101
|
Lack NA, Kawamura A, Fullam E, Laurieri N, Beard S, Russell AJ, Evangelopoulos D, Westwood I, Sim E. Temperature stability of proteins essential for the intracellular survival of Mycobacterium tuberculosis. Biochem J 2009; 418:369-78. [PMID: 19014350 DOI: 10.1042/bj20082011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In Mycobacterium tuberculosis, the genes hsaD (2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid hydrolase) and nat (arylamine N-acetyltransferase) are essential for survival inside of host macrophages. These genes act as an operon and have been suggested to be involved in cholesterol metabolism. However, the role of NAT in this catabolic pathway has not been determined. In an effort to better understand the function of these proteins, we have expressed, purified and characterized TBNAT (NAT from M. tuberculosis) and HsaD (2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid hydrolase) from M. tuberculosis. Both proteins demonstrated remarkable heat stability with TBNAT and HsaD retaining >95% of their activity after incubation at 60 degrees C for 30 min. The first and second domains of TBNAT were demonstrated to be very important to the heat stability of the protein, as the transfer of these domains caused a dramatic reduction in the heat stability. The specific activity of TBNAT was tested against a broad range of acyl-CoA cofactors using hydralazine as a substrate. TBNAT was found to be able to utilize not just acetyl-CoA, but also n-propionyl-CoA and acetoacetyl-CoA, although at a lower rate. As propionyl-CoA is a product of cholesterol catabolism, we propose that NAT could have a role in the utilization of this important cofactor.
Collapse
Affiliation(s)
- Nathan A Lack
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX13QT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Yam KC, D'Angelo I, Kalscheuer R, Zhu H, Wang JX, Snieckus V, Ly LH, Converse PJ, Jacobs WR, Strynadka N, Eltis LD. Studies of a ring-cleaving dioxygenase illuminate the role of cholesterol metabolism in the pathogenesis of Mycobacterium tuberculosis. PLoS Pathog 2009; 5:e1000344. [PMID: 19300498 PMCID: PMC2652662 DOI: 10.1371/journal.ppat.1000344] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 02/20/2009] [Indexed: 01/07/2023] Open
Abstract
Mycobacterium tuberculosis, the etiological agent of TB, possesses a cholesterol catabolic pathway implicated in pathogenesis. This pathway includes an iron-dependent extradiol dioxygenase, HsaC, that cleaves catechols. Immuno-compromised mice infected with a DeltahsaC mutant of M. tuberculosis H37Rv survived 50% longer than mice infected with the wild-type strain. In guinea pigs, the mutant disseminated more slowly to the spleen, persisted less successfully in the lung, and caused little pathology. These data establish that, while cholesterol metabolism by M. tuberculosis appears to be most important during the chronic stage of infection, it begins much earlier and may contribute to the pathogen's dissemination within the host. Purified HsaC efficiently cleaved the catecholic cholesterol metabolite, DHSA (3,4-dihydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione; k(cat)/K(m) = 14.4+/-0.5 microM(-1) s(-1)), and was inactivated by a halogenated substrate analogue (partition coefficient<50). Remarkably, cholesterol caused loss of viability in the DeltahsaC mutant, consistent with catechol toxicity. Structures of HsaC:DHSA binary complexes at 2.1 A revealed two catechol-binding modes: bidentate binding to the active site iron, as has been reported in similar enzymes, and, unexpectedly, monodentate binding. The position of the bicyclo-alkanone moiety of DHSA was very similar in the two binding modes, suggesting that this interaction is a determinant in the initial substrate-binding event. These data provide insights into the binding of catechols by extradiol dioxygenases and facilitate inhibitor design.
Collapse
Affiliation(s)
- Katherine C. Yam
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Igor D'Angelo
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rainer Kalscheuer
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Haizhong Zhu
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jian-Xin Wang
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada
| | - Victor Snieckus
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada
| | - Lan H. Ly
- Department of Microbial and Molecular Pathogenesis, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Paul J. Converse
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - William R. Jacobs
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Natalie Strynadka
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lindsay D. Eltis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
103
|
Christensen D, Agger EM, Andreasen LV, Kirby D, Andersen P, Perrie Y. Liposome-based cationic adjuvant formulations (CAF): Past, present, and future. J Liposome Res 2009; 19:2-11. [DOI: 10.1080/08982100902726820] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
104
|
Kan-Sutton C, Jagannath C, Hunter RL. Trehalose 6,6'-dimycolate on the surface of Mycobacterium tuberculosis modulates surface marker expression for antigen presentation and costimulation in murine macrophages. Microbes Infect 2009; 11:40-8. [PMID: 19007905 PMCID: PMC2680729 DOI: 10.1016/j.micinf.2008.10.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 09/11/2008] [Accepted: 10/13/2008] [Indexed: 01/05/2023]
Abstract
Trehalose 6,6'-dimycolate (TDM) is the most abundant lipid extracted from Mycobacterium tuberculosis (MTB). TDM promotes MTB survival by decreasing phagosomal acidification and phagolysosomal fusion in macrophages. Delipidation of MTB using petroleum ether removes TDM and decreases MTB survival within host cells. TDM reconstituted onto MTB restores its virulent wild-type characteristics. We investigated the role of TDM in regulating surface marker expression in MTB-infected macrophages. Macrophages were infected with wild-type, delipidated, and TDM-reconstituted MTB for 24h and measured for changes in surface marker expression. TDM on MTB was found to specifically target MHCII, CD1d, CD40, CD80 and CD86. Both wild-type and TDM-reconstituted MTB suppressed or induced no change in expression of these surface markers, whereas delipidated MTB increased expression of the same markers. MTB-infected macrophages were also overlaid with MHCII-restricted T cell hybridomas which recognize Antigen 85B. Macrophages infected by wild-type and TDM-reconstituted MTB did not present antigen as well as delipidated MTB-infected macrophages. The evidence shown furthers supports the notion that TDM present on MTB promotes its survival and persistence in host macrophages.
Collapse
MESH Headings
- Acyltransferases/metabolism
- Animals
- Antigen Presentation/drug effects
- Antigens, Bacterial/metabolism
- Antigens, Surface/metabolism
- Bacterial Proteins/metabolism
- Cell Line, Transformed
- Cord Factors/metabolism
- Cord Factors/pharmacology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/metabolism
- Macrophages, Alveolar/microbiology
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/microbiology
- Mice
- Mice, Inbred C57BL
- Mycobacterium tuberculosis/chemistry
- Mycobacterium tuberculosis/growth & development
- Mycobacterium tuberculosis/immunology
- Mycobacterium tuberculosis/pathogenicity
- Suppressor of Cytokine Signaling 1 Protein
- Suppressor of Cytokine Signaling Proteins/metabolism
Collapse
Affiliation(s)
- Celestine Kan-Sutton
- Department of Pathology and Laboratory Medicine, The University of Texas at Houston Health Science Center, 6431 Fannin Street, Houston, TX 77030, USA.
| | | | | |
Collapse
|
105
|
Experimental tuberculosis: the role of comparative pathology in the discovery of improved tuberculosis treatment strategies. Tuberculosis (Edinb) 2008; 88 Suppl 1:S35-47. [PMID: 18762152 DOI: 10.1016/s1472-9792(08)70035-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of laboratory animals is critical to the discovery and in vivo pre-clinical testing of new drugs and drug combinations for use in humans. M. tuberculosis infection of mice, rats, guinea pigs, rabbits and non-human primates are the most commonly used animal models of human tuberculosis. While granulomatous inflammation characterizes the most fundamental host response to M. tuberculosis aerosol infection in humans and animals, there are important species differences in pulmonary and extra-pulmonary lesion morphology which may influence responses to drug therapy. Lesions that progress to necrosis or cavitation are common, unfavorable host responses in naturally occurring tuberculosis of humans, but are not seen consistently in experimental infections in most animal model species. The importance of these unique lesion morphologies is that they represent irreversible tissue damage that can harbor persistent bacilli which are difficult to treat with standard therapies. Understanding the differences in host response to experimental tuberculosis infections may aid in selecting the most appropriate animal models to test drugs that have been rationally designed to have specific mechanisms of action in vivo. A better understanding of lesion pathogenesis across species may also aid in the identification of novel therapeutic targets or strategies that can be used alone or in combination with more conventional tuberculosis treatments in humans.
Collapse
|
106
|
|
107
|
Harland CW, Rabuka D, Bertozzi CR, Parthasarathy R. The Mycobacterium tuberculosis virulence factor trehalose dimycolate imparts desiccation resistance to model mycobacterial membranes. Biophys J 2008; 94:4718-24. [PMID: 18326657 PMCID: PMC2397374 DOI: 10.1529/biophysj.107.125542] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 02/08/2008] [Indexed: 11/18/2022] Open
Abstract
Mycobacteria, including persistent pathogens like Mycobacterium tuberculosis, have an unusual membrane structure in which, outside the plasma membrane, a nonfluid hydrophobic fatty acid layer supports a fluid monolayer rich in glycolipids such as trehalose 6,6'-dimycolate (TDM; cord factor). Given the abilities of mycobacteria to survive desiccation and trehalose in solution to protect biomolecules and whole organisms during freezing, drying, and other stresses, we hypothesized that TDM alone may suffice to confer dehydration resistance to the membranes of which it is a constituent. We devised an experimental model that mimics the structure of mycobacterial envelopes in which an immobile hydrophobic layer supports a TDM-rich, two-dimensionally fluid leaflet. We have found that TDM monolayers, in stark contrast to phospholipid membranes, can be dehydrated and rehydrated without loss of integrity, as assessed by fluidity and protein binding. Strikingly, this protection from dehydration extends to TDM-phospholipid mixtures with as little as 25 mol % TDM. The dependence of the recovery of membrane mobility upon rehydration on TDM fraction shows a functional form indicative of spatial percolation, implying that the connectivity of TDM plays a crucial role in membrane preservation. Our observations are the first reported instance of dehydration resistance provided by a membrane glycolipid.
Collapse
Affiliation(s)
- Christopher W Harland
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 94703, USA
| | | | | | | |
Collapse
|
108
|
Welsh KJ, Abbott AN, Hwang SA, Indrigo J, Armitige LY, Blackburn MR, Hunter RL, Actor JK. A role for tumour necrosis factor-alpha, complement C5 and interleukin-6 in the initiation and development of the mycobacterial cord factor trehalose 6,6'-dimycolate induced granulomatous response. MICROBIOLOGY (READING, ENGLAND) 2008; 154:1813-1824. [PMID: 18524936 PMCID: PMC2556040 DOI: 10.1099/mic.0.2008/016923-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Trehalose 6,6'-dimycolate (TDM) is a glycolipid component of the mycobacterial cell wall that causes immune responses in mice similar to Mycobacterium tuberculosis (MTB) infection, including granuloma formation with production of proinflammatory cytokines. The precise roles of tumour necrosis factor (TNF)-alpha, complement C5 and interleukin (IL)-6 in the molecular events that lead to the initiation and maintenance of the granulomatous response to TDM have not been fully elucidated. Macrophage proinflammatory responses from wild-type and complement-deficient mice after infection with MTB were assessed, and compared to responses from organisms in which surface TDM had been removed. Removal of TDM abolished proinflammatory responses, markedly so in the complement-deficient macrophages. Mice deficient in TNF-alpha, C5a and IL-6, along with wild-type C57BL/6 controls, were intravenously injected with TDM in a water-in-oil emulsion, and analysed for histological response and cytokine production in lungs. Wild-type C57BL/6 mice formed granulomas with increased production of IL-1beta, IL-6, TNF-alpha, macrophage inflammatory protein-1alpha (MIP-1alpha), IL-12p40, interferon-gamma (IFN-gamma), and IL-10 protein and mRNA. TNF-alpha-deficient mice failed to produce a histological response to TDM, with no increases in cytokine production following TDM administration. While C5a-deficient mice exhibited inflammation, they did not form structured granulomas and initially had decreased production of proinflammatory mediators. IL-6-deficient mice initiated granuloma formation, but failed to maintain the granulomas through day 7 and demonstrated decreased early production of proinflammatory mediators in comparison to wild-type mice. These data suggest that TNF-alpha is critical for initiation of the granulomatous response, C5a is necessary for formation of cohesive granulomas, and IL-6 plays a key role in the granuloma maintenance response to mycobacterial TDM.
Collapse
Affiliation(s)
- Kerry J. Welsh
- Medical School, University of Texas-Houston, Houston, TX 77030, USA
| | - April N. Abbott
- Graduate School of Biomedical Sciences, Program in Molecular Pathology, University of Texas-Houston Health Science Center, Houston, TX, USA
| | - Shen-An Hwang
- Graduate School of Biomedical Sciences, Program in Molecular Pathology, University of Texas-Houston Health Science Center, Houston, TX, USA
| | - Jessica Indrigo
- Corporate and Foundation Relations, Washington University School of Medicine, St Louis, MO 63105, USA
| | - Lisa Y. Armitige
- Medical School, University of Texas-Houston, Houston, TX 77030, USA
- Graduate School of Biomedical Sciences, Program in Molecular Pathology, University of Texas-Houston Health Science Center, Houston, TX, USA
- Department of Internal Medicine-Infectious Diseases, Medical School, University of Texas-Houston, Houston, TX, USA
| | - Michael R. Blackburn
- Medical School, University of Texas-Houston, Houston, TX 77030, USA
- Graduate School of Biomedical Sciences, Program in Molecular Pathology, University of Texas-Houston Health Science Center, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Medical School, University of Texas-Houston, Houston, TX, USA
| | - Robert L. Hunter
- Medical School, University of Texas-Houston, Houston, TX 77030, USA
- Graduate School of Biomedical Sciences, Program in Molecular Pathology, University of Texas-Houston Health Science Center, Houston, TX, USA
- Department of Pathology, Medical School, University of Texas-Houston, Houston, TX, USA
| | - Jeffrey K. Actor
- Medical School, University of Texas-Houston, Houston, TX 77030, USA
- Graduate School of Biomedical Sciences, Program in Molecular Pathology, University of Texas-Houston Health Science Center, Houston, TX, USA
- Department of Pathology, Medical School, University of Texas-Houston, Houston, TX, USA
| |
Collapse
|
109
|
Zvi A, Ariel N, Fulkerson J, Sadoff JC, Shafferman A. Whole genome identification of Mycobacterium tuberculosis vaccine candidates by comprehensive data mining and bioinformatic analyses. BMC Med Genomics 2008; 1:18. [PMID: 18505592 PMCID: PMC2442614 DOI: 10.1186/1755-8794-1-18] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 05/28/2008] [Indexed: 12/19/2022] Open
Abstract
Background Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), infects ~8 million annually culminating in ~2 million deaths. Moreover, about one third of the population is latently infected, 10% of which develop disease during lifetime. Current approved prophylactic TB vaccines (BCG and derivatives thereof) are of variable efficiency in adult protection against pulmonary TB (0%–80%), and directed essentially against early phase infection. Methods A genome-scale dataset was constructed by analyzing published data of: (1) global gene expression studies under conditions which simulate intra-macrophage stress, dormancy, persistence and/or reactivation; (2) cellular and humoral immunity, and vaccine potential. This information was compiled along with revised annotation/bioinformatic characterization of selected gene products and in silico mapping of T-cell epitopes. Protocols for scoring, ranking and prioritization of the antigens were developed and applied. Results Cross-matching of literature and in silico-derived data, in conjunction with the prioritization scheme and biological rationale, allowed for selection of 189 putative vaccine candidates from the entire genome. Within the 189 set, the relative distribution of antigens in 3 functional categories differs significantly from their distribution in the whole genome, with reduction in the Conserved hypothetical category (due to improved annotation) and enrichment in Lipid and in Virulence categories. Other prominent representatives in the 189 set are the PE/PPE proteins; iron sequestration, nitroreductases and proteases, all within the Intermediary metabolism and respiration category; ESX secretion systems, resuscitation promoting factors and lipoproteins, all within the Cell wall category. Application of a ranking scheme based on qualitative and quantitative scores, resulted in a list of 45 best-scoring antigens, of which: 74% belong to the dormancy/reactivation/resuscitation classes; 30% belong to the Cell wall category; 13% are classical vaccine candidates; 9% are categorized Conserved hypotheticals, all potentially very potent T-cell antigens. Conclusion The comprehensive literature and in silico-based analyses allowed for the selection of a repertoire of 189 vaccine candidates, out of the whole-genome 3989 ORF products. This repertoire, which was ranked to generate a list of 45 top-hits antigens, is a platform for selection of genes covering all stages of M. tuberculosis infection, to be incorporated in rBCG or subunit-based vaccines.
Collapse
Affiliation(s)
- Anat Zvi
- Israel Institute for Biological Research, Ness Ziona 74100, Israel.
| | | | | | | | | |
Collapse
|
110
|
Christensen D, Korsholm KS, Rosenkrands I, Lindenstrøm T, Andersen P, Agger EM. Cationic liposomes as vaccine adjuvants. Expert Rev Vaccines 2007; 6:785-96. [PMID: 17931158 DOI: 10.1586/14760584.6.5.785] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cationic liposomes are lipid-bilayer vesicles with a positive surface charge that have re-emerged as a promising new adjuvant technology. Although there is some evidence that cationic liposomes themselves can improve the immune response against coadministered vaccine antigens, their main functions are to protect the antigens from clearance in the body and deliver the antigens to professional antigen-presenting cells. In addition, cationic liposomes can be used to introduce immunomodulators to enhance and modulate the immune response in a desirable direction and, thereby, represent an efficient tool when designing tailor-made adjuvants for specific disease targets. In this article we review the recent progress on cationic liposomes as vehicles, enhancing the effect of immunomodulators and the presentation of vaccine antigens.
Collapse
Affiliation(s)
- Dennis Christensen
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 81/306, DK-2300 Copenhagen S, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
111
|
Guidry TV, Hunter RL, Actor JK. Mycobacterial glycolipid trehalose 6,6'-dimycolate-induced hypersensitive granulomas: contribution of CD4+ lymphocytes. MICROBIOLOGY (READING, ENGLAND) 2007; 153:3360-3369. [PMID: 17906135 PMCID: PMC2583334 DOI: 10.1099/mic.0.2007/010850-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The granulomatous response is a characteristic histological feature of Mycobacterium tuberculosis infection responsible for organism containment. The development of cell-mediated immunity is essential for protection against disease, as well as being required for maintenance of the sequestering granulomatous response. Trehalose 6,6'-dimycolate (TDM; cord factor), a glycolipid associated with the cell wall of mycobacteria, is implicated as a key immunogenic component in M. tuberculosis infection. Models of TDM-induced hypersensitive granulomatous response have similar pathologies to that of active tuberculosis infection. Prior immunization (sensitization) of mice with TDM results in exacerbated histological damage, inflammation and lymphocytic infiltration upon subsequent TDM challenge. Adoptive transfer experiments were performed to ascertain the cell phenotype governing this response; CD4(+) cells were identified as critical for development of related pathology. Mice receiving CD4(+) cells from donor TDM-immunized mice demonstrated significantly increased production of Th1-type cytokines IFN-gamma and IL-12 within the lung upon subsequent TDM challenge. Control groups receiving naïve CD4(+) cells, or CD8(+) or CD19(+) cells isolated from TDM-immunized donors, did not exhibit an exacerbated response. The identified CD4(+) cells isolated from TDM-immunized mice produced significant amounts of IFN-gamma and IL-2 when exposed to TDM-pulsed macrophages in vitro. These experiments provide further evidence for involvement of a cell-mediated response in TDM-induced granuloma formation, which mimics pathological damage elicited during M. tuberculosis infection.
Collapse
Affiliation(s)
- Tera V. Guidry
- University of Texas-Houston Health Science Center, Graduate School of Biomedical Sciences, Houston, TX 77030 USA
| | - Robert L. Hunter
- University of Texas-Houston Medical School, Department of Pathology and Laboratory Medicine, Program in Molecular Pathology, 6431 Fannin, Houston, TX 77030, USA
| | - Jeffrey K. Actor
- University of Texas-Houston Medical School, Department of Pathology and Laboratory Medicine, Program in Molecular Pathology, 6431 Fannin, Houston, TX 77030, USA
| |
Collapse
|
112
|
Couto SS, Artacho CA. Mycobacterium fortuitum pneumonia in a cat and the role of lipid in the pathogenesis of atypical mycobacterial infections. Vet Pathol 2007; 44:543-6. [PMID: 17606521 DOI: 10.1354/vp.44-4-543] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycobacterium fortuitum is a saprophytic, fast-growing, nontuberculous, and nonlepromatous mycobacterium that can cause infections in animals and humans. In dogs and cats, it is one of the most common agents of ulcerative dermatitides and panniculitides caused by atypical mycobacteria. In humans, it is frequently found in lipoid pneumonias or contaminated surgical sites. We report a cat with granulomatous pneumonia caused by M fortuitum resembling lipoid pneumonia in humans. The similarity between the histopathology of the lung and skin lesions caused by this organism in dogs and cats is emphasized. We discuss the role of lipids in the pathogenesis of mycobacterioses and suggest an association between atypical mycobacteria and lipid-rich environments. We conclude that M fortuitum should be included as a differential in cases of lipid-rich pneumonias that do not respond to common antibiotics.
Collapse
Affiliation(s)
- S S Couto
- The Animal Medical Center, New York, NY, USA.
| | | |
Collapse
|
113
|
Fujita Y, Okamoto Y, Uenishi Y, Sunagawa M, Uchiyama T, Yano I. Molecular and supra-molecular structure related differences in toxicity and granulomatogenic activity of mycobacterial cord factor in mice. Microb Pathog 2007; 43:10-21. [PMID: 17434713 DOI: 10.1016/j.micpath.2007.02.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2006] [Revised: 02/19/2007] [Accepted: 02/19/2007] [Indexed: 11/16/2022]
Abstract
To establish the structure biological activity relationship of cord factor (trehalose 6,6'-dimycolate, TDM), we compared the molecular or supra-molecular structure of TDM micelles with toxicity, thymic atrophy and granulomatogenicity in lungs and spleen of BALB/c mice. According to the difference in the mycolyl subclass composition, TDM was divided into two groups, one possessing alpha-, methoxy- and keto-mycolates in M. tuberculosis H37Rv, M. bovis BCG and M. kansasii (group A) and the other having alpha-, keto- and wax ester-mycolates in M. avium serotype 4, M. phlei and M. flavescens (group B), although mycolic acid molecular species composition differed in each group considerably. Supra-molecular structure of TDM micelle differed species to species substantially and the micelle size of TDM from M. bovis BCG Connaught was the largest. The highest toxicity was shown with TDM from M. tuberculosis H37Rv which possessed the highest amount of alpha- (47.3%) and methoxy-mycolates (40.8%), while TDM from M. phlei having the low amount of alpha-mycolate (11.6%) showed almost no toxicity with the given doses. The thymic atrophy was observed with TDM from group A, but not with TDM from group B. On the other hand, TDM from group B showed massive lung granulomatogenic activity based on the histological observations and organ indices. Taken together, group A TDM showed a wide variety of micelle sizes and specific surface areas, high to low toxicity and marked to moderate granulomatogenicity, while group B TDM showed smaller sizes of micelles and larger specific surface areas, lower toxicity but higher granulomatogenicity in lungs. Existence of higher amount of longer chain alpha-mycolates in TDM appeared to be essential for high toxicity and thymic apoptotic activity, whereas TDM possessing wax ester-mycolate with smaller sized micelles seemed to be less toxic, but more granulomatogenic in lungs in mice. Thus, the mycolic acid subclass and molecular species composition of TDM affect critically the micelle forms, toxicity and granulomatogenicity in mice, while the relative abundances and carbon chain length of alpha-mycolate affected the toxicity in mice.
Collapse
Affiliation(s)
- Yukiko Fujita
- Japan BCG Central Laboratory, 3-1-5 Matsuyama, Kiyose-shi, Tokyo 204-0022, Japan.
| | | | | | | | | | | |
Collapse
|
114
|
Bhatt A, Molle V, Besra GS, Jacobs WR, Kremer L. The Mycobacterium tuberculosis FAS-II condensing enzymes: their role in mycolic acid biosynthesis, acid-fastness, pathogenesis and in future drug development. Mol Microbiol 2007; 64:1442-54. [PMID: 17555433 DOI: 10.1111/j.1365-2958.2007.05761.x] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycolic acids are very long-chain fatty acids representing essential components of the mycobacterial cell wall. Considering their importance, characterization of key enzymes participating in mycolic acid biosynthesis not only allows an understanding of their role in the physiology of mycobacteria, but also might lead to the identification of new drug targets. Mycolates are synthesized by at least two discrete elongation systems, the type I and type II fatty acid synthases (FAS-I and FAS-II respectively). Among the FAS-II components, the condensing enzymes that catalyse the formation of carbon-carbon bonds have received considerable interest. Four condensases participate in initiation (mtFabH), elongation (KasA and KasB) and termination (Pks13) steps, leading to full-length mycolates. We present the recent biochemical and structural data for these important enzymes. Special emphasis is given to their role in growth, intracellular survival, biofilm formation, as well as in the physiopathology of tuberculosis. Recent studies demonstrated that phosphorylation of these enzymes by mycobacterial kinases affects their activities. We propose here a model in which kinases that sense environmental changes can phosphorylate the condensing enzymes, thus representing a novel mechanism of regulating mycolic acid biosynthesis. Finally, we discuss the attractiveness of these enzymes as valid targets for future antituberculosis drug development.
Collapse
Affiliation(s)
- Apoorva Bhatt
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | | | |
Collapse
|
115
|
Hunter RL, Jagannath C, Actor JK. Pathology of postprimary tuberculosis in humans and mice: contradiction of long-held beliefs. Tuberculosis (Edinb) 2007; 87:267-78. [PMID: 17369095 DOI: 10.1016/j.tube.2006.11.003] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 11/17/2006] [Accepted: 11/30/2006] [Indexed: 11/26/2022]
Abstract
Tuberculosis remains one of the world's leading infectious causes of death. Approximately 80% of all disease is due to postprimary (secondary) tuberculosis in the lung. Unfortunately, tissues of developing lesions are seldom available and there are no recognized models of postprimary tuberculosis. In the preantibiotic era when tissues were more abundant, several investigators described early postprimary tuberculosis as a lipid pneumonia quite different from the caseating granulomas commonly described today. We used histopathologic, immunohistochemical and acid fast stains to examine tissues from several people with untreated primary and postprimary tuberculosis and compared the findings with those of mice with reactivation tuberculosis. The results confirmed that developing postprimary tuberculosis begins as a lipid pneumonia accompanied by bronchial obstruction in which infection is restricted to foamy alveolar macrophages. Cavities result from a combination of caseation of tuberculous pneumonia and microvascular occlusion characteristic of delayed type hypersensitivity (DTH). Reactivation tuberculosis in the mouse begins as a similar tuberculous lipid pneumonia with bronchial obstruction and evidence for participation of DTH. Developing necrosis in both species is associated with localization of organisms within lipid droplets. These results suggest that reactivation tuberculosis in mice is a valuable model of developing human postprimary tuberculosis.
Collapse
Affiliation(s)
- Robert L Hunter
- Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, MSB 2.136, 6431 Fannin, Houston, TX 77030, USA.
| | | | | |
Collapse
|
116
|
Abstract
Tuberculosis (TB), an illness that mainly affects the respiratory system, is one of the world's most pernicious diseases. TB currently infects one-third of the world's population and kills approximately 1.7 million people each year. Most infected individuals fail to progress to full-blown disease because the TB bacilli are 'walled off' by the immune system inside a tissue nodule known as a granuloma. The granuloma's primary function is one of containment and it prevents the dissemination of the mycobacteria. But what is the role of the TB bacillus in the progression of the granuloma? This Review explores how Mycobacterium tuberculosis influences granuloma formation and maintenance, and ensures the spread of the disease.
Collapse
Affiliation(s)
- David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
117
|
Guidry TV, Hunter RL, Actor JK. CD3+ cells transfer the hypersensitive granulomatous response to mycobacterial glycolipid trehalose 6,6′-dimycolate in mice. Microbiology (Reading) 2006; 152:3765-3775. [PMID: 17159227 DOI: 10.1099/mic.0.29290-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The granulomatous response is the characteristic histological feature ofMycobacterium tuberculosisinfection that is essential for organism containment. Trehalose 6,6-dimycolate (TDM), a cell-wall glycolipid present on most mycobacterial species, has been implicated in the pathogenesis ofM. tuberculosisinfection. TDM has potent immunoregulatory and inflammatory properties, and can be used to model granulomatous reactions that mimic, in part, pathology caused during active infection. This study examined the hypersensitive granulomatous response, focusing on cellular responses specific to TDM. Lungs from mice immunized with TDM emulsion demonstrated exacerbated histological damage, inflammation, and lymphocytic infiltration upon subsequent challenge with TDM. Splenocytes recovered from these mice demonstrated significant interferon (IFN)-γproduction during recall response to TDM, as well as increased production of proinflammatory mediators (tumour necrosis factor-α, interleukin-6 and macrophage inflammatory protein-1α). The exacerbated response could be adoptively transferred to naïve mice. Administration of non-adherent lymphocytes or purified CD3+cells from TDM-immunized mice led to increased inflammation, lymphocytic infiltration, and vascular endothelial cell damage upon challenge with TDM. Recipient mice that received immunized CD3+lymphocytes demonstrated significant increases in Th1-type cytokines and proinflammatory mediators in lung tissue following TDM challenge. When CD1d−/−mice were immunized with TDM, they failed to generate a specific IFN-γresponse, suggesting a role for this molecule in the generation of hypersensitivity. These experiments provide further evidence for the involvement of TDM-specific CD3+T cells in pathological damage elicited duringM. tuberculosisinfection.
Collapse
Affiliation(s)
- Tera V Guidry
- University of Texas-Houston Health Science Center, Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Robert L Hunter
- Department of Pathology, University of Texas-Houston Medical School, Houston, TX 77030, USA
| | - Jeffrey K Actor
- Department of Pathology and Laboratory Medicine, MSB 2.214, University of Texas-Houston Medical School, 6431 Fannin, Houston, TX 77030, USA
- Department of Pathology, University of Texas-Houston Medical School, Houston, TX 77030, USA
| |
Collapse
|