. Phosphoproteomics analysis of the effect of target of rapamycin kinase inhibition on Cucumis sativus in response to Podosphaera xanthii. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107641. [PMID: 36940522 DOI: 10.1016/j.plaphy.2023.107641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Target of rapamycin (TOR) kinase is a conserved sensor of cell growth in yeasts, plants, and mammals. Despite the extensive research on the TOR complex in various biological processes, large-scale phosphoproteomics analysis of TOR phosphorylation events upon environmental stress are scarce. Powdery mildew caused by Podosphaera xanthii poses a major threat to the quality and yield of cucumber (Cucumis sativus L.). Previous studies concluded that TOR participated in abiotic and biotic stress responses. Hence, studying the underlying mechanism of TOR-P. xanthii infection is particularly important. In this study, we performed a quantitative phosphoproteomics studies of Cucumis against P. xanthii attack under AZD-8055 (TOR inhibitor) pretreatment. A total of 3384 phosphopeptides were identified from the 1699 phosphoproteins. The Motif-X analysis showed high sensitivity and specificity of serine sites under AZD-8055-treatment or P. xanthii stress, and TOR exhibited a unique preference for proline at +1 position and glycine at -1 position to enhance the phosphorylation response to P. xanthii. The functional analysis suggested that the unique responses were attributed to proteins related to plant hormone signaling, mitogen-activated protein kinase cascade signaling, phosphatidylinositol signaling system, and circadian rhythm; and calcium signaling- and defense response-related proteins. Our results provided rich resources for understanding the molecular mechanism of how the TOR kinase controlled plant growth and stress adaptation.
Collapse
Affiliation(s)
- Qiumin Chen
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Mengqi Qu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qinglei Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Biology and Genetic Improvement of Fruit Vegetables of Shenyang, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Biology and Genetic Improvement of Fruit Vegetables of Shenyang, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
129
|
Navarro‐Velasco GY, Di Pietro A, López‐Berges MS. Constitutive activation of TORC1 signalling attenuates virulence in the cross-kingdom fungal pathogen Fusarium oxysporum. MOLECULAR PLANT PATHOLOGY 2023; 24:289-301. [PMID: 36840362 PMCID: PMC10013769 DOI: 10.1111/mpp.13292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/18/2023]
Abstract
The filamentous fungus Fusarium oxysporum causes vascular wilt disease in a wide range of plant species and opportunistic infections in humans. Previous work suggested that invasive growth in this pathogen is controlled by environmental cues such as pH and nutrient status. Here we investigated the role of Target Of Rapamycin Complex 1 (TORC1), a global regulator of eukaryotic cell growth and development. Inactivation of the negative regulator Tuberous Sclerosis Complex 2 (Tsc2), but not constitutive activation of the positive regulator Gtr1, in F. oxysporum resulted in inappropriate activation of TORC1 signalling under nutrient-limiting conditions. The tsc2Δ mutants showed reduced colony growth on minimal medium with different nitrogen sources and increased sensitivity to cell wall or high temperature stress. Furthermore, these mutants were impaired in invasive hyphal growth across cellophane membranes and exhibited a marked decrease in virulence, both on tomato plants and on the invertebrate animal host Galleria mellonella. Importantly, invasive hyphal growth in tsc2Δ strains was rescued by rapamycin-mediated inhibition of TORC1. Collectively, these results reveal a key role of TORC1 signalling in the development and pathogenicity of F. oxysporum and suggest new potential targets for controlling fungal infections.
Collapse
Affiliation(s)
- Gesabel Yaneth Navarro‐Velasco
- Departamento de GenéticaUniversidad de CórdobaCórdobaSpain
- Present address:
Centro de Investigación e Información de Medicamentos y Tóxicos, Facultad de MedicinaUniversidad de PanamáPanama CityPanama
| | | | | |
Collapse
|
130
|
Pacheco JM, Song L, Kuběnová L, Ovečka M, Berdion Gabarain V, Peralta JM, Lehuedé TU, Ibeas MA, Ricardi MM, Zhu S, Shen Y, Schepetilnikov M, Ryabova LA, Alvarez JM, Gutierrez RA, Grossmann G, Šamaj J, Yu F, Estevez JM. Cell surface receptor kinase FERONIA linked to nutrient sensor TORC signaling controls root hair growth at low temperature linked to low nitrate in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2023; 238:169-185. [PMID: 36716782 DOI: 10.1111/nph.18723] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Root hairs (RH) are excellent model systems for studying cell size and polarity since they elongate several hundred-fold their original size. Their tip growth is determined both by intrinsic and environmental signals. Although nutrient availability and temperature are key factors for a sustained plant growth, the molecular mechanisms underlying their sensing and downstream signaling pathways remain unclear. We use genetics to address the roles of the cell surface receptor kinase FERONIA (FER) and the nutrient sensing TOR Complex 1 (TORC) in RH growth. We identified that low temperature (10°C) triggers a strong RH elongation response in Arabidopsis thaliana involving FER and TORC. We found that FER is required to perceive limited nutrient availability caused by low temperature. FERONIA interacts with and activates TORC-downstream components to trigger RH growth. In addition, the small GTPase Rho of plants 2 (ROP2) is also involved in this RH growth response linking FER and TOR. We also found that limited nitrogen nutrient availability can mimic the RH growth response at 10°C in a NRT1.1-dependent manner. These results uncover a molecular mechanism by which a central hub composed by FER-ROP2-TORC is involved in the control of RH elongation under low temperature and nitrogen deficiency.
Collapse
Affiliation(s)
- Javier Martínez Pacheco
- Fundación Instituto Leloir and IIBBA-CONICET, Av Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Limei Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
- Laborarory of Species Interaction and Biological Invasion, School of Life Science, Hebei University, Baoding, 071002, China
| | - Lenka Kuběnová
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Miroslav Ovečka
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Victoria Berdion Gabarain
- Fundación Instituto Leloir and IIBBA-CONICET, Av Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Juan Manuel Peralta
- Fundación Instituto Leloir and IIBBA-CONICET, Av Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Tomás Urzúa Lehuedé
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186, Santiago, Chile
- ANID - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), 8331150, Santiago, Chile
| | - Miguel Angel Ibeas
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186, Santiago, Chile
- ANID - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), 8331150, Santiago, Chile
| | - Martiniano M Ricardi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Yanan Shen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Mikhail Schepetilnikov
- Institut de Biologie Moléculaire des Plantes, CNRS, UPR 2357, Université de Strasbourg, 67084, Strasbourg, France
| | - Lyubov A Ryabova
- Institut de Biologie Moléculaire des Plantes, CNRS, UPR 2357, Université de Strasbourg, 67084, Strasbourg, France
| | - José M Alvarez
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186, Santiago, Chile
- ANID - Millennium Institute for Integrative Biology (iBio), 7500000, Santiago, Chile
| | - Rodrigo A Gutierrez
- ANID - Millennium Institute for Integrative Biology (iBio), 7500000, Santiago, Chile
- Millennium Institute Center for Genome Regulation, 6904411, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
| | - Guido Grossmann
- Institute of Cell and Interaction Biology, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
- Cluster of Excellence in Plant Sciences, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Jozef Šamaj
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Av Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186, Santiago, Chile
- ANID - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), 8331150, Santiago, Chile
- ANID - Millennium Institute for Integrative Biology (iBio), 7500000, Santiago, Chile
| |
Collapse
|
131
|
Coppa E, Vigani G, Aref R, Savatin D, Bigini V, Hell R, Astolfi S. Differential modulation of Target of Rapamycin activity under single and combined iron and sulfur deficiency in tomato plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36976541 DOI: 10.1111/tpj.16213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
Over the past few decades, a close relationship between sulfur (S) and iron (Fe) in terms of functionality and nutrition was demonstrated in the tomato. However, very little is known about the regulatory mechanisms underlying S/Fe interactions. Recently, the potential role of citrate in plant adaptation to Fe deficiency and combined S and Fe deficiency has been described. It is known that an impaired organic acid metabolism may stimulate a retrograde signal, which has been proven to be linked to the Target of Rapamycin (TOR) signaling in yeast and animal cells. Recent reports provided evidence of TOR involvement in S nutrient sensing in plants. This suggestion prompted us to investigate whether TOR may play a role in the cross-talk of signaling pathway occurring during plant adaptation to combined nutrient deficiency of Fe and S. Our results revealed that Fe deficiency elicited an increase of TOR activity associated with enhanced accumulation of citrate. In contrast, S deficiency resulted in decreased TOR activity and citrate accumulation. Interestingly, citrate accumulated in shoots of plants exposed to combined S/Fe deficiency to values between those found in Fe- and S-deficient plants, again correlated with TOR activity level. Our results suggest that citrate might be involved in establishing a link between plant response to combined S/Fe deficiency and the TOR network.
Collapse
Affiliation(s)
- Eleonora Coppa
- Department of Agriculture and Forest Sciences, University of Tuscia, via S.C. de Lellis, Viterbo, 01100, Italy
| | - Gianpiero Vigani
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Via G. Quarello 15/A, Torino, 10135, Italy
| | - Rasha Aref
- Department of Genetics, Faculty of Agriculture, Ain Shams University, 11241, Cairo, Egypt
| | - Daniel Savatin
- Department of Agriculture and Forest Sciences, University of Tuscia, via S.C. de Lellis, Viterbo, 01100, Italy
| | - Valentina Bigini
- Department of Agriculture and Forest Sciences, University of Tuscia, via S.C. de Lellis, Viterbo, 01100, Italy
| | - Ruediger Hell
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 360, Heidelberg, 69120, Germany
| | - Stefania Astolfi
- Department of Agriculture and Forest Sciences, University of Tuscia, via S.C. de Lellis, Viterbo, 01100, Italy
| |
Collapse
|
132
|
Martins TS, Costa RS, Vilaça R, Lemos C, Teixeira V, Pereira C, Costa V. Iron Limitation Restores Autophagy and Increases Lifespan in the Yeast Model of Niemann-Pick Type C1. Int J Mol Sci 2023; 24:6221. [PMID: 37047194 PMCID: PMC10094029 DOI: 10.3390/ijms24076221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Niemann-Pick type C1 (NPC1) is an endolysosomal transmembrane protein involved in the export of cholesterol and sphingolipids to other cellular compartments such as the endoplasmic reticulum and plasma membrane. NPC1 loss of function is the major cause of NPC disease, a rare lysosomal storage disorder characterized by an abnormal accumulation of lipids in the late endosomal/lysosomal network, mitochondrial dysfunction, and impaired autophagy. NPC phenotypes are conserved in yeast lacking Ncr1, an orthologue of human NPC1, leading to premature aging. Herein, we performed a phosphoproteomic analysis to investigate the effect of Ncr1 loss on cellular functions mediated by the yeast lysosome-like vacuoles. Our results revealed changes in vacuolar membrane proteins that are associated mostly with vesicle biology (fusion, transport, organization), autophagy, and ion homeostasis, including iron, manganese, and calcium. Consistently, the cytoplasm to vacuole targeting (Cvt) pathway was increased in ncr1∆ cells and autophagy was compromised despite TORC1 inhibition. Moreover, ncr1∆ cells exhibited iron overload mediated by the low-iron sensing transcription factor Aft1. Iron deprivation restored the autophagic flux of ncr1∆ cells and increased its chronological lifespan and oxidative stress resistance. These results implicate iron overload on autophagy impairment, oxidative stress sensitivity, and cell death in the yeast model of NPC1.
Collapse
Affiliation(s)
- Telma S. Martins
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Rafaela S. Costa
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Rita Vilaça
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Carolina Lemos
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Vitor Teixeira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Clara Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Vítor Costa
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
133
|
Ibrahim YH, Pantelios S, Mutvei AP. An affinity tool for the isolation of endogenous active mTORC1 from various cellular sources. J Biol Chem 2023; 299:104644. [PMID: 36965617 PMCID: PMC10164890 DOI: 10.1016/j.jbc.2023.104644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/27/2023] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a central regulator of mammalian cell growth that is dysregulated in a number of human diseases, including metabolic syndromes, aging and cancer. Structural, biochemical and pharmacological studies that have increased our understanding of how mTORC1 executes growth control often relied upon purified mTORC1 protein. However, current immunoaffinity-based purification methods are expensive, inefficient, and do not necessarily isolate endogenous mTORC1, hampering their overall utility in research. Here we present a simple tool to isolate endogenous mTORC1 from various cellular sources. By recombinantly expressing and isolating mTORC1-binding Rag GTPases from E. Coli and using them as affinity probes, we demonstrate that mTORC1 can be isolated from mouse, bovine and human sources. Our results indicate that mTORC1 isolated by this relatively inexpensive method is catalytically active and amenable to scaling. Collectively, this tool may be utilized to isolate mTORC1 from various cellular sources, organs, and disease contexts, aiding mTORC1-related research.
Collapse
Affiliation(s)
| | - Spyridon Pantelios
- Department of Immunology, Pathology and Genetics, Uppsala University, Uppsala, Sweden
| | - Anders P Mutvei
- Department of Immunology, Pathology and Genetics, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
134
|
Components of TOR and MAP kinase signaling control chemotropism and pathogenicity in the fungal pathogen Verticillium dahliae. Microbiol Res 2023; 271:127361. [PMID: 36921400 DOI: 10.1016/j.micres.2023.127361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023]
Abstract
Filamentous fungi can sense useful resources and hazards in their environment and direct growth of their hyphae accordingly. Chemotropism ensures access to nutrients, contact with other individuals (e.g., for mating), and interaction with hosts in the case of pathogens. Previous studies have revealed a complex chemotropic sensing landscape during host-pathogen interactions, but the underlying molecular machinery remains poorly characterized. Here we studied mechanisms controlling directed hyphal growth of the important plant-pathogenic fungus Verticillium dahliae towards different chemoattractants. We found that the homologs of the Rag GTPase Gtr1 and the GTPase-activating protein Tsc2, an activator and a repressor of the TOR kinase respectively, play important roles in hyphal chemotropism towards nutrients, plant-derived signals, and heterologous α-pheromone of Fusarium oxysporum. Furthermore, important roles of these regulators were identified in fungal development and pathogenicity. We also found that the mitogen-activated protein kinase (MAPK) Fus3 is required for chemotropism towards nutrients, while the G protein-coupled receptor (GPCR) Ste2 and the MAPK Slt2 control chemosensing of plant-derived signals and α-pheromone. Our study establishes V. dahliae as a suitable model system for the analysis of fungal chemotropism and discovers new components of chemotropic signaling during growth and host-pathogen interactions of V. dahliae.
Collapse
|
135
|
Li X, Chen Y, Gong S, Chen H, Liu H, Li X, Hao J. Emerging roles of TFE3 in metabolic regulation. Cell Death Discov 2023; 9:93. [PMID: 36906611 PMCID: PMC10008649 DOI: 10.1038/s41420-023-01395-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/13/2023] Open
Abstract
TFE3 is a member of the MiT family of the bHLH-leucine zipper transcription factor. We previously focused on the role of TFE3 in autophagy and cancer. Recently, an increasing number of studies have revealed that TFE3 plays an important role in metabolic regulation. TFE3 participates in the metabolism of energy in the body by regulating pathways such as glucose and lipid metabolism, mitochondrial metabolism, and autophagy. This review summarizes and discusses the specific regulatory mechanisms of TFE3 in metabolism. We determined both the direct regulation of TFE3 on metabolically active cells, such as hepatocytes and skeletal muscle cells, and the indirect regulation of TFE3 through mitochondrial quality control and the autophagy-lysosome pathway. The role of TFE3 in tumor cell metabolism is also summarized in this review. Understanding the diverse roles of TFE3 in metabolic processes can provide new avenues for the treatment of some metabolism-related disorders.
Collapse
Affiliation(s)
- Xingyu Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yongming Chen
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Siqiao Gong
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Huixia Chen
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Huafeng Liu
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Xiaoyu Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Junfeng Hao
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
136
|
Zhang Y, Li H, Lv L, Lu K, Li H, Zhang W, Cui T. Autophagy: Dual roles and perspective for clinical treatment of colorectal cancer. Biochimie 2023; 206:49-60. [PMID: 36244578 DOI: 10.1016/j.biochi.2022.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) raises concerns to people because of its high recurrence and metastasis rate, diagnosis challenges, and poor prognosis. Various studies have shown the association of altered autophagy with tumorigenesis, tumor-stroma interactions, and resistance to cancer therapy in CRC. Autophagy is a highly conserved cytosolic catabolic process in eukaryotes that plays distinct roles in CRC occurrence and progression. In early tumorigenesis, autophagy may inhibit tumor growth through diverse mechanisms, whereas it exhibits a tumor promoting function in CRC progression. This different functions of autophagy in CRC occurrence and progression make developing therapies targeting autophagy complicated. In this review, we discuss the classification and process of autophagy as well as its dual roles in CRC, functions in the tumor microenvironment, cross-talk with apoptosis, and potential usefulness as a CRC therapeutic target.
Collapse
Affiliation(s)
- Yabin Zhang
- West China Second University Hospital, State Key Laboratory of Biotherapy, Laboratory of Metabolomics and Gynecological Disease Research and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, 610041, Chengdu, China
| | - Haiyan Li
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Liang Lv
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Huihui Li
- West China Second University Hospital, State Key Laboratory of Biotherapy, Laboratory of Metabolomics and Gynecological Disease Research and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, 610041, Chengdu, China
| | - Wenli Zhang
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Tao Cui
- West China Second University Hospital, State Key Laboratory of Biotherapy, Laboratory of Metabolomics and Gynecological Disease Research and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
137
|
Shetty S, Hofstetter J, Battaglioni S, Ritz D, Hall MN. TORC1 phosphorylates and inhibits the ribosome preservation factor Stm1 to activate dormant ribosomes. EMBO J 2023; 42:e112344. [PMID: 36691768 PMCID: PMC9975950 DOI: 10.15252/embj.2022112344] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 01/25/2023] Open
Abstract
Target of rapamycin complex 1 (TORC1) promotes biogenesis and inhibits the degradation of ribosomes in response to nutrient availability. To ensure a basal supply of ribosomes, cells are known to preserve a small pool of dormant ribosomes under nutrient-limited conditions. However, the regulation of these dormant ribosomes is poorly characterized. Here, we show that upon inhibition of yeast TORC1 by rapamycin or nitrogen starvation, the ribosome preservation factor Stm1 mediates the formation of nontranslating, dormant 80S ribosomes. Furthermore, Stm1-bound 80S ribosomes are protected from proteasomal degradation. Upon nutrient replenishment, TORC1 directly phosphorylates and inhibits Stm1 to reactivate translation. Finally, we find that SERBP1, a mammalian ortholog of Stm1, is likewise required for the formation of dormant 80S ribosomes upon mTORC1 inhibition in mammalian cells. These data suggest that TORC1 regulates ribosomal dormancy in an evolutionarily conserved manner by directly targeting a ribosome preservation factor.
Collapse
Affiliation(s)
| | | | | | - Danilo Ritz
- BiozentrumUniversity of BaselBaselSwitzerland
| | | |
Collapse
|
138
|
Frias MA, Hatipoglu A, Foster DA. Regulation of mTOR by phosphatidic acid. Trends Endocrinol Metab 2023; 34:170-180. [PMID: 36732094 PMCID: PMC9957947 DOI: 10.1016/j.tem.2023.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/03/2023] [Indexed: 02/03/2023]
Abstract
mTORC1, the mammalian target of rapamycin complex 1, is a key regulator of cellular physiology. The lipid metabolite phosphatidic acid (PA) binds to and activates mTORC1 in response to nutrients and growth factors. We review structural findings and propose a model for PA activation of mTORC1. PA binds to a highly conserved sequence in the α4 helix of the FK506 binding protein 12 (FKBP12)/rapamycin-binding (FRB) domain of mTOR. It is proposed that PA binding to two adjacent positively charged amino acids breaks and shortens the C-terminal region of helix α4. This has profound consequences for both substrate binding and the catalytic activity of mTORC1.
Collapse
Affiliation(s)
- Maria A Frias
- Department of Biology and Health Promotion, St. Francis College, Brooklyn, NY 11201, USA; Department of Biological Sciences, Hunter College of the City University of New York, New York, NY 10065, USA.
| | - Ahmet Hatipoglu
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY 10065, USA; Biochemistry Program, Graduate Center of the City University of New York, New York, NY 10016, USA
| | - David A Foster
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY 10065, USA; Biochemistry Program, Graduate Center of the City University of New York, New York, NY 10016, USA; Biology Program, Graduate Center of the City University of New York, New York, NY 10016, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
139
|
Lu H, Li W, Whiteway M, Wang H, Zhu S, Ji Z, Feng Y, Yan L, Fang T, Li L, Ni T, Zhang X, Lv Q, Ding Z, Qiu L, Zhang D, Jiang Y. A Small Molecule Inhibitor of Erg251 Makes Fluconazole Fungicidal by Inhibiting the Synthesis of the 14α-Methylsterols. mBio 2023; 14:e0263922. [PMID: 36475771 PMCID: PMC9973333 DOI: 10.1128/mbio.02639-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Fluconazole (FLC) is widely used to prevent and treat invasive fungal infections. However, FLC is a fungistatic agent, allowing clinical FLC-susceptible isolates to tolerate FLC. Making FLC fungicidal in combination with adjuvants is a promising strategy to avoid FLC resistance and eliminate the persistence and recurrence of fungal infections. Here, we identify a new small molecule compound, CZ66, that can make FLC fungicidal. The mechanism of action of CZ66 is targeting the C-4 sterol methyl oxidase, encoded by the ERG251 gene, resulting in decreased content of sterols with the 14α-methyl group and ultimately eliminating FLC tolerance of Candida albicans. CZ66 most likely interacts with Erg251 through residues Glu195, Gly206, and Arg241. Establishing Erg251 as a synergistic lethal target protein of FLC should direct research to identify specific small molecule inhibitors of 14α-methylsterol synthesis and open the way to abolishing fungal FLC tolerance. IMPORTANCE Fluconazole (FLC) tolerance increases the frequency of acquired FLC resistance, and a high FLC tolerance level is associated with persistent candidemia. Multiple functional proteins, such as calcineurin, heat shock protein 90 (Hsp90), and ADP ribosylation factor, are essential for the survival of C. albicans exposed to FLC, but how these factors increase the fungicidal activity of FLC remains to be determined. In this study, we found that 14α-methylsterols replace ergosterol to allow C. albicans to survive FLC, but Erg251 inactivated by CZ66 results in loss of 14α-methylsterol synthesis and cell death of C. albicans treated with FLC. Establishing Erg251 as a synergistic lethal target protein of FLC should direct research to identify specific small molecule inhibitors of 14α-methylsterol synthesis and open the way to abolishing fungal FLC tolerance.
Collapse
Affiliation(s)
- Hui Lu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wanqian Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Hongkang Wang
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shuo Zhu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhe Ji
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanru Feng
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lan Yan
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Ting Fang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liping Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tingjunhong Ni
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaolong Zhang
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Quanzhen Lv
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Zichao Ding
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Lijuan Qiu
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Dazhi Zhang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
140
|
Santos AS, Borges Dos Anjos LR, Costa VAF, Freitas VAQ, Zara ALDSA, Costa CR, Neves BJ, Silva MDRR. In silico-chemogenomic repurposing of new chemical scaffolds for histoplasmosis treatment. J Mycol Med 2023; 33:101363. [PMID: 36842411 DOI: 10.1016/j.mycmed.2023.101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/10/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
BACKGROUND Histoplasmosis is a systemic form of endemic mycosis to the American continent and may be lethal to people living with HIV/AIDS. The drugs available for treating histoplasmosis are limited, costly, and highly toxic. New drug development is time-consuming and costly; hence, drug repositioning is an advantageous strategy for discovering new therapeutic options. OBJECTIVE This study was conducted to identify drugs that can be repositioned for treating histoplasmosis in immunocompromised patients. METHODS Homologous proteins among Histoplasma capsulatum strains were selected and used to search for homologous targets in the DrugBank and Therapeutic Target Database. Essential genes were selected using Saccharomyces cerevisiae as a model, and functional regions of the therapeutic targets were analyzed. The antifungal activity of the selected drugs was verified, and homology modeling and molecular docking were performed to verify the interactions between the drugs with low inhibitory concentration values and their corresponding targets. RESULTS We selected 149 approved drugs with potential activity against histoplasmosis, among which eight were selected for evaluating their in vitro activity. For drugs with low minimum inhibitory concentration values, such as mebendazole, everolimus, butenafine, and bifonazole, molecular docking studies were performed. A chemogenomic framework revealed lanosterol 14-α-demethylase, squalene monooxygenase, serine/threonine-protein kinase mTOR, and the β-4B tubulin chain of H. capsulatum, respectively, as the protein targets of the drugs. CONCLUSIONS Our strategy can be used to identify promising antifungal targets, and drugs with repositioning potential for treating H. capsulatum.
Collapse
Affiliation(s)
- Andressa Santana Santos
- Institute of Tropical Pathology and Public Health (IPTSP), Federal University of Goiás, Goiânia, Brazil
| | | | | | | | | | - Carolina Rodrigues Costa
- Institute of Tropical Pathology and Public Health (IPTSP), Federal University of Goiás, Goiânia, Brazil
| | - Bruno Junior Neves
- Laboratory of Cheminformatics (LabChem), Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
| | | |
Collapse
|
141
|
Moresi NG, Geck RC, Skophammer R, Godin D, Students YE, Taylor MB, Dunham MJ. Caffeine-tolerant mutations selected through an at-home yeast experimental evolution teaching lab. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000749. [PMID: 36855741 PMCID: PMC9968401 DOI: 10.17912/micropub.biology.000749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/02/2023] [Accepted: 01/01/1970] [Indexed: 03/02/2023]
Abstract
yEvo is a curriculum for high school students centered around evolution experiments in S. cerevisiae . To adapt the curriculum for remote instruction, we created a new protocol to evolve non-engineered yeast in the presence of caffeine. Evolved strains had increased caffeine tolerance and distinct colony morphologies. Many possessed copy number variations, transposon insertions, and mutations affecting genes with known relationships to caffeine and TOR signaling - which is inhibited by caffeine - and in other genes not previously connected with caffeine. This demonstrates that our accessible, at-home protocol is sufficient to permit novel insights into caffeine tolerance.
Collapse
Affiliation(s)
- Naomi G Moresi
- Genome Sciences, University of Washington, Seattle, Washington, United States
| | - Renee C Geck
- Genome Sciences, University of Washington, Seattle, Washington, United States
| | | | - Dennis Godin
- Genome Sciences, University of Washington, Seattle, Washington, United States
| | - yEvo Students
- Westridge School, Pasadena, California, United States
| | - M Bryce Taylor
- Program in Biology, Loras College, Dubuque, Iowa, United States
| | - Maitreya J Dunham
- Genome Sciences, University of Washington, Seattle, Washington, United States
| |
Collapse
|
142
|
Wada R, Fujinuma S, Nakatsumi H, Matsumoto M, Nakayama KI. Phosphorylation of PBX2, a novel downstream target of mTORC1, is determined by GSK3 and PP1. J Biochem 2023; 173:129-138. [PMID: 36477205 DOI: 10.1093/jb/mvac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022] Open
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) is a serine-threonine kinase that is activated by extracellular signals, such as nutrients and growth factors. It plays a key role in the control of various biological processes, such as protein synthesis and energy metabolism by mediating or regulating the phosphorylation of multiple target molecules, some of which remain to be identified. We have here reanalysed a large-scale phosphoproteomics data set for mTORC1 target molecules and identified pre-B cell leukemia transcription factor 2 (PBX2) as such a novel target that is dephosphorylated downstream of mTORC1. We confirmed that PBX2, but not other members of the PBX family, is dephosphorylated in an mTORC1 activity-dependent manner. Furthermore, pharmacological and gene knockdown experiments revealed that glycogen synthase kinase 3 (GSK3) and protein phosphatase 1 (PP1) are responsible for the phosphorylation and dephosphorylation of PBX2, respectively. Our results thus suggest that the balance between the antagonistic actions of GSK3 and PP1 determines the phosphorylation status of PBX2 and its regulation by mTORC1.
Collapse
Key Words
- glycogen synthase kinase 3 (GSK3)
Abbreviations: DAPI, 4′,6-diamidino-2-phenylindole; DMSO, dimethyl sulfoxide; ERK, extracellular signal–regulated kinase; FOXK1, forkhead box K1;
GSK3, glycogen synthase kinase 3; HA, hemagglutinin; LARP1, La-related protein 1; MEK, ERK kinase; mTORC1, mechanistic target of rapamycin complex 1; PBS, phosphate-buffered saline; PBX2, pre–B cell leukemia transcription factor 2; PI3K, phosphoinositide 3-kinase; PDK1, phosphoinositide-dependent protein kinase 1; PP1, protein phosphatase 1;
PP2A, protein phosphatase 2A; RAG, RAS-related GTP-binding protein; RHEB, Ras homolog enriched in Brain; shRNA, short hairpin RNA; siRNA, small interfering RNA; TBC1D7, TBC1 (TRE2-BUB2-CDC16) domain family member 7; TSC2, tuberous sclerosis complex 2; WT, wild-type
- mechanistic target of rapamycin complex 1 (mTORC1)
- phosphorylation
- pre–B cell leukemia transcription factor 2 (PBX2)
- protein phosphatase 1 (PP1)
Collapse
Affiliation(s)
- Reona Wada
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Shun Fujinuma
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Hirokazu Nakatsumi
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan.,Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, 757 Ichibancho, Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| |
Collapse
|
143
|
Wang XY, Zhang LN. RNA binding protein SAMD4: current knowledge and future perspectives. Cell Biosci 2023; 13:21. [PMID: 36732864 PMCID: PMC9893680 DOI: 10.1186/s13578-023-00968-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/22/2023] [Indexed: 02/04/2023] Open
Abstract
SAMD4 protein family is a class of novel RNA-binding proteins that can mediate post-transcriptional regulation and translation repression in eukaryotes, which are highly conserved from yeast to humans during evolution. In mammalian cells, SAMD4 protein family consists of two members including SAMD4A/Smaug1 and SAMD4B/Smaug2, both of which contain common SAM domain that can specifically bind to different target mRNAs through stem-loop structures, also known as Smaug recognition elements (SREs), and regulate the mRNA stability, degradation and translation. In addition, SAMD4 can form the cytoplasmic mRNA silencing foci and regulate the translation of SRE-containing mRNAs in neurons. SAMD4 also can form the cytosolic membrane-less organelles (MLOs), termed as Smaug1 bodies, and regulate mitochondrial function. Importantly, many studies have identified that SAMD4 family members are involved in various pathological processes including myopathy, bone development, neural development, and cancer occurrence and progression. In this review, we mainly summarize the structural characteristics, biological functions and molecular regulatory mechanisms of SAMD4 protein family members, which will provide a basis for further research and clinical application of SAMD4 protein family.
Collapse
Affiliation(s)
- Xin-Ya Wang
- grid.28703.3e0000 0000 9040 3743Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, 100124 Beijing, People’s Republic of China
| | - Li-Na Zhang
- grid.28703.3e0000 0000 9040 3743Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, 100124 Beijing, People’s Republic of China
| |
Collapse
|
144
|
Tartarin P, Keller M, Guibert E, Trives E, Bourdon G, Chamero P, Negre D, Cornilleau F, Guillory V, JeanPierre E, Costa C, Migrenne S, Dupont J, Froment P. Knockdown of regulatory associated protein of TOR (raptor) in hypothalamus-stimulated folliculogenesis and induced ovarian cysts. Reprod Fertil Dev 2023; 35:307-320. [PMID: 36593258 DOI: 10.1071/rd21260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 11/24/2022] [Indexed: 01/04/2023] Open
Abstract
CONTEXT Mammalian target of rapamycin complex 1 (mTORC1) is an essential sensor that regulates fundamental biological processes like cell growth, proliferation and energy metabolism. The treatment of disease by sirolimus, a mTORC1 inhibitor, causes adverse effects, such as female fertility disorders. AIMS The objective of the study was to decipher the reproductive consequences of a downregulation of mTORC1 in the hypothalamus. METHODS The reduced expression of mTORC1 was induced after intracerebroventricular injection of lentivirus expressing a short hairpin RNA (shRNA) against regulatory associated protein of TOR (raptor) in adult female mice (ShRaptor mice). KEY RESULTS The ShRaptor mice were fertile and exhibited a 15% increase in the litter size compared with control mice. The histological analysis showed an increase in antral, preovulatory follicles and ovarian cysts. In the hypothalamus, the GnRH mRNA and FSH levels in ShRaptor mice were significantly elevated. CONCLUSIONS These results support the hypothesis that mTORC1 in the central nervous system participates in the regulation of female fertility and ovarian function by influencing the GnRH neuronal activity. IMPLICATIONS These results suggest that a lower mTORC1 activity directly the central nervous system leads to a deregulation in the oestrous cycle and an induction of ovarian cyst development.
Collapse
Affiliation(s)
- Pauline Tartarin
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly F-37380, France
| | - Matthieu Keller
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly F-37380, France
| | - Edith Guibert
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly F-37380, France
| | - Elliott Trives
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly F-37380, France
| | - Guillaume Bourdon
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly F-37380, France
| | - Pablo Chamero
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly F-37380, France
| | - Didier Negre
- Université de Lyon, IFR 128, INSERM-U758, Ecole Normale Supérieure de Lyon, Lyon F-69007, France
| | - Fabien Cornilleau
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly F-37380, France
| | - Vanaique Guillory
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Eric JeanPierre
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly F-37380, France
| | - Caroline Costa
- Université de Lyon, IFR 128, INSERM-U758, Ecole Normale Supérieure de Lyon, Lyon F-69007, France
| | - Stéphanie Migrenne
- University Paris Diderot-Paris 7-Unit of Functional and Adaptive Biology (BFA) EAC 7059 CNRS, Paris, France
| | - Joelle Dupont
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly F-37380, France
| | - Pascal Froment
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly F-37380, France
| |
Collapse
|
145
|
Aft1 Nuclear Localization and Transcriptional Response to Iron Starvation Rely upon TORC2/Ypk1 Signaling and Sphingolipid Biosynthesis. Int J Mol Sci 2023; 24:ijms24032438. [PMID: 36768760 PMCID: PMC9916926 DOI: 10.3390/ijms24032438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Iron scarcity provokes a cellular response consisting of the strong expression of high-affinity systems to optimize iron uptake and mobilization. Aft1 is a primary transcription factor involved in iron homeostasis and controls the expression of high-affinity iron uptake genes in Saccharomyces cerevisiae. Aft1 responds to iron deprivation by translocating from the cytoplasm to the nucleus. Here, we demonstrate that the AGC kinase Ypk1, as well as its upstream regulator TOR Complex 2 (TORC2), are required for proper Aft1 nuclear localization following iron deprivation. We exclude a role for TOR Complex 1 (TORC1) and its downstream effector Sch9, suggesting this response is specific for the TORC2 arm of the TOR pathway. Remarkably, we demonstrate that Aft1 nuclear localization and a robust transcriptional response to iron starvation also require biosynthesis of sphingolipids, including complex sphingolipids such as inositol phosphorylceramide (IPC) and upstream precursors, e.g., long-chain bases (LCBs) and ceramides. Furthermore, we observe the deficiency of Aft1 nuclear localization and impaired transcriptional response in the absence of iron when TORC2-Ypk1 is impaired is partially suppressed by exogenous addition of the LCB dihydrosphingosine (DHS). This latter result is consistent with prior studies linking sphingolipid biosynthesis to TORC2-Ypk1 signaling. Taken together, these results reveal a novel role for sphingolipids, controlled by TORC2-Ypk1, for proper localization and activity of Aft1 in response to iron scarcity.
Collapse
|
146
|
Moresi NG, Geck RC, Skophammer R, Godin D, yEvo Students, Taylor MB, Dunham MJ. Caffeine-tolerant mutations selected through an at-home yeast experimental evolution teaching lab. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524437. [PMID: 36712001 PMCID: PMC9882195 DOI: 10.1101/2023.01.17.524437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
yEvo is a curriculum for high school students centered around evolution experiments in S. cerevisiae . To adapt the curriculum for remote instruction, we created a new protocol to evolve non-GMO yeast in the presence of caffeine. Evolved strains had increased caffeine tolerance and distinct colony morphologies. Many possessed copy number variations, transposon insertions, and mutations affecting genes with known relationships to caffeine and TOR signaling - which is inhibited by caffeine - and in other genes not previously connected with caffeine. This demonstrates that our accessible, at-home protocol is sufficient to permit novel insights into caffeine tolerance.
Collapse
Affiliation(s)
- Naomi G. Moresi
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
| | - Renee C. Geck
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
| | | | - Dennis Godin
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
| | | | | | - Maitreya J. Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
| |
Collapse
|
147
|
Sanz‐Castillo B, Hurtado B, Vara‐Ciruelos D, El Bakkali A, Hermida D, Salvador‐Barbero B, Martínez‐Alonso D, González‐Martínez J, Santiveri C, Campos‐Olivas R, Ximénez‐Embún P, Muñoz J, Álvarez‐Fernández M, Malumbres M. The MASTL/PP2A cell cycle kinase-phosphatase module restrains PI3K-Akt activity in an mTORC1-dependent manner. EMBO J 2023; 42:e110833. [PMID: 36354735 PMCID: PMC9841333 DOI: 10.15252/embj.2022110833] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
The AKT-mTOR pathway is a central regulator of cell growth and metabolism. Upon sustained mTOR activity, AKT activity is attenuated by a feedback loop that restrains upstream signaling. However, how cells control the signals that limit AKT activity is not fully understood. Here, we show that MASTL/Greatwall, a cell cycle kinase that supports mitosis by phosphorylating the PP2A/B55 inhibitors ENSA/ARPP19, inhibits PI3K-AKT activity by sustaining mTORC1- and S6K1-dependent phosphorylation of IRS1 and GRB10. Genetic depletion of MASTL results in an inefficient feedback loop and AKT hyperactivity. These defects are rescued by the expression of phosphomimetic ENSA/ARPP19 or inhibition of PP2A/B55 phosphatases. MASTL is directly phosphorylated by mTORC1, thereby limiting the PP2A/B55-dependent dephosphorylation of IRS1 and GRB10 downstream of mTORC1. Downregulation of MASTL results in increased glucose uptake in vitro and increased glucose tolerance in adult mice, suggesting the relevance of the MASTL-PP2A/B55 kinase-phosphatase module in controlling AKT and maintaining metabolic homeostasis.
Collapse
Affiliation(s)
- Belén Sanz‐Castillo
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Begoña Hurtado
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Diana Vara‐Ciruelos
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Aicha El Bakkali
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Dario Hermida
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | | | - Diego Martínez‐Alonso
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | | | - Clara Santiveri
- Spectroscopy and Nuclear Magnetic Resonance UnitSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Ramón Campos‐Olivas
- Spectroscopy and Nuclear Magnetic Resonance UnitSpanish National Cancer Research Centre (CNIO)MadridSpain
| | | | - Javier Muñoz
- Proteomics UnitSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Mónica Álvarez‐Fernández
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)Instituto Universitario de Oncología del Principado de Asturias (IUOPA)OviedoSpain
| | - Marcos Malumbres
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| |
Collapse
|
148
|
TORC1 Signaling in Fungi: From Yeasts to Filamentous Fungi. Microorganisms 2023; 11:microorganisms11010218. [PMID: 36677510 PMCID: PMC9864104 DOI: 10.3390/microorganisms11010218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Target of rapamycin complex 1 (TORC1) is an important regulator of various signaling pathways. It can control cell growth and development by integrating multiple signals from amino acids, glucose, phosphate, growth factors, pressure, oxidation, and so on. In recent years, it has been reported that TORC1 is of great significance in regulating cytotoxicity, morphology, protein synthesis and degradation, nutrient absorption, and metabolism. In this review, we mainly discuss the upstream and downstream signaling pathways of TORC1 to reveal its role in fungi.
Collapse
|
149
|
Katsioudi G, Dreos R, Arpa ES, Gaspari S, Liechti A, Sato M, Gabriel CH, Kramer A, Brown SA, Gatfield D. A conditional Smg6 mutant mouse model reveals circadian clock regulation through the nonsense-mediated mRNA decay pathway. SCIENCE ADVANCES 2023; 9:eade2828. [PMID: 36638184 PMCID: PMC9839329 DOI: 10.1126/sciadv.ade2828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Nonsense-mediated messenger RNA (mRNA) decay (NMD) has been intensively studied as a surveillance pathway that degrades erroneous transcripts arising from mutations or RNA processing errors. While additional roles in physiological control of mRNA stability have emerged, possible functions in mammalian physiology in vivo remain unclear. Here, we created a conditional mouse allele that allows converting the NMD effector nuclease SMG6 from wild-type to nuclease domain-mutant protein. We find that NMD down-regulation affects the function of the circadian clock, a system known to require rapid mRNA turnover. Specifically, we uncover strong lengthening of free-running circadian periods for liver and fibroblast clocks and direct NMD regulation of Cry2 mRNA, encoding a key transcriptional repressor within the rhythm-generating feedback loop. Transcriptome-wide changes in daily mRNA accumulation patterns in the entrained liver, as well as an altered response to food entrainment, expand the known scope of NMD regulation in mammalian gene expression and physiology.
Collapse
Affiliation(s)
- Georgia Katsioudi
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - René Dreos
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Enes S. Arpa
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Sevasti Gaspari
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Angelica Liechti
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Miho Sato
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Christian H. Gabriel
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany
| | - Achim Kramer
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany
| | - Steven A. Brown
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - David Gatfield
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
150
|
Abstract
Circadian rhythms are natural rhythms that widely exist in all creatures, and regulate the processes and physiological functions of various biochemical reactions. The circadian clock is critical for cancer occurrence and progression. Its function is regulated by metabolic activities, and the expression and transcription of various genes. This review summarizes the composition of the circadian clock; the biological basis for its function; its relationship with, and mechanisms in, cancer; its various functions in different cancers; the effects of anti-tumor treatment; and potential therapeutic targets. Research in this area is expected to advance understanding of circadian locomotor output cycles kaput (CLOCK) and brain and muscle ARNT-like protein 1 (BMAL1) in tumor diseases, and contribute to the development of new anti-tumor treatment strategies.
Collapse
Affiliation(s)
- Chen Huang
- Department of Abdominal Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Chenliang Zhang
- Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Yubin Cao
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Jian Li
- West China School of Medicine, Sichuan University, Chengdu 610000, China
| | - Feng Bi
- Department of Abdominal Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610000, China
| |
Collapse
|