101
|
Chen Q, Cao T, Li N, Zeng C, Zhang S, Wu X, Zhang B, Cai H. Repurposing of Anti-Diabetic Agents as a New Opportunity to Alleviate Cognitive Impairment in Neurodegenerative and Neuropsychiatric Disorders. Front Pharmacol 2021; 12:667874. [PMID: 34108878 PMCID: PMC8182376 DOI: 10.3389/fphar.2021.667874] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
Abstract
Cognitive impairment is a shared abnormality between type 2 diabetes mellitus (T2DM) and many neurodegenerative and neuropsychiatric disorders, such as Alzheimer’s disease (AD) and schizophrenia. Emerging evidence suggests that brain insulin resistance plays a significant role in cognitive deficits, which provides the possibility of anti-diabetic agents repositioning to alleviate cognitive deficits. Both preclinical and clinical studies have evaluated the potential cognitive enhancement effects of anti-diabetic agents targeting the insulin pathway. Repurposing of anti-diabetic agents is considered to be promising for cognitive deficits prevention or control in these neurodegenerative and neuropsychiatric disorders. This article reviewed the possible relationship between brain insulin resistance and cognitive deficits. In addition, promising therapeutic interventions, especially current advances in anti-diabetic agents targeting the insulin pathway to alleviate cognitive impairment in AD and schizophrenia were also summarized.
Collapse
Affiliation(s)
- Qian Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - NaNa Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Cuirong Zeng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shuangyang Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xiangxin Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
102
|
Stanciu GD, Rusu RN, Bild V, Filipiuc LE, Tamba BI, Ababei DC. Systemic Actions of SGLT2 Inhibition on Chronic mTOR Activation as a Shared Pathogenic Mechanism between Alzheimer's Disease and Diabetes. Biomedicines 2021; 9:biomedicines9050576. [PMID: 34069618 PMCID: PMC8160780 DOI: 10.3390/biomedicines9050576] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) affects tens of millions of people worldwide. Despite the advances in understanding the disease, there is an increased urgency for pharmacological approaches able of impacting its onset and progression. With a multifactorial nature, high incidence and prevalence in later years of life, there is growing evidence highlighting a relationship between metabolic dysfunction related to diabetes and subject's susceptibility to develop AD. The link seems so solid that sometimes AD and type 3 diabetes are used interchangeably. A candidate for a shared pathogenic mechanism linking these conditions is chronically-activated mechanistic target of rapamycin (mTOR). Chronic activation of unrestrained mTOR could be responsible for sustaining metabolic dysfunction that causes the breakdown of the blood-brain barrier, tau hyperphosphorylation and senile plaques formation in AD. It has been suggested that inhibition of sodium glucose cotransporter 2 (SGLT2) mediated by constant glucose loss, may restore mTOR cycle via nutrient-driven, preventing or even decreasing the AD progression. Currently, there is an unmet need for further research insight into molecular mechanisms that drive the onset and AD advancement as well as an increase in efforts to expand the testing of potential therapeutic strategies aimed to counteract disease progression in order to structure effective therapies.
Collapse
Affiliation(s)
- Gabriela Dumitrita Stanciu
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (V.B.); (L.E.F.)
| | - Razvan Nicolae Rusu
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.N.R.); (D.C.A.)
| | - Veronica Bild
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (V.B.); (L.E.F.)
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.N.R.); (D.C.A.)
| | - Leontina Elena Filipiuc
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (V.B.); (L.E.F.)
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Bogdan-Ionel Tamba
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (V.B.); (L.E.F.)
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Correspondence:
| | - Daniela Carmen Ababei
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.N.R.); (D.C.A.)
| |
Collapse
|
103
|
Erichsen JM, Calva CB, Reagan LP, Fadel JR. Intranasal insulin and orexins to treat age-related cognitive decline. Physiol Behav 2021; 234:113370. [PMID: 33621561 PMCID: PMC8053680 DOI: 10.1016/j.physbeh.2021.113370] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
The intranasal (IN) administration of neuropeptides, such as insulin and orexins, has been suggested as a treatment strategy for age-related cognitive decline (ARCD). Because dysfunctional neuropeptide signaling is an observed characteristic of ARCD, it has been suggested that IN delivery of insulin and/or orexins may restore endogenous peptide signaling and thereby preserve cognition. IN administration is particularly alluring as it is a relatively non-invasive method that directly targets peptides to the brain. Several laboratories have examined the behavioral effects of IN insulin in young, aged, and cognitively impaired rodents and humans. These studies demonstrated improved performance on various cognitive tasks following IN insulin administration. Fewer laboratories have assessed the effects of IN orexins; however, this peptide also holds promise as an effective treatment for ARCD through the activation of the cholinergic system and/or the reduction of neuroinflammation. Here, we provide a brief overview of the advantages of IN administration and the delivery pathway, then summarize the current literature on IN insulin and orexins. Additional preclinical studies will be useful to ultimately uncover the mechanisms underlying the pro-cognitive effects of IN insulin and orexins, whereas future clinical studies will aid in the determination of the most efficacious dose and dosing paradigm. Eventually, IN insulin and/or orexin administration may be a widely used treatment strategy in the clinic for ARCD.
Collapse
Affiliation(s)
- Jennifer M Erichsen
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States.
| | - Coleman B Calva
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States
| | - Lawrence P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States; Columbia VA Health Care System, Columbia, SC, 29208, United States
| | - Jim R Fadel
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States
| |
Collapse
|
104
|
Rebelos E, Rinne JO, Nuutila P, Ekblad LL. Brain Glucose Metabolism in Health, Obesity, and Cognitive Decline-Does Insulin Have Anything to Do with It? A Narrative Review. J Clin Med 2021; 10:jcm10071532. [PMID: 33917464 PMCID: PMC8038699 DOI: 10.3390/jcm10071532] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
Imaging brain glucose metabolism with fluorine-labelled fluorodeoxyglucose ([18F]-FDG) positron emission tomography (PET) has long been utilized to aid the diagnosis of memory disorders, in particular in differentiating Alzheimer’s disease (AD) from other neurological conditions causing cognitive decline. The interest for studying brain glucose metabolism in the context of metabolic disorders has arisen more recently. Obesity and type 2 diabetes—two diseases characterized by systemic insulin resistance—are associated with an increased risk for AD. Along with the well-defined patterns of fasting [18F]-FDG-PET changes that occur in AD, recent evidence has shown alterations in fasting and insulin-stimulated brain glucose metabolism also in obesity and systemic insulin resistance. Thus, it is important to clarify whether changes in brain glucose metabolism are just an epiphenomenon of the pathophysiology of the metabolic and neurologic disorders, or a crucial determinant of their pathophysiologic cascade. In this review, we discuss the current knowledge regarding alterations in brain glucose metabolism, studied with [18F]-FDG-PET from metabolic disorders to AD, with a special focus on how manipulation of insulin levels affects brain glucose metabolism in health and in systemic insulin resistance. A better understanding of alterations in brain glucose metabolism in health, obesity, and neurodegeneration, and the relationships between insulin resistance and central nervous system glucose metabolism may be an important step for the battle against metabolic and cognitive disorders.
Collapse
Affiliation(s)
- Eleni Rebelos
- Turku PET Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland; (E.R.); (J.O.R.); (P.N.)
| | - Juha O. Rinne
- Turku PET Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland; (E.R.); (J.O.R.); (P.N.)
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland; (E.R.); (J.O.R.); (P.N.)
- Department of Endocrinology, Turku University Hospital, 20520 Turku, Finland
| | - Laura L. Ekblad
- Turku PET Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland; (E.R.); (J.O.R.); (P.N.)
- Correspondence: ; Tel.: +358-2-3138721
| |
Collapse
|
105
|
Beddows CA, Dodd GT. Insulin on the brain: The role of central insulin signalling in energy and glucose homeostasis. J Neuroendocrinol 2021; 33:e12947. [PMID: 33687120 DOI: 10.1111/jne.12947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/26/2022]
Abstract
Insulin signals to the brain where it coordinates multiple physiological processes underlying energy and glucose homeostasis. This review explores where and how insulin interacts within the brain parenchyma, how brain insulin signalling functions to coordinate energy and glucose homeostasis and how this contributes to the pathogenesis of metabolic disease.
Collapse
Affiliation(s)
- Cait A Beddows
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Garron T Dodd
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
106
|
Abstract
The intranasal (IN) route enables the delivery of insulin to the central nervous system in the relative absence of systemic uptake and related peripheral side effects. Intranasally administered insulin is assumed to travel along olfactory and adjacent pathways and has been shown to rapidly accumulate in cerebrospinal fluid, indicating efficient transport to the brain. Two decades of studies in healthy humans and patients have demonstrated that IN insulin exerts functional effects on metabolism, such as reductions in food intake and body weight and improvements of glucose homeostasis, as well as cognition, ie, enhancements of memory performance both in healthy individuals and patients with mild cognitive impairment or Alzheimer's disease; these studies moreover indicate a favourable safety profile of the acute and repeated use of IN insulin. Emerging findings suggest that IN insulin also modulates neuroendocrine activity, sleep-related mechanisms, sensory perception and mood. Some, but not all studies point to sex differences in the response to IN insulin that need to be further investigated along with the impact of age. "Brain insulin resistance" is an evolving concept that posits impairments in central nervous insulin signalling as a pathophysiological factor in metabolic and cognitive disorders such as obesity, type 2 diabetes and Alzheimer's disease, and, notably, a target of interventions that rely on IN insulin. Still, the negative outcomes of longer-term IN insulin trials in individuals with obesity or Alzheimer's disease highlight the need for conceptual as well as methodological advances to translate the promising results of proof-of-concept experiments and pilot clinical trials into the successful clinical application of IN insulin.
Collapse
Affiliation(s)
- Manfred Hallschmid
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
| |
Collapse
|
107
|
Torabi N, Noursadeghi E, Shayanfar F, Nazari M, Fahanik-Babaei J, Saghiri R, Khodagholi F, Eliassi A. Intranasal insulin improves the structure-function of the brain mitochondrial ATP-sensitive Ca 2+ activated potassium channel and respiratory chain activities under diabetic conditions. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166075. [PMID: 33444710 DOI: 10.1016/j.bbadis.2021.166075] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/06/2020] [Accepted: 12/30/2020] [Indexed: 11/21/2022]
Abstract
Although it is well established that diabetes impairs mitochondrial respiratory chain activity, little is known of the effects of intranasal insulin (INI) on the mitochondrial respiratory chain and structure-function of mitoBKCa channel in diabetes. We have investigated this mechanism in an STZ-induced early type 2 diabetic model. Single ATP-sensitive mitoBKCa channel activity was considered in diabetic and INI-treated rats using a channel incorporated into the bilayer lipid membrane. Because mitoBKCa channels have been involved in mitochondrial respiratory chain activity, a study was undertaken to investigate whether the NADH, complexes I and IV, mitochondrial ROS production, and ΔΨm are altered in an early diabetic model. In this work, we provide evidence for a significant decrease in channel open probability and conductance in diabetic rats. Evidence has been shown that BKCa channel β2 subunits induce a left shift in the BKCa channel voltage dependent curve in low Ca2+ conditions,; our results indicated a significant decrease in mitoBKCa β2 subunits using Western blot analysis. Importantly, INI treatment improved mitoBKCa channel behaviors and β2 subunits expression up to ~70%. We found that early diabetes decreased activities of complex I and IV and increased NADH, ROS production, and ΔΨm. Surprisingly, INI modified the mitochondrial respiratory chain, ROS production, and ΔΨm up to ~70%. Our results thus demonstrate an INI improvement in respiratory chain activity and ROS production in brain mitochondrial preparations coming from the STZ early diabetic rat model, an effect potentially linked to INI improvement in mitoBKCa channel activity and channel β2 subunit expression.
Collapse
Affiliation(s)
- Nihad Torabi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Physiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Noursadeghi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Shayanfar
- Department of Physiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Nazari
- Department of Physiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik-Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Saghiri
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran
| | - Afsaneh Eliassi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Physiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
108
|
Rosenbloom M, Barclay TR, Kashyap B, Hage L, O'Keefe LR, Svitak A, Pyle M, Frey W, Hanson LR. A Phase II, Single-Center, Randomized, Double-Blind, Placebo-Controlled Study of the Safety and Therapeutic Efficacy of Intranasal Glulisine in Amnestic Mild Cognitive Impairment and Probable Mild Alzheimer's Disease. Drugs Aging 2021; 38:407-415. [PMID: 33719017 DOI: 10.1007/s40266-021-00845-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 01/26/2023]
Abstract
BACKGROUND Intranasal insulin is a potential treatment for neurodegenerative disease shown to increase cerebral glucose uptake, reduce amyloid plaques, and improve verbal memory in cognitively impaired as well as healthy adults. Investigations have suggested rapid-acting insulins such as glulisine may result in superior cognitive benefits compared with regular insulin. OBJECTIVE The aim of this study was to evaluate the safety and efficacy of rapid-acting intranasal glulisine in subjects with amnestic mild cognitive impairment (MCI) or mild probable Alzheimer's disease (AD). METHODS We performed a single-center, randomized, double-blind, placebo-controlled study to evaluate the efficacy of intranasal glulisine 20 IU twice daily versus saline placebo in 35 memory-impaired (MCI/AD) subjects using the Impel NeuroPharma I109 Precision Olfactory Delivery (POD®) device. The 13-item Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog13), Clinical Dementia Rating (CDR) global score, and Functional Assessment Questionnaire (FAQ) were measured at baseline and 3 and 6 months. Secondary outcome measures included digit span forward/backwards, Trail Making Test Parts A/B, Controlled Oral Word Association Test (COWAT), and Weschler Memory Scale (WMS)-IV logical memory. Adverse effects (AEs) and serious adverse effects (SAEs) were measured along with blood glucose/insulin levels. RESULTS No significant difference in ADAS-Cog13, CDR Sum of Boxes (CDR-SOB), or FAQ scores were found between treatment groups at 3 and 6 months. Subjects in the saline group were significantly older than those in the glulisine group (p = 0.022). No significant differences in sex, education, apolipoprotein E4 (ApoE4) status, and Montreal Cognitive Assessment (MoCA) score existed between treatment groups. Overall, the number of adverse events per person was similar between groups (2.32 vs. 2.24; p = 0.824), although subjects receiving intranasal glulisine had higher rates of nasal irritation (25.0% vs. 13.9%) and respiratory symptoms (15.9% vs. 8.3%) compared with placebo. There were no differences in blood sugar or rate of hypoglycemia between the treatment and placebo groups. CONCLUSIONS Intranasal glulisine was relatively safe and well-tolerated and did not consistently impact peripheral glucose or insulin levels. There were no enhancing effects of intranasal glulisine on cognition, function, or mood, but the ability to detect significance was limited by the number of subjects successfully enrolled and the study duration. CLINICALTRIALS. GOV REGISTRATION NCT02503501.
Collapse
Affiliation(s)
- Michael Rosenbloom
- HealthPartners Center for Memory and Aging, 295 Phalen Boulevard, Saint Paul, MN, 55130, USA. .,HealthPartners Institute, Bloomington, MN, USA.
| | - Terry R Barclay
- HealthPartners Center for Memory and Aging, 295 Phalen Boulevard, Saint Paul, MN, 55130, USA.,HealthPartners Institute, Bloomington, MN, USA
| | - Bhavani Kashyap
- HealthPartners Center for Memory and Aging, 295 Phalen Boulevard, Saint Paul, MN, 55130, USA.,HealthPartners Institute, Bloomington, MN, USA
| | - Lyndsay Hage
- HealthPartners Center for Memory and Aging, 295 Phalen Boulevard, Saint Paul, MN, 55130, USA.,HealthPartners Institute, Bloomington, MN, USA
| | | | - Aleta Svitak
- HealthPartners Center for Memory and Aging, 295 Phalen Boulevard, Saint Paul, MN, 55130, USA
| | - Maria Pyle
- HealthPartners Center for Memory and Aging, 295 Phalen Boulevard, Saint Paul, MN, 55130, USA.,HealthPartners Institute, Bloomington, MN, USA
| | - William Frey
- HealthPartners Center for Memory and Aging, 295 Phalen Boulevard, Saint Paul, MN, 55130, USA.,HealthPartners Institute, Bloomington, MN, USA
| | - Leah R Hanson
- HealthPartners Center for Memory and Aging, 295 Phalen Boulevard, Saint Paul, MN, 55130, USA.,HealthPartners Institute, Bloomington, MN, USA
| |
Collapse
|
109
|
Liu J, Ting JP, Al-Azzam S, Ding Y, Afshar S. Therapeutic Advances in Diabetes, Autoimmune, and Neurological Diseases. Int J Mol Sci 2021; 22:ijms22062805. [PMID: 33802091 PMCID: PMC8001105 DOI: 10.3390/ijms22062805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 02/08/2023] Open
Abstract
Since 2015, 170 small molecules, 60 antibody-based entities, 12 peptides, and 15 gene- or cell-therapies have been approved by FDA for diverse disease indications. Recent advancement in medicine is facilitated by identification of new targets and mechanisms of actions, advancement in discovery and development platforms, and the emergence of novel technologies. Early disease detection, precision intervention, and personalized treatments have revolutionized patient care in the last decade. In this review, we provide a comprehensive overview of current and emerging therapeutic modalities developed in the recent years. We focus on nine diseases in three major therapeutics areas, diabetes, autoimmune, and neurological disorders. The pathogenesis of each disease at physiological and molecular levels is discussed and recently approved drugs as well as drugs in the clinic are presented.
Collapse
Affiliation(s)
- Jinsha Liu
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Joey Paolo Ting
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Shams Al-Azzam
- Professional Scientific Services, Eurofins Lancaster Laboratories, Lancaster, PA 17605, USA;
| | - Yun Ding
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Sepideh Afshar
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
- Correspondence:
| |
Collapse
|
110
|
Mi Y, Qi G, Brinton RD, Yin F. Mitochondria-Targeted Therapeutics for Alzheimer's Disease: The Good, the Bad, the Potential. Antioxid Redox Signal 2021; 34:611-630. [PMID: 32143551 PMCID: PMC7891225 DOI: 10.1089/ars.2020.8070] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022]
Abstract
Significance: Alzheimer's disease (AD) is the leading cause of dementia. Thus far, 99.6% of clinical trials, including those targeting energy metabolism, have failed to exert disease-modifying efficacy. Altered mitochondrial function and disruption to the brain bioenergetic system have long-been documented as early events during the pathological progression of AD. Recent Advances: While therapeutic approaches that directly promote mitochondrial bioenergetic machinery or eliminate reactive oxygen species have exhibited limited translatability, emerging strategies targeting nonenergetic aspects of mitochondria provide novel therapeutic targets with the potential to modify AD risk and progression. Growing evidence also reveals a critical link between mitochondrial phenotype and neuroinflammation via metabolic reprogramming of glial cells. Critical Issues: Herein, we summarize major classes of mitochondrion-centered AD therapeutic strategies. In addition, the discrepancy in their efficacy when translated from preclinical models to clinical trials is addressed. Key factors that differentiate the responsiveness to bioenergetic interventions, including sex, apolipoprotein E genotype, and cellular diversity in the brain, are discussed. Future Directions: We propose that the future development of mitochondria-targeted AD therapeutics should consider the interactions between bioenergetics and other disease mechanisms, which may require cell-type-specific targeting to distinguish neurons and non-neuronal cells. Moreover, a successful strategy will likely include stratification by metabolic phenotype, which varies by sex and genetic risk profile and dynamically changes throughout the course of disease. As the network of mitochondrial integration expands across intracellular and systems level biology, assessment of intended, the good, versus unintended consequences, the bad, will be required to reach the potential of mitochondrial therapeutics.
Collapse
Affiliation(s)
- Yashi Mi
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Guoyuan Qi
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, Arizona, USA
- Department of Pharmacology, College of Medicine Tucson, Tucson, Arizona, USA
- Department of Neurology, College of Medicine Tucson, Tucson, Arizona, USA
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, Arizona, USA
| | - Fei Yin
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, Arizona, USA
- Department of Pharmacology, College of Medicine Tucson, Tucson, Arizona, USA
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
111
|
Intranasal Insulin Administration to Prevent Delayed Neurocognitive Recovery and Postoperative Neurocognitive Disorder: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052681. [PMID: 33799976 PMCID: PMC7967645 DOI: 10.3390/ijerph18052681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 11/29/2022]
Abstract
Delayed neurocognitive recovery and postoperative neurocognitive disorders are major complications of surgery, hospitalization, and anesthesia that are receiving increasing attention. Their incidence is reported to be 10–80% after cardiac surgery and 10–26% after non-cardiac surgery. Some of the risk factors include advanced age, level of education, history of diabetes mellitus, malnutrition, perioperative hyperglycemia, depth of anesthesia, blood pressure fluctuation during surgery, chronic respiratory diseases, etc. Scientific evidence suggests a causal association between anesthesia and delayed neurocognitive recovery or postoperative neurocognitive disorders, and various pathophysiological mechanisms have been proposed: mitochondrial dysfunction, neuroinflammation, increase in tau protein phosphorylation, accumulation of amyloid-β protein, etc. Insulin receptors in the central nervous system have a non-metabolic role and act through a neuromodulator-like action, while an interaction between anesthetics and central nervous system insulin receptors might contribute to anesthesia-induced delayed neurocognitive recovery or postoperative neurocognitive disorders. Acute or chronic intranasal insulin administration, which has no influence on the blood glucose concentration, appears to improve working memory, verbal fluency, attention, recognition of objects, etc., in animal models, cognitively healthy humans, and memory-impaired patients by restoring the insulin receptor signaling pathway, attenuating anesthesia-induced tau protein hyperphosphorylation, etc. The aim of this review is to report preclinical and clinical evidence of the implication of intranasal insulin for preventing changes in the brain molecular pattern and/or neurobehavioral impairment, which influence anesthesia-induced delayed neurocognitive recovery or postoperative neurocognitive disorders.
Collapse
|
112
|
Domingues R, Pereira C, Cruz MT, Silva A. Therapies for Alzheimer's disease: a metabolic perspective. Mol Genet Metab 2021; 132:162-172. [PMID: 33549409 DOI: 10.1016/j.ymgme.2021.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia in the elderly. Currently, there are over 50 million cases of dementia worldwide and it is expected that it will reach 136 million by 2050. AD is described as a neurodegenerative disease that gradually compromises memory and learning capacity. Patients often exhibit brain glucose hypometabolism and are more susceptible to develop type 2 diabetes or insulin resistance in comparison with age-matched controls. This suggests that there is a link between both pathologies. Glucose metabolism and the tricarboxylic acid cycle are tightly related to mitochondrial performance and energy production. Impairment of both these pathways can evoke oxidative damage on mitochondria and key proteins linked to several hallmarks of AD. Glycation is also another type of post-translational modification often reported in AD, which might impair the function of proteins that participate in metabolic pathways thought to be involved in this illness. Despite needing further research, therapies based on insulin treatment, usage of anti-diabetes drugs or some form of dietary intervention, have shown to be promising therapeutic approaches for AD in its early stages of progression and will be unveiled in this paper.
Collapse
Affiliation(s)
- Raquel Domingues
- Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal
| | - Claúdia Pereira
- Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal; Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra 3000-548, Portugal
| | - Maria Teresa Cruz
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra 3000-548, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Ana Silva
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra 3000-548, Portugal.
| |
Collapse
|
113
|
Zhou B, Zissimopoulos J, Nadeem H, Crane MA, Goldman D, Romley JA. Association between exenatide use and incidence of Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12139. [PMID: 33614900 PMCID: PMC7882542 DOI: 10.1002/trc2.12139] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Recent developments suggest that insulin-sensitizing agents used to treat type II diabetes (T2DM) may also prove useful in reducing the risk of Alzheimer's disease (AD). The objective of this study is to analyze the association between exenatide use among Medicare beneficiaries with T2DM and the incidence of AD. METHODS We performed a retrospective cohort analysis on claims data from a 20% random sample of Medicare beneficiaries with T2DM from 2007 to 2013 (n = 342,608). We compared rates of incident AD between 2009 and 2013 according to exenatide use in 2007-2008, measured by the number of 30-day-equivalent fills. We adjusted for demographics, comorbidities, and use of other drugs. Unmeasured confounding was assessed with an instrumental variables approach. RESULTS The sample was mostly female (65%), White (76%), and 74 years old on average. Exenatide users were more likely to be male (38% vs. 35%), White (87% vs. 76%), and younger (by 4.2 years) than non-users. Each additional 30-day-equivalent claim was associated with a 2.4% relative reduction in incidence (odds ratio 0.976; 95% confidence interval 0.963-0.989; P < .001). There was no evidence of unmeasured confounding. DISCUSSION Exenatide use is associated with a reduced incidence of AD among Medicare beneficiaries aged 65 years or older with T2DM. The association shown in this study warrants consideration by clinicians prescribing insulin sensitizing agents to patients.
Collapse
Affiliation(s)
- Bo Zhou
- USC Schaeffer Center for Health Policy and EconomicsLos AngelesCaliforniaUSA
- USC School of PharmacyLos AngelesCaliforniaUSA
| | - Julie Zissimopoulos
- USC Schaeffer Center for Health Policy and EconomicsLos AngelesCaliforniaUSA
- USC Price School of Public PolicyLos AngelesCaliforniaUSA
| | - Hasan Nadeem
- University of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | | | - Dana Goldman
- USC Schaeffer Center for Health Policy and EconomicsLos AngelesCaliforniaUSA
- USC School of PharmacyLos AngelesCaliforniaUSA
- USC Price School of Public PolicyLos AngelesCaliforniaUSA
| | - John A. Romley
- USC Schaeffer Center for Health Policy and EconomicsLos AngelesCaliforniaUSA
- USC School of PharmacyLos AngelesCaliforniaUSA
- USC Price School of Public PolicyLos AngelesCaliforniaUSA
| |
Collapse
|
114
|
Kosyakovsky J, Fine JM, Frey WH, Hanson LR. Mechanisms of Intranasal Deferoxamine in Neurodegenerative and Neurovascular Disease. Pharmaceuticals (Basel) 2021; 14:ph14020095. [PMID: 33513737 PMCID: PMC7911954 DOI: 10.3390/ph14020095] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Identifying disease-modifying therapies for neurological diseases remains one of the greatest gaps in modern medicine. Herein, we present the rationale for intranasal (IN) delivery of deferoxamine (DFO), a high-affinity iron chelator, as a treatment for neurodegenerative and neurovascular disease with a focus on its novel mechanisms. Brain iron dyshomeostasis with iron accumulation is a known feature of brain aging and is implicated in the pathogenesis of a number of neurological diseases. A substantial body of preclinical evidence and early clinical data has demonstrated that IN DFO and other iron chelators have strong disease-modifying impacts in Alzheimer’s disease (AD), Parkinson’s disease (PD), ischemic stroke, and intracranial hemorrhage (ICH). Acting by the disease-nonspecific pathway of iron chelation, DFO targets each of these complex diseases via multifactorial mechanisms. Accumulating lines of evidence suggest further mechanisms by which IN DFO may also be beneficial in cognitive aging, multiple sclerosis, traumatic brain injury, other neurodegenerative diseases, and vascular dementia. Considering its known safety profile, targeted delivery method, robust preclinical efficacy, multiple mechanisms, and potential applicability across many neurological diseases, the case for further development of IN DFO is considerable.
Collapse
Affiliation(s)
- Jacob Kosyakovsky
- School of Medicine, University of Virginia, 200 Jeanette Lancaster Way, Charlottesville, VA 22903, USA;
- HealthPartners Neuroscience Center, HealthPartners Institute, Saint Paul, MN 55130, USA; (W.H.F.II); (L.R.H.)
| | - Jared M. Fine
- HealthPartners Neuroscience Center, HealthPartners Institute, Saint Paul, MN 55130, USA; (W.H.F.II); (L.R.H.)
- Correspondence:
| | - William H. Frey
- HealthPartners Neuroscience Center, HealthPartners Institute, Saint Paul, MN 55130, USA; (W.H.F.II); (L.R.H.)
| | - Leah R. Hanson
- HealthPartners Neuroscience Center, HealthPartners Institute, Saint Paul, MN 55130, USA; (W.H.F.II); (L.R.H.)
| |
Collapse
|
115
|
Keller LA, Merkel O, Popp A. Intranasal drug delivery: opportunities and toxicologic challenges during drug development. Drug Deliv Transl Res 2021; 12:735-757. [PMID: 33491126 PMCID: PMC7829061 DOI: 10.1007/s13346-020-00891-5] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
Over the past 10 years, the interest in intranasal drug delivery in pharmaceutical R&D has increased. This review article summarises information on intranasal administration for local and systemic delivery, as well as for CNS indications. Nasal delivery offers many advantages over standard systemic delivery systems, such as its non-invasive character, a fast onset of action and in many cases reduced side effects due to a more targeted delivery. There are still formulation limitations and toxicological aspects to be optimised. Intranasal drug delivery in the field of drug development is an interesting delivery route for the treatment of neurological disorders. Systemic approaches often fail to efficiently supply the CNS with drugs. This review paper describes the anatomical, histological and physiological basis and summarises currently approved drugs for administration via intranasal delivery. Further, the review focuses on toxicological considerations of intranasally applied compounds and discusses formulation aspects that need to be considered for drug development.
Collapse
Affiliation(s)
- Lea-Adriana Keller
- Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81337 Munich, Germany
| | - Olivia Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81337 Munich, Germany
| | - Andreas Popp
- Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
| |
Collapse
|
116
|
Tyagi A, Pugazhenthi S. Targeting Insulin Resistance to Treat Cognitive Dysfunction. Mol Neurobiol 2021; 58:2672-2691. [PMID: 33483903 DOI: 10.1007/s12035-021-02283-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Abstract
Dementia is a devastating disease associated with aging. Alzheimer's disease is the most common form of dementia, followed by vascular dementia. In addition to clinically diagnosed dementia, cognitive dysfunction has been reported in diabetic patients. Recent studies are now beginning to recognize type 2 diabetes mellitus, characterized by chronic hyperglycemia and insulin resistance, as a risk factor for Alzheimer's disease and other cognitive disorders. While studies on insulin action have remained traditionally in the domain of peripheral tissues, the detrimental effects of insulin resistance in the central nervous system on cognitive dysfunction are increasingly being reported by recent clinical and preclinical studies. The findings from these studies suggest that antidiabetic drugs have the potential to be used to treat dementia. In this review, we discuss the physiological functions of insulin in the brain, studies on the evaluation of cognitive function under conditions of insulin resistance, and reports on the beneficial actions of antidiabetic drugs in the brain. This review covers clinical studies as well as investigations in animal models and will further highlight the emerging link between insulin resistance and neurodegenerative disorders.
Collapse
Affiliation(s)
- Anit Tyagi
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA.,Department of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA.,University of Denver, Denver, CO, USA
| | - Subbiah Pugazhenthi
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA. .,Department of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
117
|
Preventing dementia? Interventional approaches in mild cognitive impairment. Neurosci Biobehav Rev 2021; 122:143-164. [PMID: 33440197 DOI: 10.1016/j.neubiorev.2020.12.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/13/2020] [Accepted: 12/19/2020] [Indexed: 12/19/2022]
Abstract
Mild cognitive impairment (MCI) is defined as an intermediate state between normal cognitive aging and dementia. It describes a status of the subjective impression of cognitive decline and objectively detectible memory impairment beyond normal age-related changes. Activities of daily living are not affected. As the population ages, there is a growing need for early, proactive programs that can delay the consequences of dementia and improve the well-being of people with MCI and their caregivers. Various forms and approaches of intervention for older people with MCI have been suggested to delay cognitive decline. Pharmacological as well as non-pharmacological approaches (cognitive, physiological, nutritional supplementation, electric stimulation, psychosocial therapeutic) and multicomponent interventions have been proposed. Interventional approaches in MCI from 2009 to April 2019 concerning the cognitive performance are presented in this review.
Collapse
|
118
|
Bao H, Liu Y, Zhang M, Chen Z, Zhang W, Ge Y, Kang D, Gao F, Shen Y. Increased β-site APP cleaving enzyme 1-mediated insulin receptor cleavage in type 2 diabetes mellitus with cognitive impairment. Alzheimers Dement 2021; 17:1097-1108. [PMID: 33410588 DOI: 10.1002/alz.12276] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Patients with type 2 diabetes mellitus (T2DM) are at a high risk of cognitive impairment, with insulin resistance playing a pivotal role. β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is considered a predictor of Alzheimer's disease. However, the potential roles of BACE1 in insulin resistance and the risk of cognitive impairment in T2DM remain unclear. METHODS We measured plasma BACE1 levels, BACE1 cleavage activities for Swedish mutant amyloid precursor protein (APPsw) and insulin receptor β subunit (INSR-β), and soluble INSR (sINSR) levels in a clinical cohort study. RESULTS T2DM patients with or without cognitive impairment exhibited elevated plasma BACE1 levels and BACE1 enzymatic activities for APPsw and INSR-β, and sINSR levels. Moreover, the glycemic status correlated with elevated BACE1 levels and BACE1-mediated INSR cleavage, which was associated with insulin resistance. DISCUSSION The elevated BACE1 levels in T2DM may contribute to increasing the cognitive impairment risk through both amyloidogenesis and insulin resistance.
Collapse
Affiliation(s)
- Hong Bao
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yiming Liu
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mengguo Zhang
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zuolong Chen
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiwei Zhang
- Institute on Aging and Brain Disorders, First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Yuhao Ge
- Institute on Aging and Brain Disorders, First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Dongmei Kang
- Institute on Aging and Brain Disorders, First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Feng Gao
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute on Aging and Brain Disorders, First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Yong Shen
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute on Aging and Brain Disorders, First Affiliated Hospital of University of Science and Technology of China, Hefei, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
119
|
Abstract
Substantial evidence, composed of drug mechanisms of action, in vivo testing, and epidemiological data, exists to support clinical testing of FDA-approved drugs for repurposing to the treatment of Alzheimer's disease (AD). Licensed compound investigation can often proceed at a faster and more cost-effective manner than un-approved compounds moving through the drug pipeline. As the prevalence of AD increases with life expectancy, the current rise in life expectancy amalgamated with the lack of an effective drug for the treatment of AD unnecessarily burdens our medical system and is an urgent public health concern. The unfounded reluctance to examine repurposing existing drugs for possible AD therapy further impedes the possibility of improving the quality of patient lives with a terminal disease. This review summarizes some evidence which exists to suggest certain already-approved drugs may be considered for the treatment of AD and will perhaps encourage physicians to off-label prescribe these safe therapeutics.
Collapse
|
120
|
Abstract
Brain insulin signaling contributes to memory function and might be a viable target in the prevention and treatment of memory impairments including Alzheimer's disease. This short narrative review explores the potential of central nervous system (CNS) insulin administration via the intranasal pathway to improve memory performance in health and disease, with a focus on the most recent results. Proof-of-concept studies and (pilot) clinical trials in individuals with mild cognitive impairment or Alzheimer's disease indicate that acute and prolonged intranasal insulin administration enhances memory performance, and suggest that brain insulin resistance is a pathophysiological factor in Alzheimer's disease with or without concomitant metabolic dysfunction. Intranasally administered insulin is assumed to trigger improvements in synaptic plasticity and regional glucose uptake as well as alleviations of Alzheimer's disease neuropathology; additional contributions of changes in hypothalamus-pituitary-adrenocortical axis activity and sleep-related mechanisms are discussed. While intranasal insulin delivery has been conclusively demonstrated to be effective and safe, the recent outcomes of large-scale clinical studies underline the need for further investigations, which might also yield new insights into sex differences in the response to intranasal insulin and contribute to the optimization of delivery devices to grasp the full potential of intranasal insulin for Alzheimer's disease.
Collapse
Affiliation(s)
- Manfred Hallschmid
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Otfried-Müller-Str. 25, 72076, Tübingen, Germany.
- German Center for Diabetes Research (DZD), Tübingen, Germany.
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.
| |
Collapse
|
121
|
Toljan K, Homolak J. Circadian changes in Alzheimer's disease: Neurobiology, clinical problems, and therapeutic opportunities. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:285-300. [PMID: 34225969 DOI: 10.1016/b978-0-12-819975-6.00018-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The understanding of Alzheimer's disease (AD) pathophysiology is an active area of research, and the traditional focus on hippocampus, amyloid and tau protein, and memory impairment has been expanded with components like neuroinflammation, insulin resistance, and circadian rhythm alterations. The bidirectional vicious cycle of neuroinflammation and neurodegeneration on a molecular level may cause functional deficits already long before the appearance of overt clinical symptoms. Located at the crossroads of metabolic, circadian, and hormonal signaling, the hypothalamus has been identified as another brain region affected by AD pathophysiology. Current findings on hypothalamic dysfunction open a broader horizon for studying AD pathogenesis and offer new opportunities for diagnosis and therapy. While treatments with cholinomimetics and memantine form a first line of pharmacological treatment, additional innovative research is pursued toward the development of antiinflammatory, growth factor, or antidiabetic types of medication. Following recent epidemiological data showing associations of AD incidence with modern societal and "life-style"-related risk factors, also nonpharmacological interventions, including sleep optimization, are being developed and some have been shown to be beneficial. Circadian aspects in AD are relevant from a pathophysiological standpoint, but they can also have an important role in pharmacologic and nonpharmacologic interventions, and appropriate timing of sleep, meals, and medication may boost therapeutic efficacy.
Collapse
Affiliation(s)
- Karlo Toljan
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States.
| | - Jan Homolak
- Department of Pharmacology, and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
122
|
Peng X, Shi X, Huang J, Zhang S, Yan Y, Ma D, Xu W, Xu W, Dong K, Tao J, Li M, Yang Y. Exendin-4 Improves Cognitive Function of Diabetic Mice via Increasing Brain Insulin Synthesis. Curr Alzheimer Res 2021; 18:546-557. [PMID: 34587885 DOI: 10.2174/1567205018666210929150004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/16/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Type 2 Diabetes (T2D) patients are more prone to develop Alzheimer's Disease (AD). We have previously shown that Glucagon-like peptide-1 receptor agonist exendin-4 (Ex-4) reduces tau hyperphosphorylation in T2D animals through upregulating insulin signaling, and peripheral injected Ex-4 increases insulin levels in the T2D brain. This study aims to further clarify whether the elevated insulin in the brain is produced by nerve cells under the action of Ex-4. METHODS The neuronal cell line-HT22 was treated with Ex-4 under high glucose or normal cultivation, and the number of insulin-positive cells as well as the expression levels of insulin synthesis-related genes were examined. The db/db mice were treated with the peripheral injection of Ex-4 and/or IntraCerebroVentricular (ICV) injection of siRNA to inhibit the expression of insulin synthesis- related genes and the behavior tests were carried on. Finally, plasma glucose, Cerebrospinal Fluid (CSF) glucose, CSF insulin, phosphorylation of tau, phosphorylation of AKT and GSK-3β of db/db mice were detected. RESULTS We found that Ex-4 promoted the expression of insulin synthesis-related genes and induced an obvious increase of insulin-positive HT-22 neuronal cells in a high glucose environment. Peripheral injection of Ex-4 improved the cognitive function of db/db mice and increased brain insulin levels which activated brain insulin signaling and subsequently alleviated tau hyperphosphorylation. However, when siRNA-neurod1 was injected to block insulin synthesis, the cognitive function of db/db mice was not improved under the action of Ex-4 anymore. Moreover, the brain insulin levels dropped to an extremely low level, and the phosphorylation level of tau increased significantly. CONCLUSION This study demonstrated that Ex-4 improved cognition function by promoting brain insulin synthesis followed by the activation of brain insulin signaling and alleviation of tau hyperphosphorylation.
Collapse
Affiliation(s)
- Xuemin Peng
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoli Shi
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiaojiao Huang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shujun Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongli Yan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Delin Ma
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weijie Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weijie Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kun Dong
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Tao
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengni Li
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Yang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
123
|
Nose-to-Brain Delivery of Antioxidants as a Potential Tool for the Therapy of Neurological Diseases. Pharmaceutics 2020; 12:pharmaceutics12121246. [PMID: 33371285 PMCID: PMC7766211 DOI: 10.3390/pharmaceutics12121246] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/13/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress has a key role in the pathogenesis of neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's diseases and can be an important cause of the damages in cerebral ischemia. Oxidative stress arises from high levels of reactive oxygen species (ROS). Consequently, on this rational base, antioxidants (many of natural origin) are proposed as potential drugs to prevent ROS noxious actions because they can protect the target tissues from the oxidative stress. However, the potential of antioxidants is limited, owing to the presence of the blood-brain barrier (BBB), which is difficult to cross with a consequent low bioavailability of the drug into the brain after systemic (intravenous, intraperitoneal, oral) administrations. One strategy to improve the delivery of antioxidants to the brain involves the use of the so-called nose-to-brain route, with the administration of the antioxidant in specific nasal formulations and its passage to the central nervous system (CNS) mainly through the olfactory nerve way. In the current literature, many examples show encouraging results in studies carried out in cell cultures and in animal models about the potential neuroprotective effects of antioxidants when administered through the nose. This review concerns the nose-to-brain route for the brain targeting of antioxidants as a potential tool for the therapy of neurological diseases.
Collapse
|
124
|
Jiang J, Wang C, Qi R, Fu H, Ma Q. scREAD: A Single-Cell RNA-Seq Database for Alzheimer's Disease. iScience 2020; 23:101769. [PMID: 33241205 PMCID: PMC7674513 DOI: 10.1016/j.isci.2020.101769] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder of the brain and the most common form of dementia among the elderly. The single-cell RNA-sequencing (scRNA-Seq) and single-nucleus RNA-sequencing (snRNA-Seq) techniques are extremely useful for dissecting the function/dysfunction of highly heterogeneous cells in the brain at the single-cell level, and the corresponding data analyses can significantly improve our understanding of why particular cells are vulnerable in AD. We developed an integrated database named scREAD (single-cell RNA-Seq database for Alzheimer's disease), which is as far as we know the first database dedicated to the management of all the existing scRNA-Seq and snRNA-Seq data sets from the human postmortem brain tissue with AD and mouse models with AD pathology. scREAD provides comprehensive analysis results for 73 data sets from 10 brain regions, including control atlas construction, cell-type prediction, identification of differentially expressed genes, and identification of cell-type-specific regulons.
Collapse
Affiliation(s)
- Jing Jiang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Cankun Wang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Ren Qi
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Hongjun Fu
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Qin Ma
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
125
|
Robbins J, Busquets O, Tong M, de la Monte SM. Dysregulation of Insulin-Linked Metabolic Pathways in Alzheimer's Disease: Co-Factor Role of Apolipoprotein E ɛ4. J Alzheimers Dis Rep 2020; 4:479-493. [PMID: 33344887 PMCID: PMC7739986 DOI: 10.3233/adr-200238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Brain insulin resistance and deficiency are well-recognized abnormalities in Alzheimer's disease (AD) and likely mediators of impaired energy metabolism. Since apolipoprotein E (APOE) is a major risk factor for late-onset AD, it was of interest to examine its potential contribution to altered insulin-linked signaling networks in the brain. OBJECTIVE The main goal was to evaluate the independent and interactive contributions of AD severity and APOE ɛ4 dose on brain expression of insulin-related polypeptides and inflammatory mediators of metabolic dysfunction. METHODS Postmortem fresh frozen frontal lobe tissue from banked cases with known APOE genotypes and different AD Braak stages were used to measure insulin network polypeptide immunoreactivity with a commercial multiplex enzyme-linked immunosorbent assay (ELISA). RESULTS Significant AD Braak stage and APOE genotype-related abnormalities in insulin, C-peptide, gastric inhibitory polypeptide (GIP), glucaton-like peptide-1 (GLP-1), leptin, ghrelin, glucagon, resistin, and plasminogen activator inhibitor-1 (PAI-1) were detected. The main factors inhibiting polypeptide expression and promoting neuro-inflammatory responses included AD Braak stage and APOE ɛ4/ɛ4 rather than ɛ3/ɛ4. CONCLUSION This study demonstrates an expanded role for impaired expression of insulin-related network polypeptides as well as neuroinflammatory mediators of brain insulin resistance in AD pathogenesis and progression. In addition, the findings show that APOE has independent and additive effects on these aberrations in brain polypeptide expression, but the impact is decidedly greater for APOE ɛ4/ɛ4 than ɛ3/ɛ4.
Collapse
Affiliation(s)
- James Robbins
- Alpert Medical School of Brown University, Providence, RI, USA
| | - Oriol Busquets
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Ming Tong
- Alpert Medical School of Brown University, Providence, RI, USA,Department of Medicine, Rhode Island Hospital, Providence, RI, USA
| | - Suzanne M. de la Monte
- Alpert Medical School of Brown University, Providence, RI, USA,Department of Medicine, Rhode Island Hospital, Providence, RI, USA,Departments of Pathology and Laboratory Medicine Providence VA Medical Center, Rhode Island Hospital, and the Women and Infants Hospital of Rhode Island, Providence, RI, USA,Correspondence to: Dr. Suzanne M. de la Monte, MD, MPH, Rhode Island Hospital, 55 Claverick Street, Room 419, Providence, RI 02903, USA. Tel.: +1 401 444 7364; Fax: +1 401 444 2939; E-mail:
| |
Collapse
|
126
|
Tashima T. Shortcut Approaches to Substance Delivery into the Brain Based on Intranasal Administration Using Nanodelivery Strategies for Insulin. Molecules 2020; 25:E5188. [PMID: 33171799 PMCID: PMC7664636 DOI: 10.3390/molecules25215188] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/26/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
The direct delivery of central nervous system (CNS) drugs into the brain after administration is an ideal concept due to its effectiveness and non-toxicity. However, the blood-brain barrier (BBB) prevents drugs from penetrating the capillary endothelial cells, blocking their entry into the brain. Thus, alternative approaches must be developed. The nasal cavity directly leads from the olfactory epithelium to the brain through the cribriform plate of the skull bone. Nose-to-brain drug delivery could solve the BBB-related repulsion problem. Recently, it has been revealed that insulin improved Alzheimer's disease (AD)-related dementia. Several ongoing AD clinical trials investigate the use of intranasal insulin delivery. Related to the real trajectory, intranasal labeled-insulins demonstrated distribution into the brain not only along the olfactory nerve but also the trigeminal nerve. Nonetheless, intranasally administered insulin was delivered into the brain. Therefore, insulin conjugates with covalent or non-covalent cargos, such as AD or other CNS drugs, could potentially contribute to a promising strategy to cure CNS-related diseases. In this review, I will introduce the CNS drug delivery approach into the brain using nanodelivery strategies for insulin through transcellular routes based on receptor-mediated transcytosis or through paracellular routes based on escaping the tight junction at the olfactory epithelium.
Collapse
Affiliation(s)
- Toshihiko Tashima
- Tashima Laboratories of Arts and Sciences, 1239-5 Toriyama-cho, Kohoku-ku, Yokohama, Kanagawa 222-0035, Japan
| |
Collapse
|
127
|
Bangen KJ, Armstrong NM, Au R, Gross AL. Metabolic Syndrome and Cognitive Trajectories in the Framingham Offspring Study. J Alzheimers Dis 2020; 71:931-943. [PMID: 31450495 DOI: 10.3233/jad-190261] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metabolic syndrome (MetS) has been linked to increased risk of developing cognitive impairment and dementia including Alzheimer's disease. It remains unclear whether and at what stage in the adult lifespan MetS and its components begin to alter the trajectory of cognitive performance. In the present study, 2,892 Framingham Offspring participants completed health assessments every four years since 1971 and underwent repeat neuropsychological testing from 1999 to 2014. We estimated the associations of levels and changes in cognitive trajectories with hazard of MetS using a joint growth/survival model. All models were adjusted for baseline age, sex, education, and smoking status. Findings showed that both mid-life and late-life MetS were associated with lower level of cognitive functioning but not cognitive trajectories. Associations were strongest among those who were nondemented and apolipoprotein (APOE) ɛ4 noncarriers. In addition, individuals with the most rapid cognitive decline were more likely to have MetS. The pattern of results showed that associations between MetS and cognition varied, depending upon whether the sample was stratified by genetic and cognitive status and whether we considered cognitive performance as a continuous variable or examined categorical groupings. Given that mid-life MetS was associated with poorer cognition at age 55, cognitive changes may occur early during the MetS process. Our findings suggest that those with MetS are at greater risk of dementia given their lower level of cognitive functioning and also suggest that MetS may be a risk factor for decline in the absence of known risk factors including the APOEɛ4 allele.
Collapse
Affiliation(s)
- Katherine J Bangen
- VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, La Jolla, CA, USA
| | - Nicole M Armstrong
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - Rhoda Au
- Department of Anatomy & Neurobiology and Neurology, Framingham Heart Study, Boston University School of Medicine, Boston, MA.,Department of Epidemiology, Boston University School of Public Health, Boston, MA
| | - Alden L Gross
- Department of Epidemiology, Baltimore, MD, USA.,Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Johns Hopkins Center on Aging and Health, Baltimore, MD, USA
| |
Collapse
|
128
|
Yan X, Hu Y, Wang B, Wang S, Zhang X. Metabolic Dysregulation Contributes to the Progression of Alzheimer's Disease. Front Neurosci 2020; 14:530219. [PMID: 33250703 PMCID: PMC7674854 DOI: 10.3389/fnins.2020.530219] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease. Numerous studies have demonstrated a critical role for dysregulated glucose metabolism in its pathogenesis. In this review, we summarize metabolic alterations in aging brain and AD-related metabolic deficits associated with glucose metabolism dysregulation, glycolysis dysfunction, tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS) deficits, and pentose phosphate pathway impairment. Additionally, we discuss recent treatment strategies targeting metabolic defects in AD, including their limitations, in an effort to encourage the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Xu Yan
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yue Hu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Biyao Wang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Sijian Wang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
129
|
Berlanga-Acosta J, Guillén-Nieto G, Rodríguez-Rodríguez N, Bringas-Vega ML, García-del-Barco-Herrera D, Berlanga-Saez JO, García-Ojalvo A, Valdés-Sosa MJ, Valdés-Sosa PA. Insulin Resistance at the Crossroad of Alzheimer Disease Pathology: A Review. Front Endocrinol (Lausanne) 2020; 11:560375. [PMID: 33224105 PMCID: PMC7674493 DOI: 10.3389/fendo.2020.560375] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022] Open
Abstract
Insulin plays a major neuroprotective and trophic function for cerebral cell population, thus countering apoptosis, beta-amyloid toxicity, and oxidative stress; favoring neuronal survival; and enhancing memory and learning processes. Insulin resistance and impaired cerebral glucose metabolism are invariantly reported in Alzheimer's disease (AD) and other neurodegenerative processes. AD is a fatal neurodegenerative disorder in which progressive glucose hypometabolism parallels to cognitive impairment. Although AD may appear and progress in virtue of multifactorial nosogenic ingredients, multiple interperpetuative and interconnected vicious circles appear to drive disease pathophysiology. The disease is primarily a metabolic/energetic disorder in which amyloid accumulation may appear as a by-product of more proximal events, especially in the late-onset form. As a bridge between AD and type 2 diabetes, activation of c-Jun N-terminal kinase (JNK) pathway with the ensued serine phosphorylation of the insulin response substrate (IRS)-1/2 may be at the crossroads of insulin resistance and its subsequent dysmetabolic consequences. Central insulin axis bankruptcy translates in neuronal vulnerability and demise. As a link in the chain of pathogenic vicious circles, mitochondrial dysfunction, oxidative stress, and peripheral/central immune-inflammation are increasingly advocated as major pathology drivers. Pharmacological interventions addressed to preserve insulin axis physiology, mitochondrial biogenesis-integral functionality, and mitophagy of diseased organelles may attenuate the adjacent spillover of free radicals that further perpetuate mitochondrial damages and catalyze inflammation. Central and/or peripheral inflammation may account for a local flood of proinflammatory cytokines that along with astrogliosis amplify insulin resistance, mitochondrial dysfunction, and oxidative stress. All these elements are endogenous stressor, pro-senescent factors that contribute to JNK activation. Taken together, these evidences incite to identify novel multi-mechanistic approaches to succeed in ameliorating this pandemic affliction.
Collapse
Affiliation(s)
- Jorge Berlanga-Acosta
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Tissue Repair and Cytoprotection Research Group, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Gerardo Guillén-Nieto
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Tissue Repair and Cytoprotection Research Group, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Nadia Rodríguez-Rodríguez
- Tissue Repair and Cytoprotection Research Group, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Maria Luisa Bringas-Vega
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Cuban Neurosciences Center, Cubanacan, Havana, Cuba
| | | | - Jorge O. Berlanga-Saez
- Applied Mathematics Department, Institute of Mathematics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ariana García-Ojalvo
- Tissue Repair and Cytoprotection Research Group, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Mitchell Joseph Valdés-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Cuban Neurosciences Center, Cubanacan, Havana, Cuba
| | - Pedro A. Valdés-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Cuban Neurosciences Center, Cubanacan, Havana, Cuba
| |
Collapse
|
130
|
Ennis GE, Saelzler U, Umpierrez GE, Moffat SD. Prediabetes and working memory in older adults. Brain Neurosci Adv 2020; 4:2398212820961725. [PMID: 33088921 PMCID: PMC7545783 DOI: 10.1177/2398212820961725] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/30/2020] [Indexed: 12/21/2022] Open
Abstract
Insulin sensitivity, pancreatic β-cell function, fasting glucose, and 2-h post-load glucose were related to cognition in cognitively healthy nondiabetic older adults. Thirty-five adults (⩾65 years) underwent a 2-h oral glucose tolerance test and cognitive testing. Seventeen had normal glucose tolerance and 18 had intermediate hyperglycaemia or prediabetes (World Health Organization criteria). Fasting glucose and 2-h post-load glucose and oral glucose tolerance test–derived measures of β-cell function (oral disposition index) and insulin sensitivity were analysed as predictors of four cognitive domains: verbal episodic memory, verbal fluency, executive function, and working memory. The prediabetes group had significantly worse working memory performance than the normal glucose tolerance group. Controlling for age and education, decreased oral disposition index, and increased 2-h post-load glucose were significantly related to worse working memory performance. Prediabetes may worsen working memory in healthy older adults. Reduced pancreatic β-cell function should be investigated as a contributor to age-related cognitive decline.
Collapse
Affiliation(s)
- Gilda E Ennis
- School of Psychology, College of Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,Division of Geriatrics and Gerontology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Ursula Saelzler
- School of Psychology, College of Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Guillermo E Umpierrez
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Scott D Moffat
- School of Psychology, College of Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
131
|
Yu Q, Dai CL, Zhang Y, Chen Y, Wu Z, Iqbal K, Liu F, Gong CX. Intranasal Insulin Increases Synaptic Protein Expression and Prevents Anesthesia-Induced Cognitive Deficits Through mTOR-eEF2 Pathway. J Alzheimers Dis 2020; 70:925-936. [PMID: 31306126 DOI: 10.3233/jad-190280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
General anesthesia increases the risk for cognitive impairment and Alzheimer's disease (AD) in vulnerable individuals such as the elderly. We previously reported that prior administration of insulin through intranasal delivery can prevent the anesthesia-induced cognitive impairment and biochemical changes in the brain. However, little is known about the underlying molecular mechanisms. Here, we report that general anesthesia resulted in downregulation of mammalian/mechanistic target of rapamycin (mTOR) and eukaryotic elongation factor 2 (eEF2) in the brain along with reduction of presynaptic proteins and brain-derived neurotrophic factor and cognitive impairment in aged mice. Prior administration of intranasal insulin prevented these anesthesia-induced changes. These results suggest the involvement of the mTOR-eEF2 signaling pathway in the anesthesia-induced brain changes and cognitive impairment and in the prevention of these changes with insulin. Correlation analyses and the use of eEF2 kinase inhibitor further support our conclusions. These studies shed light on the molecular mechanism by which anesthesia and insulin could act on synaptic proteins and cognitive function.
Collapse
Affiliation(s)
- Qian Yu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.,Department of Orthopedics, Qianfoshan Hospital, Shandong University, Jinan, China
| | - Chun-Ling Dai
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Yongli Zhang
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Yanxing Chen
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.,Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhe Wu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.,Department of Cell Biology and Genetics, School of Basic Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
132
|
Sharma VK, Singh TG. Insulin resistance and bioenergetic manifestations: Targets and approaches in Alzheimer's disease. Life Sci 2020; 262:118401. [PMID: 32926928 DOI: 10.1016/j.lfs.2020.118401] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/15/2022]
Abstract
AIM Insulin has a well-established role in cognition, neuronal detoxification and synaptic plasticity. Insulin transduction affect neurotransmitter functions, influence bioenergetics and regulate neuronal survival through regulating glucose energy metabolism and downward pathways. METHODS A systematic literature review of PubMed, Medline, Bentham, Scopus and EMBASE (Elsevier) databases was carried out with the help of the keywords like "Alzheimer's disease; Hypometabolism; Oxidative stress; energy failure in AD, Insulin; Insulin resistance; Bioenergetics" till June 2020. The review was conducted using the above keywords to collect the latest articles and to understand the nature of the extensive work carried out on insulin resistance and bioenergetic manifestations in Alzheimer's disease. KEY FINDINGS The article sheds light on insulin resistance mediated hypometabolic state on pathological progression of AD. The disrupted insulin signaling has pathological outcome in form of disturbed glucose homeostasis, altered bioenergetic state which increases build-up of senile plaques (Aβ), neurofibrillary tangles (τ), decline in transportation of glucose and activation of inflammatory pathways. The mechanistic link of insulin resistant state with therapeutically explorable potential transduction pathways is the focus of the reviewed work. SIGNIFICANCE The present work opines that the mechanism by which the insulin resistance mediates dysregulation of bioenergetics and progresses to neurodegenerative state holds the tangible potential to succeed in the development of novel dementia therapies. Further, hypometabolic complications and altered insulin signaling may be explored as a mechanistic relation between bioenergetic deficits and AD.
Collapse
Affiliation(s)
- Vivek Kumar Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; Govt. College of Pharmacy, Rohru, District Shimla, Himachal Pradesh 171207, India
| | | |
Collapse
|
133
|
López-Gambero AJ, Sanjuan C, Serrano-Castro PJ, Suárez J, Rodríguez de Fonseca F. The Biomedical Uses of Inositols: A Nutraceutical Approach to Metabolic Dysfunction in Aging and Neurodegenerative Diseases. Biomedicines 2020; 8:295. [PMID: 32825356 PMCID: PMC7554709 DOI: 10.3390/biomedicines8090295] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/05/2023] Open
Abstract
Inositols are sugar-like compounds that are widely distributed in nature and are a part of membrane molecules, participating as second messengers in several cell-signaling processes. Isolation and characterization of inositol phosphoglycans containing myo- or d-chiro-inositol have been milestones for understanding the physiological regulation of insulin signaling. Other functions of inositols have been derived from the existence of multiple stereoisomers, which may confer antioxidant properties. In the brain, fluctuation of inositols in extracellular and intracellular compartments regulates neuronal and glial activity. Myo-inositol imbalance is observed in psychiatric diseases and its use shows efficacy for treatment of depression, anxiety, and compulsive disorders. Epi- and scyllo-inositol isomers are capable of stabilizing non-toxic forms of β-amyloid proteins, which are characteristic of Alzheimer's disease and cognitive dementia in Down's syndrome, both associated with brain insulin resistance. However, uncertainties of the intrinsic mechanisms of inositols regarding their biology are still unsolved. This work presents a critical review of inositol actions on insulin signaling, oxidative stress, and endothelial dysfunction, and its potential for either preventing or delaying cognitive impairment in aging and neurodegenerative diseases. The biomedical uses of inositols may represent a paradigm in the industrial approach perspective, which has generated growing interest for two decades, accompanied by clinical trials for Alzheimer's disease.
Collapse
Affiliation(s)
- Antonio J. López-Gambero
- Departamento de Biología Celular, Genética y Fisiología, Campus de Teatinos s/n, Universidad de Málaga, Andalucia Tech, 29071 Málaga, Spain;
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, 29010 Málaga, Spain
| | | | - Pedro Jesús Serrano-Castro
- UGC Neurología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, 29010 Málaga, Spain;
| | - Juan Suárez
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, 29010 Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, 29010 Málaga, Spain
| |
Collapse
|
134
|
Hölscher C. Evidence for pathophysiological commonalities between metabolic and neurodegenerative diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 155:65-89. [PMID: 32854859 DOI: 10.1016/bs.irn.2020.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diabetes mellitus is a risk factor for developing neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. This relationship seems counter-intuitive as these pathological syndromes appear to be very different. However, they share underlying mechanisms such as desensitization of insulin signaling. Insulin not only regulates blood glucose levels, but also acts as a growth factor that is important for neuronal activity and repair. Insulin signaling desensitization has been found in the brains of people with progressive neurodegenerative diseases, which is most likely driven by chronic inflammation. Based on this, insulin has been tested in patients with Alzheimer's disease, and it was found that memory formation was improved and brain pathology reduced. Glucagon-like peptide-1 (GLP-1) is an incretin hormone, and numerous drugs that mimic this peptide are on the market to treat type 2 diabetes mellitus. Preclinical studies have provided robust evidence that some of these drugs, such as liraglutide or lixisenatide can enter the brain and improve key pathological parameters, such as memory loss, impairment of motor activity, synapse loss, reduced energy utilization by neurons and chronic inflammation in the brain. First clinical trials with a GLP-1 mimetic show good effects in patients with Parkinson's disease, improving motor control and insulin signaling in the brain. This is a proof of concept that this approach is viable and that drug treatment affects the main drivers of the disease and does not just modify the symptoms. It demonstrates that this new research area is a promising and fertile space for the development of novel treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Christian Hölscher
- Neurology Department of the Second Associated Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China; Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, Henan, PR China.
| |
Collapse
|
135
|
Xia W, Chen YC, Luo Y, Zhang D, Chen H, Ma J, Yin X. Alterations in effective connectivity within the Papez circuit are correlated with insulin resistance in T2DM patients without mild cognitive impairment. Brain Imaging Behav 2020; 14:1238-1246. [PMID: 30734918 DOI: 10.1007/s11682-019-00049-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Insulin resistance (IR) can significantly affect the hippocampus, a component of a larger memory circuit called the Papez circuit. This study was performed to identify altered effective connectivity within the Papez circuit in type 2 diabetes mellitus (T2DM) patients without mild cognitive impairment (MCI) and to determine the relationships between these alterations and IR. T2DM patients without MCI (n = 105) and age-, sex-, and education-matched healthy controls (n = 106) were included in this study. Granger causality analysis (GCA) with seed regions in the hippocampus was performed to identify abnormal effective connectivity in the brains of T2DM patients without MCI. Furthermore, correlation analysis was conducted to detect the association between aberrant effective connectivity and IR in T2DM patients without MCI. Compared to healthy controls, T2DM patients without MCI demonstrated abnormal directional connectivity both to and from the hippocampus; the main abnormalities were located in several brain areas, including the cingulate cortex, amygdala, and prefrontal cortex, all of which are components of the Papez circuit. This altered effective connectivity network in the Papez circuit was correlated with IR in T2DM patients without MCI. Effective connectivity network alterations within the Papez circuit occurred prior to the appearance of mild cognitive deficits in T2DM patients and were correlated with IR. The current study may improve our understanding of the IR-related neurological mechanisms involved in T2DM.
Collapse
Affiliation(s)
- Wenqing Xia
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Yong Luo
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Danfeng Zhang
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Huiyou Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China.
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China.
| |
Collapse
|
136
|
Papazafiropoulou AK, Koros C, Melidonis A, Antonopoulos S. Diabetes and dementia - the two faces of Janus. Arch Med Sci Atheroscler Dis 2020; 5:e186-e197. [PMID: 32832719 PMCID: PMC7433787 DOI: 10.5114/amsad.2020.97433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/18/2020] [Indexed: 01/03/2023] Open
Abstract
Patients with type 2 diabetes are at high risk for cognitive decline and dementia. Despite the limited data on the possible pathogenetic mechanisms, evidence suggests that cognitive decline, and thus dementia and Alzheimer's disease, might arise from a complex interplay between type 2 diabetes and the aging brain, including decreased insulin signalling and glucose metabolism, mitochondrial dysfunction, neuroinflammation, and vascular disease. Furthermore, there is increasing interest on the effects of antidiabetic agents on cognitive decline. There are many studies showing that antidiabetic agents might have beneficial effects on the brain, mainly through inhibition of oxidative stress, inflammation, and apoptosis. In addition, experimental studies on patients with diabetes and Alzheimer's disease have shown beneficial effects on synaptic plasticity, metabolism of amyloid-β, and microtubule-associated protein tau. Therefore, in the present review, we discuss the effects of antidiabetic agents in relation to cognitive decline, and in particular dementia and Alzheimer's disease, in patients with type 2 diabetes.
Collapse
Affiliation(s)
| | - Chris Koros
- 1 Department of Neurology, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Andreas Melidonis
- Diabetes and Cardiometabolic Centre, Metropolitan Hospital, Piraeus, Greece
| | - Stavros Antonopoulos
- 1 Department of Internal Medicine and Diabetes Centre, Tzaneio General Hospital, Piraeus, Greece
| |
Collapse
|
137
|
Söderbom G, Zeng BY. The NLRP3 inflammasome as a bridge between neuro-inflammation in metabolic and neurodegenerative diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:345-391. [PMID: 32739011 DOI: 10.1016/bs.irn.2020.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Evidence increasingly suggests that type 2 diabetes mellitus (T2DM) is a risk factor for neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD). These diseases share many pathological processes, including oxidative stress, local inflammation/neuroinflammation and chronic, low-grade (systemic) inflammation, which are exacerbated by aging, a common risk factor for T2DM and NDDs. Here, we focus on the link between chronic inflammation driven by peripheral metabolic disease and how this may impact neurodegeneration in AD and PD. We review the relationship between these common pathological processes in AD and PD from the perspective of the "pro-inflammatory" signaling of the nucleotide-binding oligomerization domain (NOD)-, leucine-rich repeat- (LRR)-, and pyrin domain-containing protein 3 (NLRP3) inflammasome complex. Since the need for effective disease-modifying therapies in T2DM, AD and PD is significant, the relationship between these diseases is important as a positive clinical impact on one may benefit the others. We briefly consider how novel strategies may target neuro-inflammation and provide potential therapies for AD and PD.
Collapse
Affiliation(s)
| | - Bai-Yun Zeng
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| |
Collapse
|
138
|
Griffith CM, Macklin LN, Cai Y, Sharp AA, Yan XX, Reagan LP, Strader AD, Rose GM, Patrylo PR. Impaired Glucose Tolerance and Reduced Plasma Insulin Precede Decreased AKT Phosphorylation and GLUT3 Translocation in the Hippocampus of Old 3xTg-AD Mice. J Alzheimers Dis 2020; 68:809-837. [PMID: 30775979 DOI: 10.3233/jad-180707] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several studies have demonstrated that mouse models of Alzheimer's disease (AD) can exhibit impaired peripheral glucose tolerance. Further, in the APP/PS1 mouse model, this is observed prior to the appearance of AD-related neuropathology (e.g., amyloid-β plaques; Aβ) or cognitive impairment. In the current study, we examined whether impaired glucose tolerance also preceded AD-like changes in the triple transgenic model of AD (3xTg-AD). Glucose tolerance testing (GTT), insulin ELISAs, and insulin tolerance testing (ITT) were performed at ages prior to (1-3 months and 6-8 months old) and post-pathology (16-18 months old). Additionally, we examined for altered insulin signaling in the hippocampus. Western blots were used to evaluate the two-primary insulin signaling pathways: PI3K/AKT and MAPK/ERK. Since the PI3K/AKT pathway affects several downstream targets associated with metabolism (e.g., GSK3, glucose transporters), western blots were used to examine possible alterations in the expression, translocation, or activation of these targets. We found that 3xTg-AD mice display impaired glucose tolerance as early as 1 month of age, concomitant with a decrease in plasma insulin levels well prior to the detection of plaques (∼14 months old), aggregates of hyperphosphorylated tau (∼18 months old), and cognitive decline (≥18 months old). These alterations in peripheral metabolism were seen at all time points examined. In comparison, PI3K/AKT, but not MAPK/ERK, signaling was altered in the hippocampus only in 18-20-month-old 3xTg-AD mice, a time point at which there was a reduction in GLUT3 translocation to the plasma membrane. Taken together, our results provide further evidence that disruptions in energy metabolism may represent a foundational step in the development of AD.
Collapse
Affiliation(s)
- Chelsea M Griffith
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Lauren N Macklin
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Yan Cai
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Changsha, Hunan, China
| | - Andrew A Sharp
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Changsha, Hunan, China
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina, Columbia, SC, USA.,WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA
| | - April D Strader
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Gregory M Rose
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Peter R Patrylo
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| |
Collapse
|
139
|
Stanciu GD, Bild V, Ababei DC, Rusu RN, Cobzaru A, Paduraru L, Bulea D. Link Between Diabetes and Alzheimer's Disease due to the Shared Amyloid Aggregation and Deposition Involving both Neurodegenerative Changes and Neurovascular Damages. J Clin Med 2020; 9:jcm9061713. [PMID: 32503113 PMCID: PMC7357086 DOI: 10.3390/jcm9061713] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes and Alzheimer’s disease are two highly prevalent diseases among the aging population and have become major public health concerns in the 21st century, with a significant risk to each other. Both of these diseases are increasingly recognized to be multifactorial conditions. The terms “diabetes type 3” or “brain diabetes” have been proposed in recent years to provide a complete view of the potential common pathogenic mechanisms between these diseases. While insulin resistance or deficiency remains the salient hallmarks of diabetes, cognitive decline and non-cognitive abnormalities such as impairments in visuospatial function, attention, cognitive flexibility, and psychomotor speed are also present. Furthermore, amyloid aggregation and deposition may also be drivers for diabetes pathology. Here, we offer a brief appraisal of social impact and economic burden of these chronic diseases and provide insight into amyloidogenesis through considering recent advances of amyloid-β aggregates on diabetes pathology and islet amyloid polypeptide on Alzheimer’s disease. Exploring the detailed knowledge of molecular interaction between these two amyloidogenic proteins opens new opportunities for therapies and biomarker development.
Collapse
Affiliation(s)
- Gabriela Dumitrita Stanciu
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Veronica Bild
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (D.C.A.); (R.N.R.); (A.C.); (D.B.)
- Correspondence: (V.B.); (L.P.)
| | - Daniela Carmen Ababei
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (D.C.A.); (R.N.R.); (A.C.); (D.B.)
| | - Razvan Nicolae Rusu
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (D.C.A.); (R.N.R.); (A.C.); (D.B.)
| | - Alina Cobzaru
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (D.C.A.); (R.N.R.); (A.C.); (D.B.)
| | - Luminita Paduraru
- Department Mother & Child Care, Division Neonatology, Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Correspondence: (V.B.); (L.P.)
| | - Delia Bulea
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (D.C.A.); (R.N.R.); (A.C.); (D.B.)
| |
Collapse
|
140
|
Dai CL, Li H, Hu X, Zhang J, Liu F, Iqbal K, Gong CX. Neonatal Exposure to Anesthesia Leads to Cognitive Deficits in Old Age: Prevention with Intranasal Administration of Insulin in Mice. Neurotox Res 2020; 38:299-311. [PMID: 32458405 DOI: 10.1007/s12640-020-00223-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/09/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022]
Abstract
Recent pre-clinical and clinical studies suggest that general anesthesia in infants and children may increase the risk of learning disabilities. Currently, there is no treatment for preventing anesthesia-induced neurotoxicity and potential long-term functional impairment. Animal studies have shown that neonatal exposure to anesthesia can induce acute neurotoxicity and long-term behavioral changes that can be detected a few months later. It is currently unknown whether neonatal exposure, especially repeated exposures, to general anesthesia can induce or increase the risk for cognitive impairment during aging. Here, we report that repeated exposures of neonatal mice (P7-9 days old) to anesthesia with sevoflurane (3 h/day for 3 days) led to cognitive impairment that was detectable at the age of 18-19 months, as assessed by using novel object recognition, Morris water maze, and fear conditioning tests. The repeated neonatal exposures to anesthesia did not result in detectable alterations in neurobehavioral development, in tau phosphorylation, or in the levels of synaptic proteins in the aged mouse brains. Importantly, we found that treatment with intranasal insulin prior to anesthesia exposure can prevent mice from anesthesia-induced cognitive impairment. These results suggest that neonatal exposure to general anesthesia could increase the risk for cognitive impairment during aging. This study also supports pre-treatment with intranasal administration of insulin to be a simple, effective approach to prevent infants and children from the increased risk for age-related cognitive impairment induced by neonatal exposure to general anesthesia.
Collapse
Affiliation(s)
- Chun-Ling Dai
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA
| | - Hengchang Li
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA.,Department of Anesthesiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Xin Hu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA
| | - Jin Zhang
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA.,Department of Rehabilitation, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA.
| |
Collapse
|
141
|
Picone P, Di Carlo M, Nuzzo D. Obesity and Alzheimer’s disease: Molecular bases. Eur J Neurosci 2020; 52:3944-3950. [DOI: 10.1111/ejn.14758] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Pasquale Picone
- Consiglio Nazionale delle Ricerche Istituto per la Ricerca e l’Innovazione Biomedica (CNR‐IRIB) Palermo Italy
| | - Marta Di Carlo
- Consiglio Nazionale delle Ricerche Istituto per la Ricerca e l’Innovazione Biomedica (CNR‐IRIB) Palermo Italy
| | - Domenico Nuzzo
- Consiglio Nazionale delle Ricerche Istituto per la Ricerca e l’Innovazione Biomedica (CNR‐IRIB) Palermo Italy
| |
Collapse
|
142
|
Abstract
The insulin-like growth factors (IGFs; IGF1/IGF2), known for their regulation of cell and organismal growth and development, are evolutionarily conserved ligands with equivalent peptides present in flies (
D. melanogaster), worms (
C. elegans) among others. Two receptor tyrosine kinases, the IGF1 receptor and the insulin receptor mediate the actions of these ligands with a family of IGF binding proteins serving as selective inhibitors of IGF1/2. This treatise reviews recent findings on IGF signaling in cancer biology and central nervous system function. This includes overexpression of IGF1 receptors in enhancing tumorigenesis, acquired resistance and contributions to metastasis in multiple cancer types. There is accumulating evidence that insulin resistance, a hallmark of type 2 diabetes, occurs in the central nervous system, independent of systemic insulin resistance and characterized by reduced insulin and IGF1 receptor signaling, and may contribute to dementias including Alzheimer’s Disease and cognitive impairment. Controversy over the role(s) of IGF signaling in cancer and whether its inhibition would be of benefit, still persist and extend to IGF1’s role in longevity and central nervous system function.
Collapse
Affiliation(s)
- Steven A Rosenzweig
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
143
|
Li X, Run X, Wei Z, Zeng K, Liang Z, Huang F, Ke D, Wang Q, Wang JZ, Liu R, Zhang B, Wang X. Intranasal Insulin Prevents Anesthesia-induced Cognitive Impairments in Aged Mice. Curr Alzheimer Res 2020; 16:8-18. [PMID: 30381076 DOI: 10.2174/1567205015666181031145045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/16/2018] [Accepted: 10/15/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Preclinical and clinical evidence suggests that elderly individuals are at increased risk of cognitive decline after general anesthesia. General anesthesia is also believed to be a risk factor for Postoperative Cognitive Dysfunction (POCD) and Alzheimer's Disease (AD). Intranasal administration of insulin, which delivers the drug directly into the brain, improves memory and cognition in both animal studies and small clinical trials. However, how insulin treatment improves cognitive function is poorly understood. METHODS Aged mice were pretreated with intranasal insulin or saline before anesthesia. Propofol was added intraperitoneally to the mice from 7th day of insulin/saline treatment, and general anesthesia was induced and maintained for 2 hours/day for 5 consecutive days. Mice were evaluated at 26th day when the mice were continued on insulin or saline administration for another 15 days. RESULTS We found that intranasal insulin treatment prevented anesthesia-induced cognitive impairments, as measured by novel object recognition test and contextual-dependent fear conditioning test. Insulin treatment also increased the expression level of Post-synaptic Density Protein 95 (PSD95), as well as upregulated Microtubule-associated Protein-2 (MAP-2) in the dentate gyrus of the hippocampus. Furthermore, we found that insulin treatment restored insulin signaling disturbed by anesthesia via activating PI3K/PDK1/AKT pathway, and attenuated anesthesia-induced hyperphosphorylation of tau at multiple AD-associated sites. We found the attenuation of tau hyperphosphorylation occurred by increasing the level of GSK3β phosphorylated at Ser9, which leads to inactivation of GSK-3β. CONCLUSION Intranasal insulin administration might be a promising therapy to prevent anesthesiainduced cognitive deficit in elderly individuals.
Collapse
Affiliation(s)
- Xing Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoqin Run
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Wei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kuan Zeng
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhihou Liang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Huang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qun Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China
| |
Collapse
|
144
|
Dubey SK, Lakshmi KK, Krishna KV, Agrawal M, Singhvi G, Saha RN, Saraf S, Saraf S, Shukla R, Alexander A. Insulin mediated novel therapies for the treatment of Alzheimer's disease. Life Sci 2020; 249:117540. [PMID: 32165212 DOI: 10.1016/j.lfs.2020.117540] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease, a progressive neurodegenerative disorder, is one of the leading causes of death in the USA, along with cancer and cardiac disorders. AD is characterized by various neurological factors like amyloid plaques, tau hyperphosphorylation, mitochondrial dysfunction, acetylcholine deficiency, etc. Together, impaired insulin signaling in the brain is also observed as essential factor to be considered in AD pathophysiology. Hence, currently researchers focused on studying the effect of brain insulin metabolism and relation of diabetes with AD. Based on the investigations, AD is also considered as type 3 or brain diabetes. Besides the traditional view of correlating AD with aging, a better understanding of various pathological factors and effects of other physical ailments is necessary to develop a promising therapeutic approach. There is a vast scope of studying the relation of systemic insulin level, insulin signaling, its neuroprotective potency and effect of diabetes on AD progression. The present work describes worldwide status of AD and its relation with diabetes mellitus and insulin metabolism; pathophysiology of AD; different metabolic pathways associating insulin metabolism with AD; insulin receptor and signaling in the brain; glucose metabolism; insulin resistance; and various preclinical and clinical studies reported insulin-based therapies to treat AD via systemic route and through direct intranasal delivery to the brain.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India.
| | - K K Lakshmi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Kowthavarapu Venkata Krishna
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Mukta Agrawal
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490 024, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Ranendra Narayana Saha
- Department of Biotechnology, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Dubai Campus, Dubai, United Arab Emirates
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-R), New Transit Campus, Bijnor Road, Sarojini Nagar, Lucknow 226002, India
| | - Amit Alexander
- National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, NH 37, NITS Mirza, Kamrup-781125, Guwahati, Assam, India.
| |
Collapse
|
145
|
He Z, Han S, Zhu H, Hu X, Li X, Hou C, Wu C, Xie Q, Li N, Du X, Ni J, Liu Q. The Protective Effect of Vanadium on Cognitive Impairment and the Neuropathology of Alzheimer's Disease in APPSwe/PS1dE9 Mice. Front Mol Neurosci 2020; 13:21. [PMID: 32210760 PMCID: PMC7077345 DOI: 10.3389/fnmol.2020.00021] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a widely distributed neurodegenerative disease characterized clinically by cognitive deficits and pathologically by formation of amyloid-β (Aβ) plaque and neurofibrillary tangles (NFTs) in the brain. Vanadium is a biological trace element that has a function to mimic insulin for diabetes. Bis(ethylmaltolato) oxidovanadium (IV) (BEOV) has been reported to have a hypoglycemic property, but its effect on AD remains unclear. In this study, BEOV was supplemented at doses of 0.2 and 1.0 mmol/L to the AD model mice APPSwe/PS1dE9 for 3 months. The results showed that BEOV substantially ameliorated glucose metabolic disorder as well as synaptic and behavioral deficits of the AD mice. Further investigation revealed that BEOV significantly reduced Aβ generation by increasing the expression of peroxisome proliferator-activated receptor gamma and insulin-degrading enzyme and by decreasing β-secretase 1 in the hippocampus and cortex of AD mice. BEOV also reduced tau hyperphosphorylation by inhibiting protein tyrosine phosphatase-1B and regulating the pathway of insulin receptor/insulin receptor substrate-1/protein kinase B/glycogen synthase kinase 3 beta. Furthermore, BEOV could enhance autophagolysosomal fusion and restore autophagic flux to increase the clearance of Aβ deposits and phosphorylated tau in the brains of AD mice. Collectively, the present study provides solid data for revealing the function and mechanism of BEOV on AD pathology.
Collapse
Affiliation(s)
- Zhijun He
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,College of Optoelectronics Engineering, Shenzhen University, Shenzhen, China
| | - Shuangxue Han
- College of Life Science, Huazhong University of Science and Technology, Wuhan, China
| | - Huazhang Zhu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xia Hu
- College of Life Science, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqian Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Chaofan Hou
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Chong Wu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qingguo Xie
- College of Life Science, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xiubo Du
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,College of Optoelectronics Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
146
|
Ohyagi Y, Takei SI. Insulin signaling as a therapeutic target in Alzheimer’s disease: Efficacy of apomorphine. ACTA ACUST UNITED AC 2020. [DOI: 10.1111/ncn3.12369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yasumasa Ohyagi
- Department of Neurology and Geriatric Medicine Graduate School of Medicine Ehime University Ehime Japan
| | - Satoko I. Takei
- Department of Neurology and Geriatric Medicine Graduate School of Medicine Ehime University Ehime Japan
| |
Collapse
|
147
|
Lv H, Tang L, Guo C, Jiang Y, Gao C, Wang Y, Jian C. Intranasal insulin administration may be highly effective in improving cognitive function in mice with cognitive dysfunction by reversing brain insulin resistance. Cogn Neurodyn 2020; 14:323-338. [PMID: 32399074 DOI: 10.1007/s11571-020-09571-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 10/17/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023] Open
Abstract
It is well known in clinical practice that Alzheimer's disease (AD) is closely associated with brain insulin resistance, and the cerebral insulin pathway has been proven to play a critical role in the pathogenesis of AD. However, finding the most efficient way to improve brain insulin resistance remains challenging. Peripheral administration of insulin does not have the desired therapeutic effect and may induce adverse reactions, such as hyperinsulinemia, but intranasal administration may be an efficient way. In the present study, we established a brain insulin resistance model through an intraventricular injection of streptozotocin, accompanied by cognitive impairment. Following intranasal insulin treatment, the learning and memory functions of mice were significantly restored, the neurogenesis in the hippocampus was improved, the level of insulin in the brain increased, and the activation of the IRS-1-PI3K-Akt-GSK3β insulin signal pathway, but not the Ras-Raf-MEK-MAPK pathway, was markedly increased. The olfactory bulb-subventricular zone-subgranular zone (OB-SVZ-SGZ) axis might be the mechanism through which intranasal insulin regulates cognition in brain-insulin-resistant mice. Thus, intranasal insulin administration may be a highly efficient way to improve cognitive function by increasing cerebral insulin levels and reversing insulin resistance.
Collapse
Affiliation(s)
- Hui Lv
- 1Youjiang Medical University for Nationalities, Chengxiang Avenue, Youjiang District, Baise, 533000 Guangxi People's Republic of China
| | - Lingjiao Tang
- 1Youjiang Medical University for Nationalities, Chengxiang Avenue, Youjiang District, Baise, 533000 Guangxi People's Republic of China
| | - Canshou Guo
- The 6th Hospital of Wu Han, Wuhan, 430015 Hubei People's Republic of China
| | - Yongming Jiang
- 2Graduate College of Youjiang Medical University for Nationalities, Chengxiang Avenue, Youjiang District, Baise, 533000 Guangxi People's Republic of China
| | - Ce Gao
- 2Graduate College of Youjiang Medical University for Nationalities, Chengxiang Avenue, Youjiang District, Baise, 533000 Guangxi People's Republic of China
| | - Yifan Wang
- 2Graduate College of Youjiang Medical University for Nationalities, Chengxiang Avenue, Youjiang District, Baise, 533000 Guangxi People's Republic of China
| | - Chongdong Jian
- 1Youjiang Medical University for Nationalities, Chengxiang Avenue, Youjiang District, Baise, 533000 Guangxi People's Republic of China
| |
Collapse
|
148
|
Wu H, Wei S, Huang Y, Chen L, Wang Y, Wu X, Zhang Z, Pei Y, Wang D. Aβ monomer induces phosphorylation of Tau at Ser-214 through β2AR-PKA-JNK signaling pathway. FASEB J 2020; 34:5092-5105. [PMID: 32067279 DOI: 10.1096/fj.201902230rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 11/11/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder associated with synaptic dysfunction, pathological accumulation of β-amyloid peptide 1-42 (Aβ1-42 ), and neuronal loss. The self-association of Aβ1-42 monomers (Aβ-M) into soluble oligomers seems to be crucial for the development of neurotoxicity. Previous publications have shown that Aβ oligomers and dimers might play key roles in inducing AD. The role of Aβ-M was rarely investigated and still unclear in AD. To understand the effects of Aβ-M on neurons and other cell types in the brain could be the key to understand its function. In our study, we found that Aβ-M expression slowly induced cell apoptosis within 48 hours after transfection, β2 adrenergic receptor (β2AR) interacted with Aβ-M in the pull-down and the yeast two-hybrid assays, and Aβ-M played a major role in inducing phosphorylation of Tau at Ser-214, c-Jun N-terminal kinase (JNK) at Thr-183/Tyr-185, p70 ribosomal protein S6 kinase (p70S6K) at Thr-389. We also discovered that β2AR, G protein-coupled receptor kinase 2 (GRK2), and protein kinase A (PKA) mediated the phosphorylation of Tau and JNK. Aβ-M induced phosphorylation of Tau at Ser-214 through both β2AR-cAMP/PKA-JNK and β2AR-GRK signaling pathways. Mitogen-activated protein kinase kinase (MEK) mediated the phosphorylation of p70S6K induced by Aβ-M.
Collapse
Affiliation(s)
- Hao Wu
- Hainan Province Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Hainan, China.,Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Hainan, China
| | - Shuangshuang Wei
- Hainan Province Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Hainan, China.,Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Hainan, China
| | - Yonglin Huang
- Hainan Province Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Hainan, China.,Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Hainan, China
| | - Lintao Chen
- Hainan Province Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Hainan, China.,Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Hainan, China
| | - Yuerong Wang
- Hainan Province Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Hainan, China.,Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Hainan, China
| | - Xinli Wu
- Hainan Province Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Hainan, China.,Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Hainan, China
| | - Zhuandan Zhang
- Hainan Province Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Hainan, China.,Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Hainan, China
| | - Yechun Pei
- Department of Veterinary Sciences, College of Animal Sciences, Hainan University, Hainan, China
| | - Dayong Wang
- Hainan Province Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Hainan, China.,Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Hainan, China
| |
Collapse
|
149
|
Passoni A, Favagrossa M, Colombo L, Bagnati R, Gobbi M, Diomede L, Birolini G, Di Paolo E, Valenza M, Cattaneo E, Salmona M. Efficacy of Cholesterol Nose-to-Brain Delivery for Brain Targeting in Huntington's Disease. ACS Chem Neurosci 2020; 11:367-372. [PMID: 31860272 DOI: 10.1021/acschemneuro.9b00581] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The current pharmacological treatment of Huntington's disease (HD) is palliative, and therapies to restore functions in patients are needed. One of the pathways affected in HD involves brain cholesterol (Chol) synthesis, which is essential for optimal synaptic transmission. Recently, it was reported that in a HD mouse model, the delivery of exogenous Chol to the brain with brain-permeable nanoparticles protected animals from cognitive decline and rescued synaptic communication, indicating Chol as a therapeutic candidate. We examined whether nose-to-brain delivery, already used in human therapy, could be an alternative, noninvasive strategy to deliver Chol to the adult brain and, in the future, replenish Chol in the HD brain. We gave wild-type (WT) mice a single intranasal (IN) dose of liposomes loaded with deuterium-labeled cholesterol (Chol-D6, to distinguish and quantify the exogenous cholesterol from the native one) (200 μg Chol-D6/dose). After different intervals, Chol-D6 levels, determined by LC-MS in plasma, striatum, cortex, and cerebellum, reached a steady-state concentration of 0.400 ng/mg between 24 and 72 h. A subsequent acute study confirmed the kinetic profiles of Chol-D6 in all tissues, indicating correspondence between the dose (two doses of 200 μg Chol-D6/dose) and the calculated brain area concentration (0.660 ng/mg). Finally, in WT mice given repeated IN doses, the average Chol-D6 level after 24 h was about 1.5 ng/mg in all brain areas. Our data indicate the effectiveness of IN Chol-loaded liposomes to deliver Chol in different brain regions, opening the way to future investigations in HD mice.
Collapse
Affiliation(s)
- Alice Passoni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156 Milan, Italy
| | - Monica Favagrossa
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156 Milan, Italy
| | - Laura Colombo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156 Milan, Italy
| | - Renzo Bagnati
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156 Milan, Italy
| | - Marco Gobbi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156 Milan, Italy
| | - Luisa Diomede
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156 Milan, Italy
| | - Giulia Birolini
- Department of Biosciences, University of Milan, via G. Celoria 26, 20133, Milan, Italy
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi,″ via F. Sforza 35, 20122, Milan, Italy
| | - Eleonora Di Paolo
- Department of Biosciences, University of Milan, via G. Celoria 26, 20133, Milan, Italy
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi,″ via F. Sforza 35, 20122, Milan, Italy
| | - Marta Valenza
- Department of Biosciences, University of Milan, via G. Celoria 26, 20133, Milan, Italy
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi,″ via F. Sforza 35, 20122, Milan, Italy
| | - Elena Cattaneo
- Department of Biosciences, University of Milan, via G. Celoria 26, 20133, Milan, Italy
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi,″ via F. Sforza 35, 20122, Milan, Italy
| | - Mario Salmona
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156 Milan, Italy
| |
Collapse
|
150
|
Baram M, Miller Y. Inhibitory Activity of Insulin on Aβ Aggregation Is Restricted Due to Binding Selectivity and Specificity to Polymorphic Aβ States. ACS Chem Neurosci 2020; 11:445-452. [PMID: 31899862 PMCID: PMC7467570 DOI: 10.1021/acschemneuro.9b00645] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
![]()
Clinical
trials of intranasal insulin treatment for Alzheimer’s
patients have shown cognitive and memory improvement, but the effect
of insulin has shown a limitation. It was suggested that insulin molecule
binds to Aβ aggregates and impedes Aβ aggregation. Yet,
the specific interactions between insulin molecule and Aβ aggregates
at atomic resolution are still elusive. Three main conclusions are
observed in this work. First, insulin can interact across the fibril
only to “U-shape” Aβ fibrils and not to “S-shape”
Aβ fibrils. Therefore, insulin is not expected to influence
the “S-shape” Aβ fibrils. Second, insulin disrupts
β-strands along Aβ fibril-like oligomers via interaction
with chain A, which is not a part of the recognition motif. It is
suggested that insulin affects as an inhibitor of Aβ fibrillation,
but it is limited due to the specificity of the polymorphic Aβ
fibril-like oligomer. Third, the current work proposes that insulin
promotes Aβ aggregation, when interacting along the fibril axis
of Aβ fibril-like oligomer. The coaggregation could be initiated
via the recognition motif. The lack of the interactions of insulin
in the recognition motif impede the coaggregation of insulin and Aβ.
The current work reports the specific binding domains between insulin
molecule and polymorphic Aβ fibril-like oligomers. This research
provides insights into the molecular mechanisms of the functional
activity of insulin on Aβ aggregation that strongly depends
on the particular polymorphic Aβ aggregates.
Collapse
Affiliation(s)
- Michal Baram
- Department of Chemistry, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| |
Collapse
|