101
|
Olfactory receptors contribute to progression of kidney fibrosis. NPJ Syst Biol Appl 2022; 8:8. [PMID: 35181660 PMCID: PMC8857310 DOI: 10.1038/s41540-022-00217-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 01/21/2022] [Indexed: 11/08/2022] Open
Abstract
Olfactory receptors (ORs) which are mainly known as odor-sensors in the olfactory epithelium are shown to be expressed in several non-sensory tissues. Despite the specified role of some of these receptors in normal physiology of the kidney, little is known about their potential effect in renal disorders. In this study, using the holistic view of systems biology, it was determined that ORs are significantly changed during the progression of kidney fibrosis. For further validation, common differentially expressed ORs resulted from reanalysis of two time-course microarray datasets were selected for experimental evaluation in a validated murine model of unilateral ureteral obstruction (UUO). Transcriptional analysis by real-time quantitative polymerase chain reaction demonstrated considerable changes in the expression pattern of Olfr433, Olfr129, Olfr1393, Olfr161, and Olfr622 during the progression of kidney fibrosis. For localization of these ORs, single-cell RNA-sequencing datasets of normal and UUO mice were reanalyzed. Results showed that Olfr433 is highly expressed in macrophages in day-2 and 7 post-injury in UUO mice and not in normal subgroups. Besides, like previous findings, Olfr1393 was shown to be expressed prominently in the proximal tubular cells of the kidney. In conclusion, our combinatorial temporal approach to the underlying mechanisms of chronic kidney disease highlighted the potential role of ORs in progression of fibrosis. The expression of Olfr433 in the macrophages provides some clue about its relation to molecular mechanisms promoted in the fibrotic kidney. The proposed ORs in this study could be the subject of further functional assessments in the future.
Collapse
|
102
|
Li F, Wei R, Huang M, Chen J, Li P, Ma Y, Chen X. Luteolin can ameliorate renal interstitial fibrosis-induced renal anaemia through the SIRT1/FOXO3 pathway. Food Funct 2022; 13:11896-11914. [DOI: 10.1039/d2fo02477b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Luteolin is a natural flavonoid exhibiting multiple pharmacological activities.
Collapse
Affiliation(s)
- Fei Li
- Nankai University School of Medicine, Nankai University, Tianjin 300073, China
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
- Department of Surgical Intensive Critical Unit, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Ribao Wei
- Nankai University School of Medicine, Nankai University, Tianjin 300073, China
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
| | - Mengjie Huang
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
| | - Jianwen Chen
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
| | - Ping Li
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
| | - Yue Ma
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
| | - Xiangmei Chen
- Nankai University School of Medicine, Nankai University, Tianjin 300073, China
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
| |
Collapse
|
103
|
Reinhardt JW, Breuer CK. Fibrocytes: A Critical Review and Practical Guide. Front Immunol 2021; 12:784401. [PMID: 34975874 PMCID: PMC8718395 DOI: 10.3389/fimmu.2021.784401] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/30/2021] [Indexed: 01/18/2023] Open
Abstract
Fibrocytes are hematopoietic-derived cells that directly contribute to tissue fibrosis by producing collagen following injury, during disease, and with aging. The lack of a fibrocyte-specific marker has led to the use of multiple strategies for identifying these cells in vivo. This review will detail how past studies were performed, report their findings, and discuss their strengths and limitations. The motivation is to identify opportunities for further investigation and promote the adoption of best practices during future study design.
Collapse
Affiliation(s)
- James W. Reinhardt
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Christopher K. Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Surgery, Nationwide Children’s Hospital, Columbus, OH, United States
| |
Collapse
|
104
|
Assessing and counteracting fibrosis is a cornerstone of the treatment of CKD secondary to systemic and renal limited autoimmune disorders. Autoimmun Rev 2021; 21:103014. [PMID: 34896651 DOI: 10.1016/j.autrev.2021.103014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease (CKD) is an increasing cause of morbidity and mortality worldwide. Besides the higher prevalence of diabetes, hypertension and aging worldwide, immune mediated disorders remain an important cause of kidney disease and are especially prevalent in young adults. Regardless of the initial insult, final pathway to CKD and kidney failure is always the loss of normal tissue and fibrosis development, in which the dynamic equilibrium between extracellular matrix synthesis and degradation is disturbed, leading to excessive production and accumulation. During fibrosis, a multitude of cell types intervene at different levels, but myofibroblasts and inflammatory cells are considered critical in the process. They exert their effects through different molecular pathways, of which transforming growth factor β (TGF-β) has demonstrated to be of particular importance. Additionally, CKD itself promotes fibrosis due to the accumulation of toxins and hormonal changes, and proteinuria is simultaneously a manifestation of CKD and a specific driver of renal fibrosis. Pathways involved in renal fibrosis and CKD are closely interrelated, and although important advances have been made in our knowledge of them, it is still necessary to translate them into clinical practice. Given the complexity of this process, it is highly likely that its treatment will require a multi-target strategy to control the origin of the damage but also the mechanisms that perpetuate it. Fortunately, rapid technology development over the last years and new available drugs in the nephrologist's armamentarium give reasons for optimism that more personalized assistance for CKD and renal fibrosis will appear in the future.
Collapse
|
105
|
Lu Y, Yang L, Chen X, Liu J, Nie A, Chen X. Bone marrow mesenchymal stem cell-derived exosomes improve renal fibrosis by reducing the polarisation of M1 and M2 macrophages through the activation of EP2 receptors. IET Nanobiotechnol 2021; 16:14-24. [PMID: 34862858 PMCID: PMC8806116 DOI: 10.1049/nbt2.12071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Renal fibrosis is the pathological outcome of most end‐stage renal diseases, yet there are still limited therapeutic options for it. In recent years, bone marrow mesenchymal stem cell‐derived exosomes (BM‐MSCs) have received much attention. Here, we investigate the therapeutic effect of BM‐MSCs on unilateral ureteral occlusion (UUO)‐induced interstitial fibrosis in the kidney by modulating prostaglandin E2 receptor 2 (EP2). Renal pathological changes were evident in the UUO group compared to the control group, with significantly increased expression of α‐smooth muscle actin (α‐SMA), fibronectin, Ep2 and F4/80+CD86+ and F4/80+CD206+ cells in the UUO group (p< 0.05). Pathological changes were alleviated and F4/80+CD86+ and F480/+CD206+ cells were reduced after exosome or EP2 agonist intervention compared to the UUO group. These data were further confirmed in vitro. Compared to the lipopolysaccharide (LPS) group and the LPS + exosome + Ah6809 group, the lipopolysaccharide (LPS) + exosome group and the LPS + butaprost group showed a significant decrease in α‐SMA expression, a decrease in the number of F4/80+CD86+ and F4/80+CD206+ cells, a decrease in interleukin (IL)‐6 and an increase in IL‐10 levels. Therefore, we conclude that BM‐MSCs can reduce the polarization of M1 and M2 macrophages by activating EP2 receptors, thereby ameliorating renal fibrosis.
Collapse
Affiliation(s)
- Yuqing Lu
- Nantong University, Nantong, Jiangsu, China.,Department of Nephrology, The Second People Hospital of Luohe, Luohe, Henan, China
| | - Lulu Yang
- Nantong University, Nantong, Jiangsu, China
| | - Xiao Chen
- Nantong University, Nantong, Jiangsu, China
| | - Jing Liu
- Nantong University, Nantong, Jiangsu, China
| | - Anqi Nie
- Nantong University, Nantong, Jiangsu, China
| | | |
Collapse
|
106
|
Abstract
Mesangial cells are stromal cells that are important for kidney glomerular homeostasis and the glomerular response to injury. A growing body of evidence demonstrates that mesenchymal stromal cells, such as stromal fibroblasts, pericytes and vascular smooth muscle cells, not only specify the architecture of tissues but also regulate developmental processes, vascularization and cell fate specification. In addition, through crosstalk with neighbouring cells and indirectly through the remodelling of the matrix, stromal cells can regulate a variety of processes such as immunity, inflammation, regeneration and in the context of maladaptive responses - fibrosis. Insights into the molecular phenotype of kidney mesangial cells suggest that they are a specialized stromal cell of the glomerulus. Here, we review our current understanding of mesenchymal stromal cells and discuss how it informs the function of mesangial cells and their role in disease. These new insights could lead to a better understanding of kidney disease pathogenesis and the development of new therapies for chronic kidney disease.
Collapse
|
107
|
Özkan E, Çetin-Taş Y, Şekerdağ E, Kızılırmak AB, Taş A, Yıldız E, Yapıcı-Eser H, Karahüseyinoğlu S, Zeybel M, Gürsoy-Özdemir Y. Blood-brain barrier leakage and perivascular collagen accumulation precede microvessel rarefaction and memory impairment in a chronic hypertension animal model. Metab Brain Dis 2021; 36:2553-2566. [PMID: 34118020 DOI: 10.1007/s11011-021-00767-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/06/2021] [Indexed: 01/07/2023]
Abstract
Hypertension (HT) is one of the main causes of vascular dementia, lead to cognitive decline. Here, we investigated the relationship between cerebral microvessels, pericytes, extracellular matrix (ECM) accumulation, blood-brain barrier (BBB) breakdown, and memory impairment at mid-life in a chronic hypertension animal model. Spontaneously hypertensive rats (SHRs) (n = 20) are chosen for the model and age matched Wistar rats (n = 16) as controls. Changes in brain microvasculature and in vitro experiments are shown with immunofluorescence studies and cognition with open field, novel object recognition, and Y maze tests. There was a significant reduction in pericyte coverage in SHRs (p = 0.021), while the quantitative parameters of the cerebral microvascular network were not different between groups. On the other hand, parenchymal albumin leakage, as a Blood-brain barrier (BBB) breakdown marker, was prominent in SHRs (p = 0.023). Extracellular matrix (ECM) components, collagen type 1, 3 and 4 were significantly increased (accumulated) around microvasculature in SHRs (p = 0.011, p = 0.013, p = 0.037, respectively). Furthermore, in vitro experiments demonstrated that human brain vascular pericytes but not astrocytes and endothelial cells secreted type I collagen upon TGFβ1 exposure pointing out a possible role of pericytes in increased collagen accumulation around cerebral microvasculature due to HT. Furthermore, valsartan treatment decreased the amount of collagen type 1 secreted by pericytes after TGFβ1 exposure. At the time of evaluation, SHRs did not demonstrate cognitive decline and memory impairments. Our results showed that chronic HT causes ECM accumulation and BBB leakage before leading to memory impairments and therefore, pericytes could be a novel target for preventing vascular dementia.
Collapse
Affiliation(s)
- Esra Özkan
- Koç University Research Center for Translational Medicine, Istanbul, Turkey.
- Koç University Hospital, Zeytinburnu, 34010, Istanbul, Turkey.
| | - Yağmur Çetin-Taş
- Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Emine Şekerdağ
- Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Ali B Kızılırmak
- Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Ali Taş
- Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Erdost Yıldız
- Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Hale Yapıcı-Eser
- Koç University Research Center for Translational Medicine, Istanbul, Turkey
- Department of Psychiatry, School of Medicine, Koç University, Istanbul, Turkey
| | - Serçin Karahüseyinoğlu
- Koç University Research Center for Translational Medicine, Istanbul, Turkey
- Department of Histology and Embryology, School of Medicine, Koç University, Istanbul, Turkey
| | - Müjdat Zeybel
- Koç University Research Center for Translational Medicine, Istanbul, Turkey
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust & University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Yasemin Gürsoy-Özdemir
- Koç University Research Center for Translational Medicine, Istanbul, Turkey
- Department of Neurology, School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
108
|
Matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in kidney disease. Adv Clin Chem 2021; 105:141-212. [PMID: 34809827 DOI: 10.1016/bs.acc.2021.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Matrix metalloproteinases (MMPs) are a group of zinc and calcium endopeptidases which cleave extracellular matrix (ECM) proteins. They are also involved in the degradation of cell surface components and regulate multiple cellular processes, cell to cell interactions, cell proliferation, and cell signaling pathways. MMPs function in close interaction with the endogenous tissue inhibitors of matrix metalloproteinases (TIMPs), both of which regulate cell turnover, modulate various growth factors, and participate in the progression of tissue fibrosis and apoptosis. The multiple roles of MMPs and TIMPs are continuously elucidated in kidney development and repair, as well as in a number of kidney diseases. This chapter focuses on the current findings of the significance of MMPs and TIMPs in a wide range of kidney diseases, whether they result from kidney tissue changes, hemodynamic alterations, tubular epithelial cell apoptosis, inflammation, or fibrosis. In addition, the potential use of these endopeptidases as biomarkers of renal dysfunction and as targets for therapeutic interventions to attenuate kidney disease are also explored in this review.
Collapse
|
109
|
Shih HM, Pan SY, Wu CJ, Chou YH, Chen CY, Chang FC, Chen YT, Chiang WC, Tsai HC, Chen YM, Lin SL. Transforming growth factor-β1 decreases erythropoietin production through repressing hypoxia-inducible factor 2α in erythropoietin-producing cells. J Biomed Sci 2021; 28:73. [PMID: 34724959 PMCID: PMC8561873 DOI: 10.1186/s12929-021-00770-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Renal erythropoietin (EPO)-producing (REP) cells produce EPO through hypoxia-inducible factor (HIF) 2α-activated gene transcription. Insufficient EPO production leads to anemia in patients with chronic kidney disease. Although recombinant EPO is effective to improve anemia, no reliable REP cell lines limit further progress of research and development of novel treatment. METHODS We screened Epo mRNA expression in mouse fibroblast cell lines. Small interfering RNA specific for HIF1α or HIF2α was transfected to study Epo expression in C3H10T1/2 cells. The effect of transforming growth factor-β1 (TGF-β1) on HIF-EPO axis was studied in C3H10T1/2 cells and mice. RESULTS Similar to mouse REP pericytes, C3H10T1/2 cells differentiated to α-smooth muscle actin+ myofibroblasts after exposure to TGF-β1. Specific HIF knockdown demonstrated the role of HIF2α in hypoxia-induced Epo expression. Sustained TGF-β1 exposure increased neither DNA methyltransferase nor methylation of Epas1 and Epo genes. However, TGF-β1 repressed HIF2α-encoding Epas1 promptly through activating activin receptor-like kinase-5 (ALK5), thereby decreasing Epo induction by hypoxia and prolyl hydroxylase domain inhibitor roxadustat. In mice with pro-fibrotic injury induced by ureteral obstruction, upregulation of Tgfb1 was accompanied with downregulation of Epas1 and Epo in injured kidneys and myofibroblasts, which were reversed by ALK5 inhibitor SB431542. CONCLUSION C3H10T1/2 cells possessed the property of HIF2α-dependent Epo expression in REP pericytes. TGF-β1 induced not only the transition to myofibroblasts but also a repressive effect on Epas1-Epo axis in C3H10T1/2 cells. The repressive effect of TGF-β1 on Epas1-Epo axis was confirmed in REP pericytes in vivo. Inhibition of TGF-β1-ALK5 signaling might provide a novel treatment to rescue EPO expression in REP pericytes of injured kidney.
Collapse
Affiliation(s)
- Hong-Mou Shih
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road Section 1, Taipei, 100, Taiwan.,Division of Nephrology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Szu-Yu Pan
- Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan.,Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chih-Jen Wu
- Division of Nephrology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, Mackay Medical College, Taipei, Taiwan.,Department of Pharmacology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsiang Chou
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City, Taiwan
| | - Chun-Yuan Chen
- School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fan-Chi Chang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Ting Chen
- Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan.,Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City, Taiwan
| | - Wen-Chih Chiang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsing-Chen Tsai
- Division of Chest Medicine, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Ming Chen
- Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
| | - Shuei-Liong Lin
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road Section 1, Taipei, 100, Taiwan. .,Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan. .,Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan. .,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
110
|
Higuchi K, Muramatsu R. [Contribution of the perivascular cells in the central nervous system regeneration]. Nihon Yakurigaku Zasshi 2021; 156:403. [PMID: 34719575 DOI: 10.1254/fpj.21067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
111
|
Vartak T, Godson C, Brennan E. Therapeutic potential of pro-resolving mediators in diabetic kidney disease. Adv Drug Deliv Rev 2021; 178:113965. [PMID: 34508793 DOI: 10.1016/j.addr.2021.113965] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/26/2021] [Accepted: 09/05/2021] [Indexed: 02/06/2023]
Abstract
Renal microvascular disease associated with diabetes [Diabetic kidney disease - DKD] is the leading cause of chronic kidney disease. In DKD, glomerular basement membrane thickening, mesangial expansion, endothelial dysfunction, podocyte cell loss and renal tubule injury contribute to progressive glomerulosclerosis and tubulointerstitial fibrosis. Chronic inflammation is recognized as a major pathogenic mechanism for DKD, with resident and circulating immune cells interacting with local kidney cell populations to provoke an inflammatory response. The onset of inflammation is driven by the release of well described proinflammatory mediators, and this is typically followed by a resolution phase. Inflammation resolution is achieved through the bioactions of endogenous specialized pro-resolving lipid mediators (SPMs). As our understanding of SPMs advances 'resolution pharmacology' based approaches using these molecules are being explored in DKD.
Collapse
Affiliation(s)
- Tanwi Vartak
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Eoin Brennan
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
112
|
Soliman H, Theret M, Scott W, Hill L, Underhill TM, Hinz B, Rossi FMV. Multipotent stromal cells: One name, multiple identities. Cell Stem Cell 2021; 28:1690-1707. [PMID: 34624231 DOI: 10.1016/j.stem.2021.09.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multipotent stromal cells (MSCs) are vital for development, maintenance, function, and regeneration of most tissues. They can differentiate along multiple connective lineages, but unlike most other stem/progenitor cells, they carry out various other functions while maintaining their developmental potential. MSCs function as damage sensors, respond to injury by fostering regeneration through secretion of trophic factors as well as extracellular matrix (ECM) molecules, and contribute to fibrotic reparative processes when regeneration fails. Tissue-specific MSC identity, fate(s), and function(s) are being resolved through fate mapping coupled with single cell "omics," providing unparalleled insights into the secret lives of tissue-resident MSCs.
Collapse
Affiliation(s)
- Hesham Soliman
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Aspect Biosystems, Vancouver, BC V6P 6P2, Canada
| | - Marine Theret
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Wilder Scott
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Lesley Hill
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Tully Michael Underhill
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Fabio M V Rossi
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
113
|
Xu H, Wu T, Huang L. Therapeutic and delivery strategies of phytoconstituents for renal fibrosis. Adv Drug Deliv Rev 2021; 177:113911. [PMID: 34358538 DOI: 10.1016/j.addr.2021.113911] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease (CKD) is one of the most common diseases endangering human health and life. By 2030, 14 per 100,000 people may die from CKD. Renal fibrosis (RF) is an important intermediate link and the final pathological change during CKD progression to the terminal stage. Therefore, identifying safe and effective treatment methods for RF has become an important goal. In 2018, the World Health Organization introduced traditional Chinese medicine into its effective global medical program. Various phytoconstituents that affect the RF process have been extracted from different plants. Here, we review the potential therapeutic capabilities of active phytoconstituents in RF treatment and discuss how phytoconstituents can be structurally modified or combined with other ingredients to enhance efficiency and reduce toxicity. We also summarize phytoconstituent delivery strategies to overcome renal barriers and improve bioavailability and targeting.
Collapse
Affiliation(s)
- Huan Xu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China.
| | - Tianyi Wu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
114
|
Yan H, Xu J, Xu Z, Yang B, Luo P, He Q. Defining therapeutic targets for renal fibrosis: Exploiting the biology of pathogenesis. Biomed Pharmacother 2021; 143:112115. [PMID: 34488081 DOI: 10.1016/j.biopha.2021.112115] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 01/14/2023] Open
Abstract
Renal fibrosis is a failed wound-healing process of the kidney tissue after chronic, sustained injury, which is a common pathway and pathological marker of virtually every type of chronic kidney disease (CKD), regardless of cause. However, there is a lack of effective treatment specifically targeting against renal fibrosis per se to date. The main pathological feature of renal fibrosis is the massive activation and proliferation of renal fibroblasts and the excessive synthesis and secretion of extracellular matrix (ECM) deposited in the renal interstitium, leading to structural damage, impairment of renal function, and eventually end-stage renal disease. In this review, we summarize recent advancements regarding the participation and interaction of many types of kidney residents and infiltrated cells during renal fibrosis, attempt to comprehensively discuss the mechanism of renal fibrosis from the cellular level and conclude by highlighting novel therapeutic targets and approaches for development of new treatments for patients with renal fibrosis.
Collapse
Affiliation(s)
- Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiangxin Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
115
|
Baglieri J, Zhang C, Liang S, Liu X, Nishio T, Rosenthal SB, Dhar D, Su H, Cong M, Jia J, Hosseini M, Karin M, Kisseleva T, Brenner DA. Nondegradable Collagen Increases Liver Fibrosis but Not Hepatocellular Carcinoma in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1564-1579. [PMID: 34119473 PMCID: PMC8406794 DOI: 10.1016/j.ajpath.2021.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Although hepatocellular cancer (HCC) usually occurs in the setting of liver fibrosis, the causal relationship between liver fibrosis and HCC is unclear. in vivo and in vitro models of HCC involving Colr/r mice (that produce a collagenase-resistant type I collagen) or wild-type (WT) mice were used to assess the relationship between type I collagen, liver fibrosis, and experimental HCC. HCC was either chemically induced in WT and Colr/r mice or Hepa 1-6 cells were engrafted into WT and Colr/r livers. The effect of hepatic stellate cells (HSCs) from WT and Colr/r mice on the growth of Hepa 1-6 cells was studied by using multicellular tumor spheroids and xenografts. Collagen type I deposition and fibrosis were increased in Colr/r mice, but they developed fewer and smaller tumors. Hepa 1-6 cells had reduced tumor growth in the livers of Colr/r mice. Although Colr/r HSCs exhibited a more activated phenotype, Hepa 1-6 growth and malignancy were suppressed in multicellular tumor spheroids and in xenografts containing Colr/r HSCs. Treatment with vitronectin, which mimics the presence of degraded collagen fragments, converted the Colr/r phenotype into a WT phenotype. Although Colr/r mice have increased liver fibrosis, they exhibited decreased HCC in several models. Thus, increased liver type I collagen does not produce increased experimental HCC.
Collapse
Affiliation(s)
- Jacopo Baglieri
- Department of Medicine, University of California San Diego, San Diego, California; Department of Surgery, University of California San Diego, San Diego, California
| | - Cuili Zhang
- Department of Medicine, University of California San Diego, San Diego, California
| | - Shuang Liang
- Department of Medicine, University of California San Diego, San Diego, California
| | - Xiao Liu
- Department of Medicine, University of California San Diego, San Diego, California
| | - Takahiro Nishio
- Department of Medicine, University of California San Diego, San Diego, California
| | - Sara B Rosenthal
- Center for Computational Biology and Bioinformatics, University of California San Diego, San Diego, California
| | - Debanjan Dhar
- Department of Medicine, University of California San Diego, San Diego, California
| | - Hua Su
- Department of Pharmacology, University of California San Diego, San Diego, California
| | - Min Cong
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Mojgan Hosseini
- Department of Pathology, University of California San Diego, San Diego, California
| | - Michael Karin
- Department of Pharmacology, University of California San Diego, San Diego, California
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, San Diego, California
| | - David A Brenner
- Department of Medicine, University of California San Diego, San Diego, California.
| |
Collapse
|
116
|
Tuleta I, Frangogiannis NG. Fibrosis of the diabetic heart: Clinical significance, molecular mechanisms, and therapeutic opportunities. Adv Drug Deliv Rev 2021; 176:113904. [PMID: 34331987 PMCID: PMC8444077 DOI: 10.1016/j.addr.2021.113904] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 01/02/2023]
Abstract
In patients with diabetes, myocardial fibrosis may contribute to the pathogenesis of heart failure and arrhythmogenesis, increasing ventricular stiffness and delaying conduction. Diabetic myocardial fibrosis involves effects of hyperglycemia, lipotoxicity and insulin resistance on cardiac fibroblasts, directly resulting in increased matrix secretion, and activation of paracrine signaling in cardiomyocytes, immune and vascular cells, that release fibroblast-activating mediators. Neurohumoral pathways, cytokines, growth factors, oxidative stress, advanced glycation end-products (AGEs), and matricellular proteins have been implicated in diabetic fibrosis; however, the molecular links between the metabolic perturbations and activation of a fibrogenic program remain poorly understood. Although existing therapies using glucose- and lipid-lowering agents and neurohumoral inhibition may act in part by attenuating myocardial collagen deposition, specific therapies targeting the fibrotic response are lacking. This review manuscript discusses the clinical significance, molecular mechanisms and cell biology of diabetic cardiac fibrosis and proposes therapeutic targets that may attenuate the fibrotic response, preventing heart failure progression.
Collapse
Affiliation(s)
- Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA.
| |
Collapse
|
117
|
Interplay between extracellular matrix components and cellular and molecular mechanisms in kidney fibrosis. Clin Sci (Lond) 2021; 135:1999-2029. [PMID: 34427291 DOI: 10.1042/cs20201016] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Chronic kidney disease (CKD) is characterized by pathological accumulation of extracellular matrix (ECM) proteins in renal structures. Tubulointerstitial fibrosis is observed in glomerular diseases as well as in the regeneration failure of acute kidney injury (AKI). Therefore, finding antifibrotic therapies comprises an intensive research field in Nephrology. Nowadays, ECM is not only considered as a cellular scaffold, but also exerts important cellular functions. In this review, we describe the cellular and molecular mechanisms involved in kidney fibrosis, paying particular attention to ECM components, profibrotic factors and cell-matrix interactions. In response to kidney damage, activation of glomerular and/or tubular cells may induce aberrant phenotypes characterized by overproduction of proinflammatory and profibrotic factors, and thus contribute to CKD progression. Among ECM components, matricellular proteins can regulate cell-ECM interactions, as well as cellular phenotype changes. Regarding kidney fibrosis, one of the most studied matricellular proteins is cellular communication network-2 (CCN2), also called connective tissue growth factor (CTGF), currently considered as a fibrotic marker and a potential therapeutic target. Integrins connect the ECM proteins to the actin cytoskeleton and several downstream signaling pathways that enable cells to respond to external stimuli in a coordinated manner and maintain optimal tissue stiffness. In kidney fibrosis, there is an increase in ECM deposition, lower ECM degradation and ECM proteins cross-linking, leading to an alteration in the tissue mechanical properties and their responses to injurious stimuli. A better understanding of these complex cellular and molecular events could help us to improve the antifibrotic therapies for CKD.
Collapse
|
118
|
Li Z, Yu S, Hu X, Li Y, You X, Tian D, Cheng L, Zheng M, Jing J. Fibrotic Scar After Spinal Cord Injury: Crosstalk With Other Cells, Cellular Origin, Function, and Mechanism. Front Cell Neurosci 2021; 15:720938. [PMID: 34539350 PMCID: PMC8441597 DOI: 10.3389/fncel.2021.720938] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/28/2021] [Indexed: 01/18/2023] Open
Abstract
The failure of axonal regeneration after spinal cord injury (SCI) results in permanent loss of sensorimotor function. The persistent presence of scar tissue, mainly fibrotic scar and astrocytic scar, is a critical cause of axonal regeneration failure and is widely accepted as a treatment target for SCI. Astrocytic scar has been widely investigated, while fibrotic scar has received less attention. Here, we review recent advances in fibrotic scar formation and its crosstalk with other main cellular components in the injured core after SCI, as well as its cellular origin, function, and mechanism. This study is expected to provide an important basis and novel insights into fibrotic scar as a treatment target for SCI.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Cheng
- Department of Orthopaedics, The Second Hospital of Anhui Medical University, Hefei, China
| | - Meige Zheng
- Department of Orthopaedics, The Second Hospital of Anhui Medical University, Hefei, China
| | - Juehua Jing
- Department of Orthopaedics, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
119
|
The bright side of fibroblasts: molecular signature and regenerative cues in major organs. NPJ Regen Med 2021; 6:43. [PMID: 34376677 PMCID: PMC8355260 DOI: 10.1038/s41536-021-00153-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is a pathologic process characterized by the replacement of parenchymal tissue by large amounts of extracellular matrix, which may lead to organ dysfunction and even death. Fibroblasts are classically associated to fibrosis and tissue repair, and seldom to regeneration. However, accumulating evidence supports a pro-regenerative role of fibroblasts in different organs. While some organs rely on fibroblasts for maintaining stem cell niches, others depend on fibroblast activity, particularly on secreted molecules that promote cell adhesion, migration, and proliferation, to guide the regenerative process. Herein we provide an up-to-date overview of fibroblast-derived regenerative signaling across different organs and discuss how this capacity may become compromised with aging. We further introduce a new paradigm for regenerative therapies based on reverting adult fibroblasts to a fetal/neonatal-like phenotype.
Collapse
|
120
|
Yin GN, Piao S, Liu Z, Wang L, Ock J, Kwon MH, Kim DK, Gho YS, Suh JK, Ryu JK. RNA-sequencing profiling analysis of pericyte-derived extracellular vesicle-mimetic nanovesicles-regulated genes in primary cultured fibroblasts from normal and Peyronie's disease penile tunica albuginea. BMC Urol 2021; 21:103. [PMID: 34362357 PMCID: PMC8344132 DOI: 10.1186/s12894-021-00872-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 07/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Peyronie's disease (PD) is a severe fibrotic disease of the tunica albuginea that causes penis curvature and leads to penile pain, deformity, and erectile dysfunction. The role of pericytes in the pathogenesis of fibrosis has recently been determined. Extracellular vesicle (EV)-mimetic nanovesicles (NVs) have attracted attention regarding intercellular communication between cells in the field of fibrosis. However, the global gene expression of pericyte-derived EV-mimetic NVs (PC-NVs) in regulating fibrosis remains unknown. Here, we used RNA-sequencing technology to investigate the potential target genes regulated by PC-NVs in primary fibroblasts derived from human PD plaque. METHODS Human primary fibroblasts derived from normal and PD patients was cultured and treated with cavernosum pericytes isolated extracellular vesicle (EV)-mimetic nanovesicles (NVs). A global gene expression RNA-sequencing assay was performed on normal fibroblasts, PD fibroblasts, and PD fibroblasts treated with PC-NVs. Reverse transcription polymerase chain reaction (RT-PCR) was used for sequencing data validation. RESULTS A total of 4135 genes showed significantly differential expression in the normal fibroblasts, PD fibroblasts, and PD fibroblasts treated with PC-NVs. However, only 91 contra-regulated genes were detected among the three libraries. Furthermore, 20 contra-regulated genes were selected and 11 showed consistent changes in the RNA-sequencing assay, which were validated by RT-PCR. CONCLUSION The gene expression profiling results suggested that these validated genes may be good targets for understanding potential mechanisms and conducting molecular studies into PD.
Collapse
Affiliation(s)
- Guo Nan Yin
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, 7-206, 3rd St, Shinheung-Dong, Jung-Gu, Incheon, 22332, Republic of Korea
| | - Shuguang Piao
- Department of Urology at Changhai Hospital Affiliated with the Naval Medicine University, Shanghai, 200433, People's Republic of China
| | - Zhiyong Liu
- Department of Urology at Changhai Hospital Affiliated with the Naval Medicine University, Shanghai, 200433, People's Republic of China
| | - Lei Wang
- Department of Urology at Changhai Hospital Affiliated with the Naval Medicine University, Shanghai, 200433, People's Republic of China
| | - Jiyeon Ock
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, 7-206, 3rd St, Shinheung-Dong, Jung-Gu, Incheon, 22332, Republic of Korea
| | - Mi-Hye Kwon
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, 7-206, 3rd St, Shinheung-Dong, Jung-Gu, Incheon, 22332, Republic of Korea
| | - Do-Kyun Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk, 54531, Korea
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Kyeongsangbuk-do, 37673, Korea
| | - Jun-Kyu Suh
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, 7-206, 3rd St, Shinheung-Dong, Jung-Gu, Incheon, 22332, Republic of Korea.
| | - Ji-Kan Ryu
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, 7-206, 3rd St, Shinheung-Dong, Jung-Gu, Incheon, 22332, Republic of Korea.
| |
Collapse
|
121
|
Neder TH, Schrankl J, Fuchs MAA, Broeker KAE, Wagner C. Endothelin receptors in renal interstitial cells do not contribute to the development of fibrosis during experimental kidney disease. Pflugers Arch 2021; 473:1667-1683. [PMID: 34355294 PMCID: PMC8433107 DOI: 10.1007/s00424-021-02604-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 11/26/2022]
Abstract
Renal interstitial fibrosis is characterized by the development of myofibroblasts, originating from resident renal and immigrating cells. Myofibroblast formation and extracellular matrix production during kidney damage are triggered by various factors. Among these, endothelins have been discussed as potential modulators of renal fibrosis. Utilizing mouse models of adenine nephropathy (AN) and unilateral ureter occlusion (UUO), this study aimed to investigate the contribution of endothelin signaling in stromal mesenchymal resident renal interstitial cells. We found in controls that adenine feeding and UUO caused marked upregulations of endothelin-1 (ET-1) gene expression in endothelial and in tubular cells and a strong upregulation of ETA-receptor (ETA-R) gene expression in interstitial and mesangial cells, while the gene expression of ETB-receptor (ETB-R) did not change. Conditional deletion of ETA-R and ETB-R gene expression in the FoxD1 stromal cell compartment which includes interstitial cells significantly reduced renal ETA-R gene expression and moderately lowered renal ETB-R gene expression. ET receptor (ET-R) deletion exerted no apparent effects on kidney development nor on kidney function. Adenine feeding and UUO led to similar increases in profibrotic and proinflammatory gene expression in control as well as in ETAflflETBflfl FoxD1Cre+ mice (ET-Ko). In summary, our findings suggest that adenine feeding and UUO activate endothelin signaling in interstitial cells which is due to upregulated ETA-R expression and enhanced renal ET-1 production Our data also suggest that the activation of endothelin signaling in interstitial cells has less impact for the development of experimentally induced fibrosis.
Collapse
Affiliation(s)
- Thomas H Neder
- Institute of Physiology, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Julia Schrankl
- Institute of Physiology, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Michaela A A Fuchs
- Institute of Physiology, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Katharina A E Broeker
- Institute of Physiology, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Charlotte Wagner
- Institute of Physiology, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany.
| |
Collapse
|
122
|
Immunotherapy-based targeting of MSLN + activated portal fibroblasts is a strategy for treatment of cholestatic liver fibrosis. Proc Natl Acad Sci U S A 2021; 118:2101270118. [PMID: 34253615 DOI: 10.1073/pnas.2101270118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We investigated the role of mesothelin (Msln) and thymocyte differentiation antigen 1 (Thy1) in the activation of fibroblasts across multiple organs and demonstrated that Msln-/- mice are protected from cholestatic fibrosis caused by Mdr2 (multidrug resistance gene 2) deficiency, bleomycin-induced lung fibrosis, and UUO (unilateral urinary obstruction)-induced kidney fibrosis. On the contrary, Thy1-/- mice are more susceptible to fibrosis, suggesting that a Msln-Thy1 signaling complex is critical for tissue fibroblast activation. A similar mechanism was observed in human activated portal fibroblasts (aPFs). Targeting of human MSLN+ aPFs with two anti-MSLN immunotoxins killed fibroblasts engineered to express human mesothelin and reduced collagen deposition in livers of bile duct ligation (BDL)-injured mice. We provide evidence that antimesothelin-based therapy may be a strategy for treatment of parenchymal organ fibrosis.
Collapse
|
123
|
Gao M, Wang J, Zang J, An Y, Dong Y. The Mechanism of CD8 + T Cells for Reducing Myofibroblasts Accumulation during Renal Fibrosis. Biomolecules 2021; 11:biom11070990. [PMID: 34356613 PMCID: PMC8301885 DOI: 10.3390/biom11070990] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 02/07/2023] Open
Abstract
Renal fibrosis is a hallmark of chronic kidney disease (CKD) and a common manifestation of end-stage renal disease that is associated with multiple types of renal insults and functional loss of the kidney. Unresolved renal inflammation triggers fibrotic processes by promoting the activation and expansion of extracellular matrix-producing fibroblasts and myofibroblasts. Growing evidence now indicates that diverse T cells and macrophage subpopulations play central roles in the inflammatory microenvironment and fibrotic process. The present review aims to elucidate the role of CD8+ T cells in renal fibrosis, and identify its possible mechanisms in the inflammatory microenvironment.
Collapse
|
124
|
Kittikulsuth W, Nakano D, Kitada K, Suzuki N, Yamamoto M, Nishiyama A. Renal NG2-expressing cells have a macrophage-like phenotype and facilitate renal recovery after ischemic injury. Am J Physiol Renal Physiol 2021; 321:F170-F178. [PMID: 34180718 DOI: 10.1152/ajprenal.00011.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pericytes play an important role in the recovery process after ischemic injury of many tissues. Brain pericytes in the peri-infarct area express macrophage markers in response to injury stimuli and are involved in neovascularization. In the kidney, nerve/glial antigen 2 (NG2)+ pericytes have been found to accumulate after renal injury. These accumulated NG2+ cells are not involved in scar formation. However, the role of accumulated NG2+ cells in injured kidneys remains unknown. Here, using a reversible ischemia-reperfusion (I/R) model, we found that renal NG2+ cells were increased in injured kidneys and expressed macrophage markers (CD11b or F4/80) on day 3 after reperfusion. Isolated NG2+ cells from I/R kidneys also had phagocytic activity and expressed anti-inflammatory cytokine genes, including mannose receptor and IL-10. These macrophage-like NG2+ cells did not likely differentiate into myofibroblasts because they did not increase α-smooth muscle actin expression. Intravenous transfusion of renal NG2+ cells isolated from donor mice on day 3 after reperfusion into recipient mice on day 1 after I/R surgery revealed that NG2+ cell-injected mice had lower plasma blood urea nitrogen, reduced kidney injury molecule-1 mRNA expression, ameliorated renal damage, and reduced cellular debris accumulation compared with PBS-injected mice on day 5 after reperfusion. In conclusion, these data suggest that renal NG2+ cells have an M2 macrophage-like ability and play a novel role in facilitating the recovery process after renal I/R injury.NEW & NOTEWORTHY Brain pericytes have macrophage-like activities after injury. However, such properties of pericytes in peripheral tissues have not been investigated. Here, we provide evidence that nerve/glial antigen 2-positive cells increase after renal injury. The population of nerve/glial antigen 2-positive cells, which does not increase expression of myofibroblast-associated gene, express macrophage markers and anti-inflammatory cytokine genes, have phagocytic activity, and play a role in renal recovery after kidney injury.
Collapse
Affiliation(s)
- Wararat Kittikulsuth
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Daisuke Nakano
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kento Kitada
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Norio Suzuki
- Division of Oxygen Biology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
125
|
Wang X, Copmans D, de Witte PAM. Using Zebrafish as a Disease Model to Study Fibrotic Disease. Int J Mol Sci 2021; 22:ijms22126404. [PMID: 34203824 PMCID: PMC8232822 DOI: 10.3390/ijms22126404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
In drug discovery, often animal models are used that mimic human diseases as closely as possible. These animal models can be used to address various scientific questions, such as testing and evaluation of new drugs, as well as understanding the pathogenesis of diseases. Currently, the most commonly used animal models in the field of fibrosis are rodents. Unfortunately, rodent models of fibrotic disease are costly and time-consuming to generate. In addition, present models are not very suitable for screening large compounds libraries. To overcome these limitations, there is a need for new in vivo models. Zebrafish has become an attractive animal model for preclinical studies. An expanding number of zebrafish models of human disease have been documented, for both acute and chronic diseases. A deeper understanding of the occurrence of fibrosis in zebrafish will contribute to the development of new and potentially improved animal models for drug discovery. These zebrafish models of fibrotic disease include, among others, cardiovascular disease models, liver disease models (categorized into Alcoholic Liver Diseases (ALD) and Non-Alcoholic Liver Disease (NALD)), and chronic pancreatitis models. In this review, we give a comprehensive overview of the usage of zebrafish models in fibrotic disease studies, highlighting their potential for high-throughput drug discovery and current technical challenges.
Collapse
Affiliation(s)
- Xixin Wang
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KULeuven-University of Leuven, O&N II Herestraat 49-Box 824, 3000 Leuven, Belgium; (X.W.); (D.C.)
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, China
| | - Daniëlle Copmans
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KULeuven-University of Leuven, O&N II Herestraat 49-Box 824, 3000 Leuven, Belgium; (X.W.); (D.C.)
| | - Peter A. M. de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KULeuven-University of Leuven, O&N II Herestraat 49-Box 824, 3000 Leuven, Belgium; (X.W.); (D.C.)
- Correspondence: ; Tel.: +32-16-323432
| |
Collapse
|
126
|
Zhu J, Wang Y, Zhong L, Pan F, Wang J. Advances in tissue engineering of vasculature through three-dimensional bioprinting. Dev Dyn 2021; 250:1717-1738. [PMID: 34115420 DOI: 10.1002/dvdy.385] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/07/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND A significant challenge facing tissue engineering is the fabrication of vasculature constructs which contains vascularized tissue constructs to recapitulate viable, complex and functional organs or tissues, and free-standing vascular structures potentially providing clinical applications in the future. Three-dimensional (3D) bioprinting has emerged as a promising technology, possessing a number of merits that other conventional biofabrication methods do not have. Over the last decade, 3D bioprinting has contributed a variety of techniques and strategies to generate both vascularized tissue constructs and free-standing vascular structures. RESULTS This review focuses on different strategies to print two kinds of vasculature constructs, namely vascularized tissue constructs and vessel-like tubular structures, highlighting the feasibility and shortcoming of the current methods for vasculature constructs fabrication. Generally, both direct printing and indirect printing can be employed in vascularized tissue engineering. Direct printing allows for structural fabrication with synchronous cell seeding, while indirect printing is more effective in generating complex architecture. During the fabrication process, 3D bioprinting techniques including extrusion bioprinting, inkjet bioprinting and light-assisted bioprinting should be selectively implemented to exert advantages and obtain the desirable tissue structure. Also, appropriate cells and biomaterials matter a lot to match various bioprinting techniques and thus achieve successful fabrication of specific vasculature constructs. CONCLUSION The 3D bioprinting has been developed to help provide various fabrication techniques, devoting to producing structurally stable, physiologically relevant, and biologically appealing constructs. However, although the optimization of biomaterials and innovation of printing strategies may improve the fabricated vessel-like structures, 3D bioprinting is still in the infant period and has a great gap between in vitro trials and in vivo applications. The article reviews the present achievement of 3D bioprinting in generating vasculature constructs and also provides perspectives on future directions of advanced vasculature constructs fabrication.
Collapse
Affiliation(s)
- Junjin Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuting Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linna Zhong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fangwei Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
127
|
Nording H, Baron L, Haberthür D, Emschermann F, Mezger M, Sauter M, Sauter R, Patzelt J, Knoepp K, Nording A, Meusel M, Meyer-Saraei R, Hlushchuk R, Sedding D, Borst O, Eitel I, Karsten CM, Feil R, Pichler B, Erdmann J, Verschoor A, Chavakis E, Chavakis T, von Hundelshausen P, Köhl J, Gawaz M, Langer HF. The C5a/C5a receptor 1 axis controls tissue neovascularization through CXCL4 release from platelets. Nat Commun 2021; 12:3352. [PMID: 34099640 PMCID: PMC8185003 DOI: 10.1038/s41467-021-23499-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 03/28/2021] [Indexed: 02/05/2023] Open
Abstract
Platelets contribute to the regulation of tissue neovascularization, although the specific factors underlying this function are unknown. Here, we identified the complement anaphylatoxin C5a-mediated activation of C5a receptor 1 (C5aR1) on platelets as a negative regulatory mechanism of vessel formation. We showed that platelets expressing C5aR1 exert an inhibitory effect on endothelial cell functions such as migration and 2D and 3D tube formation. Growth factor- and hypoxia-driven vascularization was markedly increased in C5ar1-/- mice. Platelet-specific deletion of C5aR1 resulted in a proangiogenic phenotype with increased collateralization, capillarization and improved pericyte coverage. Mechanistically, we found that C5a induced preferential release of CXC chemokine ligand 4 (CXCL4, PF4) from platelets as an important antiangiogenic paracrine effector molecule. Interfering with the C5aR1-CXCL4 axis reversed the antiangiogenic effect of platelets both in vitro and in vivo.In conclusion, we identified a mechanism for the control of tissue neovascularization through C5a/C5aR1 axis activation in platelets and subsequent induction of the antiangiogenic factor CXCL4.
Collapse
Affiliation(s)
- Henry Nording
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany ,grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Lasse Baron
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - David Haberthür
- grid.5734.50000 0001 0726 5157Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Frederic Emschermann
- grid.10392.390000 0001 2190 1447University Hospital, Department of Cardiovascular Medicine, Eberhard Karls University, Tübingen, Germany
| | - Matthias Mezger
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Manuela Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Reinhard Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Johannes Patzelt
- grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Kai Knoepp
- grid.9018.00000 0001 0679 2801Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Martin-Luther-University Halle (Saale), Halle (Saale), Germany
| | - Anne Nording
- grid.10392.390000 0001 2190 1447Institute of Medical Genetics and Applied Genomics, Eberhard Karls University, Tübingen, Germany
| | - Moritz Meusel
- grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Roza Meyer-Saraei
- grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Ruslan Hlushchuk
- grid.5734.50000 0001 0726 5157Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Daniel Sedding
- grid.9018.00000 0001 0679 2801Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Martin-Luther-University Halle (Saale), Halle (Saale), Germany
| | - Oliver Borst
- grid.10392.390000 0001 2190 1447University Hospital, Department of Cardiovascular Medicine, Eberhard Karls University, Tübingen, Germany
| | - Ingo Eitel
- grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Christian M. Karsten
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Robert Feil
- grid.10392.390000 0001 2190 1447Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Bernd Pichler
- grid.10392.390000 0001 2190 1447Institute for Preclinical Imaging, Eberhard Karls University, Tübingen, Germany
| | - Jeanette Erdmann
- grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.4562.50000 0001 0057 2672Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Admar Verschoor
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Emmanouil Chavakis
- grid.411088.40000 0004 0578 8220Department for Internal Medicine III/Cardiology, University Hospital of the Johann-Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Triantafyllos Chavakis
- grid.4488.00000 0001 2111 7257Department of Clinical Pathobiochemistry, Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Philipp von Hundelshausen
- grid.5252.00000 0004 1936 973XInstitute for Cardiovascular Prevention, Ludwig Maximilians University Munich, Munich, Germany
| | - Jörg Köhl
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany ,grid.239573.90000 0000 9025 8099Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Meinrad Gawaz
- grid.10392.390000 0001 2190 1447University Hospital, Department of Cardiovascular Medicine, Eberhard Karls University, Tübingen, Germany
| | - Harald F. Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany ,grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| |
Collapse
|
128
|
Hannan RT, Miller AE, Hung RC, Sano C, Peirce SM, Barker TH. Extracellular matrix remodeling associated with bleomycin-induced lung injury supports pericyte-to-myofibroblast transition. Matrix Biol Plus 2021; 10:100056. [PMID: 34195593 PMCID: PMC8233458 DOI: 10.1016/j.mbplus.2020.100056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Of the many origins of pulmonary myofibroblasts, microvascular pericytes are a known source. Prior literature has established the ability of pericytes to transition into myofibroblasts, but provide limited insight into molecular cues that drive this process during lung injury repair and fibrosis. Fibronectin and RGD-binding integrins have long been considered pro-fibrotic factors in myofibroblast biology, and here we test the hypothesis that these known myofibroblast cues coordinate pericyte-to-myofibroblast transitions. Specifically, we hypothesized that αvβ3 integrin engagement on fibronectin induces pericyte transition into myofibroblastic phenotypes in the murine bleomycin lung injury model. Myosin Heavy Chain 11 (Myh11)-CreERT2 lineage tracing in transgenic mice allows identification of cells of pericyte origin and provides a robust tool for isolating pericytes from tissues for further evaluation. We used this murine model to track and characterize pericyte behaviors during tissue repair. The majority of Myh11 lineage-positive cells are positive for the pericyte surface markers, PDGFRβ (55%) and CD146 (69%), and display typical pericyte morphology with spatial apposition to microvascular networks. After intratracheal bleomycin treatment of mice, Myh11 lineage-positive cells showed significantly increased contractile and secretory markers, as well as αv integrin expression. According to RNASeq measurements, many disease and tissue-remodeling genesets were upregulated in Myh11 lineage-positive cells in response to bleomycin-induced lung injury. In vitro, blocking αvβ3 binding through cycloRGDfK prevented expression of the myofibroblastic marker αSMA relative to controls. In response to RGD-containing provisional matrix proteins present in lung injury, pericytes may alter their integrin profile.
Collapse
Affiliation(s)
- Riley T. Hannan
- Department of Pathology, University of Virginia, 415 Lane Road, Charlottesville, VA, United States
| | - Andrew E. Miller
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA, United States
| | - Ruei-Chun Hung
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA, United States
| | - Catherine Sano
- Department of Chemical Engineering, University of Virginia, 102 Engineer's Way, Charlottesville, VA, United States
| | - Shayn M. Peirce
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA, United States
| | - Thomas H. Barker
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA, United States
| |
Collapse
|
129
|
Solagna F, Tezze C, Lindenmeyer MT, Lu S, Wu G, Liu S, Zhao Y, Mitchell R, Meyer C, Omairi S, Kilic T, Paolini A, Ritvos O, Pasternack A, Matsakas A, Kylies D, zur Wiesch JS, Turner JE, Wanner N, Nair V, Eichinger F, Menon R, Martin IV, Klinkhammer BM, Hoxha E, Cohen CD, Tharaux PL, Boor P, Ostendorf T, Kretzler M, Sandri M, Kretz O, Puelles VG, Patel K, Huber TB. Pro-cachectic factors link experimental and human chronic kidney disease to skeletal muscle wasting programs. J Clin Invest 2021; 131:135821. [PMID: 34060483 PMCID: PMC8159690 DOI: 10.1172/jci135821] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle wasting is commonly associated with chronic kidney disease (CKD), resulting in increased morbidity and mortality. However, the link between kidney and muscle function remains poorly understood. Here, we took a complementary interorgan approach to investigate skeletal muscle wasting in CKD. We identified increased production and elevated blood levels of soluble pro-cachectic factors, including activin A, directly linking experimental and human CKD to skeletal muscle wasting programs. Single-cell sequencing data identified the expression of activin A in specific kidney cell populations of fibroblasts and cells of the juxtaglomerular apparatus. We propose that persistent and increased kidney production of pro-cachectic factors, combined with a lack of kidney clearance, facilitates a vicious kidney/muscle signaling cycle, leading to exacerbated blood accumulation and, thereby, skeletal muscle wasting. Systemic pharmacological blockade of activin A using soluble activin receptor type IIB ligand trap as well as muscle-specific adeno-associated virus-mediated downregulation of its receptor ACVR2A/B prevented muscle wasting in different mouse models of experimental CKD, suggesting that activin A is a key factor in CKD-induced cachexia. In summary, we uncovered a crosstalk between kidney and muscle and propose modulation of activin signaling as a potential therapeutic strategy for skeletal muscle wasting in CKD.
Collapse
Affiliation(s)
- Francesca Solagna
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Caterina Tezze
- Veneto Institute of Molecular Medicine, Padua, Italy
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Maja T. Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shun Lu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guochao Wu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shuya Liu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yu Zhao
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Mitchell
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Charlotte Meyer
- Renal Division, Faculty of Medicine, Medical Centre, University of Freiburg, Freiburg, Germany
| | - Saleh Omairi
- College of Medicine, University of Wasit, Kut, Iraq
| | - Temel Kilic
- Renal Division, Faculty of Medicine, Medical Centre, University of Freiburg, Freiburg, Germany
| | - Andrea Paolini
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Arja Pasternack
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Antonios Matsakas
- Molecular Physiology Laboratory, Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Hull, United Kingdom
| | - Dominik Kylies
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Jan-Eric Turner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viji Nair
- Michigan Medicine, Ann Arbor, Michigan, USA
| | | | | | - Ina V. Martin
- Department of Nephrology and Clinical Immunology and
| | | | - Elion Hoxha
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clemens D. Cohen
- Nephrological Center, Medical Clinic and Polyclinic IV, University of Munich, Munich, Germany
| | - Pierre-Louis Tharaux
- Paris Centre de Recherche Cardiovasculaire, INSERM, Université de Paris, Paris, France
| | - Peter Boor
- Department of Nephrology and Clinical Immunology and
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | | | | | - Marco Sandri
- Veneto Institute of Molecular Medicine, Padua, Italy
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Victor G. Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, United Kingdom
- Freiburg Institute for Advanced Studies and Center for Biological System Analysis, University of Freiburg, Freiburg, Germany
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Freiburg Institute for Advanced Studies and Center for Biological System Analysis, University of Freiburg, Freiburg, Germany
| |
Collapse
|
130
|
Goss G, Rognoni E, Salameti V, Watt FM. Distinct Fibroblast Lineages Give Rise to NG2+ Pericyte Populations in Mouse Skin Development and Repair. Front Cell Dev Biol 2021; 9:675080. [PMID: 34124060 PMCID: PMC8194079 DOI: 10.3389/fcell.2021.675080] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
We have examined the developmental origins of Ng2+ perivascular cell populations that adhere to the basement membrane of blood vessels, and their contribution to wound healing. Neural/glial antigen 2 (Ng2) labeled most perivascular cells (70-80%) in developing and adult mouse back skin, a higher proportion than expressed by other pericyte markers Tbx18, Nestin and Pdgfrβ. In adult mouse back skin Ng2+ perivascular cells could be categorized into 4 populations based on whether they expressed Pdgfrα and Pdgfrβ individually or in combination or were Pdgfr-negative. Lineage tracing demonstrated that although Ng2+ cells in embryonic and neonatal back skin contributed to multiple cell types they did not give rise to interfollicular fibroblasts within the dermis. Lineage tracing of distinct fibroblast populations during skin development showed that papillary fibroblasts (Lrig1+) gave rise to Ng2+ perivascular cells in the upper dermis, whilst Ng2+ perivascular cells in the lower dermis were primarily derived from reticular Dlk1+ fibroblasts. Following wounding of adult skin, Ng2+ dermal cells only give rise to Ng2+ blood vessel associated cells and did not contribute to other fibroblast lineages. The relative abundance of Ng2+ Pdgfrβ+ perivascular populations was comparable in wounded and non-wounded skin, indicating that perivascular heterogeneity was maintained during full thickness skin repair. In the wound bed Ng2+ perivascular populations were primarily derived from Lrig1+ papillary or Dlk1+ reticular fibroblast lineages, according to the location of the regenerating blood vessels. We conclude that Ng2+ perivascular cells represent a heterogeneous lineage restricted population that is primarily recruited from the papillary or reticular fibroblast lineages during tissue regeneration.
Collapse
Affiliation(s)
| | | | | | - Fiona M. Watt
- Centre for Stem Cells and Regenerative Medicine, King’s College London, Guy’s Hospital, London, United Kingdom
| |
Collapse
|
131
|
Li L, Galichon P, Xiao X, Figueroa-Ramirez AC, Tamayo D, Lee JJK, Kalocsay M, Gonzalez-Sanchez D, Chancay MS, McCracken KW, Lee NN, Ichimura T, Mori Y, Valerius MT, Wilflingseder J, Lemos DR, Edelman ER, Bonventre JV. Orphan nuclear receptor COUP-TFII enhances myofibroblast glycolysis leading to kidney fibrosis. EMBO Rep 2021; 22:e51169. [PMID: 34031962 DOI: 10.15252/embr.202051169] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 03/28/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
Recent studies demonstrate that metabolic disturbance, such as augmented glycolysis, contributes to fibrosis. The molecular regulation of this metabolic perturbation in fibrosis, however, has been elusive. COUP-TFII (also known as NR2F2) is an important regulator of glucose and lipid metabolism. Its contribution to organ fibrosis is undefined. Here, we found increased COUP-TFII expression in myofibroblasts in human fibrotic kidneys, lungs, kidney organoids, and mouse kidneys after injury. Genetic ablation of COUP-TFII in mice resulted in attenuation of injury-induced kidney fibrosis. A non-biased proteomic study revealed the suppression of fatty acid oxidation and the enhancement of glycolysis pathways in COUP-TFII overexpressing fibroblasts. Overexpression of COUP-TFII in fibroblasts also induced production of alpha-smooth muscle actin (αSMA) and collagen 1. Knockout of COUP-TFII decreased glycolysis and collagen 1 levels in fibroblasts. Chip-qPCR revealed the binding of COUP-TFII on the promoter of PGC1α. Overexpression of COUP-TFII reduced the cellular level of PGC1α. Targeting COUP-TFII serves as a novel treatment approach for mitigating fibrosis in chronic kidney disease and potentially fibrosis in other organs.
Collapse
Affiliation(s)
- Li Li
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Pierre Galichon
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Xiaoyan Xiao
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Diana Tamayo
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jake J-K Lee
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Marian Kalocsay
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.,Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | | | - Maria S Chancay
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Kyle W McCracken
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nathan N Lee
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Takaharu Ichimura
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yutaro Mori
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - M Todd Valerius
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | | | - Dario R Lemos
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Elazer R Edelman
- Department of Medicine, Harvard Medical School, Boston, MA, USA.,Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joseph V Bonventre
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| |
Collapse
|
132
|
Li S, Wang F, Sun D. The renal microcirculation in chronic kidney disease: novel diagnostic methods and therapeutic perspectives. Cell Biosci 2021; 11:90. [PMID: 34001267 PMCID: PMC8130426 DOI: 10.1186/s13578-021-00606-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease (CKD) affects 8–16% of the population worldwide and is characterized by fibrotic processes. Understanding the cellular and molecular mechanisms underpinning renal fibrosis is critical to the development of new therapeutics. Microvascular injury is considered an important contributor to renal progressive diseases. Vascular endothelium plays a significant role in responding to physical and chemical signals by generating factors that help maintain normal vascular tone, inhibit leukocyte adhesion and platelet aggregation, and suppress smooth muscle cell proliferation. Loss of the rich capillary network results in endothelial dysfunction, hypoxia, and inflammatory and oxidative effects and further leads to the imbalance of pro- and antiangiogenic factors, endothelial cell apoptosis and endothelial-mesenchymal transition. New techniques, including both invasive and noninvasive techniques, offer multiple methods to observe and monitor renal microcirculation and guide targeted therapeutic strategies. A better understanding of the role of endothelium in CKD will help in the development of effective interventions for renal microcirculation improvement. This review focuses on the role of microvascular injury in CKD, the methods to detect microvessels and the novel treatments to ameliorate renal fibrosis.
Collapse
Affiliation(s)
- Shulin Li
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China
| | - Fei Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China. .,Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
133
|
Arai H, Sato Y, Yanagita M. Fibroblast heterogeneity and tertiary lymphoid tissues in the kidney. Immunol Rev 2021; 302:196-210. [PMID: 33951198 PMCID: PMC8360208 DOI: 10.1111/imr.12969] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 02/06/2023]
Abstract
Fibroblasts reside in various organs and support tissue structure and homeostasis under physiological conditions. Phenotypic alterations of fibroblasts underlie the development of diverse pathological conditions, including organ fibrosis. Recent advances in single‐cell biology have revealed that fibroblasts comprise heterogeneous subpopulations with distinct phenotypes, which exert both beneficial and detrimental effects on the host organs in a context‐dependent manner. In the kidney, phenotypic alterations of resident fibroblasts provoke common pathological conditions of chronic kidney disease (CKD), such as renal anemia and peritubular capillary loss. Additionally, in aged injured kidneys, fibroblasts provide functional and structural supports for tertiary lymphoid tissues (TLTs), which serve as the ectopic site of acquired immune reactions in various clinical contexts. TLTs are closely associated with aging and CKD progression, and the developmental stages of TLTs reflect the severity of renal injury. In this review, we describe the current understanding of fibroblast heterogeneity both under physiological and pathological conditions, with special emphasis on fibroblast contribution to TLT formation in the kidney. Dissecting the heterogeneous characteristics of fibroblasts will provide a promising therapeutic option for fibroblast‐related pathological conditions, including TLT formation.
Collapse
Affiliation(s)
- Hiroyuki Arai
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Sato
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Medical Innovation Center, TMK Project, Kyoto University, Kyoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| |
Collapse
|
134
|
Shaw IW, O'Sullivan ED, Pisco AO, Borthwick G, Gallagher KM, Péault B, Hughes J, Ferenbach DA. Aging modulates the effects of ischemic injury upon mesenchymal cells within the renal interstitium and microvasculature. Stem Cells Transl Med 2021; 10:1232-1248. [PMID: 33951342 PMCID: PMC8284778 DOI: 10.1002/sctm.20-0392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/05/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022] Open
Abstract
The renal mesenchyme contains heterogeneous cells, including interstitial fibroblasts and pericytes, with key roles in wound healing. Although healing is impaired in aged kidneys, the effect of age and injury on the mesenchyme remains poorly understood. We characterized renal mesenchymal cell heterogeneity in young vs old animals and after ischemia‐reperfusion‐injury (IRI) using multiplex immunolabeling and single cell transcriptomics. Expression patterns of perivascular cell markers (α‐SMA, CD146, NG2, PDGFR‐α, and PDGFR‐β) correlated with their interstitial location. PDGFR‐α and PDGFR‐β co‐expression labeled renal myofibroblasts more efficiently than the current standard marker α‐SMA, and CD146 was a superior murine renal pericyte marker. Three renal mesenchymal subtypes; pericytes, fibroblasts, and myofibroblasts, were recapitulated with data from two independently performed single cell transcriptomic analyzes of murine kidneys, the first dataset an aging cohort and the second dataset injured kidneys following IRI. Mesenchymal cells segregated into subtypes with distinct patterns of expression with aging and following injury. Baseline uninjured old kidneys resembled post‐ischemic young kidneys, with this phenotype further exaggerated following IRI. These studies demonstrate that age modulates renal perivascular/interstitial cell marker expression and transcriptome at baseline and in response to injury and provide tools for the histological and transcriptomic analysis of renal mesenchymal cells, paving the way for more accurate classification of renal mesenchymal cell heterogeneity and identification of age‐specific pathways and targets.
Collapse
Affiliation(s)
- Isaac W Shaw
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Eoin D O'Sullivan
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | | - Gary Borthwick
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Kevin M Gallagher
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Bruno Péault
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK.,Orthopaedic Hospital Research Center and Broad Stem Cell Research Center, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Jeremy Hughes
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - David A Ferenbach
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
135
|
Ding X, Ren Y, He X. IFN-I Mediates Lupus Nephritis From the Beginning to Renal Fibrosis. Front Immunol 2021; 12:676082. [PMID: 33959133 PMCID: PMC8093624 DOI: 10.3389/fimmu.2021.676082] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Lupus nephritis (LN) is a common complication of systemic lupus erythematosus (SLE) and a major risk factor for morbidity and mortality. The abundant cell-free nucleic (DNA/RNA) in SLE patients, especially dsDNA, is a key substance in the pathogenesis of SLE and LN. The deposition of DNA/RNA-immune complexes (DNA/RNA-ICs) in the glomerulus causes a series of inflammatory reactions that lead to resident renal cell disturbance and eventually renal fibrosis. Cell-free DNA/RNA is the most effective inducer of type I interferons (IFN-I). Resident renal cells (rather than infiltrating immune cells) are the main source of IFN-I in the kidney. IFN-I in turn damages resident renal cells. Not only are resident renal cells victims, but also participants in this immunity war. However, the mechanism for generation of IFN-I in resident renal cells and the pathological mechanism of IFN-I promoting renal fibrosis have not been fully elucidated. This paper reviews the latest epidemiology of LN and its development process, discusses the mechanism for generation of IFN-I in resident renal cells and the role of IFN-I in the pathogenesis of LN, and may open a new perspective for the treatment of LN.
Collapse
Affiliation(s)
- Xuewei Ding
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Ren
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Pediatric Internal Medicine Department, Haikou Maternal and Child Health Hospital, Haikou, China
| | - Xiaojie He
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
136
|
Tuleta I, Frangogiannis NG. Diabetic fibrosis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166044. [PMID: 33378699 PMCID: PMC7867637 DOI: 10.1016/j.bbadis.2020.166044] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/25/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Diabetes-associated morbidity and mortality is predominantly due to complications of the disease that may cause debilitating conditions, such as heart and renal failure, hepatic insufficiency, retinopathy or peripheral neuropathy. Fibrosis, the excessive and inappropriate deposition of extracellular matrix in various tissues, is commonly found in patients with advanced type 1 or type 2 diabetes, and may contribute to organ dysfunction. Hyperglycemia, lipotoxic injury and insulin resistance activate a fibrotic response, not only through direct stimulation of matrix synthesis by fibroblasts, but also by promoting a fibrogenic phenotype in immune and vascular cells, and possibly also by triggering epithelial and endothelial cell conversion to a fibroblast-like phenotype. High glucose stimulates several fibrogenic pathways, triggering reactive oxygen species generation, stimulating neurohumoral responses, activating growth factor cascades (such as TGF-β/Smad3 and PDGFs), inducing pro-inflammatory cytokines and chemokines, generating advanced glycation end-products (AGEs) and stimulating the AGE-RAGE axis, and upregulating fibrogenic matricellular proteins. Although diabetes-activated fibrogenic signaling has common characteristics in various tissues, some organs, such as the heart, kidney and liver develop more pronounced and clinically significant fibrosis. This review manuscript summarizes current knowledge on the cellular and molecular pathways involved in diabetic fibrosis, discussing the fundamental links between metabolic perturbations and fibrogenic activation, the basis for organ-specific differences, and the promises and challenges of anti-fibrotic therapies for diabetic patients.
Collapse
Affiliation(s)
- Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
137
|
Krishnan S, Suarez-Martinez AD, Bagher P, Gonzalez A, Liu R, Murfee WL, Mohandas R. Microvascular dysfunction and kidney disease: Challenges and opportunities? Microcirculation 2021; 28:e12661. [PMID: 33025626 PMCID: PMC9990864 DOI: 10.1111/micc.12661] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/18/2020] [Accepted: 09/29/2020] [Indexed: 12/29/2022]
Abstract
Kidneys are highly vascular organs that despite their relatively small size receive 20% of the cardiac output. The highly intricate, delicately organized structure of renal microcirculation is essential to enable renal function and glomerular filtration rate through the local modulation of renal blood flow and intraglomerular pressure. Not surprisingly, the dysregulation of blood flow within the microvessels (abnormal vasoreactivity), fibrosis driven by disordered vascular-renal cross talk, or the loss of renal microvasculature (rarefaction) is associated with kidney disease. In addition, kidney disease can cause microcirculatory dysfunction in distant organs such as the heart and brain, mediated by mechanisms that remain to be elucidated. The objective of this review is to highlight the role of renal microvasculature in kidney disease. The overview will outline the impetus to study renal microvasculature, the bidirectional relationship between kidney disease and microvascular dysfunction, the key pathways driving microvascular diseases such as vasoreactivity, the cell dynamics coordinating fibrosis, and vessel rarefaction. Finally, we will also briefly highlight new therapies targeting the renal microvasculature to improve renal function.
Collapse
Affiliation(s)
- Suraj Krishnan
- Division of Nephrology, Hypertension & Transplantation, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ariana D Suarez-Martinez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Pooneh Bagher
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Anjelica Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, FL, USA
| | - Walter L Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Rajesh Mohandas
- Division of Nephrology, Hypertension & Transplantation, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
138
|
Pan SY, Tsai PZ, Chou YH, Chang YT, Chang FC, Chiu YL, Chiang WC, Hsu T, Chen YM, Chu TS, Lin SL. Kidney pericyte hypoxia-inducible factor regulates erythropoiesis but not kidney fibrosis. Kidney Int 2021; 99:1354-1368. [PMID: 33812664 DOI: 10.1016/j.kint.2021.01.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/03/2021] [Accepted: 01/13/2021] [Indexed: 12/15/2022]
Abstract
Prolyl hydroxylase domain enzyme (PHD) inhibitors are effective in the treatment of chronic kidney disease (CKD)-associated anemia by stabilizing hypoxia inducible factor (HIF), thereby increasing erythropoietin and consequently erythropoiesis. However, concern for CKD progression needs to be addressed in clinical trials. Although pre-clinical studies showed an anti-inflammatory effect in kidney disease models, the effect of PHD inhibitors on kidney fibrosis was inconsistent probably because the effects of HIF are cell type and context dependent. The major kidney erythropoietin-producing cells are pericytes that produce erythropoietin through HIF-2α-dependent gene transcription. The concern for the impact of HIF in pericytes on kidney fibrosis arises from the fact that pericytes are the major precursor cells of myofibroblasts in CKD. Since cells expressing Gli1 fulfill the morphologic and anatomic criteria for pericytes, we induced Gli1+ cell-specific HIF stabilization or knockout to study the impact of HIF in pericytes on kidney pathology of mice with or without fibrotic injury induced by unilateral ureteral obstruction. Compared with the littermate controls, mice with pericyte-specific HIF stabilization due to von Hippel-Lindau protein or PHD2 knockout showed increased serum erythropoietin and polycythemia rather than a discernible difference in kidney fibrosis. Compared with Gli1+ pericytes sorted from littermate controls, Gli1+ pericytes sorted from PHD2 knockout mice showed increased erythropoietin gene expression rather than discernible changes in Col1a1 or Acta2 expression. Furthermore, pericyte-specific knockout of HIF-1α or HIF-2α did not affect kidney fibrosis. Thus, our study supports the absence of negative effects of PHD inhibitors on kidney fibrosis of mice despite HIF stabilization in pericytes.
Collapse
Affiliation(s)
- Szu-Yu Pan
- Division of Nephrology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Zhen Tsai
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsiang Chou
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City, Taiwan
| | - Yu-Ting Chang
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fan-Chi Chang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Ling Chiu
- Division of Nephrology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Graduate Program in Biomedical Informatics, Department of Computer Science and Engineering, College of Informatics, Yuan Ze University, Taoyuan, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wen-Chih Chiang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tien Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan
| | - Yung-Ming Chen
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzong-Shinn Chu
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shuei-Liong Lin
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
139
|
Rajendran S, Seetharaman S, Dharmarajan A, Kuppan K. Microvascular cells: A special focus on heterogeneity of pericytes in diabetes associated complications. Int J Biochem Cell Biol 2021; 134:105971. [PMID: 33775914 DOI: 10.1016/j.biocel.2021.105971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Pericytes (PC) are microvascular mural cells that make specific cell-to-cell contacts with the endothelial cells (EC). These cells are obligatory constituents of the microvessels including the retinal vasculature and they serve as regulators of vascular development, stabilization, maturation and remodeling. During early stages of diabetic retinopathy (DR), apoptotic loss of PC surrounding the retinal vasculature occurs. This may lead to reduced vessel stability, the onset of EC apoptosis, and subsequent retinal ischemia leading to angiogenesis and eventually, severe vision loss due to late proliferative diabetic retinopathy (PDR). Similarly, diabetic nephropathy (DN) is a chronic kidney disease due to hyperglycemia that particularly affects renal PC. Chronic high blood glucose level causes migration of peritubular PC away from the capillary into the interstitial space, which destabilizes the micro vessels, resulting in microvascular rarefaction. In both diabetes associated complications, the identification of specific biomarkers is necessary to stabilize the PC at an early stage. This review largely covers the importance of PC towards the pathogenesis of diabetes associated complications, and their heterogeneity in healthy and angiogenic vasculature.
Collapse
Affiliation(s)
- Sharmila Rajendran
- Department of Biomedical Sciences, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Shanmuganathan Seetharaman
- Department of Pharmaceutics, Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India; School of Pharmacy and Biomedical Science, Curtin University, Bentley, 6102, Perth, Australia
| | - Kaviarasan Kuppan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India.
| |
Collapse
|
140
|
Fuchs MAA, Broeker KAE, Schrankl J, Burzlaff N, Willam C, Wagner C, Kurtz A. Inhibition of transforming growth factor β1 signaling in resident interstitial cells attenuates profibrotic gene expression and preserves erythropoietin production during experimental kidney fibrosis in mice. Kidney Int 2021; 100:122-137. [PMID: 33705825 DOI: 10.1016/j.kint.2021.02.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Kidney fibrosis is characterized by the development of myofibroblasts originating from resident kidney and immigrating cells. Myofibroblast formation and extracellular matrix production during kidney damage are triggered by various cytokines. Among these, transforming growth factor β1 (TGFβ1) is considered a central trigger for kidney fibrosis. We found a highly upregulated expression of TGFβ1 and TGFβ receptor 2 (TGFβ-R2) mRNAs in kidney interstitial cells in experimental fibrosis. Here, we investigated the contribution of TGFβ1 signaling in resident kidney interstitial cells to organ fibrosis using the models of adenine induced nephropathy and unilateral ureteral occlusion in mice. For this purpose TGFβ1 signaling was interrupted by inducible deletion of the TGFβ-R2 gene in interstitial cells expressing the fibroblast marker platelet derived growth factor receptor-β. Expression of profibrotic genes was attenuated up to 50% in kidneys lacking TGFβ-R2 in cells positive for platelet derived growth factor receptor-β. Additionally, deletion of TGFβ-R2 prevented the decline of erythropoietin production in ureter ligated kidneys. Notably, fibrosis associated expression of α-smooth muscle actin as a myofibroblast marker and deposits of extracellular collagens were not altered in mice with targeted deletion of TGFβ-R2. Thus, our findings suggest an enhancing effect of TGFβ1 signaling in resident interstitial cells that contributes to profibrotic gene expression and the downregulation of erythropoietin production, but not to the development of myofibroblasts during kidney fibrosis.
Collapse
Affiliation(s)
| | | | - Julia Schrankl
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Nicolai Burzlaff
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Carsten Willam
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Charlotte Wagner
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Armin Kurtz
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
141
|
Su H, Cantrell AC, Zeng H, Zhu SH, Chen JX. Emerging Role of Pericytes and Their Secretome in the Heart. Cells 2021; 10:548. [PMID: 33806335 PMCID: PMC8001346 DOI: 10.3390/cells10030548] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022] Open
Abstract
Pericytes, as mural cells covering microvascular capillaries, play an essential role in vascular remodeling and maintaining vascular functions and blood flow. Pericytes are crucial participants in the physiological and pathological processes of cardiovascular disease. They actively interact with endothelial cells, vascular smooth muscle cells (VSMCs), fibroblasts, and other cells via the mechanisms involved in the secretome. The secretome of pericytes, along with diverse molecules including proinflammatory cytokines, angiogenic growth factors, and the extracellular matrix (ECM), has great impacts on the formation, stabilization, and remodeling of vasculature, as well as on regenerative processes. Emerging evidence also indicates that pericytes work as mesenchymal cells or progenitor cells in cardiovascular regeneration. Their capacity for differentiation also contributes to vascular remodeling in different ways. Previous studies primarily focused on the roles of pericytes in organs such as the brain, retina, lung, and kidney; very few studies have focused on pericytes in the heart. In this review, following a brief introduction of the origin and fundamental characteristics of pericytes, we focus on pericyte functions and mechanisms with respect to heart disease, ending with the promising use of cardiac pericytes in the treatment of ischemic heart failure.
Collapse
Affiliation(s)
- Han Su
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Aubrey C Cantrell
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Heng Zeng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Shai-Hong Zhu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
142
|
Chen YT, Jhao PY, Hung CT, Wu YF, Lin SJ, Chiang WC, Lin SL, Yang KC. Endoplasmic reticulum protein TXNDC5 promotes renal fibrosis by enforcing TGF-β signaling in kidney fibroblasts. J Clin Invest 2021; 131:143645. [PMID: 33465051 DOI: 10.1172/jci143645] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/13/2021] [Indexed: 01/18/2023] Open
Abstract
Renal fibrosis, a common pathological manifestation of virtually all types of chronic kidney disease (CKD), often results in diffuse kidney scarring and predisposes to end-stage renal disease. Currently, there is no effective therapy against renal fibrosis. Recently, our laboratory identified an ER-resident protein, thioredoxin domain containing 5 (TXNDC5), as a critical mediator of cardiac fibrosis. Transcriptome analyses of renal biopsy specimens from patients with CKD revealed marked TXNDC5 upregulation in fibrotic kidneys, suggesting a potential role of TXNDC5 in renal fibrosis. Employing multiple fluorescence reporter mouse lines, we showed that TXNDC5 was specifically upregulated in collagen-secreting fibroblasts in fibrotic mouse kidneys. In addition, we showed that TXNDC5 was required for TGF-β1-induced fibrogenic responses in human kidney fibroblasts (HKFs), whereas TXNDC5 overexpression was sufficient to promote HKF activation, proliferation, and collagen production. Mechanistically, we showed that TXNDC5, transcriptionally controlled by the ATF6-dependent ER stress pathway, mediated its profibrogenic effects by enforcing TGF-β signaling activity through posttranslational stabilization and upregulation of type I TGF-β receptor in kidney fibroblasts. Using a tamoxifen-inducible, fibroblast-specific Txndc5 knockout mouse line, we demonstrated that deletion of Txndc5 in kidney fibroblasts mitigated the progression of established kidney fibrosis, suggesting the therapeutic potential of TXNDC5 targeting for renal fibrosis and CKD.
Collapse
Affiliation(s)
- Yen-Ting Chen
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Yu Jhao
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chen-Ting Hung
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yueh-Feng Wu
- Research Center for Developmental Biology and Regenerative Medicine and.,Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Sung-Jan Lin
- Research Center for Developmental Biology and Regenerative Medicine and.,Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.,Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Wen-Chih Chiang
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shuei-Liong Lin
- Research Center for Developmental Biology and Regenerative Medicine and.,Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department and Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Integrated Diagnostics and Therapeutics and
| | - Kai-Chien Yang
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine and.,Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
143
|
Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol 2021; 18:151-166. [PMID: 33128017 DOI: 10.1038/s41575-020-00372-7] [Citation(s) in RCA: 1080] [Impact Index Per Article: 270.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2020] [Indexed: 01/18/2023]
Abstract
Chronic liver injury leads to liver inflammation and fibrosis, through which activated myofibroblasts in the liver secrete extracellular matrix proteins that generate the fibrous scar. The primary source of these myofibroblasts are the resident hepatic stellate cells. Clinical and experimental liver fibrosis regresses when the causative agent is removed, which is associated with the elimination of these activated myofibroblasts and resorption of the fibrous scar. Understanding the mechanisms of liver fibrosis regression could identify new therapeutic targets to treat liver fibrosis. This Review summarizes studies of the molecular mechanisms underlying the reversibility of liver fibrosis, including apoptosis and the inactivation of hepatic stellate cells, the crosstalk between the liver and the systems that orchestrate the recruitment of bone marrow-derived macrophages (and other inflammatory cells) driving fibrosis resolution, and the interactions between various cell types that lead to the intracellular signalling that induces fibrosis or its regression. We also discuss strategies to target hepatic myofibroblasts (for example, via apoptosis or inactivation) and the myeloid cells that degrade the matrix (for example, via their recruitment to fibrotic liver) to facilitate fibrosis resolution and liver regeneration.
Collapse
Affiliation(s)
- Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla, CA, USA.
| | - David Brenner
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
144
|
Hassan NME, Said E, Shehatou GSG. Nifuroxazide suppresses UUO-induced renal fibrosis in rats via inhibiting STAT-3/NF-κB signaling, oxidative stress and inflammation. Life Sci 2021; 272:119241. [PMID: 33600861 DOI: 10.1016/j.lfs.2021.119241] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
The current work explored the influences of nifuroxazide, an in vivo inhibitor of signal transducer and activator of transcription-3 (STAT-3) activation, on tubulointerstitial fibrosis in rats with obstructive nephropathy using unilateral ureteral obstruction (UUO) model. Thirty-two male Sprague Dawley rats were assigned into 4 groups (n = 8/group) at random. Sham and UUO groups were orally administered 0.5% carboxymethyl cellulose (CMC) (2.5 mL/kg/day), while Sham-NIF and UUO-NIF groups were treated with 20 mg/kg/day of NIF (suspended in 0.5% CMC, orally). NIF or vehicle treatments were started 2 weeks after surgery and continued for further 2 weeks. NIF treatment ameliorated kidney function in UUO rats, where it restored serum creatinine, blood urea, serum uric acid and urinary protein and albumin to near-normal levels. NIF also markedly reduced histopathological changes in tubules and glomeruli and attenuated interstitial fibrosis in UUO-ligated kidneys. Mechanistically, NIF markedly attenuated renal immunoexpression of E-cadherin and α-smooth muscle actin (α-SMA), diminished renal oxidative stress (↓ malondialdehyde (MDA) levels and ↑ superoxide dismutase (SOD) activity), lessened renal protein expression of phosphorylated-STAT3 (p-STAT-3), phosphorylated-Src (p-Src) kinase, the Abelson tyrosine kinase (c-Abl) and phosphorylated nuclear factor-kappaB p65 (pNF-κB p65), decreased renal cytokine levels of transforming growth factor-β1 (TGF-β1), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and monocyte chemoattractant protein-1 (MCP-1) and reduced number of cluster of differentiation 68 (CD68) immunolabeled macrophages in UUO renal tissues, compared to levels in untreated UUO kidneys. Taken together, NIF treatment suppressed interstitial fibrosis in UUO renal tissues, probably via inhibiting STAT-3/NF-κB signaling and attenuating renal oxidative stress and inflammation.
Collapse
Affiliation(s)
- Nabila M E Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - George S G Shehatou
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City, Egypt.
| |
Collapse
|
145
|
Chou YH, Pan SY, Shao YH, Shih HM, Wei SY, Lai CF, Chiang WC, Schrimpf C, Yang KC, Lai LC, Chen YM, Chu TS, Lin SL. Methylation in pericytes after acute injury promotes chronic kidney disease. J Clin Invest 2021; 130:4845-4857. [PMID: 32749240 DOI: 10.1172/jci135773] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
The origin and fate of renal myofibroblasts is not clear after acute kidney injury (AKI). Here, we demonstrate that myofibroblasts were activated from quiescent pericytes (qPericytes) and the cell numbers increased after ischemia/reperfusion injury-induced AKI (IRI-AKI). Myofibroblasts underwent apoptosis during renal recovery but one-fifth of them survived in the recovered kidneys on day 28 after IRI-AKI and their cell numbers increased again after day 56. Microarray data showed the distinctive gene expression patterns of qPericytes, activated pericytes (aPericytes, myofibroblasts), and inactivated pericytes (iPericytes) isolated from kidneys before, on day 7, and on day 28 after IRI-AKI. Hypermethylation of the Acta2 repressor Ybx2 during IRI-AKI resulted in epigenetic modification of iPericytes to promote the transition to chronic kidney disease (CKD) and aggravated fibrogenesis induced by a second AKI induced by adenine. Mechanistically, transforming growth factor-β1 decreased the binding of YBX2 to the promoter of Acta2 and induced Ybx2 hypermethylation, thereby increasing α-smooth muscle actin expression in aPericytes. Demethylation by 5-azacytidine recovered the microvascular stabilizing function of aPericytes, reversed the profibrotic property of iPericytes, prevented AKI-CKD transition, and attenuated fibrogenesis induced by a second adenine-AKI. In conclusion, intervention to erase hypermethylation of pericytes after AKI provides a strategy to stop the transition to CKD.
Collapse
Affiliation(s)
- Yu-Hsiang Chou
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City, Taiwan.,Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Szu-Yu Pan
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Renal Division, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yu-Han Shao
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hong-Mou Shih
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shi-Yao Wei
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chun-Fu Lai
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Chih Chiang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Claudia Schrimpf
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Kai-Chien Yang
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Cardiology, Department of Internal Medicine, and
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Ming Chen
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzong-Shinn Chu
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shuei-Liong Lin
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
146
|
Zhou J, Li R, Zhang J, Liu Q, Wu T, Tang Q, Huang C, Zhang Z, Huang Y, Huang H, Zhang G, Zhao Y, Zhang T, Mo L, Li Y, He J. Targeting Interstitial Myofibroblast-Expressed Integrin αvβ3 Alleviates Renal Fibrosis. Mol Pharm 2021; 18:1373-1385. [PMID: 33544609 DOI: 10.1021/acs.molpharmaceut.0c01182] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Renal fibrosis is the final manifestation of various chronic kidney diseases. Interstitial myofibroblasts, which are reported to highly express integrin αvβ3, are the effector cells in renal fibrogenesis. Since current therapies do not efficiently target these cells, there is no effective therapeutic method for preventing or mitigating the disease. Here, we modified sterically stable PEGylated liposomes with the pentapeptide cRGDfC (RGD-Lip), which has a high affinity for αvβ3, to specifically deliver drug to renal interstitial myofibroblasts. Our results showed that attaching cRGDfC to liposomes significantly increased their uptake by activated renal fibroblasts NRK-49F cells, and this effect was greatly abolished by adding excess-free cRGDfC or a knockdown of αvβ3. Systemic administration of RGD-Lip gave rise to significant accumulation in a fibrotic kidney, which is ascribed to the specific recognition with integrin αvβ3 on interstitial myofibroblasts. When loaded with celastrol, RGD-guided liposomes dramatically depressed the proliferation and activation of NRK-49F cells in vitro. Additionally, celastrol-loaded RGD-Lip markedly attenuated renal fibrosis, injury, and inflammation induced by unilateral ureteral obstruction (UUO) in mice, without inducing significant systemic toxicity. Thus, this liposomal system shows great promise for delivering therapeutic agents to interstitial myofibroblasts for renal fibrosis treatment with minimal side effects.
Collapse
Affiliation(s)
- Jian Zhou
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China.,Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Rui Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China.,Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jinhang Zhang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China.,Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Tong Wu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China.,Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qin Tang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China.,Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Cuiyuan Huang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China.,Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zijing Zhang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China.,Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ya Huang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China.,Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hui Huang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China.,Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Guorong Zhang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China.,Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yingnan Zhao
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China.,Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ting Zhang
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Li Mo
- Center of Gerontology and Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jinhan He
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China.,Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
147
|
Payne LB, Darden J, Suarez-Martinez AD, Zhao H, Hendricks A, Hartland C, Chong D, Kushner EJ, Murfee WL, Chappell JC. Pericyte migration and proliferation are tightly synchronized to endothelial cell sprouting dynamics. Integr Biol (Camb) 2021; 13:31-43. [PMID: 33515222 DOI: 10.1093/intbio/zyaa027] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/13/2020] [Accepted: 12/26/2020] [Indexed: 01/17/2023]
Abstract
Pericytes are critical for microvascular stability and maintenance, among other important physiological functions, yet their involvement in vessel formation processes remains poorly understood. To gain insight into pericyte behaviors during vascular remodeling, we developed two complementary tissue explant models utilizing 'double reporter' animals with fluorescently-labeled pericytes and endothelial cells (via Ng2:DsRed and Flk-1:eGFP genes, respectively). Time-lapse confocal imaging of active vessel remodeling within adult connective tissues and embryonic skin revealed a subset of pericytes detaching and migrating away from the vessel wall. Vessel-associated pericytes displayed rapid filopodial sampling near sprouting endothelial cells that emerged from parent vessels to form nascent branches. Pericytes near angiogenic sprouts were also more migratory, initiating persistent and directional movement along newly forming vessels. Pericyte cell divisions coincided more frequently with elongating endothelial sprouts, rather than sprout initiation sites, an observation confirmed with in vivo data from the developing mouse brain. Taken together, these data suggest that (i) pericyte detachment from the vessel wall may represent an important physiological process to enhance endothelial cell plasticity during vascular remodeling, and (ii) pericyte migration and proliferation are highly synchronized with endothelial cell behaviors during the coordinated expansion of a vascular network.
Collapse
Affiliation(s)
- Laura Beth Payne
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute, Roanoke, VA 24014, USA
| | - Jordan Darden
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute, Roanoke, VA 24014, USA.,Graduate Program in Translational Biology, Medicine, & Health, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Ariana D Suarez-Martinez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Huaning Zhao
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute, Roanoke, VA 24014, USA.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Alissa Hendricks
- Graduate Program in Translational Biology, Medicine, & Health, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Caitlin Hartland
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute, Roanoke, VA 24014, USA
| | - Diana Chong
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Erich J Kushner
- Department of Biological Sciences, University of Denver, Denver, CO 80208 USA
| | - Walter L Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - John C Chappell
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute, Roanoke, VA 24014, USA.,Graduate Program in Translational Biology, Medicine, & Health, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.,Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| |
Collapse
|
148
|
Meijer EM, van Dijk CGM, Kramann R, Verhaar MC, Cheng C. Implementation of Pericytes in Vascular Regeneration Strategies. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1-21. [PMID: 33231500 DOI: 10.1089/ten.teb.2020.0229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For the survival and integration of complex large-sized tissue-engineered (TE) organ constructs that exceed the maximal nutrients and oxygen diffusion distance required for cell survival, graft (pre)vascularization to ensure medium or blood supply is crucial. To achieve this, the morphology and functionality of the microcapillary bed should be mimicked by incorporating vascular cell populations, including endothelium and mural cells. Pericytes play a crucial role in microvascular function, blood vessel stability, angiogenesis, and blood pressure regulation. In addition, tissue-specific pericytes are important in maintaining specific functions in different organs, including vitamin A storage in the liver, renin production in the kidneys and maintenance of the blood-brain-barrier. Together with their multipotential differentiation capacity, this makes pericytes the preferred cell type for application in TE grafts. The use of a tissue-specific pericyte cell population that matches the TE organ may benefit organ function. In this review, we provide an overview of the literature for graft (pre)-vascularization strategies and highlight the possible advantages of using tissue-specific pericytes for specific TE organ grafts. Impact statement The use of a tissue-specific pericyte cell population that matches the tissue-engineered (TE) organ may benefit organ function. In this review, we provide an overview of the literature for graft (pre)vascularization strategies and highlight the possible advantages of using tissue-specific pericytes for specific TE organ grafts.
Collapse
Affiliation(s)
- Elana M Meijer
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christian G M van Dijk
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rafael Kramann
- Division of Nephrology and Institute of Experimental Medicine and Systems Biology, University Hospital RWTH Aachen, Aachen, Germany.,Department of Internal Medicine, Nephrology and Transplantation, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Caroline Cheng
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands.,Experimental Cardiology, Department of Cardiology, Thorax Center Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
149
|
Vázquez-Carballo C, Guerrero-Hue M, García-Caballero C, Rayego-Mateos S, Opazo-Ríos L, Morgado-Pascual JL, Herencia-Bellido C, Vallejo-Mudarra M, Cortegano I, Gaspar ML, de Andrés B, Egido J, Moreno JA. Toll-Like Receptors in Acute Kidney Injury. Int J Mol Sci 2021; 22:ijms22020816. [PMID: 33467524 PMCID: PMC7830297 DOI: 10.3390/ijms22020816] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury (AKI) is an important health problem, affecting 13.3 million individuals/year. It is associated with increased mortality, mainly in low- and middle-income countries, where renal replacement therapy is limited. Moreover, survivors show adverse long-term outcomes, including increased risk of developing recurrent AKI bouts, cardiovascular events, and chronic kidney disease. However, there are no specific treatments to decrease the adverse consequences of AKI. Epidemiological and preclinical studies show the pathological role of inflammation in AKI, not only at the acute phase but also in the progression to chronic kidney disease. Toll-like receptors (TLRs) are key regulators of the inflammatory response and have been associated to many cellular processes activated during AKI. For that reason, a number of anti-inflammatory agents targeting TLRs have been analyzed in preclinical studies to decrease renal damage during AKI. In this review, we updated recent knowledge about the role of TLRs, mainly TLR4, in the initiation and development of AKI as well as novel compounds targeting these molecules to diminish kidney injury associated to this pathological condition.
Collapse
Affiliation(s)
- Cristina Vázquez-Carballo
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (C.V.-C.); (S.R.-M.); (L.O.-R.); (C.H.-B.)
| | - Melania Guerrero-Hue
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.G.-H.); (C.G.-C.); (J.L.M.-P.); (M.V.-M.)
| | - Cristina García-Caballero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.G.-H.); (C.G.-C.); (J.L.M.-P.); (M.V.-M.)
| | - Sandra Rayego-Mateos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (C.V.-C.); (S.R.-M.); (L.O.-R.); (C.H.-B.)
| | - Lucas Opazo-Ríos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (C.V.-C.); (S.R.-M.); (L.O.-R.); (C.H.-B.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
| | - José Luis Morgado-Pascual
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.G.-H.); (C.G.-C.); (J.L.M.-P.); (M.V.-M.)
| | - Carmen Herencia-Bellido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (C.V.-C.); (S.R.-M.); (L.O.-R.); (C.H.-B.)
| | - Mercedes Vallejo-Mudarra
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.G.-H.); (C.G.-C.); (J.L.M.-P.); (M.V.-M.)
| | - Isabel Cortegano
- Immunobiology Department, Carlos III Health Institute, 28220 Majadahonda (Madrid), Spain; (I.C.); (M.L.G.); (B.d.A.)
| | - María Luisa Gaspar
- Immunobiology Department, Carlos III Health Institute, 28220 Majadahonda (Madrid), Spain; (I.C.); (M.L.G.); (B.d.A.)
| | - Belén de Andrés
- Immunobiology Department, Carlos III Health Institute, 28220 Majadahonda (Madrid), Spain; (I.C.); (M.L.G.); (B.d.A.)
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (C.V.-C.); (S.R.-M.); (L.O.-R.); (C.H.-B.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
- Correspondence: (J.E.); (J.A.M.); Tel.: +34-915504800 (J.E.); +34-957-218039 (J.A.M.)
| | - Juan Antonio Moreno
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.G.-H.); (C.G.-C.); (J.L.M.-P.); (M.V.-M.)
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), 28029 Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 140471 Cordoba, Spain
- Correspondence: (J.E.); (J.A.M.); Tel.: +34-915504800 (J.E.); +34-957-218039 (J.A.M.)
| |
Collapse
|
150
|
Tsata V, Möllmert S, Schweitzer C, Kolb J, Möckel C, Böhm B, Rosso G, Lange C, Lesche M, Hammer J, Kesavan G, Beis D, Guck J, Brand M, Wehner D. A switch in pdgfrb + cell-derived ECM composition prevents inhibitory scarring and promotes axon regeneration in the zebrafish spinal cord. Dev Cell 2021; 56:509-524.e9. [PMID: 33412105 DOI: 10.1016/j.devcel.2020.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/12/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
In mammals, perivascular cell-derived scarring after spinal cord injury impedes axonal regrowth. In contrast, the extracellular matrix (ECM) in the spinal lesion site of zebrafish is permissive and required for axon regeneration. However, the cellular mechanisms underlying this interspecies difference have not been investigated. Here, we show that an injury to the zebrafish spinal cord triggers recruitment of pdgfrb+ myoseptal and perivascular cells in a PDGFR signaling-dependent manner. Interference with pdgfrb+ cell recruitment or depletion of pdgfrb+ cells inhibits axonal regrowth and recovery of locomotor function. Transcriptional profiling and functional experiments reveal that pdgfrb+ cells upregulate expression of axon growth-promoting ECM genes (cthrc1a and col12a1a/b) and concomitantly reduce synthesis of matrix molecules that are detrimental to regeneration (lum and mfap2). Our data demonstrate that a switch in ECM composition is critical for axon regeneration after spinal cord injury and identify the cellular source and components of the growth-promoting lesion ECM.
Collapse
Affiliation(s)
- Vasiliki Tsata
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, 01307 Dresden, Germany; Developmental Biology, Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| | - Stephanie Möllmert
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Christine Schweitzer
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Julia Kolb
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Conrad Möckel
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Benjamin Böhm
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Gonzalo Rosso
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany; Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Christian Lange
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Mathias Lesche
- DRESDEN-concept Genome Center c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Juliane Hammer
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Gokul Kesavan
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Dimitris Beis
- Developmental Biology, Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| | - Jochen Guck
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany; Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, 01307 Dresden, Germany; Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Daniel Wehner
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, 01307 Dresden, Germany; Max Planck Institute for the Science of Light, 91058 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany.
| |
Collapse
|