101
|
PIM-Related Kinases Selectively Regulate Olfactory Sensations in Caenorhabditis elegans. eNeuro 2019; 6:ENEURO.0003-19.2019. [PMID: 31387876 PMCID: PMC6709224 DOI: 10.1523/eneuro.0003-19.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 11/21/2022] Open
Abstract
The mammalian PIM family of serine/threonine kinases regulate several cellular functions, such as cell survival and motility. Because PIM expression is observed in sensory organs, such as olfactory epithelium, we now wanted to explore the physiological roles of PIM kinases there. As our model organism, we used the Caenorhabditis elegans nematodes, which express two PIM-related kinases, PRK-1 and PRK-2. We demonstrated PRKs to be true PIM orthologs with similar substrate specificity as well as sensitivity to PIM-inhibitory compounds. When we analyzed the effects of pan-PIM inhibitors on C. elegans sensory functions, we observed that PRK activity is selectively required to support olfactory sensations to volatile repellents and attractants sensed by AWB and AWCON neurons, respectively, but is dispensable for gustatory sensations. Analyses of prk-deficient mutant strains confirmed these findings and suggested that PRK-1, but not PRK-2 is responsible for the observed effects on olfaction. This regulatory role of PRK-1 is further supported by its observed expression in the head and tail neurons, including AWB and AWC neurons. Based on the evolutionary conservation of PIM-related kinases, our data may have implications in regulation of also mammalian olfaction.
Collapse
|
102
|
Amr AEGE, Ibrahimd AA, El-Shehry MF, Hosni HM, Fayed AA, Elsayed EA. In Vitro and In Vivo Anti-Breast Cancer Activities of Some Newly Synthesized 5-(thiophen-2-yl)thieno-[2,3-d]pyrimidin-4-one Candidates. Molecules 2019; 24:molecules24122255. [PMID: 31212962 PMCID: PMC6631792 DOI: 10.3390/molecules24122255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 01/28/2023] Open
Abstract
In this study, some of new thiophenyl thienopyrimidinone derivatives 2–15 were prepared and tested as anti-cancer agents by using thiophenyl thieno[2,3-d]pyrimidinone derivative 2 as a starting material, which was prepared from cyclization of ethyl ester derivative 1 with formamide. Treatment of 2 with ethyl- chloroacetate gave thienopyrimidinone N-ethylacetate 3, which was reacted with hydrazine hydrate or anthranilic acid to afford acetohydrazide 4 and benzo[d][1,3]oxazin-4-one 5, respectively. Condensation of 4 with aromatic aldehydes or phenylisothiocyanate yielded Schiff base derivatives 6,7, and thiosemicarbazise 10, which were treated with 2-mercaptoacetic acid or chloroacetic acid to give the corresponding thiazolidinones 8, 9, and phenylimino-thiazolidinone 11, respectively. Treatment of 4 with ethylacetoacetate or acetic acid/acetic anhydride gave pyrazole 12 and acetyl acetohydrazide 13 derivatives, respectively. The latter compound 13 was reacted with ethyl cycno-acetate or malononitrile to give 14 and 15, respectively. In this work, we have studied the anti-cancer activity of the synthesized thienopyrimidinone derivatives against MCF-7 and MCF-10A cancer cells. Furthermore, in vivo experiments showed that the synthesized compounds significantly reduced tumor growth up to the 8th day of treatment in comparison to control animal models. Additionally, the synthesized derivatives showed potential inhibitory effects against pim-1 kinase activities.
Collapse
Affiliation(s)
- Abd El-Galil E Amr
- Pharmaceutical Chemistry Department, Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
- Applied Organic Chemistry Department, National Research Center, Cairo, Dokki 12622, Egypt.
| | - Alhussein A Ibrahimd
- Applied Organic Chemistry Department, National Research Center, Cairo, Dokki 12622, Egypt.
| | - Mohamed F El-Shehry
- Pesticide Chemistry Department, National Research Center, Dokki 12622, Cairo, Egypt.
- Chemistry Department, Al-Zahrawy University College, Karbala 56001, Iraq.
| | - Hanaa M Hosni
- Pesticide Chemistry Department, National Research Center, Dokki 12622, Cairo, Egypt.
| | - Ahmed A Fayed
- Applied Organic Chemistry Department, National Research Center, Cairo, Dokki 12622, Egypt.
- Respiratory Therapy Department, College of Medical Rehabilitation Sciences, Taibah University, Madinah Munawara, 22624, Saudi Arabia.
| | - Elsayed A Elsayed
- Zoology Department, Bioproducts Research Chair, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki 12622, Cairo, Egypt.
| |
Collapse
|
103
|
Yuan T, Qi B, Jiang Z, Dong W, Zhong L, Bai L, Tong R, Yu J, Shi J. Dual FLT3 inhibitors: Against the drug resistance of acute myeloid leukemia in recent decade. Eur J Med Chem 2019; 178:468-483. [PMID: 31207462 DOI: 10.1016/j.ejmech.2019.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/16/2019] [Accepted: 06/02/2019] [Indexed: 01/18/2023]
Abstract
Acute myeloid leukemia (AML) is a malignant disease characterized by abnormal growth and differentiation of hematopoietic stem cells. Although the pathogenesis has not been fully elucidated, many specific gene mutations have been found in AML. Fms-like tyrosine kinase 3 (FLT3) is recognized as a drug target for the treatment of AML, and the activation mutations of FLT3 were found in about 30% of AML patients. Targeted inhibition of FLT3 receptor tyrosine kinase has shown promising results in the treatment of FLT3 mutation AML. Unfortunately, the therapeutic effects of FLT3 tyrosine kinase inhibitors used as AML monotherapy are usually accompanied by the high risk of resistance development within a few months after treatment. FLT3 dual inhibitors were generated with the co-inhibition of FLT3 and another target, such as CDK4, JAK2, MEK, Mer, Pim, etc., to solve the problems mentioned above. As a result, the therapeutic effect of the drug is significantly improved, while the toxic and side effects are reduced. Besides, the life quality of AML patients with FLT3 mutation has been effectively improved. In this paper, we reviewed the studies of dual FLT3 inhibitors that have been discovered in recent years for the treatment of AML.
Collapse
Affiliation(s)
- Ting Yuan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Baowen Qi
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Zhongliang Jiang
- Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
| | - Wenjuan Dong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lei Zhong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lan Bai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jiying Yu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
104
|
Figueiredo P, Sipponen MH, Lintinen K, Correia A, Kiriazis A, Yli-Kauhaluoma J, Österberg M, George A, Hirvonen J, Kostiainen MA, Santos HA. Preparation and Characterization of Dentin Phosphophoryn-Derived Peptide-Functionalized Lignin Nanoparticles for Enhanced Cellular Uptake. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901427. [PMID: 31062448 PMCID: PMC8042775 DOI: 10.1002/smll.201901427] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/18/2019] [Indexed: 05/18/2023]
Abstract
The surface modification of nanoparticles (NPs) using different ligands is a common strategy to increase NP-cell interactions. Here, dentin phosphophoryn-derived peptide (DSS) lignin nanoparticles (LNPs) are prepared and characterized, the cellular internalization of the DSS-functionalized LNPs (LNPs-DSS) into three different cancer cell lines is evaluated, and their efficacy with the widely used iRGD peptide is compared. It is shown that controlled extent of carboxylation of lignin improves the stability at physiological conditions of LNPs formed upon solvent exchange. Functionalization with DSS and iRGD peptides maintains the spherical morphology and moderate polydispersity of LNPs. The LNPs exhibit good cytocompatibility when cultured with PC3-MM2, MDA-MB-231, and A549 in the conventional 2D model and in the 3D cell spheroid morphology. Importantly, the 3D cell models reveal augmented internalization of peptide-functionalized LNPs and improve antiproliferative effects when the LNPs are loaded with a cytotoxic compound. Overall, LNPs-DSS show equal or even superior cellular internalization than the LNPs-iRGD, suggesting that DSS can also be used to enhance the cellular uptake of NPs into different types of cells, and release different cargos intracellularly.
Collapse
Affiliation(s)
- Patrícia Figueiredo
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Mika H Sipponen
- School of Chemical Engineering, Department of Bioproducts and Biosystems, Aalto University, FI-00076, Aalto, Finland
| | - Kalle Lintinen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, FI-00076, Aalto, Finland
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Alexandros Kiriazis
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Monika Österberg
- School of Chemical Engineering, Department of Bioproducts and Biosystems, Aalto University, FI-00076, Aalto, Finland
| | - Anne George
- Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory Department of Oral Biology, University of Illinois, Chicago, IL, 60612, USA
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, FI-00076, Aalto, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
105
|
The first-in-human study of the pan-PIM kinase inhibitor PIM447 in patients with relapsed and/or refractory multiple myeloma. Leukemia 2019; 33:2924-2933. [PMID: 31092894 DOI: 10.1038/s41375-019-0482-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 12/27/2022]
Abstract
PIM447, a novel pan-PIM inhibitor, has shown preclinical activity in multiple myeloma (MM). In the multicenter, open-label, first-in-human study, patients with relapsed and/or refractory MM were enrolled to determine the maximum-tolerated dose (MTD) or recommended dose (RD), safety, pharmacokinetics, and preliminary anti-myeloma activity of PIM447. PIM447 was administered in escalating oral doses of 70-700 mg once daily (q.d.) for 28-day continuous cycles. Seventy-nine patients with a median of four prior therapies were enrolled. Seventy-seven patients (97.5%) had an adverse event (AE) suspected as treatment related, with treatment-related grade 3/4 AEs being mostly hematologic. Eleven dose-limiting toxicities occurred, and an MTD of 500 mg q.d. and an RD of 300 mg q.d. were established. The main reason for discontinuation was disease progression in 54 patients (68.4%). In the entire study population, a disease control rate of 72.2%, a clinical benefit rate of 25.3%, and an overall response rate of 8.9% were observed per modified International Myeloma Working Group criteria. Median progression-free survival at the RD was 10.9 months. PIM447 was well tolerated and demonstrated single-agent antitumor activity in relapsed/refractory MM patients, providing proof of principle for Pim (Proviral Insertions of Moloney Murine leukemia virus) kinase inhibition as a novel therapeutic approach in MM.
Collapse
|
106
|
Wang X, Sun Z. Understanding PIM-1 kinase inhibitor interactions with free energy simulation. Phys Chem Chem Phys 2019; 21:7544-7558. [PMID: 30895980 DOI: 10.1039/c9cp00070d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The proviral integration site of the Moloney leukemia virus (PIM) family includes three homologous members. PIM-1 kinase is an important target in effective therapeutic interventions of lymphomas, prostate cancer and leukemia. In the current work, we performed free energy calculations to calculate the binding affinities of several inhibitors targeting this protein. The alchemical method with integration and perturbation-based estimators and the end-point methods were compared. The computational results indicated that the alchemical method can accurately predict the binding affinities, while the end-point methods give relatively unreliable predictions. Decomposing the free energy difference into enthalpic and entropic components with MBAR reweighting enabled us to investigate the detailed thermodynamic parameters with which the entropy-enthalpy compensation in this protein-ligand binding case is identified. We then studied the conformational ensemble, and the important protein-ligand interactions were identified. The current work sheds light on the understanding of the PIM-1-kinase-inhibitor interactions at the atomic level and will be useful in the further development of potential drugs.
Collapse
Affiliation(s)
- Xiaohui Wang
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | | |
Collapse
|
107
|
PIM kinase inhibitors: Structural and pharmacological perspectives. Eur J Med Chem 2019; 172:95-108. [PMID: 30954777 DOI: 10.1016/j.ejmech.2019.03.050] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/28/2019] [Accepted: 03/19/2019] [Indexed: 02/08/2023]
Abstract
The PIM kinase, also known as serine/threonine kinase plays an important role in cancer biology and is found in three different isoforms namely PIM-1, PIM-2, and PIM-3. They are extensively distributed and are implicated in a variety of biological processes, including cell proliferation, cell differentiation, and apoptosis. They act as weak oncogene and whenever expressed in exacerbating forms are responsible for different types of human cancer. Recently, different isoforms of PIM kinase have been identified as a clinical biomarker and potential therapeutic target for personalized treatment of advanced cancer. The inhibition of PIM kinase has become a scientific interest and some inhibitors have been developed and/or are under different phases of clinical trials. Several medicinally privileged heterocyclic ring scaffolds such as pyrrole, pyrimidine, thiazolidine, benzofuran, indole, triazole, oxadiazole, and quinoline derivatives have been synthesized and evaluated for their PIM inhibitory activity. This review comprehensively focuses on pharmacological implications of PIM kinases in oncogenesis, structural insights of PIM inhibitors and their structure-activity relationships (SARs).
Collapse
|
108
|
Arrouchi H, Lakhlili W, Ibrahimi A. Re-positioning of known drugs for Pim-1 kinase target using molecular docking analysis. Bioinformation 2019; 15:116-120. [PMID: 31435157 PMCID: PMC6677905 DOI: 10.6026/97320630015116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 12/02/2022] Open
Abstract
The Concept of reusing existing drugs for new targets is gaining momentum in recent years because of cost-effectiveness as safety and toxicology data are already available. Therefore, it is of interest to re-profile known drugs against the Pim-1 kinase target using molecular docking analysis. Results show that known drugs such as nilotinib, vemurafenib, Idelalisib, and other small kinases inhibitors have high binding ability with Pim-1 kinase for consideration as potential inhibitors.
Collapse
Affiliation(s)
- Housna Arrouchi
- Biotechnology Laboratory (Medbiotech),BioInova Research center,Rabat Medical and Pharmacy School,Mohammed V University in Rabat,Rabat,Morroco
| | - Wiame Lakhlili
- Biotechnology Laboratory (Medbiotech),BioInova Research center,Rabat Medical and Pharmacy School,Mohammed V University in Rabat,Rabat,Morroco
| | - Azeddine Ibrahimi
- Biotechnology Laboratory (Medbiotech),BioInova Research center,Rabat Medical and Pharmacy School,Mohammed V University in Rabat,Rabat,Morroco
| |
Collapse
|
109
|
Discovery of novel triazolo[4,3-b]pyridazin-3-yl-quinoline derivatives as PIM inhibitors. Eur J Med Chem 2019; 168:87-109. [PMID: 30802730 DOI: 10.1016/j.ejmech.2019.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/24/2019] [Accepted: 02/07/2019] [Indexed: 11/22/2022]
Abstract
PIM kinase family (PIM-1, PIM-2 and PIM-3) is an appealing target for the discovery and development of selective inhibitors, useful in various disease conditions in which these proteins are highly expressed, such as cancer. The significant effort put, in the recent years, towards the development of small molecules exhibiting inhibitory activity against this protein family has ended up with several molecules entering clinical trials. As part of our ongoing exploration for potential drug candidates that exhibit affinity towards this protein family, we have generated a novel chemical series of triazolo[4,3-b]pyridazine based tricycles by applying a scaffold hopping strategy over our previously reported potent pan-PIM inhibitor ETP-47453 (compound 2). The structure-activity relationship studies presented herein demonstrate a rather selective PIM-1/PIM-3 biochemical profile for this novel series of tricycles, although pan-PIM and PIM-1 inhibitors have also been identified. Selected examples show significant inhibition of the phosphorylation of BAD protein in a cell-based assay. Moreover, optimized and highly selective compounds, such as 42, did not show significant hERG inhibition at 20 μM concentration, and proved its antiproliferative activity and utility in combination with particular antitumoral agents in several tumor cell lines.
Collapse
|
110
|
Arrouchi H, Lakhlili W, Ibrahimi A. A review on PIM kinases in tumors. Bioinformation 2019; 15:40-45. [PMID: 31359998 PMCID: PMC6651028 DOI: 10.6026/97320630015040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 01/16/2019] [Indexed: 01/13/2023] Open
Abstract
The Proviral Integration site for Moloney murine leukemia virus (PIM) kinases is serine/threonine kinases that promote growth and survival in multiple cell types, implicated in the pathogenesis of various diseases. Over expression of Pim-1 experimentally leads to tumor formation in mice, whereas there is no observable phenotype concerning the complete knockout of the protein. When it is over expressed it may lead to cancer development by three major ways; by inhibiting apoptosis, by promoting cell proliferation and also through promoting genomic instability. Expression in normal tissues is nearly undetectable. Recent improvements in the development of novel inhibitors of PIMs have been reviewed. Significant progress in the design of PIMs inhibitors, in which it displays selectivity versus other kinases, has been achieved within the last years. However, the development of isoform-selective PIM inhibitors is still an open task. As Pim-1 possesses oncogenic functions and is over expressed in various kinds of cancer diseases, its inhibition provides a new option in cancer therapy. A PubMed literature search was performed to review the currently available data on Pim-1 expression, regulation, and targets; its implication in different types of cancer and its impact on prognosis is described. Consequently, designing new inhibitors of PIMs is now a very active area of research in academic and industrial laboratories.
Collapse
Affiliation(s)
- Housna Arrouchi
- Laboratory of Biotechnology (MedBiotech),Rabat Medical and Pharmacy School,Mohammed V University in Rabat, Rabat,Morocco
| | - Wiame Lakhlili
- Laboratory of Biotechnology (MedBiotech),Rabat Medical and Pharmacy School,Mohammed V University in Rabat, Rabat,Morocco
| | - Azeddine Ibrahimi
- Laboratory of Biotechnology (MedBiotech),Rabat Medical and Pharmacy School,Mohammed V University in Rabat, Rabat,Morocco
| |
Collapse
|
111
|
Barberis C, Pribish J, Tserlin E, Gross A, Czekaj M, Barragué M, Erdman P, Maniar S, Jiang J, Fire L, Patel V, Hebert A, Levit M, Wang A, Sun F, Huang SMA. Discovery of N-substituted 7-azaindoles as Pan-PIM kinases inhibitors - Lead optimization - Part III. Bioorg Med Chem Lett 2019; 29:491-495. [PMID: 30553737 DOI: 10.1016/j.bmcl.2018.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/04/2018] [Accepted: 12/08/2018] [Indexed: 12/17/2022]
Abstract
N-substituted azaindoles were discovered as promising pan-PIM inhibitors. Lead optimization is described en route toward the identification of a clinical candidate. Modulation of physico-chemical properties allowed to solve inherent hERG and permeability liabilities. Compound 17 showed tumor growth inhibition in a KG1 tumor-bearing mouse model.
Collapse
Affiliation(s)
- Claude Barberis
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States.
| | - James Pribish
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Elina Tserlin
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Alexandre Gross
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Mark Czekaj
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Matthieu Barragué
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Paul Erdman
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Sachin Maniar
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - John Jiang
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Luke Fire
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Vinod Patel
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Andrew Hebert
- Oncology Biochemistry, Sanofi, 270 Albany Street, Cambridge MA 02139, United States
| | - Mikhail Levit
- Oncology Biochemistry, Sanofi, 270 Albany Street, Cambridge MA 02139, United States
| | - Anlai Wang
- Oncology Biology, Sanofi, 270 Albany Street, Cambridge MA 02139, United States
| | - Frank Sun
- Oncology Pharmacology, Sanofi, 640 Memorial Drive, Cambridge MA 02139, United States
| | - Shih-Min A Huang
- Oncology Biology, Sanofi, 270 Albany Street, Cambridge MA 02139, United States
| |
Collapse
|
112
|
Wang HL, Andrews KL, Booker SK, Canon J, Cee VJ, Chavez F, Chen Y, Eastwood H, Guerrero N, Herberich B, Hickman D, Lanman BA, Laszlo J, Lee MR, Lipford JR, Mattson B, Mohr C, Nguyen Y, Norman MH, Pettus LH, Powers D, Reed AB, Rex K, Sastri C, Tamayo N, Wang P, Winston JT, Wu B, Wu Q, Wu T, Wurz RP, Xu Y, Zhou Y, Tasker AS. Discovery of ( R)-8-(6-Methyl-4-oxo-1,4,5,6-tetrahydropyrrolo[3,4- b]pyrrol-2-yl)-3-(1-methylcyclopropyl)-2-((1-methylcyclopropyl)amino)quinazolin-4(3 H)-one, a Potent and Selective Pim-1/2 Kinase Inhibitor for Hematological Malignancies. J Med Chem 2019; 62:1523-1540. [PMID: 30624936 DOI: 10.1021/acs.jmedchem.8b01733] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pim kinases are a family of constitutively active serine/threonine kinases that are partially redundant and regulate multiple pathways important for cell growth and survival. In human disease, high expression of the three Pim isoforms has been implicated in the progression of hematopoietic and solid tumor cancers, which suggests that Pim kinase inhibitors could provide patients with therapeutic benefit. Herein, we describe the structure-guided optimization of a series of quinazolinone-pyrrolodihydropyrrolone analogs leading to the identification of potent pan-Pim inhibitor 28 with improved potency, solubility, and drug-like properties. Compound 28 demonstrated on-target Pim activity in an in vivo pharmacodynamic assay with significant inhibition of BAD phosphorylation in KMS-12-BM multiple myeloma tumors for 16 h postdose. In a 2-week mouse xenograft model, daily dosing of compound 28 resulted in 33% tumor regression at 100 mg/kg.
Collapse
|
113
|
Barati Bagherabad M, Afzaljavan F, ShahidSales S, Hassanian SM, Avan A. Targeted therapies in pancreatic cancer: Promises and failures. J Cell Biochem 2018; 120:2726-2741. [PMID: 28703890 DOI: 10.1002/jcb.26284] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/11/2018] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an incidence rate nearly equal to its mortality rate. The poor prognosis of the disease can be explained by the absence of effective biomarkers for screening and early detection, together with the aggressive behavior and resistance to the currently available chemotherapy. The therapeutic failure can also be attributed to the inter-/intratumor genetic heterogeneity and the abundance of tumor stroma that occupies the majority of the tumor mass. Gemcitabine is used in the treatment of PDAC; however, the response rate is less than 12%. A recent phase III trial revealed that the combination of oxaliplatin, irinotecan, fluorouracil, and leucovorin could be an option for the treatment of metastatic PDAC patients with good performance status, although these approaches can result in high toxicity level. Further investigations are required to develop innovative anticancer agents that either improve gemcitabine activity, within novel combinatorial approaches or acts with a better efficacy than gemcitabine. The aim of the current review is to give an overview of preclinical and clinical studies targeting key dysregulated signaling pathways in PDAC.
Collapse
Affiliation(s)
- Matineh Barati Bagherabad
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Afzaljavan
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soodabeh ShahidSales
- Cancer Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.,Molecular Medicine group, Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
114
|
Xue C, He Y, Hu Q, Yu Y, Chen X, Chen J, Ren F, Li J, Ren Z, Cui G, Sun R. Downregulation of PIM1 regulates glycolysis and suppresses tumor progression in gallbladder cancer. Cancer Manag Res 2018; 10:5101-5112. [PMID: 30464610 PMCID: PMC6215917 DOI: 10.2147/cmar.s184381] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND PIM1, a serine/threonine kinase, plays an essential role in tumorigenesis of multiple types of tumors. However, the expression pattern and functions of PIM1 in gallbladder cancer (GBC) remain largely unknown. MATERIALS AND METHODS Immunohistochemistry, quantitative real-time PCR, and western blot analysis were performed to measure the expression of PIM1. Tissue microarray analysis was used to confirm the relationship between PIM1 expression and clinical outcomes of GBC patients. Finally, in vivo and in vitro functional studies were performed to detect the inhibition of PIM1 by RNAi or specific inhibitor in GBC cells. RESULTS We observed that PIM1 was dramatically overexpressed in GBC tissues, and its expression levels were positively related with clinical malignancies and a poor prognosis. Inhibition of PIM1 via RNAi or enzyme-specific inhibitor could suppress GBC cell proliferation, migration, and invasion both in vitro and vivo. Additionally, flow cytometry assays and cell cycle assays indicated that PIM1 inhibition promoted cell apoptosis and induced cell cycle arrest. Remarkably, inhibition of PIM1 could drive a metabolic shift from aerobic glycolysis to oxidative phosphorylation. We found that inhibition of PIM1 mechanistically reduced glucose consumption by regulating key molecules in aerobic glycolysis. CONCLUSION PIM1 may serve as an oncogene in GBC and be involved in the regulation of glycolysis. PIM1 is a promising therapeutic target for the treatment of human GBC.
Collapse
Affiliation(s)
- Chen Xue
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China,
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China,
| | - Yuting He
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China,
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China,
| | - Qiuyue Hu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China,
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China,
| | - Yan Yu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China,
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China,
| | - Xiaolong Chen
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China,
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China,
| | - Jianan Chen
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China,
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China,
| | - Fang Ren
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China,
| | - Juan Li
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China,
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China,
| | - Zhigang Ren
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China,
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China,
| | - Guangying Cui
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China,
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China,
| | - Ranran Sun
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China,
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China,
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China,
| |
Collapse
|
115
|
Zheng J, Sha Y, Roof L, Foreman O, Lazarchick J, Venkta JK, Kozlowski C, Gasparetto C, Chao N, Ebens A, Hu J, Kang Y. Pan-PIM kinase inhibitors enhance Lenalidomide's anti-myeloma activity via cereblon-IKZF1/3 cascade. Cancer Lett 2018; 440-441:1-10. [PMID: 30312729 DOI: 10.1016/j.canlet.2018.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/19/2018] [Accepted: 10/02/2018] [Indexed: 12/22/2022]
Abstract
Multiple myeloma remains an incurable disease, and continued efforts are required to develop novel agents and novel drug combinations with more effective anti-myeloma activity. Here, we show that the pan-PIM kinase inhibitors SGI1776 and CX6258 exhibit significant anti-myeloma activity and that combining a pan-PIM kinase inhibitor with the immunomodulatory agent lenalidomide in an in vivo myeloma xenograft mouse model resulted in synergistic myeloma cell killing without additional hematologic or hepatic toxicities. Further investigations indicated that treatment with a pan-PIM kinase inhibitor promoted increased ubiquitination and subsequent degradation of IKZF1 and IKZF3, two transcription factors crucial for survival of myeloma cells. Combining a pan-PIM kinase inhibitor with lenalidomide led to more effective degradation of IKZF1 and IKZF3 in multiple myeloma cell lines as well as xenografts of myeloma tumors. We also demonstrated that treatment with a pan-PIM kinase inhibitor resulted in increased expression of cereblon, and that knockdown of cereblon via a shRNA lentivirus abolished the effects of PIM kinase inhibition on the degradation of IKZF1 and IKZF3 and myeloma cell apoptosis, demonstrating a central role of cereblon in pan-PIM kinase inhibitor-mediated down-regulation of IKZF1 and IKZF3 and myeloma cell killing. These data elucidate the mechanism of pan-PIM kinase inhibitor mediated anti-myeloma effect and the rationale for the synergy observed with lenalidomide co-treatment, and provide justification for a clinical trial of the combination of pan-PIM kinase inhibitors and lenalidomide for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Jing Zheng
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA; Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, China
| | - Yonggang Sha
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Logan Roof
- Department of Internal Medicine, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Oded Foreman
- Genentech Research Oncology, Genentech Inc., San Francisco, CA, USA
| | - John Lazarchick
- Department of Pathology, Medical University of South Carolina, Charleston, SC, USA
| | - Jagadish Kummetha Venkta
- Division of Hematology and Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Cleopatra Kozlowski
- Genentech Safety Assessment Pathology, Genentech Inc, San Francisco, CA, USA
| | - Cristina Gasparetto
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Nelson Chao
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Allen Ebens
- Genentech Research Oncology, Genentech Inc., San Francisco, CA, USA
| | - Jianda Hu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, China.
| | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
116
|
More KN, Hong VS, Lee A, Park J, Kim S, Lee J. Discovery and evaluation of 3,5-disubstituted indole derivatives as Pim kinase inhibitors. Bioorg Med Chem Lett 2018; 28:2513-2517. [DOI: 10.1016/j.bmcl.2018.05.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 12/24/2022]
|
117
|
Xiang X, Yuan D, Liu Y, Li J, Wen Q, Kong P, Gao L, Zhang C, Gao L, Peng X, Zhang X. PIM1 overexpression in T-cell lymphomas protects tumor cells from apoptosis and confers doxorubicin resistance by upregulating c-myc expression. Acta Biochim Biophys Sin (Shanghai) 2018; 50:800-806. [PMID: 30020405 DOI: 10.1093/abbs/gmy076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 06/08/2018] [Indexed: 12/17/2022] Open
Abstract
T-cell lymphomas (TCLs) are a malignancy characterized by tumor aggression and resistance to traditional chemotherapy. Disruption of the extrinsic cell death pathway is essential for resistance to chemotherapy. PIM1 serves as a crucial modulator in cancers. However, the role of PIM1 in TCLs remains unclear. In this study, we studied the roles of PIM1 in established T-lymphoma cell lines Jurkat and HUT-78. CCK-8 assay was conducted to evaluate cell survival and flow cytometry was performed to evaluate cell death of TCL cells. siRNAs were used to knockdown the expression of PIM1 and c-myc. qRT-PCR was used to evaluate the mRNA expression levels of c-myc and PIM1. Western blot analysis was used to evaluate the protein expression levels of PIM1, c-myc, STAT3, and phospho-STAT3. Doxorubicin was used to determine the effect of PIM1 on apoptosis. Our results showed that PIM1 expression was markedly enhanced and induced c-myc expression in TCL cells. Doxorubicin inhibited the expressions of c-myc and PIM1, and triggered the extrinsic cell death of TCLs by suppressing the JAK-STAT3 signaling pathway. Moreover, PIM1 silencing via siRNA suppressed c-myc expression, promoted the cell death of TCLs, and increased doxorubicin sensitivity. Conversely, PIM1 overexpression in TCL cells induced c-myc expression, suppressed TCL cell death, and promoted doxorubicin resistance. Collectively, our results demonstrate that PIM1 overexpression in TCLs participates in cancer cell protection from apoptosis and leads to doxorubicin resistance by inducing c-myc expression, indicating that PIM1 may be a promising target in TCL treatment.
Collapse
Affiliation(s)
- Xixi Xiang
- Center of Hematology, the Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Di Yuan
- Department of Educational Technology, Army Medical University, Chongqing, China
| | - Yao Liu
- Center of Hematology, the Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Jiali Li
- Center of Hematology, the Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Qin Wen
- Center of Hematology, the Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Peiyan Kong
- Center of Hematology, the Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Lei Gao
- Center of Hematology, the Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Cheng Zhang
- Center of Hematology, the Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Li Gao
- Center of Hematology, the Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Xiangui Peng
- Center of Hematology, the Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Xi Zhang
- Center of Hematology, the Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| |
Collapse
|
118
|
Lee M, Lee KH, Min A, Kim J, Kim S, Jang H, Lim JM, Kim SH, Ha DH, Jeong WJ, Suh KJ, Yang YW, Kim TY, Oh DY, Bang YJ, Im SA. Pan-Pim Kinase Inhibitor AZD1208 Suppresses Tumor Growth and Synergistically Interacts with Akt Inhibition in Gastric Cancer Cells. Cancer Res Treat 2018; 51:451-463. [PMID: 29879757 PMCID: PMC6473293 DOI: 10.4143/crt.2017.341] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 05/30/2018] [Indexed: 12/13/2022] Open
Abstract
Purpose Pim kinases are highly conserved serine/threonine kinases, and different expression patterns of each isoform (Pim-1, Pim-2, and Pim-3) have been observed in various types of human cancers, including gastric cancer. AZD1208 is a potent and selective inhibitor that affects all three isoforms of Pim. We investigated the effects of AZD1208 as a single agent and in combination with an Akt inhibitor in gastric cancer cells. Materials and Methods The antitumor activity of AZD1208 with/without an Akt inhibitor was evaluated in a large panel of gastric cancer cell lines through growth inhibition assays. The underlying mechanism was also examined by western blotting, immunofluorescence assay, and cell cycle analysis. Results AZD1208 treatment decreased gastric cancer cell proliferation rates and induced autophagy only in long-term culture systems. Light chain 3B (LC3B), a marker of autophagy, was increased in sensitive cells in a dose-dependent manner with AZD1208 treatment, which suggested that the growth inhibition effect of AZD1208 was achieved through autophagy, not apoptosis. Moreover, we found that cells damaged by Pim inhibition were repaired by activation of the DNA damage repair pathway, which promoted cell survival and led the cells to become resistant to AZD1208. We also confirmed that the combination of an Akt inhibitor with AZD1208 produced a highly synergistic effect in gastric cancer cell lines. Conclusion Treatment with AZD1208 alone induced considerable cell death through autophagy in gastric cancer cells. Moreover, the combination of AZD1208 with an Akt inhibitor showed synergistic antitumor effects through regulation of the DNA damage repair pathway.
Collapse
Affiliation(s)
- Miso Lee
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Kyung-Hun Lee
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ahrum Min
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jeongeun Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Seongyeong Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Hyemin Jang
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Jee Min Lim
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - So Hyeon Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Dong-Hyeon Ha
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Won Jae Jeong
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Koung Jin Suh
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yae-Won Yang
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Tae Yong Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Do-Youn Oh
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yung-Jue Bang
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Seock-Ah Im
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
119
|
Zhang L, Feng C, Zhou Y, Zhou Q. Dysregulated genes targeted by microRNAs and metabolic pathways in bladder cancer revealed by bioinformatics methods. Oncol Lett 2018; 15:9617-9624. [PMID: 29928337 PMCID: PMC6004713 DOI: 10.3892/ol.2018.8602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/28/2017] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to identify bladder cancer-associated microRNAs (miRNAs) and target genes, and further analyze the potential molecular mechanisms involved in bladder cancer. The mRNA and miRNA expression profiling dataset GSE40355 was downloaded from the Gene Expression Omnibus database. The Limma package in R was used to identify differential expression levels. The Human microRNA Disease Database was used to identify bladder cancer-associated miRNAs and Target prediction programs were used to screen for miRNA target genes. Enrichment analysis was performed to identify biological functions. The Database for Annotation, Visualization and Integration Discovery was used to perform OMIM_DISEASE analysis, and then protein-protein interaction (PPI) analysis was performed to identify hubs with biological essentiality. ClusterONE plugins in cytoscape were used to screen modules and the InterPro database was used to perform protein domain enrichment analysis. A group of 573 disease dysregulated genes were identified in the present study. Enrichment analysis indicated that the muscle organ development and vascular smooth muscle contraction pathways were significantly enriched in terms of disease dysregulated genes. miRNAs targets (frizzled class receptor 8, EYA transcriptional coactivator and phosphatase 4, sacsin molecular chaperone, calcium voltage-gated channel auxiliary subunit β2, peptidase inhibitor 15 and catenin α2) were mostly associated with bladder cancer. PPI analysis revealed that calmodulin 1 (CALM1), Jun proto-oncogene, AP-1 transcription factor subunit (JUN) and insulin like growth factor 1 (IGF1) were the important hub nodes. Additionally, protein domain enrichment analysis indicated that the serine/threonine protein kinase active site was enriched in module 1 extracted from the PPI network. Overall, the results suggested that the IGF signaling pathway and RAS/MEK/extracellular signal-regulated kinase transduction signaling may exert vital molecular mechanisms in bladder cancer, and that CALM1, JUN and IGF1 may be used as novel potential therapeutic targets.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Urology, Wuhan No. 6 Hospital, Wuhan, Hubei 430015, P.R. China
| | - Cuihua Feng
- Department of Gastrointestinal Surgery, Wuhan No. 6 Hospital, Wuhan, Hubei 430015, P.R. China
| | - Yamin Zhou
- Intensive Care Unit, Wuhan No. 6 Hospital, Wuhan, Hubei 430015, P.R. China
| | - Qiong Zhou
- Department of Urology, Wuhan No. 6 Hospital, Wuhan, Hubei 430015, P.R. China
| |
Collapse
|
120
|
de Bock CE, Cools J. JAK3 mutations and HOXA9 expression are important cooperating events in T-cell acute lymphoblastic leukemia. Mol Cell Oncol 2018; 5:e1458014. [PMID: 30250904 PMCID: PMC6149783 DOI: 10.1080/23723556.2018.1458014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 11/28/2022]
Abstract
Sequencing data from large cohorts of T-cell acute lymphoblastic leukemia patients identified a significant association between the presence of JAK3 mutations and ectopic HOXA9 expression. Mouse models using a constitutive or novel inducible retroviral expression vector to express the JAK3(M511I) mutant and HOXA9 led to the development of an aggressive leukemia in vivo, with shorter latency than JAK3(M511I) or HOXA9 alone. This was primarily due to the co-binding of STAT5 and HOXA9 to the same genomic loci leading to increased oncogenic JAK-STAT signaling.
Collapse
Affiliation(s)
- Charles E de Bock
- KU Leuven, Center for Human Genetics, Leuven, Belgium.,VIB, Center for Cancer Biology, Leuven, Belgium
| | - Jan Cools
- KU Leuven, Center for Human Genetics, Leuven, Belgium.,VIB, Center for Cancer Biology, Leuven, Belgium
| |
Collapse
|
121
|
Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanisms. Eur J Med Chem 2018; 150:9-29. [DOI: 10.1016/j.ejmech.2018.02.065] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/13/2018] [Accepted: 02/20/2018] [Indexed: 12/25/2022]
|
122
|
A novel, dual pan-PIM/FLT3 inhibitor SEL24 exhibits broad therapeutic potential in acute myeloid leukemia. Oncotarget 2018; 9:16917-16931. [PMID: 29682194 PMCID: PMC5908295 DOI: 10.18632/oncotarget.24747] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 02/24/2018] [Indexed: 11/25/2022] Open
Abstract
Fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) is one of the most common genetic lesions in acute myeloid leukemia patients (AML). Although FLT3 tyrosine kinase inhibitors initially exhibit clinical activity, resistance to treatment inevitably occurs within months. PIM kinases are thought to be major drivers of the resistance phenotype and their inhibition in relapsed samples restores cell sensitivity to FLT3 inhibitors. Thus, simultaneous PIM and FLT3 inhibition represents a promising strategy in AML therapy. For such reasons, we have developed SEL24-B489 - a potent, dual PIM and FLT3-ITD inhibitor. SEL24-B489 exhibited significantly broader on-target activity in AML cell lines and primary AML blasts than selective FLT3-ITD or PIM inhibitors. SEL24-B489 also demonstrated marked activity in cells bearing FLT3 tyrosine kinase domain (TKD) mutations that lead to FLT3 inhibitor resistance. Moreover, SEL24-B489 inhibited the growth of a broad panel of AML cell lines in xenograft models with a clear pharmacodynamic-pharmacokinetic relationship. Taken together, our data highlight the unique dual activity of the SEL24-B489 that abrogates the activity of signaling circuits involved in proliferation, inhibition of apoptosis and protein translation/metabolism. These results underscore the therapeutic potential of the dual PIM/FLT3-ITD inhibitor for the treatment of AML.
Collapse
|
123
|
Computer aided drug design based on 3D-QSAR and molecular docking studies of 5-(1H-indol-5-yl)-1,3,4-thiadiazol-2-amine derivatives as PIM2 inhibitors: a proposal to chemists. In Silico Pharmacol 2018; 6:5. [PMID: 30607318 DOI: 10.1007/s40203-018-0043-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/19/2018] [Indexed: 10/17/2022] Open
Abstract
PIM2 kinase plays a crucial role in the cell cycle events including survival, proliferation, and differentiation in normal and neoplastic neuronal cells. Thus, it is regarded as an essential target for cancer pharmaceutical. Design of novel 5-(1H-indol-5-yl)-1,3,4-thiadiazol-2-amine derivatives with enhanced PIM2 inhibitory activity. A series of twenty-five PIM2 inhibitors reported in the literature containing 5-(1H-indol-5-yl)-1,3,4-thiadiazol-2-amines scaffold was studied by using two computational techniques, namely, three-dimensional quantitative structure activity relationship (3D-QSAR) and molecular docking. The comparative molecular field analysis (CoMFA) and comparative molecular similarity indexes analysis (CoMSIA) studies were developed using nineteen molecules having pIC50 ranging from 8.222 to 4.157. The best generated CoMFA and CoMSIA models exhibit conventional determination coefficients R2 of 0.91 and 0.90 as well as the Leave One Out cross-validation determination coefficients Q2 of 0.68 and 0.62, respectively. Moreover, the predictive ability of those models was evaluated by the external validation using a test set of six compounds with predicted determination coefficients Rtest 2 of 0.96 and 0.96, respectively. Besides, y-randomization test was also performed to validate our 3D-QSAR models. The most and the least active compounds were docked into the active site of the protein (PDB ID: 4 × 7q) to confirm those obtained results from 3D-QSAR models and elucidate the binding mode between this kind of compounds and the PIM2 enzyme. These satisfactory results are not offered help only to understand the binding mode of 5-(1H-indol-5-yl)-1,3,4-thiadiazol series compounds into this kind of targets, but provide information to design new potent PIM2 inhibitors.
Collapse
|
124
|
Aouidate A, Ghaleb A, Ghamali M, Chtita S, Ousaa A, Choukrad M, Sbai A, Bouachrine M, Lakhlifi T. QSAR study and rustic ligand-based virtual screening in a search for aminooxadiazole derivatives as PIM1 inhibitors. Chem Cent J 2018; 12:32. [PMID: 29564572 PMCID: PMC5862716 DOI: 10.1186/s13065-018-0401-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 03/09/2018] [Indexed: 12/11/2022] Open
Abstract
Background Quantitative structure–activity relationship (QSAR) was carried out to study a series of aminooxadiazoles as PIM1 inhibitors having pki ranging from 5.59 to 9.62 (ki in nM). The present study was performed using Genetic Algorithm method of variable selection (GFA), multiple linear regression analysis (MLR) and non-linear multiple regression analysis (MNLR) to build unambiguous QSAR models of 34 substituted aminooxadiazoles toward PIM1 inhibitory activity based on topological descriptors. Results Results showed that the MLR and MNLR predict activity in a satisfactory manner. We concluded that both models provide a high agreement between the predicted and observed values of PIM1 inhibitory activity. Also, they exhibit good stability towards data variations for the validation methods. Furthermore, based on the similarity principle we performed a database screening to identify putative PIM1 candidates inhibitors, and predict their inhibitory activities using the proposed MLR model. Conclusions This approach can be easily handled by chemists, to distinguish, which ones among the future designed aminooxadiazoles structures could be lead-like and those that couldn’t be, thus, they can be eliminated in the early stages of drug discovery process.![]()
Collapse
Affiliation(s)
- Adnane Aouidate
- MCNSL, School of Sciences, Moulay Ismail University, Meknes, Morocco.
| | - Adib Ghaleb
- MCNSL, School of Sciences, Moulay Ismail University, Meknes, Morocco
| | - Mounir Ghamali
- MCNSL, School of Sciences, Moulay Ismail University, Meknes, Morocco
| | - Samir Chtita
- MCNSL, School of Sciences, Moulay Ismail University, Meknes, Morocco
| | - Abdellah Ousaa
- MCNSL, School of Sciences, Moulay Ismail University, Meknes, Morocco
| | - M'barek Choukrad
- MCNSL, School of Sciences, Moulay Ismail University, Meknes, Morocco
| | - Abdelouahid Sbai
- MCNSL, School of Sciences, Moulay Ismail University, Meknes, Morocco
| | | | - Tahar Lakhlifi
- MCNSL, School of Sciences, Moulay Ismail University, Meknes, Morocco
| |
Collapse
|
125
|
Padi SKR, Luevano LA, An N, Pandey R, Singh N, Song JH, Aster JC, Yu XZ, Mehrotra S, Kraft AS. Targeting the PIM protein kinases for the treatment of a T-cell acute lymphoblastic leukemia subset. Oncotarget 2018; 8:30199-30216. [PMID: 28415816 PMCID: PMC5444737 DOI: 10.18632/oncotarget.16320] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 03/08/2017] [Indexed: 12/13/2022] Open
Abstract
New approaches are needed for the treatment of patients with T-cell acute lymphoblastic leukemia (T-ALL) who fail to achieve remission with chemotherapy. Analysis of the effects of pan-PIM protein kinase inhibitors on human T-ALL cell lines demonstrated that the sensitive cell lines expressed higher PIM1 protein kinase levels, whereas T-ALL cell lines with NOTCH mutations tended to have lower levels of PIM1 kinase and were insensitive to these inhibitors. NOTCH-mutant cells selected for resistance to gamma secretase inhibitors developed elevated PIM1 kinase levels and increased sensitivity to PIM inhibitors. Gene profiling using a publically available T-ALL dataset demonstrated overexpression of PIM1 in the majority of early T-cell precursor (ETP)-ALLs and a small subset of non-ETP ALL. While the PIM inhibitors blocked growth, they also stimulated ERK and STAT5 phosphorylation, demonstrating that activation of additional signaling pathways occurs with PIM inhibitor treatment. To block these pathways, Ponatinib, a broadly active tyrosine kinase inhibitor (TKI) used to treat chronic myelogenous leukemia, was added to this PIM-inhibitor regimen. The combination of Ponatinib with a PIM inhibitor resulted in synergistic T-ALL growth inhibition and marked apoptotic cell death. Treatment of mice engrafted with human T-ALL with these two agents significantly decreased the tumor burden and improved the survival of treated mice. This dual therapy has the potential to be developed as a novel approach to treat T-ALL with high PIM expression.
Collapse
Affiliation(s)
- Sathish K R Padi
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Libia A Luevano
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Ningfei An
- Department of Pathology, Pediatric Hematology/Oncology Division, University of Chicago, Chicago, IL, USA
| | - Ritu Pandey
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.,Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Neha Singh
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Jin H Song
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.,Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Shikhar Mehrotra
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Andrew S Kraft
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
126
|
Xu J, Zhu X, Li Q, Chen C, Guo Z, Tan Z, Zheng C, Ge M. Loss of PIM1 correlates with progression and prognosis of salivary adenoid cystic carcinoma (SACC). Cancer Cell Int 2018; 18:22. [PMID: 29467592 PMCID: PMC5819291 DOI: 10.1186/s12935-018-0518-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/03/2018] [Indexed: 12/31/2022] Open
Abstract
Background Increasing evidence indicates that PIM1 is a potential prognostic marker and target for cancer treatment but its precise mechanisms of action remain to be determined in salivary adenoid cystic carcinoma (SACC). This study aims to decipher the prognostic and mechanistic role of PIM1 in progression of SACC cells and tumor tissues. Methods A SACC cell line (ACC-M) was transfected with shRNA plasmids targeting the PIM1 gene. The expression levels of PIM1, RUNX3 and p21 were measured by quantitative real-time PCR and western blot. Subcellular translocalization of RUNX3 and p21 proteins was assessed using immunofluorescence, and cell cycle phase was quantified using flow cytometry. A total of 97 SACC patients were retrospectively analyzed by clinicopathologic characteristics and survival outcomes. Results After down-regulation of PIM1 in ACC-M cells, RUNX3 and p21 proteins were translocated from cytoplasm to nucleus, with a decrease of p21 expression and increase of G0/G1 phase cells. PIM1 and RUNX3 levels show a distinct covariance. PIM1 is associated with T-status, lymph node involvement, nerve invasion, and distant metastasis in SACC tissues. Patients with low PIM1 level had a better outcome than those with higher PIM1 level. Conclusions PIM1 is multifunctional in ACC-M cells and it serves as a neoteric therapeutic target and potential prognostic marker for SACC patients.
Collapse
Affiliation(s)
- Jiajie Xu
- 1Department of Head and Neck Surgery, Zhejiang Cancer Hospital, No. 38 Guangji Road, Hangzhou, 310022 Zhejiang China
| | - Xin Zhu
- 2Zhejiang Cancer Research Institute, Hangzhou, 310022 China
| | - Qingling Li
- 3Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022 China
| | - Chao Chen
- 1Department of Head and Neck Surgery, Zhejiang Cancer Hospital, No. 38 Guangji Road, Hangzhou, 310022 Zhejiang China
| | - Zhenying Guo
- 4Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, 310022 China
| | - Zhuo Tan
- 1Department of Head and Neck Surgery, Zhejiang Cancer Hospital, No. 38 Guangji Road, Hangzhou, 310022 Zhejiang China
| | - Chuanming Zheng
- 1Department of Head and Neck Surgery, Zhejiang Cancer Hospital, No. 38 Guangji Road, Hangzhou, 310022 Zhejiang China
| | - Minghua Ge
- 1Department of Head and Neck Surgery, Zhejiang Cancer Hospital, No. 38 Guangji Road, Hangzhou, 310022 Zhejiang China
| |
Collapse
|
127
|
Lv DL, Chen L, Ding W, Zhang W, Wang HL, Wang S, Liu WB. Ginsenoside G-Rh2 synergizes with SMI-4a in anti-melanoma activity through autophagic cell death. Chin Med 2018; 13:11. [PMID: 29483938 PMCID: PMC5820787 DOI: 10.1186/s13020-018-0168-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/12/2018] [Indexed: 12/15/2022] Open
Abstract
Background Melanoma is a leading cause of cancer death worldwide, and SMI-4a and G-Rh2 exert anti-tumor activity in multiple cancer. However, SMI-4a as well as a synergistic relationship between SMI-4a and G-Rh2 in anti-melanoma capacity are still unknown. Therefore, we investigated the effects of SMI-4a and combined SMI-4a with G-Rh2 on the viability, apoptosis and autophagy of melanoma, and to preliminarily explore the underlying mechanism of SMI-4a and combined SMI-4a with G-Rh2 in inhibiting tumor growth. Methods Cell viability was examined with cell counting Kit 8 assay and colony formation assay; Apoptosis was evaluated by flow cytometry and Caspase 3/7 activity assay; Western blotting was used to test proteins related to autophagy and the AKT/mammalian target of rapamycin (mTOR) signaling pathway; Tumor xenograft model in BALB/c nude mice was performed to evaluate the effects of SMI-4a and combined SMI-4a with G-Rh2 in anti-melanoma in vivo. Results SMI-4a, a pharmacological inhibitor of PIM-1, could decrease cell viability, induce apoptosis, and promote Caspase 3/7 activity in both A375 and G361 melanoma cells, and SMI-4a inhibited tumor growth by inducing autophagy via down-regulating AKT/mTOR axis in melanoma cells. Furthermore, G-Rh2 amplified the anti-tumor activity of SMI-4a in melanoma cells via strengthening autophagy. Conclusions Our results suggested that SMI-4a could enhance autophagy-inducing apoptosis by inhibiting AKT/mTOR signaling pathway in melanoma cells, and G-Rh2 could enhance the effects of SMI-4a against melanoma cancer via amplifying autophagy induction. This study demonstrates that combined SMI-4a and G-Rh2 might be a novel alternative strategy for melanoma treatment. Electronic supplementary material The online version of this article (10.1186/s13020-018-0168-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Da-Lun Lv
- 1Department of Burn and Plastic Surgery, First Affiliated Hospital of Wannan Medical College, Jinghu District, Wuhu, 241000 Anhui China
| | - Lei Chen
- 1Department of Burn and Plastic Surgery, First Affiliated Hospital of Wannan Medical College, Jinghu District, Wuhu, 241000 Anhui China
| | - Wei Ding
- 1Department of Burn and Plastic Surgery, First Affiliated Hospital of Wannan Medical College, Jinghu District, Wuhu, 241000 Anhui China
| | - Wei Zhang
- 1Department of Burn and Plastic Surgery, First Affiliated Hospital of Wannan Medical College, Jinghu District, Wuhu, 241000 Anhui China
| | - He-Li Wang
- 1Department of Burn and Plastic Surgery, First Affiliated Hospital of Wannan Medical College, Jinghu District, Wuhu, 241000 Anhui China
| | - Shuai Wang
- 1Department of Burn and Plastic Surgery, First Affiliated Hospital of Wannan Medical College, Jinghu District, Wuhu, 241000 Anhui China
| | - Wen-Bei Liu
- 2Dermatological Department, First Affiliated Hospital of Wannan Medical College, Jinghu District, Wuhu, 241000 Anhui China
| |
Collapse
|
128
|
High PIM1 expression is a biomarker of T-cell acute lymphoblastic leukemia with JAK/STAT activation or t(6;7)(p21;q34)/TRB@-PIM1 rearrangement. Leukemia 2018; 32:1807-1810. [PMID: 29479063 DOI: 10.1038/s41375-018-0031-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/10/2018] [Indexed: 02/06/2023]
|
129
|
Deoxynucleosides with benzimidazoles as aglycone moiety are potent anticancer agents. Eur J Pharmacol 2018; 820:146-155. [DOI: 10.1016/j.ejphar.2017.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/01/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
|
130
|
Insulin receptor substrate 1 is a substrate of the Pim protein kinases. Oncotarget 2018; 7:20152-65. [PMID: 26956053 PMCID: PMC4991444 DOI: 10.18632/oncotarget.7918] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/14/2016] [Indexed: 01/05/2023] Open
Abstract
The Pim family of serine/threonine protein kinases (Pim 1, 2, and 3) contribute to cellular transformation by regulating glucose metabolism, protein synthesis, and mitochondrial oxidative phosphorylation. Drugs targeting the Pim protein kinases are being tested in phase I/II clinical trials for the treatment of hematopoietic malignancies. The goal of these studies was to identify Pim substrate(s) that could help define the pathway regulated by these enzymes and potentially serve as a biomarker of Pim activity. To identify novel substrates, bioinformatics analysis was carried out to identify proteins containing a consensus Pim phosphorylation site. This analysis identified the insulin receptor substrate 1 and 2 (IRS1/2) as potential Pim substrates. Experiments were carried out in tissue culture, animals, and human samples from phase I trials to validate this observation and define the biologic readout of this phosphorylation. Our study demonstrates in both malignant and normal cells using either genetic or pharmacological inhibition of the Pim kinases or overexpression of this family of enzymes that human IRS1S1101 and IRS2S1149 are Pim substrates. In xenograft tumor experiments and in a human phase I clinical trial, a pan-Pim inhibitor administered in vivo to animals or humans decreased IRS1S1101 phosphorylation in tumor tissues. This phosphorylation was shown to have effects on the half-life of the IRS family of proteins, suggesting a role in insulin or IGF signaling. These results demonstrate that IRS1S1101 is a novel substrate for the Pim kinases and provide a novel marker for evaluation of Pim inhibitor therapy.
Collapse
|
131
|
Puente-Moncada N, Costales P, Antolín I, Núñez LE, Oro P, Hermosilla MA, Pérez-Escuredo J, Ríos-Lombardía N, Sanchez-Sanchez AM, Luño E, Rodríguez C, Martín V, Morís F. Inhibition of FLT3 and PIM Kinases by EC-70124 Exerts Potent Activity in Preclinical Models of Acute Myeloid Leukemia. Mol Cancer Ther 2018; 17:614-624. [DOI: 10.1158/1535-7163.mct-17-0530] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/19/2017] [Accepted: 12/15/2017] [Indexed: 11/16/2022]
|
132
|
Asati V, Thakur SS, Upmanyu N, Bharti SK. Virtual Screening, Molecular Docking, and DFT Studies of Some Thiazolidine-2,4-diones as Potential PIM-1 Kinase Inhibitors. ChemistrySelect 2018. [DOI: 10.1002/slct.201702392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Vivek Asati
- Institute of Pharmaceutical Sciences, Guru; Ghasidas Vishwavidyalaya (A Central University); Bilaspur- 495009 Chhattisgarh India
- NRI Institute of Pharmaceutical Sciences; Bhopal, MP India
| | - Santosh S. Thakur
- Department of Chemistry; Guru Ghasidas Vishwavidyalaya (A Central University); Bilaspur- 495009 Chhattisgarh India
| | - Neeraj Upmanyu
- School of Pharmacy & Research; People's University; Bhopal, MP India
| | - Sanjay K. Bharti
- Institute of Pharmaceutical Sciences, Guru; Ghasidas Vishwavidyalaya (A Central University); Bilaspur- 495009 Chhattisgarh India
| |
Collapse
|
133
|
Irie T, Sawa M. 7-Azaindole: A Versatile Scaffold for Developing Kinase Inhibitors. Chem Pharm Bull (Tokyo) 2018; 66:29-36. [DOI: 10.1248/cpb.c17-00380] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Masaaki Sawa
- Research and Development, Carna Biosciences, Inc
| |
Collapse
|
134
|
Santio NM, Landor SKJ, Vahtera L, Ylä-Pelto J, Paloniemi E, Imanishi SY, Corthals G, Varjosalo M, Manoharan GB, Uri A, Lendahl U, Sahlgren C, Koskinen PJ. Phosphorylation of Notch1 by Pim kinases promotes oncogenic signaling in breast and prostate cancer cells. Oncotarget 2017; 7:43220-43238. [PMID: 27281612 PMCID: PMC5190019 DOI: 10.18632/oncotarget.9215] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/23/2016] [Indexed: 12/21/2022] Open
Abstract
Tumorigenesis is a multistep process involving co-operation between several deregulated oncoproteins. In this study, we unravel previously unrecognized interactions and crosstalk between Pim kinases and the Notch signaling pathway, with implications for both breast and prostate cancer. We identify Notch1 and Notch3, but not Notch2, as novel Pim substrates and demonstrate that for Notch1, the serine residue 2152 is phosphorylated by all three Pim family kinases. This target site is located in the second nuclear localization sequence (NLS) of the Notch1 intracellular domain (N1ICD), and is shown to be important for both nuclear localization and transcriptional activity of N1ICD. Phosphorylation-dependent stimulation of Notch1 signaling promotes migration of prostate cancer cells, balances glucose metabolism in breast cancer cells, and supports in vivo growth of both types of cancer cells on chick embryo chorioallantoic membranes. Furthermore, Pim-induced growth of orthotopic prostate xenografts in mice is associated with enhanced nuclear Notch1 activity. Finally, simultaneous inhibition of Pim and Notch abrogates the cellular responses more efficiently than individual treatments, opening up new vistas for combinatorial cancer therapy.
Collapse
Affiliation(s)
- Niina M Santio
- Section of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland.,Drug Research Doctoral Programme, University of Turku, Turku, Finland
| | - Sebastian K-J Landor
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Laura Vahtera
- Section of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland
| | - Jani Ylä-Pelto
- Section of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland.,Drug Research Doctoral Programme, University of Turku, Turku, Finland
| | | | - Susumu Y Imanishi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,Current address: Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Garry Corthals
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,Current address: Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Asko Uri
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Sahlgren
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Päivi J Koskinen
- Section of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
135
|
Watanabe C, Watanabe H, Fukuzawa K, Parker LJ, Okiyama Y, Yuki H, Yokoyama S, Nakano H, Tanaka S, Honma T. Theoretical Analysis of Activity Cliffs among Benzofuranone-Class Pim1 Inhibitors Using the Fragment Molecular Orbital Method with Molecular Mechanics Poisson-Boltzmann Surface Area (FMO+MM-PBSA) Approach. J Chem Inf Model 2017; 57:2996-3010. [PMID: 29111719 DOI: 10.1021/acs.jcim.7b00110] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Significant activity changes due to small structural changes (i.e., activity cliffs) of serine/threonine kinase Pim1 inhibitors were studied theoretically using the fragment molecular orbital method with molecular mechanics Poisson-Boltzmann surface area (FMO+MM-PBSA) approach. This methodology enables quantum-chemical calculations for large biomolecules with solvation. In the course of drug discovery targeting Pim1, six benzofuranone-class inhibitors were found to differ only in the position of the indole-ring nitrogen atom. By comparing the various qualities of complex structures based on X-ray, classical molecular mechanics (MM)-optimized, and quantum/molecular mechanics (QM/MM)-optimized structures, we found that the QM/MM-optimized structures provided the best correlation (R2 = 0.85) between pIC50 and the calculated FMO+MM-PBSA binding energy. Combining the classical solvation energy with the QM binding energy was important to increase the correlation. In addition, decomposition of the interaction energy into various physicochemical components by pair interaction energy decomposition analysis suggested that CH-π and electrostatic interactions mainly caused the activity differences.
Collapse
Affiliation(s)
- Chiduru Watanabe
- RIKEN Center for Life Science Technologies , 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.,Institute of Industrial Science, The University of Tokyo , 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Hirofumi Watanabe
- RIKEN Center for Life Science Technologies , 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kaori Fukuzawa
- Institute of Industrial Science, The University of Tokyo , 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.,Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University , 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan
| | - Lorien J Parker
- RIKEN Structural Biology Laboratory , 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.,Department of Structural Biology, St. Vincent's Institute , 9 Princes Street, Fitzroy, Victoria 3065, Australia
| | - Yoshio Okiyama
- RIKEN Center for Life Science Technologies , 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hitomi Yuki
- RIKEN Center for Life Science Technologies , 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shigeyuki Yokoyama
- RIKEN Structural Biology Laboratory , 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hirofumi Nakano
- Drug Discovery Initiative, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shigenori Tanaka
- Graduate School of System Informatics, Kobe University , 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Teruki Honma
- RIKEN Center for Life Science Technologies , 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
136
|
Abstract
PURPOSE OF REVIEW The purpose of the review was to provide a contemporary update of novel agents and targets under investigation in myelofibrosis in the Janus kinase (JAK) inhibitor era. RECENT FINDINGS Myelofibrosis (MF) is a clonal stem cell disease characterized by marrow fibrosis and a heterogeneous disease phenotype with a variable degree of splenomegaly, cytopenias, and constitutional symptoms that significantly impact quality of life and survival. Overactive JAK/STAT signaling is a hallmark of MF. The only approved therapy for MF, JAK1/2 inhibitor ruxolitinib, can ameliorate splenomegaly, improve symptoms, and prolong survival in some patients. Therapeutic challenges remain, however. Myelosuppression limits the use of ruxolitinib in some patients, eventual drug resistance is common, and the underlying malignant clone persists despite therapy. A deeper understanding of the pathogenesis of MF has informed the development of additional agents. Promising targets under investigation include JAK1 and JAK2 and downstream intermediates in related signaling pathways, epigenetic modifiers, pro-inflammatory cytokines, and immune regulators.
Collapse
Affiliation(s)
- Kristen Pettit
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL, 60637, USA
| | - Olatoyosi Odenike
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL, 60637, USA.
| |
Collapse
|
137
|
Santio NM, Koskinen PJ. PIM kinases: From survival factors to regulators of cell motility. Int J Biochem Cell Biol 2017; 93:74-85. [DOI: 10.1016/j.biocel.2017.10.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/26/2017] [Accepted: 10/31/2017] [Indexed: 01/01/2023]
|
138
|
Structural analysis of PIM1 kinase complexes with ATP-competitive inhibitors. Sci Rep 2017; 7:13399. [PMID: 29042609 PMCID: PMC5645348 DOI: 10.1038/s41598-017-13557-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/25/2017] [Indexed: 01/15/2023] Open
Abstract
PIM1 is an oncogenic kinase overexpressed in a number of cancers where it correlates with poor prognosis. Several studies demonstrated that inhibition of PIM1 activity is an attractive strategy in fighting overexpressing cancers, while distinct structural features of ATP binding pocket make PIM1 an inviting target for the design of selective inhibitors. To facilitate development of specific PIM1 inhibitors, in this study we report three crystal structures of ATP-competitive inhibitors at the ATP binding pocket of PIM1. Two of the reported structures (CX-4945 and Ro-3306) explain the off-target effect on PIM1 of respectively casein kinase 2 and cyclin-dependent kinase 1 dedicated inhibitors. In turn, the structure with CX-6258 demonstrates a binding mode of a potent, selective inhibitor of PIM1, PIM2, PIM3 and Flt-3 kinases. The consequences of our findings for future inhibitor development are discussed.
Collapse
|
139
|
Henley ZA, Bax BD, Inglesby LM, Champigny A, Gaines S, Faulder P, Le J, Thomas DA, Washio Y, Baldwin IR. From PIM1 to PI3Kδ via GSK3β: Target Hopping through the Kinome. ACS Med Chem Lett 2017; 8:1093-1098. [PMID: 29057057 DOI: 10.1021/acsmedchemlett.7b00296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/05/2017] [Indexed: 02/07/2023] Open
Abstract
Selective inhibitors of phosphoinositide 3-kinase delta are of interest for the treatment of inflammatory diseases. Initial optimization of a 3-substituted indazole hit compound targeting the kinase PIM1 focused on improving selectivity over GSK3β through consideration of differences in the ATP binding pockets. Continued kinase cross-screening showed PI3Kδ activity in a series of 4,6-disubstituted indazole compounds, and subsequent structure-activity relationship exploration led to the discovery of an indole-containing lead compound as a potent PI3Kδ inhibitor with selectivity over the other PI3K isoforms.
Collapse
Affiliation(s)
- Zoë A. Henley
- Refractory Respiratory Inflammation DPU, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Figueiredo P, Ferro C, Kemell M, Liu Z, Kiriazis A, Lintinen K, Florindo HF, Yli-Kauhaluoma J, Hirvonen J, Kostiainen MA, Santos HA. Functionalization of carboxylated lignin nanoparticles for targeted and pH-responsive delivery of anticancer drugs. Nanomedicine (Lond) 2017; 12:2581-2596. [PMID: 28960138 DOI: 10.2217/nnm-2017-0219] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM To carboxylate kraft lignin toward the functionalization of carboxylated lignin nanoparticles (CLNPs) with a block copolymer made of PEG, poly(histidine) and a cell-penetrating peptide and then evaluate the chemotherapeutic potential of the innovative nanoparticles. MATERIALS & METHODS The produced nanoparticles were characterized and evaluated in vitro for stability and biocompatibility and the drug release profiles and antiproliferative effect were also assessed. RESULTS The prepared CLNPs showed spherical shape and good size distribution, good stability in physiological media and low cytotoxicity in all the tested cell lines. A poorly water-soluble cytotoxic agent was successfully loaded into the CLNPs, improving its release profiles in a pH-sensitive manner and showing an enhanced antiproliferative effect in the different cancer cells compared with a normal endothelial cell line. CONCLUSION The resulting CLNPs are promising candidates for anticancer therapy.
Collapse
Affiliation(s)
- Patrícia Figueiredo
- Drug Research Program, Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Cláudio Ferro
- Drug Research Program, Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.,Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Marianna Kemell
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Zehua Liu
- Drug Research Program, Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Alexandros Kiriazis
- Drug Research Program, Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Kalle Lintinen
- Biohybrid Materials, Department of Bioproducts & Biosystems, Aalto University, FI-00076, Aalto, Finland
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts & Biosystems, Aalto University, FI-00076, Aalto, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.,Helsinki Institute of Life Science, HiLIFE, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
141
|
Du W, Chen T, Ni Y, Hou X, Yu Y, Zhou Q, Wu F, Tang W, Shi G. Role of PIM2 in allergic asthma. Mol Med Rep 2017; 16:7504-7512. [PMID: 28944837 PMCID: PMC5865883 DOI: 10.3892/mmr.2017.7499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 07/21/2017] [Indexed: 01/11/2023] Open
Abstract
T cell-associated inflammation, particularly type 2 inflammation, has an important role in asthma pathogenesis, which is suppressed by regulatory T cells (Tregs). Proviral integration site for Moloney murine leukemia virus 2 (PIM2), a member off the serine/threonine kinase family, promotes the growth and survival of T cells and influences the function of Treg cells. However, whether PIM2 affects asthma pathogenesis remains unclear. Peripheral blood mononuclear cells and Treg cells from asthmatic and healthy subjects were obtained, and the expression level of PIM2 was measured by reverse transcription-quantitative polymerase chain reaction and immunocytochemistry. In addition, BALB/c female mice sensitized and challenged by ovalbumin were used as an asthma model, and PIM2 inhibitor was injected during the challenge period to observe the effect of PIM2 on asthma. The asthma symptoms were recorded, and airway hyper-responsiveness (AHR), expression levels of cytokines in the serum or bronchoalveolar lavage fluid (BALF), and the number of BALF leukocytes were evaluated. In addition, hematoxylin and eosin staining and immunohistochemistry of lung tissues was performed. The results demonstrated that PIM2 was overexpressed in patients with asthma in natural Treg cells. Inhibition of PIM2 attenuated asthma symptoms, and improved AHR and airway inflammation compared with asthmatic mice without inhibition of PIM2. In addition, expression levels of interleukin (IL)-10 and forkhead box protein 3 (FOXP3) in BALF were increased following PIM2 inhibition (IL-10, 470.3±21.78 vs. 533.7±25.55 pg/ml, P<0.05; FOXP3, 259±4.68 vs. 279.3±3.68 pg/ml; asthma and PIM2 inhibition groups, respectively; P<0.05). In conclusion, PIM2 may exhibit an important role in asthma pathogenesis and exacerbate AHR, airway inflammation and asthma symptoms. These effects of PIM2 may be dependent on Treg cells and the secretion of IL-10 by Tregs. The results of the present study suggest that PIM2 may be a potential target molecule for asthma treatment.
Collapse
Affiliation(s)
- Wei Du
- Department of Pulmonary Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Tiantian Chen
- Department of Pulmonary Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Yingmeng Ni
- Department of Pulmonary Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Xiaoxia Hou
- Department of Pulmonary Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Youchao Yu
- Department of Pulmonary Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Qi Zhou
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopedics and Traumatology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Fang Wu
- Department of Geratology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Wei Tang
- Department of Pulmonary Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Guochao Shi
- Department of Pulmonary Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| |
Collapse
|
142
|
Barberis C, Moorcroft N, Arendt C, Levit M, Moreno-Mazza S, Batchelor J, Mechin I, Majid T. Discovery of N-substituted 7-azaindoles as PIM1 kinase inhibitors - Part I. Bioorg Med Chem Lett 2017; 27:4730-4734. [PMID: 28947155 DOI: 10.1016/j.bmcl.2017.08.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/25/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
Abstract
Novel N-substituted azaindoles have been discovered as PIM1 inhibitors. X-ray structures have played a significant role in orienting the chemistry effort in the initial phase of hit confirmation. Disclosure of an unconventional binding mode for 1 and 2, as demonstrated by X-ray crystallography, is presented and was an important factor in selecting and advancing a lead series.
Collapse
Affiliation(s)
- Claude Barberis
- IDD Medicinal Chemistry, Sanofi Genzyme, 153 Second Avenue, Waltham MA 02451, USA.
| | - Neil Moorcroft
- IDD Medicinal Chemistry, Sanofi Genzyme, 153 Second Avenue, Waltham MA 02451, USA
| | - Chris Arendt
- Oncology Biochemistry/Biology, Sanofi Genzyme, 270 Albany Street, Cambridge, MA 02139, USA
| | - Mikhail Levit
- Oncology Biochemistry/Biology, Sanofi Genzyme, 270 Albany Street, Cambridge, MA 02139, USA
| | - Sandra Moreno-Mazza
- Oncology Biochemistry/Biology, Sanofi Genzyme, 270 Albany Street, Cambridge, MA 02139, USA
| | - Joseph Batchelor
- IDD In Vitro Biology, Sanofi, 153 Second Avenue, Waltham MA 02451, USA
| | - Ingrid Mechin
- IDD In Vitro Biology, Sanofi, 153 Second Avenue, Waltham MA 02451, USA
| | - Tahir Majid
- IDD Medicinal Chemistry, Sanofi Genzyme, 153 Second Avenue, Waltham MA 02451, USA; Program Management, Sanofi Genzyme, 49 New York Avenue, Framingham MA 01701, USA
| |
Collapse
|
143
|
RSK2 is a new Pim2 target with pro-survival functions in FLT3-ITD-positive acute myeloid leukemia. Leukemia 2017; 32:597-605. [PMID: 28914261 DOI: 10.1038/leu.2017.284] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/04/2017] [Accepted: 09/05/2017] [Indexed: 12/25/2022]
Abstract
Acute myeloid leukemia (AML) with the FLT3 internal tandem duplication (FLT3-ITD AML) accounts for 20-30% of AML cases. This subtype usually responds poorly to conventional therapies, and might become resistant to FLT3 tyrosine kinase inhibitors (TKIs) due to molecular bypass mechanisms. New therapeutic strategies focusing on resistance mechanisms are therefore urgently needed. Pim kinases are FLT3-ITD oncogenic targets that have been implicated in FLT3 TKI resistance. However, their precise biological function downstream of FLT3-ITD requires further investigation. We performed high-throughput transcriptomic and proteomic analyses in Pim2-depleted FLT3-ITD AML cells and found that Pim2 predominantly controlled apoptosis through Bax expression and mitochondria disruption. We identified ribosomal protein S6 kinase A3 (RSK2), a 90 kDa serine/threonine kinase involved in the mitogen-activated protein kinase cascade encoded by the RPS6KA3 gene, as a novel Pim2 target. Ectopic expression of an RPS6KA3 allele rescued the viability of Pim2-depleted cells, supporting the involvement of RSK2 in AML cell survival downstream of Pim2. Finally, we showed that RPS6KA3 knockdown reduced the propagation of human AML cells in vivo in mice. Our results point to RSK2 as a novel Pim2 target with translational therapeutic potential in FLT3-ITD AML.
Collapse
|
144
|
Kuo LC, Cheng LC, Lee CH, Lin CJ, Chen PY, Li LA. Estrogen and cigarette sidestream smoke particulate matter exhibit ERα-dependent tumor-promoting effects in lung adenocarcinoma cells. Am J Physiol Lung Cell Mol Physiol 2017; 313:L477-L490. [DOI: 10.1152/ajplung.00322.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 01/23/2023] Open
Abstract
Estrogen and secondhand smoke are key risk factors for nonsmoking female lung cancer patients who frequently have lung adenocarcinoma and show tumor estrogen receptor α (ERα) expression. We speculated that estrogen and secondhand smoke might cause harmful effects via ERα signaling. Our results showed that 17β-estradiol (E2), the primary form of endogenous estrogen, exacerbated proliferation, migration, and granzyme B resistance of lung adenocarcinoma cells in an ERα-dependent manner. Cigarette sidestream smoke particulate matter (CSSP), the major component of secondhand smoke, could activate ERα activity dose dependently in human lung adenocarcinoma cells. The estrogenic activity of CSSP was abolished by an ERα-selective antagonist. CSSP regulated the nuclear entry, phosphorylation, and turnover of ERα similarly to E2. Furthermore, CSSP enhanced E2-stimulated ERα activity and Ser118 phosphorylation even when ERα became saturated with E2. Activation of ERα by CSSP required GSK3β activity, but not involving polycyclic aromatic hydrocarbons, reactive oxygen species, calcium, epidermal growth factor receptor, and PI3K/Akt. Although CSSP possessed cytotoxicity, ERα-expressing cells grew and migrated faster than nonexpressing cells on recovery from CSSP exposure as observed in E2-pretreated cells. Knockdown of ERα by siRNA diminished E2- and CSSP-stimulated cell migration. Twenty-one genes, including SERPINB9, were identified to be upregulated by both E2 and CSSP via ERα. Increased SERPINB9 expression was accompanied with increased resistance to granzyme B-mediated apoptosis. This study demonstrates that estrogen has ERα-dependent tumor-promoting activity. CSSP acts like estrogen and shows a potential to enhance estrogen-induced ERα action.
Collapse
Affiliation(s)
- Lun-Cheng Kuo
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli, Taiwan; and
| | - Li-Chuan Cheng
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli, Taiwan; and
| | - Chia-Huei Lee
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Chun-Ju Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli, Taiwan; and
| | - Pei-Yu Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli, Taiwan; and
| | - Lih-Ann Li
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli, Taiwan; and
| |
Collapse
|
145
|
Ishikawa C, Senba M, Hashimoto T, Imaizumi A, Mori N. Expression and significance of Pim-3 kinase in adult T-cell leukemia. Eur J Haematol 2017; 99:495-504. [PMID: 28833639 DOI: 10.1111/ejh.12940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL). Viral Tax protein plays a major role in ATL development. Pim family of serine/threonine kinases is composed of Pim-1, -2, and -3. The potential of Pim family as a target in ATL was analyzed. METHODS RT-PCR and Western blotting were used to determine the expression of Pim kinases, Tax, and intracellular signal molecules. Knockdown of Pim-3 and RelA was performed using small interfering RNA. The effects on cell proliferation, viability, cell cycle, and apoptosis were analyzed by WST-8, propidium iodide, and APO2.7 assay. NF-κB DNA binding activity was investigated by electrophoretic mobility shift assay. RESULTS Pim-3 expression was restricted to HTLV-1-infected T-cell lines. Tax induced Pim-3 expression through NF-κB. Knockdown of Pim-3 showed growth inhibition of HTLV-1-infected T cells. NJC97-NH, a novel inhibitor of the Pim-1/3 kinases, inhibited cell viability. NJC97-NH induced G2/M cell cycle arrest associated with downregulation of cyclin A and cyclin B1 expression, as well as apoptosis accompanied with downregulation of XIAP and Mcl-1 expression through inhibition of NF-κB pathway, mediated through decrease in IκBα and RelA phosphorylation. CONCLUSION Pim-3 is a potentially suitable target for the development of novel therapeutic agents against ATL.
Collapse
Affiliation(s)
- Chie Ishikawa
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan.,Transdisciplinary Research Organization for Subtropics and Island Studies, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Masachika Senba
- Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | | | | | - Naoki Mori
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
146
|
Ubenimex suppresses Pim-3 kinase expression by targeting CD13 to reverse MDR in HCC cells. Oncotarget 2017; 8:72652-72665. [PMID: 29069816 PMCID: PMC5641159 DOI: 10.18632/oncotarget.20194] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/18/2017] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most serious cancers, with rapid progression and high mortality. However, chemotherapy of HCC is hindered by multi-drug resistance (MDR). It is urgent, therefore, to explore new approaches for overcoming MDR of HCC cells. Ubenimex, an inhibitor of CD13, has been used as an immuno-enhancer for treating hematological neoplasms and other solid tumors. Here, we demonstrate that Ubenimex can also reverse MDR in the HCC cell lines HepG2/5-FU and Bel7402/5-FU. Ubenimex inhibits the expression of the proto-oncogene, Pim-3, which is accompanied by decreased expression of BCL-2 and BCL-XL, decreased phosphorylation of Bad, and increased tumor apoptosis. Moreover, Ubenimex decreases expression of the MDR-associated proteins P-gp, MRP3 and MRP2 to enhance intracellular accumulation of Cisplatin, for which down-regulation of Pim-3 is essential. Our results reveal a previously uncharacterized function of Ubenimex in mediating drug resistance in HCC, which suggests that Ubenimex may provide a new strategy to reverse MDR and improve HCC sensitivity to chemotherapeutic drugs via its effects on Pim-3.
Collapse
|
147
|
Nair JR, Caserta J, Belko K, Howell T, Fetterley G, Baldino C, Lee KP. Novel inhibition of PIM2 kinase has significant anti-tumor efficacy in multiple myeloma. Leukemia 2017; 31:1715-1726. [PMID: 28008178 PMCID: PMC5537056 DOI: 10.1038/leu.2016.379] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 12/14/2022]
Abstract
The PIM kinase family (PIM1, 2 and 3) have a central role in integrating growth and survival signals, and are expressed in a wide range of solid and hematological malignancies. We now confirm that PIM2 is overexpressed in multiple myeloma (MM) patients, and within MM group it is overexpressed in the high-risk MF subset (activation of proto-oncogenes MAF/MAFB). This is consistent with our finding of PIM2's role in key signaling pathways (IL-6, CD28 activation) that confer chemotherapy resistance in MM cells. These studies have identified a novel PIM2-selective non-ATP competitive inhibitor (JP11646) that has a 4 to 760-fold greater suppression of MM proliferation and viability than ATP-competitive PIM inhibitors. This increased efficacy is due not only to the inhibition of PIM2 kinase activity, but also to a novel mechanism involving specific downregulation of PIM2 mRNA and protein expression not seen with the ATP competitive inhibitors. Treatment with JP11646 in xenogeneic myeloma murine models demonstrated significant reduction in tumor burden and increased median survival. Altogether our findings suggest the existence of previously unrecognized feedback loop(s) where PIM2 kinase activity regulates PIM2 gene expression in malignant cells, and that JP11646 represents a novel class of PIM2 inhibitors that interdicts this feedback.
Collapse
Affiliation(s)
- Jayakumar R. Nair
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Justin Caserta
- Jasco Pharmaceuticals, 10-N Roessler Road, Woburn, MA 01801
- Boston Biomedical, Inc., Cambridge, MA 02139
| | - Krista Belko
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Tyger Howell
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Gerald Fetterley
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Carmen Baldino
- Jasco Pharmaceuticals, 10-N Roessler Road, Woburn, MA 01801
| | - Kelvin P. Lee
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263
| |
Collapse
|
148
|
Jiménez-García MP, Lucena-Cacace A, Robles-Frías MJ, Ferrer I, Narlik-Grassow M, Blanco-Aparicio C, Carnero A. Inflammation and stem markers association to PIM1/PIM2 kinase-induced tumors in breast and uterus. Oncotarget 2017; 8:58872-58886. [PMID: 28938604 PMCID: PMC5601700 DOI: 10.18632/oncotarget.19438] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/11/2017] [Indexed: 12/19/2022] Open
Abstract
The PIM family of Ser/Thr kinase proteins has been implicated in tumorigenesis at different levels. PIM proteins are overexpressed in several tumor types and have been associated with chemoresistance. However, their role in hormone-dependent female tissues has not been explored, especially in the uterus, breast and ovary. We generated conditional transgenic mice with confined expression of human PIM1 or PIM2 genes in these tissues. We characterized the tumoral response to these genetic alterations corroborating their role as oncogenes since they induce hyperproliferation in all tissues and tumors in mammary gland and uterus. Furthermore, we observed a high degree of inflammatory infiltration in these tissues of transgenic mice accompanied by NFAT and mTOR activation and IL6 expression. Moreover, PIM1/2 were overexpressed in human breast, uterine and ovarian tumors, correlating with inflammatory features and stem cell markers. Our data suggest that PIM1/2 kinase overexpression provoke tissue alterations and a large IL6-dependent inflammatory response that may act synergistically during the process of tumorigenesis. The possible end-point is an increased percentage of cancer stem cells, which may be partly responsible for the therapy resistance found in tumors overexpressing PIM kinases.
Collapse
Affiliation(s)
- Manuel-Pedro Jiménez-García
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Antonio Lucena-Cacace
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - María-José Robles-Frías
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Irene Ferrer
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Maja Narlik-Grassow
- Experimental Therapeutics Programme, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Carmen Blanco-Aparicio
- Experimental Therapeutics Programme, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain.,CIBER de Cáncer, Instituto de Salud Carlos III, Pabellón 11, Planta 0, Madrid, Spain
| |
Collapse
|
149
|
Wang K, Deng X, Shen Z, Jia Y, Ding R, Li R, Liao X, Wang S, Ha Y, Kong Y, Wu Y, Guo J, Jie W. High glucose promotes vascular smooth muscle cell proliferation by upregulating proto-oncogene serine/threonine-protein kinase Pim-1 expression. Oncotarget 2017; 8:88320-88331. [PMID: 29179437 PMCID: PMC5687607 DOI: 10.18632/oncotarget.19368] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/28/2017] [Indexed: 02/06/2023] Open
Abstract
Serine/threonine kinase proviral integration site for Moloney murine leukemia virus 1 (Pim-1) plays an essential role in arterial wall cell proliferation and associated vascular diseases, including pulmonary arterial hypertension and aortic wall neointima formation. Here we tested a role of Pim-1 in high-glucose (HG)-mediated vascular smooth muscle cell (VSMC) proliferation. Pim-1 and proliferating cell nuclear antigen (PCNA) expression levels in arterial samples from streptozotocin-induced hyperglycemia rats were increased, compared with their weak expression in normoglycemic groups. In cultured rat VSMCs, HG led to transient Pim-1 expression decline, followed by sustained expression increase at both transcriptional and translational levels. Immunoblot analysis demonstrated that HG increased the expression of the 33-kDa isoform of Pim-1, but at much less extent to its 44-kDa plasma membrane isoform. D-glucose at a concentration of 25 mmol/L showed highest activity in stimulating Pim-1 expression. Both Pim-1 inhibitor quercetagetin and STAT3 inhibitor stattic significantly attenuated HG-induced VSMC proliferation and arrested cell cycle progression at the G1 phase. Quercetagetin showed no effect on Pim-1 expression but decreased the phosphorylated-Bad (T112)/Bad ratio in HG-treated VSMCs. However, stattic decreased phosphorylated-STAT3 (Y705) levels and caused transcriptional and translational down-regulation of Pim-1 in HG-treated VSMCs. Our findings suggest HG-mediated Pim-1 expression contributes to VSMC proliferation, which may be partly due to the activation of STAT3/Pim-1 signaling.
Collapse
Affiliation(s)
- Keke Wang
- Department of Pathology, School of Basic medicine Sciences, Guangdong Medical University, Zhanjiang, P.R. China
| | - Xiaojiang Deng
- Department of Cardiovascular, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Zhihua Shen
- Department of Pathology, School of Basic medicine Sciences, Guangdong Medical University, Zhanjiang, P.R. China
| | - Yanan Jia
- Department of Pathology, School of Basic medicine Sciences, Guangdong Medical University, Zhanjiang, P.R. China
| | - Ranran Ding
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Rujia Li
- Department of Pathology, School of Basic medicine Sciences, Guangdong Medical University, Zhanjiang, P.R. China
| | - Xiaomin Liao
- Department of Pathology, School of Basic medicine Sciences, Guangdong Medical University, Zhanjiang, P.R. China
| | - Sisi Wang
- Department of Pathology, School of Basic medicine Sciences, Guangdong Medical University, Zhanjiang, P.R. China
| | - Yanping Ha
- Department of Pathology, School of Basic medicine Sciences, Guangdong Medical University, Zhanjiang, P.R. China
| | - Yueqiong Kong
- Cardiovascular Institute of 1st Affiliated Hospital & Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, P.R. China
| | - Yuyou Wu
- Cardiovascular Institute of 1st Affiliated Hospital & Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, P.R. China
| | - Junli Guo
- Cardiovascular Institute of 1st Affiliated Hospital & Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, P.R. China
| | - Wei Jie
- Department of Pathology, School of Basic medicine Sciences, Guangdong Medical University, Zhanjiang, P.R. China
| |
Collapse
|
150
|
PIM1: a promising target in patients with triple-negative breast cancer. Med Oncol 2017; 34:142. [PMID: 28721678 DOI: 10.1007/s12032-017-0998-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/10/2017] [Indexed: 12/23/2022]
Abstract
Triple-negative breast cancers (TNBCs) have poor prognosis, and chemotherapy remains the mainstay of therapy because of lack of discovered possible target. MYC were found overexpressed in TNBCs compared with other subtypes and especially in those resistant to chemotherapy, but the inhibition has been challenging to achieve. Recently, the cooperation of PIM1 and MYC was identified involved in cell proliferation, migration and apoptosis of TNBCs, which has been reported in hematological malignancy and prostatic cancer. Inhibition of PIM1 can promote the apoptosis of tumor cells and enhance sensitivity to chemotherapy. Notably, PIM1-null mice develop normally and are fertile, suggesting the side effects can be tolerated. Thus, PIM1 may be a promising target in TNBCs and further investigation, both in vivo and in vitro, needs to be carried out.
Collapse
|