101
|
Baquero F, Lanza VF, Cantón R, Coque TM. Public health evolutionary biology of antimicrobial resistance: priorities for intervention. Evol Appl 2014; 8:223-39. [PMID: 25861381 PMCID: PMC4380917 DOI: 10.1111/eva.12235] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/12/2014] [Indexed: 12/19/2022] Open
Abstract
The three main processes shaping the evolutionary ecology of antibiotic resistance (AbR) involve the emergence, invasion and occupation by antibiotic-resistant genes of significant environments for human health. The process of emergence in complex bacterial populations is a high-frequency, continuous swarming of ephemeral combinatory genetic and epigenetic explorations inside cells and among cells, populations and communities, expanding in different environments (migration), creating the stochastic variation required for evolutionary progress. Invasion refers to the process by which AbR significantly increases in frequency in a given (invaded) environment, led by external invaders local multiplication and spread, or by endogenous conversion. Conversion occurs because of the spread of AbR genes from an exogenous resistant clone into an established (endogenous) bacterial clone(s) colonizing the environment; and/or because of dissemination of particular resistant genetic variants that emerged within an endogenous clonal population. Occupation of a given environment by a resistant variant means a permanent establishment of this organism in this environment, even in the absence of antibiotic selection. Specific interventions on emergence influence invasion, those acting on invasion also influence occupation and interventions on occupation determine emergence. Such interventions should be simultaneously applied, as they are not simple solutions to the complex problem of AbR.
Collapse
Affiliation(s)
- Fernando Baquero
- Departamento de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid, Spain ; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain ; CIBER Epidemiología y Salud Pública (CIBERESP) Madrid, Spain
| | - Val F Lanza
- Departamento de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid, Spain ; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain ; CIBER Epidemiología y Salud Pública (CIBERESP) Madrid, Spain
| | - Rafael Cantón
- Departamento de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid, Spain ; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain ; Spanish Network for the Research in Infectious Diseases (REIPI RD12/0015), Instituto de Salud Carlos III Madrid, Spain
| | - Teresa M Coque
- Departamento de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid, Spain ; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain ; CIBER Epidemiología y Salud Pública (CIBERESP) Madrid, Spain
| |
Collapse
|
102
|
Hannan TJ, Roberts PL, Riehl TE, van der Post S, Binkley JM, Schwartz DJ, Miyoshi H, Mack M, Schwendener RA, Hooton TM, Stappenbeck TS, Hansson GC, Stenson WF, Colonna M, Stapleton AE, Hultgren SJ. Inhibition of Cyclooxygenase-2 Prevents Chronic and Recurrent Cystitis. EBioMedicine 2014; 1:46-57. [PMID: 26125048 PMCID: PMC4457352 DOI: 10.1016/j.ebiom.2014.10.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 10/21/2014] [Accepted: 10/21/2014] [Indexed: 01/05/2023] Open
Abstract
The spread of multidrug-resistant microorganisms globally has created an urgent need for novel therapeutic strategies to combat urinary tract infections (UTIs). Immunomodulatory therapy may provide benefit, as treatment of mice with dexamethasone during acute UTI improved outcome by reducing the development of chronic cystitis, which predisposes to recurrent infection. Here we discovered soluble biomarkers engaged in myeloid cell development and chemotaxis that were predictive of future UTI recurrence when elevated in the sera of young women with UTI. Translation of these findings revealed that temperance of the neutrophil response early during UTI, and specifically disruption of bladder epithelial transmigration of neutrophils by inhibition of cyclooxygenase-2, protected mice against chronic and recurrent cystitis. Further, proteomics identified bladder epithelial remodeling consequent to chronic infection that enhances sensitivity to neutrophil damage. Thus, cyclooxygenase-2 expression during acute UTI is a critical molecular trigger determining disease outcome and drugs targeting cyclooxygenase-2 could prevent recurrent UTI.
Collapse
Key Words
- ASB, asymptomatic bacteriuria
- CD, clusters of differentiation
- COX, cyclooxygenase
- COX-2
- Chronic infection
- G-CSF or CSF3, granulocyte colony-stimulating factor
- GRO-α or CXCL1, growth-regulated alpha protein
- IBC, intracellular bacterial community
- IL-8 or CXCL8, interleukin-8
- Immunomodulatory therapy
- Immunopathology
- M-CSF or CSF1, macrophage colony-stimulating factor
- MAb, monoclonal antibody
- MCP-1 or CCL2, monocyte chemotactic protein 1
- Mucosal immunology
- NSAID, non-steroidal anti-inflammatory drug
- UPEC
- UPEC, uropathogenic E. coli
- UTI, recurrent infection
- UTI, urinary tract infection
- Urinary tract infection
- Uropathogenic E. coli
- rUTI, recurrent urinary tract infection
Collapse
Affiliation(s)
- Thomas J Hannan
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA ; Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pacita L Roberts
- Division of Allergy & Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Terrence E Riehl
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sjoerd van der Post
- Department of Medical Biochemistry, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Jana M Binkley
- Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Drew J Schwartz
- Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hiroyuki Miyoshi
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthias Mack
- Department of Internal Medicine, University of Regensburg, 93053 Regensburg, Germany
| | - Reto A Schwendener
- Institute of Molecular Cancer Research, University of Zurich, 8091 Zurich, Switzerland
| | - Thomas M Hooton
- Division of Infectious Diseases, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Thaddeus S Stappenbeck
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gunnar C Hansson
- Department of Medical Biochemistry, University of Gothenburg, 40530 Gothenburg, Sweden
| | - William F Stenson
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ann E Stapleton
- Division of Allergy & Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Scott J Hultgren
- Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
103
|
Cascioferro S, Cusimano MG, Schillaci D. Antiadhesion agents against Gram-positive pathogens. Future Microbiol 2014; 9:1209-20. [DOI: 10.2217/fmb.14.56] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
ABSTRACT A fundamental step of Gram-positive pathogenesis is the bacterial adhesion to the host tissue involving interaction between bacterial surface molecules and host ligands. This review is focused on antivirulence compounds that target Gram-positive adhesins and on their potential development as therapeutic agents alternative or complementary to conventional antibiotics in the contrast of pathogens. In particular, compounds that target the sortase A, wall theicoic acid inhibitors, carbohydrates able to bind bacterial proteins and proteins capable of influencing the bacterial adhesion, were described. We further discuss the advantages and disadvantages of this strategy in the development of novel antimicrobials and the future perspective of this research field still at its first steps.
Collapse
Affiliation(s)
- Stella Cascioferro
- Department of Biological, Chemical & Pharmaceutical Science & Technology (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, Palermo, Italy
| | - Maria Grazia Cusimano
- Department of Biological, Chemical & Pharmaceutical Science & Technology (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, Palermo, Italy
| | - Domenico Schillaci
- Department of Biological, Chemical & Pharmaceutical Science & Technology (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, Palermo, Italy
| |
Collapse
|
104
|
The small RNA RyhB contributes to siderophore production and virulence of uropathogenic Escherichia coli. Infect Immun 2014; 82:5056-68. [PMID: 25245805 DOI: 10.1128/iai.02287-14] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In Escherichia coli, the small regulatory noncoding RNA (sRNA) RyhB and the global ferric uptake regulator (Fur) mediate iron acquisition and storage control. Iron is both essential and potentially toxic for most living organisms, making the precise maintenance of iron homeostasis necessary for survival. While the roles of these regulators in iron homeostasis have been well studied in a nonpathogenic E. coli strain, their impact on the production of virulence-associated factors is still unknown for a pathogenic E. coli strain. We thus investigated the roles of RyhB and Fur in iron homeostasis and virulence of the uropathogenic E. coli (UPEC) strain CFT073. In a murine model of urinary tract infection (UTI), deletion of fur alone did not attenuate virulence, whereas a ΔryhB mutant and a Δfur ΔryhB double mutant showed significantly reduced bladder colonization. The Δfur mutant was more sensitive to oxidative stress and produced more of the siderophores enterobactin, salmochelins, and aerobactin than the wild-type strain. In contrast, while RyhB was not implicated in oxidative stress resistance, the ΔryhB mutant produced lower levels of siderophores. This decrease was correlated with the downregulation of shiA (encoding a transporter of shikimate, a precursor of enterobactin and salmochelin biosynthesis) and iucD (involved in aerobactin biosynthesis) in this mutant grown in minimal medium or in human urine. iucD was also downregulated in bladders infected with the ΔryhB mutant compared to those infected with the wild-type strain. Our results thus demonstrate that the sRNA RyhB is involved in production of iron acquisition systems and colonization of the urinary tract by pathogenic E. coli.
Collapse
|
105
|
Cox L, Cameron AP. Prevention of Urinary Tract Infection for Patients with Neurogenic Bladder. CURRENT BLADDER DYSFUNCTION REPORTS 2014. [DOI: 10.1007/s11884-014-0257-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
106
|
Chetwood A, Drinnan N, Emara AM. Persistent Urinary Tract Infections: Prevention and Management. CURRENT BLADDER DYSFUNCTION REPORTS 2014. [DOI: 10.1007/s11884-014-0241-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
107
|
Kovachev SM. Obstetric and gynecological diseases and complications resulting from vaginal dysbacteriosis. MICROBIAL ECOLOGY 2014; 68:173-184. [PMID: 24711012 DOI: 10.1007/s00248-014-0414-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 03/24/2014] [Indexed: 06/03/2023]
Abstract
Accurate knowledge of the composition and ecology of vaginal microbial environment of a healthy woman is necessary for the understanding of normal flora and how to reduce the risk for diseases. Vagina and its microflora form a balanced ecosystem in which dominated bacteria are vaginal lactobacilli. There are dynamic changes in this ecosystem having structure and composition depending on many factors. The term dysbacteriosis defines any movement outside the normal range for the given biotope of obligate and/or facultative microflora. Such a change in the quantity and quality of the respective microbial balance is fraught with danger and requires correction and recovery. The purpose of this overview is to examine obstetric and gynecological diseases that can cause vaginal impaired microbial balance. Vaginal dysbacteriosis is a cause, predecessor, and often also consequence of vaginal infections. In essence, any vaginal infection can be seen as dysbacteriosis, developed to the most severe extent. Here, there is a dominant microorganism other than lactic acid bacteria in the vagina (clinically manifested or not, respectively), depletion of defense mechanisms of the vagina associated with the shift of lactobacilli from their dominant role in the vaginal balance, decrease in their number and species diversity, and a resulting change in the healthy status of the vagina. Vaginal dysbacteriosis can be found in pathogenetic mechanism, whereby many obstetric and gynecological diseases develop. Most of these diseases lead directly to increased maternal and infant morbidity and mortality, so it is important to understand the reasons for them and the arrangements for their prevention.
Collapse
Affiliation(s)
- Stefan Miladinov Kovachev
- Department of Gynecology, Military Medical Academy, "P.U.Todorov" bul. bl. No. 5, entr. B, fl. No. 25, 1404, Sofia, Bulgaria,
| |
Collapse
|
108
|
Abstract
Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain receptors (NLRs) are families of pattern recognition receptors that, together with inflammasomes, sense and respond to highly conserved pathogen motifs and endogenous molecules released upon cell damage or stress. Evidence suggests that TLRs, NLRs and the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome have important roles in kidney diseases through regulation of inflammatory and tissue-repair responses to infection and injury. In this Review, we discuss the pathological mechanisms that are related to TLRs, NLRs and NLRP3 in various kidney diseases. In general, these receptors are protective in the host defence against urinary tract infection, but can sustain and self-perpetuate tissue damage in sterile inflammatory and immune-mediated kidney diseases. TLRs, NLRs and NLRP3, therefore, have become promising drug targets to enable specific modulation of kidney inflammation and suppression of immunopathology in kidney disease.
Collapse
|
109
|
Moore KH, Malykhina AP. What is the role of covert infection in detrusor overactivity, and other LUTD? ICI-RS 2013. Neurourol Urodyn 2014; 33:606-10. [DOI: 10.1002/nau.22589] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/25/2014] [Indexed: 01/26/2023]
Affiliation(s)
- Kate H. Moore
- Pelvic Floor Unit; Department of Urogynaecology; University of New South Wales; Sydney NSW Australia
| | - Anna P. Malykhina
- Division of Urology; Department of Surgery; University of Pennsylvania; Philadelphia Pennsylvania
| |
Collapse
|
110
|
Nesta B, Valeri M, Spagnuolo A, Rosini R, Mora M, Donato P, Alteri CJ, Del Vecchio M, Buccato S, Pezzicoli A, Bertoldi I, Buzzigoli L, Tuscano G, Falduto M, Rippa V, Ashhab Y, Bensi G, Fontana MR, Seib KL, Mobley HLT, Pizza M, Soriani M, Serino L. SslE elicits functional antibodies that impair in vitro mucinase activity and in vivo colonization by both intestinal and extraintestinal Escherichia coli strains. PLoS Pathog 2014; 10:e1004124. [PMID: 24809621 PMCID: PMC4014459 DOI: 10.1371/journal.ppat.1004124] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 03/31/2014] [Indexed: 11/18/2022] Open
Abstract
SslE, the Secreted and surface-associated lipoprotein from Escherichia coli, has recently been associated to the M60-like extracellular zinc-metalloprotease sub-family which is implicated in glycan recognition and processing. SslE can be divided into two main variants and we recently proposed it as a potential vaccine candidate. By applying a number of in vitro bioassays and comparing wild type, knockout mutant and complemented strains, we have now demonstrated that SslE specifically contributes to degradation of mucin substrates, typically present in the intestine and bladder. Mutation of the zinc metallopeptidase motif of SslE dramatically impaired E. coli mucinase activity, confirming the specificity of the phenotype observed. Moreover, antibodies raised against variant I SslE, cloned from strain IHE3034 (SslEIHE3034), are able to inhibit translocation of E. coli strains expressing different variants through a mucin-based matrix, suggesting that SslE induces cross-reactive functional antibodies that affect the metallopeptidase activity. To test this hypothesis, we used well-established animal models and demonstrated that immunization with SslEIHE3034 significantly reduced gut, kidney and spleen colonization by strains producing variant II SslE and belonging to different pathotypes. Taken together, these data strongly support the importance of SslE in E. coli colonization of mucosal surfaces and reinforce the use of this antigen as a component of a broadly protective vaccine against pathogenic E. coli species. Escherichia coli are the predominant facultative anaerobe of the human colonic flora. Although intestinal and extraintestinal pathogenic E. coli are phylogenetically and epidemiologically distinct, we recently proposed a number of protective antigens conserved in most E. coli pathotypes. In this study, we have elucidated the function of the most promising of these antigens, SslE, which is characterized by the presence of a M60-like domain representative of a new extracellular zinc-metalloprotease sub-family. In particular, in vitro analysis of the ability of an sslE knockout mutant strain to transverse an agar-based mucin matrix revealed that SslE is essential to E. coli mucinase activity. Evidence showing that SslE induces functional antibodies, preventing both in vitro mucin degradation but also in vivo gut, kidney and spleen colonization, further support the hypothesis that SslE may facilitate E. coli colonization by favoring the penetration of the sterile inner mucus layer leading to interaction with host cells. Finally, the ability of SslE to also induce protective immunity against sepsis, linked to its presence among different pathotypes, supports the use of such an antigen as a broadly protective E. coli vaccine candidate.
Collapse
Affiliation(s)
| | - Maria Valeri
- Novartis Vaccines and Diagnostics Srl, Siena, Italy
| | | | | | | | - Paolo Donato
- Novartis Vaccines and Diagnostics Srl, Siena, Italy
| | - Christopher J. Alteri
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | | | | | | | | | | | | | | | | | - Yaqoub Ashhab
- Biotechnology Research Center, Palestine Polytechnic University, Hebron, Palestine
| | | | | | - Kate L. Seib
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, Australia
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | | | - Marco Soriani
- Novartis Vaccines and Diagnostics Srl, Siena, Italy
- * E-mail:
| | - Laura Serino
- Novartis Vaccines and Diagnostics Srl, Siena, Italy
| |
Collapse
|
111
|
Abstract
In this review, we examine the current status of Staphylococcus aureus vaccine development and the prospects for future vaccines. Examination of the clinical trials to date show that murine models have not predicted success in humans for active or passive immunization. A key factor in the failure to develop a vaccine to prevent S. aureus infections comes from our relatively limited knowledge of human protective immunity. More recent reports on the elements of the human immune response to staphylococci are analysed. In addition, there is some controversy concerning the role of antibodies for protecting humans, and these data are reviewed. From a review of the current state of understanding of staphylococcal immunity, a working model is proposed. Some new work has provided some initial candidate biomarker(s) to predict outcomes of invasive infections and to predict the efficacy of antibiotic therapy in humans. We conclude by looking to the future through the perspective of lessons gleaned from the clinical vaccine trials.
Collapse
Affiliation(s)
- Vance G. Fowler
- Division of Infectious Diseases Duke University Medical Center Durham, NC 27710
| | - Richard A. Proctor
- University of Wisconsin School of Medicine and Public Health Madison, WI
| |
Collapse
|
112
|
Abstract
Urinary tract infections (UTIs) are among the most common of bacterial infections in humans. Although a number of Gram-negative bacteria can cause UTIs, most cases are due to infection by uropathogenic E. coli (UPEC). Genomic studies have shown that UPEC encode a number of specialized activities that allow the bacteria to initiate and maintain infections in the environment of the urinary tract. Proteomic analyses have complemented the genomic data and have documented differential patterns of protein synthesis for bacteria growing ex vivo in human urine or recovered directly from the urinary tracts of infected mice. These studies provide valuable insights into the molecular basis of UPEC pathogenesis and have aided the identification of putative vaccine targets. Despite the substantial progress that has been achieved, many future challenges remain in the application of proteomics to provide a comprehensive view of bacterial pathogenesis in both acute and chronic UTIs.
Collapse
Affiliation(s)
- Phillip Cash
- Division of Applied Medicine, University of Aberdeen, Foresterhill, Aberdeen AB32 6QX, Scotland
| |
Collapse
|
113
|
Type 1 fimbriae contribute to catheter-associated urinary tract infections caused by Escherichia coli. J Bacteriol 2013; 196:931-9. [PMID: 24336940 DOI: 10.1128/jb.00985-13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Biofilm formation on catheters is thought to contribute to persistence of catheter-associated urinary tract infections (CAUTI), which represent the most frequent nosocomial infections. Knowledge of genetic factors for catheter colonization is limited, since their role has not been assessed using physicochemical conditions prevailing in a catheterized human bladder. The current study aimed to combine data from a dynamic catheterized bladder model in vitro with in vivo expression analysis for understanding molecular factors relevant for CAUTI caused by Escherichia coli. By application of the in vitro model that mirrors the physicochemical environment during human infection, we found that an E. coli K-12 mutant defective in type 1 fimbriae, but not isogenic mutants lacking flagella or antigen 43, was outcompeted by the wild-type strain during prolonged catheter colonization. The importance of type 1 fimbriae for catheter colonization was verified using a fimA mutant of uropathogenic E. coli strain CFT073 with human and artificial urine. Orientation of the invertible element (IE) controlling type 1 fimbrial expression in bacterial populations harvested from the colonized catheterized bladder in vitro suggested that the vast majority of catheter-colonizing cells (up to 88%) express type 1 fimbriae. Analysis of IE orientation in E. coli populations harvested from patient catheters revealed that a median level of ∼73% of cells from nine samples have switched on type 1 fimbrial expression. This study supports the utility of the dynamic catheterized bladder model for analyzing catheter colonization factors and highlights a role for type 1 fimbriae during CAUTI.
Collapse
|
114
|
Abstract
Clinically, host factors in the pathogenesis of urinary tract infection (UTI) may be considered as modifiable (eg, behaviors associated with increased risk of UTI, anatomic and functional problems of the urinary tract) and thus potentially amenable to a change in patient behavior or treatment approach, or as intrinsic and nonmodifiable host factors that neither the patient nor the clinician can influence (eg, gender and genetic influences associated with UTI). Although considering nonmodifiable host factors may be discouraging to patients and clinicians at present, some genetic associations have the potential for future predictive value and may interface with future treatments.
Collapse
Affiliation(s)
- Ann E Stapleton
- Division of Allergy and Infectious Diseases, Medicine, Institute of Translational Health Sciences, University of Washington, Box 356423, Room BB1233, 1959 Northeast Pacific Street, Seattle, WA 98195, USA; Clinical Research Center, Institute of Translational Health Sciences, University of Washington, 7 South UWMC, Box 356178, 1959 Northeast Pacific Street, Seattle, WA 98195, USA.
| |
Collapse
|
115
|
Subashchandrabose S, Smith SN, Spurbeck RR, Kole MM, Mobley HLT. Genome-wide detection of fitness genes in uropathogenic Escherichia coli during systemic infection. PLoS Pathog 2013; 9:e1003788. [PMID: 24339777 PMCID: PMC3855560 DOI: 10.1371/journal.ppat.1003788] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/10/2013] [Indexed: 12/16/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is a leading etiological agent of bacteremia in humans. Virulence mechanisms of UPEC in the context of urinary tract infections have been subjected to extensive research. However, understanding of the fitness mechanisms used by UPEC during bacteremia and systemic infection is limited. A forward genetic screen was utilized to detect transposon insertion mutants with fitness defects during colonization of mouse spleens. An inoculum comprised of 360,000 transposon mutants in the UPEC strain CFT073, cultured from the blood of a patient with pyelonephritis, was used to inoculate mice intravenously. Transposon insertion sites in the inoculum (input) and bacteria colonizing the spleen (output) were identified using high-throughput sequencing of transposon-chromosome junctions. Using frequencies of representation of each insertion mutant in the input and output samples, 242 candidate fitness genes were identified. Co-infection experiments with each of 11 defined mutants and the wild-type strain demonstrated that 82% (9 of 11) of the tested candidate fitness genes were required for optimal fitness in a mouse model of systemic infection. Genes involved in biosynthesis of poly-N-acetyl glucosamine (pgaABCD), major and minor pilin of a type IV pilus (c2394 and c2395), oligopeptide uptake periplasmic-binding protein (oppA), sensitive to antimicrobial peptides (sapABCDF), putative outer membrane receptor (yddB), zinc metallopeptidase (pqqL), a shikimate pathway gene (c1220) and autotransporter serine proteases (pic and vat) were further characterized. Here, we report the first genome-wide identification of genes that contribute to fitness in UPEC during systemic infection in a mammalian host. These fitness factors may represent targets for developing novel therapeutics against UPEC. Uropathogenic E. coli is a major cause of bacterial bloodstream infections in humans. Dissemination of E. coli into the bloodstream during urinary tract infections may lead to potentially fatal complications. This pathogen is becoming increasingly resistant to currently used antibiotics. To develop additional tools to treat such infections, a thorough understanding of the mechanism of pathogenesis is required. Here, we report major progress towards that goal by identifying bacterial genes that are critical for the ability of this pathogen to cause bloodstream infections using a mouse model of infection. This study sheds light on the conditions encountered by E. coli during systemic infection. Further research on the genes identified in this study may reveal bacterial targets that can be used to develop novel therapeutics against bloodstream infections caused by E. coli.
Collapse
Affiliation(s)
- Sargurunathan Subashchandrabose
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Sara N. Smith
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Rachel R. Spurbeck
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Monica M. Kole
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
116
|
Allocati N, Masulli M, Alexeyev MF, Di Ilio C. Escherichia coli in Europe: an overview. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:6235-54. [PMID: 24287850 PMCID: PMC3881111 DOI: 10.3390/ijerph10126235] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 11/04/2013] [Accepted: 11/07/2013] [Indexed: 12/16/2022]
Abstract
Escherichia coli remains one of the most frequent causes of several common bacterial infections in humans and animals. E. coli is the prominent cause of enteritis, urinary tract infection, septicaemia and other clinical infections, such as neonatal meningitis. E. coli is also prominently associated with diarrhoea in pet and farm animals. The therapeutic treatment of E. coli infections is threatened by the emergence of antimicrobial resistance. The prevalence of multidrug-resistant E. coli strains is increasing worldwide principally due to the spread of mobile genetic elements, such as plasmids. The rise of multidrug-resistant strains of E. coli also occurs in Europe. Therefore, the spread of resistance in E. coli is an increasing public health concern in European countries. This paper summarizes the current status of E. coli strains clinically relevant in European countries. Furthermore, therapeutic interventions and strategies to prevent and control infections are presented and discussed. The article also provides an overview of the current knowledge concerning promising alternative therapies against E. coli diseases.
Collapse
Affiliation(s)
- Nerino Allocati
- Department of Experimental and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti I-66013, Italy; E-Mails: (M.M.); (C.D.I.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-0871-355-4807; Fax: +39-0871-355-4808
| | - Michele Masulli
- Department of Experimental and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti I-66013, Italy; E-Mails: (M.M.); (C.D.I.)
| | - Mikhail F. Alexeyev
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, AL 36688, USA; E-Mail:
| | - Carmine Di Ilio
- Department of Experimental and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti I-66013, Italy; E-Mails: (M.M.); (C.D.I.)
| |
Collapse
|
117
|
[Anti-infective treatments in urology]. Prog Urol 2013; 23:1357-64. [PMID: 24183093 DOI: 10.1016/j.purol.2013.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To define the terms of use of vaccines, probiotics, and cranberry in urology. MATERIALS AND METHODS A literature search was conducted on MEDLINE for all these treatments used in urology. Modes of action, indications in urology and adverse effects have been detailed for each treatment. RESULTS Vaccines have been published in urinary tract infections. Products for bacterial interference such as probiotics are also used, their properties are described. As for the cranberry widely used in recurrent urinary tract infections, efficacy and mode of action are discussed. CONCLUSION The anti-E. coli vaccines, cranberry and probiotics may be useful in urinary tract infection.
Collapse
|
118
|
Silverman JA, Schreiber HL, Hooton TM, Hultgren SJ. From physiology to pharmacy: developments in the pathogenesis and treatment of recurrent urinary tract infections. Curr Urol Rep 2013; 14:448-56. [PMID: 23832844 PMCID: PMC3797163 DOI: 10.1007/s11934-013-0354-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Urinary tract infections (UTIs) are common, and over half of women report having had at least one in their lifetime. Nearly a third of these women experience recurrent UTI episodes, but the mechanisms of these recurrences are not fully elucidated. Frequent use of antimicrobials for treatment and prevention of UTIs and other infections has contributed to the evolution of multidrug-resistant microorganisms globally. This is a looming worldwide crisis that has created an urgent need for novel strategies for the treatment and prevention of UTIs. Furthering our understanding of the mechanisms of recurrent UTIs, from both host and bacterial perspectives, will be paramount in developing targeted management strategies. In this review, we discuss recent findings regarding recurrent UTIs in women, including progress in our understanding of the mechanisms of recurrence as well as emerging treatments.
Collapse
Affiliation(s)
- Jennifer A. Silverman
- Department of Molecular Microbiology and Microbial Pathogenesis; Center for Women's Infectious Disease Research Washington University School of Medicine Saint Louis, MO 63110
| | - Henry L. Schreiber
- Department of Molecular Microbiology and Microbial Pathogenesis; Center for Women's Infectious Disease Research Washington University School of Medicine Saint Louis, MO 63110
| | - Thomas M. Hooton
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Scott J. Hultgren
- Corresponding author: 660 South Euclid Avenue, Campus Box 8230, Phone: 314-362-6772, Fax: 314-362-1998,
| |
Collapse
|
119
|
Subashchandrabose S, Hazen TH, Rasko DA, Mobley HLT. Draft genome sequences of five recent human uropathogenic Escherichia coli isolates. Pathog Dis 2013; 69:66-70. [PMID: 23821517 DOI: 10.1111/2049-632x.12059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/20/2013] [Accepted: 06/24/2013] [Indexed: 11/26/2022] Open
Abstract
This study reports the release of draft genome sequences of five isolates of uropathogenic Escherichia coli (UPEC), isolated from patients suffering from uncomplicated cystitis in 2012 in Ann Arbor, Michigan. Phylogenetic analyses revealed that these strains belonged to E. coli phylogroups B2 and D and are closely related to known UPEC strains. Comparative genomic analysis revealed that more conserved proteins were shared between these recent isolates and UPEC strains causing cystitis than those causing pyelonephritis. Additional genomic comparisons identified that three isolates encode a type III secretion system (T3SS) and a putative T3SS effector gene cluster along with an invasin-like outer membrane protein. The presence of T3SS genes is a rare occurrence among UPEC strains. These genomes further substantiate the heterogeneity of the gene pool of UPEC and provide a foundation for comparative genomic studies using recent clinical isolates.
Collapse
Affiliation(s)
| | - Tracy H Hazen
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David A Rasko
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Harry L T Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
120
|
Fessele C, Lindhorst TK. Effect of Aminophenyl and Aminothiahexyl α-D-Glycosides of the Manno-, Gluco-, and Galacto-Series on Type 1 Fimbriae-Mediated Adhesion of Escherichia coli. BIOLOGY 2013; 2:1135-49. [PMID: 24833058 PMCID: PMC3960877 DOI: 10.3390/biology2031135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/17/2013] [Accepted: 08/28/2013] [Indexed: 12/21/2022]
Abstract
Adhesion of bacteria to the glycosylated surface of their target cells is typically mediated by fimbrial lectins, exposed on the bacterial surface. Among the best-investigated and most important fimbriae are type 1 fimbriae, for which α-d-mannopyranoside-specificity has been described. This carbohydrate specificity is mediated by the type 1 fimbrial lectin FimH. In this account, we have employed four different set-ups to assay type 1 fimbriae-mediated bacterial adhesion, including tailor-made glycoarrays. The focus of our study was on testing FimH specificity with regard to the glycone part of a glycosidic ligand by testing a series of synthetic α-mannosides, as well as α-glucosides and α-galactosides. Unexpectedly, it was found that in solution all tested aminothiahexyl glycosides inhibit bacterial adhesion but that this effect is unspecific. Instead it is due to cytotoxicity of the respective glycosides at high mm concentrations.
Collapse
Affiliation(s)
- Claudia Fessele
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3-4, 24098 Kiel, Germany.
| | - Thisbe K Lindhorst
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3-4, 24098 Kiel, Germany.
| |
Collapse
|
121
|
|
122
|
Immunization with the yersiniabactin receptor, FyuA, protects against pyelonephritis in a murine model of urinary tract infection. Infect Immun 2013; 81:3309-16. [PMID: 23798537 DOI: 10.1128/iai.00470-13] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Urinary tract infections (UTI) are common and represent a substantial economic and public health burden. Roughly 80% of these infections are caused by a heterogeneous group of uropathogenic Escherichia coli (UPEC) strains. Antibiotics are standard therapy for UTI, but a rise in antibiotic resistance has complicated treatment, making the development of a UTI vaccine more urgent. Iron receptors are a promising new class of vaccine targets for UTI, as UPEC require iron to colonize the iron-limited host urinary tract and genes encoding iron acquisition systems are highly expressed during infection. Previously, three of six UPEC siderophore and heme receptors were identified as vaccine candidates by intranasal immunization in a murine model of ascending UTI. To complete the assessment of iron receptors as vaccine candidates, an additional six UPEC iron receptors were evaluated. Of the six vaccine candidates tested in this study (FyuA, FitA, IroN, the gene product of the CFT073 locus c0294, and two truncated derivatives of ChuA), only FyuA provided significant protection (P = 0.0018) against UPEC colonization. Intranasal immunization induced a robust and long-lived humoral immune response. In addition, the levels of FyuA-specific serum IgG correlated with bacterial loads in the kidneys [Spearman's rank correlation coefficient ρ(14) = -0.72, P = 0.0018], providing a surrogate of protection. FyuA is the fourth UPEC iron receptor to be identified from our screens, in addition to IutA, Hma, and IreA, which were previously demonstrated to elicit protection against UPEC challenge. Together, these iron receptor antigens will facilitate the development of a broadly protective, multivalent UTI vaccine to effectively target diverse strains of UPEC.
Collapse
|
123
|
Pemphigus vulgaris and infections: a retrospective study on 155 patients. Autoimmune Dis 2013; 2013:834295. [PMID: 23844280 PMCID: PMC3697281 DOI: 10.1155/2013/834295] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/19/2013] [Accepted: 06/02/2013] [Indexed: 11/24/2022] Open
Abstract
Background. Autoimmune process and immunosuppressive therapy of pemphigus vulgaris would predispose the patients to infections. Aim. We aimed to study the prevalence of infection and pathogenic agents in pemphigus vulgaris patients admitted to dermatology service. Material and methods. This retrospective study was conducted on 155 pemphigus vulgaris patients (68 males, 87 females) admitted to dermatology service between 2009 and 2011. In this study, the diagnosis of pemphigus vulgaris was confirmed by light microscopic and direct immunofluorescence findings. Data were collected through a questionnaire.
Results. Of 155 pemphigus vulgaris patients, 33 had infection at admission and 9 acquired nosocomial infection. In addition, 37 cases of oral candidiasis and 15 cases of localized herpes simplex were recorded. Totally, 94 cases of infection were recorded. The occurrence of infection was significantly related to the severity of disease, number of hospital admissions, and presence of diabetes mellitus. The most common pathogenic germs isolated from cultures were Staphylococcus aureus and Escherichia coli. Conclusion. Severity of pemphigus vulgaris and diabetes were directly related with tendency to infections. Staphylococcus aureus and Escherichia coli were the most common pathogenic agents. Due to limitations of retrospective study, a prospective study is recommended.
Collapse
|
124
|
Lebeaux D, Chauhan A, Rendueles O, Beloin C. From in vitro to in vivo Models of Bacterial Biofilm-Related Infections. Pathogens 2013; 2:288-356. [PMID: 25437038 PMCID: PMC4235718 DOI: 10.3390/pathogens2020288] [Citation(s) in RCA: 328] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/01/2013] [Accepted: 05/08/2013] [Indexed: 12/13/2022] Open
Abstract
The influence of microorganisms growing as sessile communities in a large number of human infections has been extensively studied and recognized for 30–40 years, therefore warranting intense scientific and medical research. Nonetheless, mimicking the biofilm-life style of bacteria and biofilm-related infections has been an arduous task. Models used to study biofilms range from simple in vitro to complex in vivo models of tissues or device-related infections. These different models have progressively contributed to the current knowledge of biofilm physiology within the host context. While far from a complete understanding of the multiple elements controlling the dynamic interactions between the host and biofilms, we are nowadays witnessing the emergence of promising preventive or curative strategies to fight biofilm-related infections. This review undertakes a comprehensive analysis of the literature from a historic perspective commenting on the contribution of the different models and discussing future venues and new approaches that can be merged with more traditional techniques in order to model biofilm-infections and efficiently fight them.
Collapse
Affiliation(s)
- David Lebeaux
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| | - Ashwini Chauhan
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| | - Olaya Rendueles
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| | - Christophe Beloin
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| |
Collapse
|
125
|
Foxman B, Buxton M. Alternative approaches to conventional treatment of acute uncomplicated urinary tract infection in women. Curr Infect Dis Rep 2013; 15:124-9. [PMID: 23378124 PMCID: PMC3622145 DOI: 10.1007/s11908-013-0317-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The increasing resistance of uropathogens to antibiotics and recognition of the generally self-limiting nature of uncomplicated urinary tract infection (UTI) suggest that it is time to reconsider empirical treatment of UTI using antibiotics. Identifying new and effective strategies to prevent recurrences and alternative treatment strategies are a high priority. We review the recent literature regarding the effects of functional food products, probiotics, vaccines, and alternative treatments on treating and preventing UTI.
Collapse
Affiliation(s)
- Betsy Foxman
- Center for Molecular and Clinical Epidemiology of Infectious Diseases, Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, 48109-2029, USA,
| | | |
Collapse
|