101
|
Kasper R, Rodriguez-Alfonso A, Ständker L, Wiese S, Schneider EM. Major endothelial damage markers identified from hemadsorption filters derived from treated patients with septic shock - endoplasmic reticulum stress and bikunin may play a role. Front Immunol 2024; 15:1359097. [PMID: 38698864 PMCID: PMC11063272 DOI: 10.3389/fimmu.2024.1359097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Introduction In septic patients the damage of the endothelial barrier is decisive leading to circulatory septic shock with disseminated vascular coagulation, edema and multiorgan failure. Hemadsorption therapy leads to rapid resolution of clinical symptoms. We propose that the isolation of proteins adsorbed to hemadsorption devices contributes to the identification of mediators responsible for endothelial barrier dysfunction. Material and methods Plasma materials enriched to hemadsorption filters (CytoSorb®) after therapy of patients in septic shock were fractionated and functionally characterized for their effect on cell integrity, viability, proliferation and ROS formation by human endothelial cells. Fractions were further studied for their contents of oxidized nucleic acids as well as peptides and proteins by mass spectrometry. Results Individual fractions exhibited a strong effect on endothelial cell viability, the endothelial layer morphology, and ROS formation. Fractions with high amounts of DNA and oxidized DNA correlated with ROS formation in the target endothelium. In addition, defined proteins such as defensins (HNP-1), SAA1, CXCL7, and the peptide bikunin were linked to the strongest additive effects in endothelial damage. Conclusion Our results indicate that hemadsorption is efficient to transiently remove strong endothelial damage mediators from the blood of patients with septic shock, which explains a rapid clinical improvement of inflammation and endothelial function. The current work indicates that a combination of stressors leads to the most detrimental effects. Oxidized ssDNA, likely derived from mitochondria, SAA1, the chemokine CXCL7 and the human neutrophil peptide alpha-defensin 1 (HNP-1) were unique for their significant negative effect on endothelial cell viability. However, the strongest damage effect occurred, when, bikunin - cleaved off from alpha-1-microglobulin was present in high relative amounts (>65%) of protein contents in the most active fraction. Thus, a relevant combination of stressors appears to be removed by hemadsorption therapy which results in fulminant and rapid, though only transient, clinical restitution.
Collapse
Affiliation(s)
- Robin Kasper
- Clinic of Anesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm, Germany
| | - Armando Rodriguez-Alfonso
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
- Core Unit Mass Spectrometry and Proteomics (CUMP), Ulm University, Ulm, Germany
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics (CUMP), Ulm University, Ulm, Germany
| | - E. Marion Schneider
- Clinic of Anesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
102
|
Zhu C, Xu S, Jiang R, Yu Y, Bian J, Zou Z. The gasdermin family: emerging therapeutic targets in diseases. Signal Transduct Target Ther 2024; 9:87. [PMID: 38584157 PMCID: PMC10999458 DOI: 10.1038/s41392-024-01801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
The gasdermin (GSDM) family has garnered significant attention for its pivotal role in immunity and disease as a key player in pyroptosis. This recently characterized class of pore-forming effector proteins is pivotal in orchestrating processes such as membrane permeabilization, pyroptosis, and the follow-up inflammatory response, which are crucial self-defense mechanisms against irritants and infections. GSDMs have been implicated in a range of diseases including, but not limited to, sepsis, viral infections, and cancer, either through involvement in pyroptosis or independently of this process. The regulation of GSDM-mediated pyroptosis is gaining recognition as a promising therapeutic strategy for the treatment of various diseases. Current strategies for inhibiting GSDMD primarily involve binding to GSDMD, blocking GSDMD cleavage or inhibiting GSDMD-N-terminal (NT) oligomerization, albeit with some off-target effects. In this review, we delve into the cutting-edge understanding of the interplay between GSDMs and pyroptosis, elucidate the activation mechanisms of GSDMs, explore their associations with a range of diseases, and discuss recent advancements and potential strategies for developing GSDMD inhibitors.
Collapse
Affiliation(s)
- Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Sheng Xu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Ruoyu Jiang
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Yizhi Yu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China.
| | - Jinjun Bian
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
103
|
Alexa AL, Sargarovschi S, Ionescu D. Neutrophils and Anesthetic Drugs: Implications in Onco-Anesthesia. Int J Mol Sci 2024; 25:4033. [PMID: 38612841 PMCID: PMC11012681 DOI: 10.3390/ijms25074033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Apart from being a significant line of defense in the host defense system, neutrophils have many immunological functions. Although there are not many publications that accurately present the functions of neutrophils in relation to oncological pathology, their activity and implications have been studied a lot recently. This review aims to extensively describe neutrophils functions'; their clinical implications, especially in tumor pathology; the value of clinical markers related to neutrophils; and the implications of neutrophils in onco-anesthesia. This review also aims to describe current evidence on the influence of anesthetic drugs on neutrophils' functions and their potential influence on perioperative outcomes.
Collapse
Affiliation(s)
- Alexandru Leonard Alexa
- Department of Anesthesia and Intensive Care I, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (S.S.); (D.I.)
- Association for Research in Anesthesia and Intensive Care (ACATI), 400162 Cluj-Napoca, Romania
- Onco-Anaesthesia Research Group, ESAIC, 1000 Brussels, Belgium
| | - Sergiu Sargarovschi
- Department of Anesthesia and Intensive Care I, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (S.S.); (D.I.)
- Association for Research in Anesthesia and Intensive Care (ACATI), 400162 Cluj-Napoca, Romania
| | - Daniela Ionescu
- Department of Anesthesia and Intensive Care I, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (S.S.); (D.I.)
- Association for Research in Anesthesia and Intensive Care (ACATI), 400162 Cluj-Napoca, Romania
- Onco-Anaesthesia Research Group, ESAIC, 1000 Brussels, Belgium
- Outcome Research Consortium, Cleveland, OH 44195, USA
| |
Collapse
|
104
|
Kwak SB, Kim SJ, Kang YJ, Lee WW, Huh J, Park JW. Development of a rectally administrable Dnase1 to treat septic shock by targeting NETs. Life Sci 2024; 342:122526. [PMID: 38417543 DOI: 10.1016/j.lfs.2024.122526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/11/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
AIMS Neutrophil extracellular trap (NET), which is formed by DNA threads, induces septic shock by aggravating systemic inflammation. An intravenous administration of deoxyribonuclease is regarded as a compelling modality for treating septic shock. However, alternative routes should be chosen when cutaneous veins are all collapsed due to hypotension. In this study, we genetically engineered this enzyme to develop a rectal suppository formulation to treat septic shock. MAIN METHODS Dnase1 was mutated at two amino acid residues to increase its stability in the blood and fused with a cell-penetrating peptide CR8 to increase its absorption through the rectal mucosa, which is designated AR-CR8. The life-saving effect of AR-CR8 was evaluated in a LPS-induced shock mouse model. KEY FINDINGS AR-CR8 was shown to remove NETs effectively in human neutrophils. When AR-CR8 was administered to the mouse rectum, the deoxyribonuclease activity in the mouse serum was significantly increased. In the LPS-induced shock model, 90 % of the control mice died over 72 h after LPS injection. In contrast, the rectal administration of AR-CR8 showed a mortality rate of 30 % by 72 h after LPS injection. The Log-rank test revealed that the survival rate is significantly higher in the AR-CR8 group. The NET markers in the mouse serum were enhanced by LPS, and significantly downregulated in the AR-CR8 group. These results suggest that AR-CR8 ameliorates LPS-induced shock by degrading NETs. SIGNIFICANCE The engineered DNASE1 could be developed as a rectal suppository formulation to treat septic shock urgently at out-of-hospital places where no syringe is available.
Collapse
Affiliation(s)
- Su-Bin Kwak
- Department of Pharmacology, Seoul National University College of Medicine, Daehak-ro 103, Jongno-gu, Seoul 03080, Republic of Korea
| | - Sang-Jin Kim
- Department of Pharmacology, Seoul National University College of Medicine, Daehak-ro 103, Jongno-gu, Seoul 03080, Republic of Korea
| | - Yeon Jun Kang
- Laboratory of Autoimmunity and Inflammation, Department of Biomedical Sciences, Seoul National University College of Medicine, Daehak-ro 103, Jongno-gu, Seoul 03080, Republic of Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Daehak-ro 103, Jongno-gu, Seoul 03080, Republic of Korea
| | - Won-Woo Lee
- Laboratory of Autoimmunity and Inflammation, Department of Biomedical Sciences, Seoul National University College of Medicine, Daehak-ro 103, Jongno-gu, Seoul 03080, Republic of Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Daehak-ro 103, Jongno-gu, Seoul 03080, Republic of Korea
| | - June Huh
- Department of Chemical and Biological Engineering, Korea University, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jong-Wan Park
- Department of Pharmacology, Seoul National University College of Medicine, Daehak-ro 103, Jongno-gu, Seoul 03080, Republic of Korea; Department of Biomedical Science, BK21-plus education program, Seoul National University College of Medicine, Daehak-ro 103, Jongno-gu, Seoul 03080, Republic of Korea; Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Daehak-ro 103, Jongno-gu, Seoul 03080, Republic of Korea.
| |
Collapse
|
105
|
Liu Y, Wang L, Ai J, Li K. Mitochondria in Mesenchymal Stem Cells: Key to Fate Determination and Therapeutic Potential. Stem Cell Rev Rep 2024; 20:617-636. [PMID: 38265576 DOI: 10.1007/s12015-024-10681-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
Mesenchymal stem cells (MSCs) have become popular tool cells in the field of transformation and regenerative medicine due to their function of cell rescue and cell replacement. The dynamically changing mitochondria serve as an energy metabolism factory and signal transduction platform, adapting to different cell states and maintaining normal cell activities. Therefore, a clear understanding of the regulatory mechanism of mitochondria in MSCs is profit for more efficient clinical transformation of stem cells. This review highlights the cutting-edge knowledge regarding mitochondrial biology from the following aspects: mitochondrial morphological dynamics, energy metabolism and signal transduction. The manuscript mainly focuses on mitochondrial mechanistic insights in the whole life course of MSCs, as well as the potential roles played by mitochondria in MSCs treatment of transplantation, for seeking pivotal targets of stem cell fate regulation and stem cell therapy.
Collapse
Affiliation(s)
- Yang Liu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingjuan Wang
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihui Ai
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Kezhen Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
106
|
Wang Y, Du C, Zhang Y, Zhu L. Composition and Function of Neutrophil Extracellular Traps. Biomolecules 2024; 14:416. [PMID: 38672433 PMCID: PMC11048602 DOI: 10.3390/biom14040416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are intricate fibrous structures released by neutrophils in response to specific stimuli. These structures are composed of depolymerized chromatin adorned with histones, granule proteins, and cytosolic proteins. NETs are formed via two distinct pathways known as suicidal NETosis, which involves NADPH oxidase (NOX), and vital NETosis, which is independent of NOX. Certain proteins found within NETs exhibit strong cytotoxic effects against both pathogens and nearby host cells. While NETs play a defensive role against pathogens, they can also contribute to tissue damage and worsen inflammation. Despite extensive research on the pathophysiological role of NETs, less attention has been paid to their components, which form a unique structure containing various proteins that have significant implications in a wide range of diseases. This review aims to elucidate the components of NETs and provide an overview of their impact on host defense against invasive pathogens, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Yijie Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Institute of Infectious Diseases, Beijing 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Chunjing Du
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yue Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Institute of Infectious Diseases, Beijing 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Liuluan Zhu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Institute of Infectious Diseases, Beijing 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| |
Collapse
|
107
|
Ahluwalia K, Du Z, Martinez-Camarillo JC, Naik A, Thomas BB, Pollalis D, Lee SY, Dave P, Zhou E, Li Z, Chester C, Humayun MS, Louie SG. Unveiling Drivers of Retinal Degeneration in RCS Rats: Functional, Morphological, and Molecular Insights. Int J Mol Sci 2024; 25:3749. [PMID: 38612560 PMCID: PMC11011632 DOI: 10.3390/ijms25073749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Retinal degenerative diseases, including age-related macular degeneration and retinitis pigmentosa, significantly contribute to adult blindness. The Royal College of Surgeons (RCS) rat is a well-established disease model for studying these dystrophies; however, molecular investigations remain limited. We conducted a comprehensive analysis of retinal degeneration in RCS rats, including an immunodeficient RCS (iRCS) sub-strain, using ocular coherence tomography, electroretinography, histology, and molecular dissection using transcriptomics and immunofluorescence. No significant differences in retinal degeneration progression were observed between the iRCS and immunocompetent RCS rats, suggesting a minimal role of adaptive immune responses in disease. Transcriptomic alterations were primarily in inflammatory signaling pathways, characterized by the strong upregulation of Tnfa, an inflammatory signaling molecule, and Nox1, a contributor to reactive oxygen species (ROS) generation. Additionally, a notable decrease in Alox15 expression was observed, pointing to a possible reduction in anti-inflammatory and pro-resolving lipid mediators. These findings were corroborated by immunostaining, which demonstrated increased photoreceptor lipid peroxidation (4HNE) and photoreceptor citrullination (CitH3) during retinal degeneration. Our work enhances the understanding of molecular changes associated with retinal degeneration in RCS rats and offers potential therapeutic targets within inflammatory and oxidative stress pathways for confirmatory research and development.
Collapse
Affiliation(s)
- Kabir Ahluwalia
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
| | - Zhaodong Du
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
| | - Juan Carlos Martinez-Camarillo
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Aditya Naik
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
| | - Biju B. Thomas
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Dimitrios Pollalis
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Sun Young Lee
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Priyal Dave
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
| | - Eugene Zhou
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
| | - Zeyang Li
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
| | - Catherine Chester
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
| | - Mark S. Humayun
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Stan G. Louie
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
| |
Collapse
|
108
|
Kiwit A, Lu Y, Lenz M, Knopf J, Mohr C, Ledermann Y, Klinke-Petrowsky M, Pagerols Raluy L, Reinshagen K, Herrmann M, Boettcher M, Elrod J. The Dual Role of Neutrophil Extracellular Traps (NETs) in Sepsis and Ischemia-Reperfusion Injury: Comparative Analysis across Murine Models. Int J Mol Sci 2024; 25:3787. [PMID: 38612596 PMCID: PMC11011604 DOI: 10.3390/ijms25073787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
A better understanding of the function of neutrophil extracellular traps (NETs) may facilitate the development of interventions for sepsis. The study aims to investigate the formation and degradation of NETs in three murine sepsis models and to analyze the production of reactive oxygen species (ROS) during NET formation. Murine sepsis was induced by midgut volvulus (720° for 15 min), cecal ligation and puncture (CLP), or the application of lipopolysaccharide (LPS) (10 mg/kg body weight i.p.). NET formation and degradation was modulated using mice that were genetically deficient for peptidyl arginine deiminase-4 (PAD4-KO) or DNase1 and 1L3 (DNase1/1L3-DKO). After 48 h, mice were killed. Plasma levels of circulating free DNA (cfDNA) and neutrophil elastase (NE) were quantified to assess NET formation and degradation. Plasma deoxyribonuclease1 (DNase1) protein levels, as well as tissue malondialdehyde (MDA) activity and glutathione peroxidase (GPx) activity, were quantified. DNase1 and DNase1L3 in liver, intestine, spleen, and lung tissues were assessed. The applied sepsis models resulted in a simultaneous increase in NET formation and oxidative stress. NET formation and survival differed in the three models. In contrast to LPS and Volvulus, CLP-induced sepsis showed a decreased and increased 48 h survival in PAD4-KO and DNase1/1L3-DKO mice, when compared to WT mice, respectively. PAD4-KO mice showed decreased formation of NETs and ROS, while DNase1/1L3-DKO mice with impaired NET degradation accumulated ROS and chronicled the septic state. The findings indicate a dual role for NET formation and degradation in sepsis and ischemia-reperfusion (I/R) injury: NETs seem to exhibit a protective capacity in certain sepsis paradigms (CLP model), whereas, collectively, they seem to contribute adversely to scenarios where sepsis is combined with ischemia-reperfusion (volvulus).
Collapse
Affiliation(s)
- Antonia Kiwit
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
| | - Yuqing Lu
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Moritz Lenz
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
| | - Jasmin Knopf
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
| | - Christoph Mohr
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Yannick Ledermann
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Michaela Klinke-Petrowsky
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Laia Pagerols Raluy
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
| | - Konrad Reinshagen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
| | - Martin Herrmann
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Julia Elrod
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
109
|
Flora C, Olesnavich M, Zuo Y, Sandford E, Madhukar R, Rozwadowski M, Sugur K, Ly A, Canbaz AA, Shedeck A, Li G, Geer MJ, Yanik GA, Ghosh M, Frame DG, Bonifant CL, Jain T, Knight JS, Choi SW, Tewari M. Longitudinal plasma proteomics in CAR T-cell therapy patients implicates neutrophils and NETosis in the genesis of CRS. Blood Adv 2024; 8:1422-1426. [PMID: 38266157 PMCID: PMC10950819 DOI: 10.1182/bloodadvances.2023010728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Affiliation(s)
- Christopher Flora
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI
| | - Mary Olesnavich
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI
| | - Yu Zuo
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI
| | - Erin Sandford
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI
| | - Rashmi Madhukar
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI
| | - Michelle Rozwadowski
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Michigan, Ann Arbor, MI
| | - Kavya Sugur
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI
| | - Andrew Ly
- Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ata Alpay Canbaz
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Audra Shedeck
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Gen Li
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Marcus J. Geer
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI
| | - Gregory A. Yanik
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Michigan, Ann Arbor, MI
| | - Monalisa Ghosh
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI
| | - David G. Frame
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI
| | - Challice L. Bonifant
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tania Jain
- Johns Hopkins University School of Medicine, Baltimore, MD
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jason S. Knight
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI
| | - Sung Won Choi
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Michigan, Ann Arbor, MI
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI
| | - Muneesh Tewari
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
- VA Ann Arbor Healthcare System, Ann Arbor, MI
| |
Collapse
|
110
|
Torp MK, Stensløkken KO, Vaage J. When Our Best Friend Becomes Our Worst Enemy: The Mitochondrion in Trauma, Surgery, and Critical Illness. J Intensive Care Med 2024:8850666241237715. [PMID: 38505947 DOI: 10.1177/08850666241237715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Common for major surgery, multitrauma, sepsis, and critical illness, is a whole-body inflammation. Tissue injury is able to trigger a generalized inflammatory reaction. Cell death causes release of endogenous structures termed damage associated molecular patterns (DAMPs) that initiate a sterile inflammation. Mitochondria are evolutionary endosymbionts originating from bacteria, containing molecular patterns similar to bacteria. These molecular patterns are termed mitochondrial DAMPs (mDAMPs). Mitochondrial debris released into the extracellular space or into the circulation is immunogenic and damaging secondary to activation of the innate immune system. In the circulation, released mDAMPS are either free or exist in extracellular vesicles, being able to act on every organ and cell in the body. However, the role of mDAMPs in trauma and critical care is not fully clarified. There is a complete lack of knowledge how they may be counteracted in patients. Among mDAMPs are mitochondrial DNA, cardiolipin, N-formyl peptides, cytochrome C, adenosine triphosphate, reactive oxygen species, succinate, and mitochondrial transcription factor A. In this overview, we present the different mDAMPs, their function, release, targets, and inflammatory potential. In light of present knowledge, the role of mDAMPs in the pathophysiology of major surgery and trauma as well as sepsis, and critical care is discussed.
Collapse
Affiliation(s)
- May-Kristin Torp
- Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
- Department of Research, Østfold Hospital Trust, Grålum, Norway
| | - Kåre-Olav Stensløkken
- Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
| | - Jarle Vaage
- Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
- Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
111
|
Li C, Wu C, Li F, Xu W, Zhang X, Huang Y, Xia D. Targeting Neutrophil Extracellular Traps in Gouty Arthritis: Insights into Pathogenesis and Therapeutic Potential. J Inflamm Res 2024; 17:1735-1763. [PMID: 38523684 PMCID: PMC10960513 DOI: 10.2147/jir.s460333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Gouty arthritis (GA) is an immune-mediated disorder characterized by severe inflammation due to the deposition of monosodium urate (MSU) crystals in the joints. The pathophysiological mechanisms of GA are not yet fully understood, and therefore, the identification of effective therapeutic targets is of paramount importance. Neutrophil extracellular traps (NETs), an intricate structure of DNA scaffold, encompassing myeloperoxidase, histones, and elastases - have gained significant attention as a prospective therapeutic target for gouty arthritis, due to their innate antimicrobial and immunomodulatory properties. Hence, exploring the therapeutic potential of NETs in gouty arthritis remains an enticing avenue for further investigation. During the process of gouty arthritis, the formation of NETs triggers the release of inflammatory cytokines, thereby contributing to the inflammatory response, while MSU crystals and cytokines are sequestered and degraded by the aggregation of NETs. Here, we provide a concise summary of the inflammatory processes underlying the initiation and resolution of gouty arthritis mediated by NETs. Furthermore, this review presents an overview of the current pharmacological approaches for treating gouty arthritis and summarizes the potential of natural and synthetic product-based inhibitors that target NET formation as novel therapeutic options, alongside elucidating the intrinsic challenges of these inhibitors in NETs research. Lastly, the limitations of HL-60 cell as a suitable substitute of neutrophils in NETs research are summarized and discussed. Series of recommendations are provided, strategically oriented towards guiding future investigations to effectively address these concerns. These findings will contribute to an enhanced comprehension of the interplay between NETs and GA, facilitating the proposition of innovative therapeutic strategies and novel approaches for the management of GA.
Collapse
Affiliation(s)
- Cantao Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Chenxi Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Fenfen Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Wenjing Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaoxi Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yan Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Daozong Xia
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
112
|
Yang Q, Langston JC, Prosniak R, Pettigrew S, Zhao H, Perez E, Edelmann H, Mansoor N, Merali C, Merali S, Marchetti N, Prabhakarpandian B, Kiani MF, Kilpatrick LE. Distinct functional neutrophil phenotypes in sepsis patients correlate with disease severity. Front Immunol 2024; 15:1341752. [PMID: 38524125 PMCID: PMC10957777 DOI: 10.3389/fimmu.2024.1341752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/20/2024] [Indexed: 03/26/2024] Open
Abstract
Purpose Sepsis is a clinical syndrome defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis is a highly heterogeneous syndrome with distinct phenotypes that impact immune function and response to infection. To develop targeted therapeutics, immunophenotyping is needed to identify distinct functional phenotypes of immune cells. In this study, we utilized our Organ-on-Chip assay to categorize sepsis patients into distinct phenotypes using patient data, neutrophil functional analysis, and proteomics. Methods Following informed consent, neutrophils and plasma were isolated from sepsis patients in the Temple University Hospital ICU (n=45) and healthy control donors (n=7). Human lung microvascular endothelial cells (HLMVEC) were cultured in the Organ-on-Chip and treated with buffer or cytomix ((TNF/IL-1β/IFNγ). Neutrophil adhesion and migration across HLMVEC in the Organ-on-Chip were used to categorize functional neutrophil phenotypes. Quantitative label-free global proteomics was performed on neutrophils to identify differentially expressed proteins. Plasma levels of sepsis biomarkers and neutrophil extracellular traps (NETs) were determined by ELISA. Results We identified three functional phenotypes in critically ill ICU sepsis patients based on ex vivo neutrophil adhesion and migration patterns. The phenotypes were classified as: Hyperimmune characterized by enhanced neutrophil adhesion and migration, Hypoimmune that was unresponsive to stimulation, and Hybrid with increased adhesion but blunted migration. These functional phenotypes were associated with distinct proteomic signatures and differentiated sepsis patients by important clinical parameters related to disease severity. The Hyperimmune group demonstrated higher oxygen requirements, increased mechanical ventilation, and longer ICU length of stay compared to the Hypoimmune and Hybrid groups. Patients with the Hyperimmune neutrophil phenotype had significantly increased circulating neutrophils and elevated plasma levels NETs. Conclusion Neutrophils and NETs play a critical role in vascular barrier dysfunction in sepsis and elevated NETs may be a key biomarker identifying the Hyperimmune group. Our results establish significant associations between specific neutrophil functional phenotypes and disease severity and identify important functional parameters in sepsis pathophysiology that may provide a new approach to classify sepsis patients for specific therapeutic interventions.
Collapse
Affiliation(s)
- Qingliang Yang
- Department of Mechanical Engineering, College of Engineering, Temple University, Philadelphia, PA, United States
| | - Jordan C. Langston
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, United States
| | - Roman Prosniak
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Samantha Pettigrew
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Huaqing Zhao
- Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Edwin Perez
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hannah Edelmann
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Nadia Mansoor
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Carmen Merali
- School of Pharmacy, Temple University, Philadelphia, PA, United States
| | - Salim Merali
- School of Pharmacy, Temple University, Philadelphia, PA, United States
| | - Nathaniel Marchetti
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | | | - Mohammad F. Kiani
- Department of Mechanical Engineering, College of Engineering, Temple University, Philadelphia, PA, United States
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, United States
| | - Laurie E. Kilpatrick
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
113
|
Mytych JS, Pan Z, Lopez-Davis C, Redinger N, Lawrence C, Ziegler J, Popescu NI, James JA, Farris AD. Peptidoglycan from Bacillus anthracis Inhibits Human Macrophage Efferocytosis in Part by Reducing Cell Surface Expression of MERTK and TIM-3. Immunohorizons 2024; 8:269-280. [PMID: 38517345 PMCID: PMC10985058 DOI: 10.4049/immunohorizons.2300109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/06/2024] [Indexed: 03/23/2024] Open
Abstract
Bacillus anthracis peptidoglycan (PGN) is a major component of the bacterial cell wall and a key pathogen-associated molecular pattern contributing to anthrax pathology, including organ dysfunction and coagulopathy. Increases in apoptotic leukocytes are a late-stage feature of anthrax and sepsis, suggesting there is a defect in apoptotic clearance. In this study, we tested the hypothesis that B. anthracis PGN inhibits the capacity of human monocyte-derived macrophages (MΦ) to efferocytose apoptotic cells. Exposure of CD163+CD206+ MΦ to PGN for 24 h impaired efferocytosis in a manner dependent on human serum opsonins but independent of complement component C3. PGN treatment reduced cell surface expression of the proefferocytic signaling receptors MERTK, TYRO3, AXL, integrin αVβ5, CD36, and TIM-3, whereas TIM-1, αVβ3, CD300b, CD300f, STABILIN-1, and STABILIN-2 were unaffected. ADAM17 is a major membrane-bound protease implicated in mediating efferocytotic receptor cleavage. We found multiple ADAM17-mediated substrates increased in PGN-treated supernatant, suggesting involvement of membrane-bound proteases. ADAM17 inhibitors TAPI-0 and Marimastat prevented TNF release, indicating effective protease inhibition, and modestly increased cell-surface levels of MerTK and TIM-3 but only partially restored efferocytic capacity by PGN-treated MΦ. We conclude that human serum factors are required for optimal recognition of PGN by human MΦ and that B. anthracis PGN inhibits efferocytosis in part by reducing cell surface expression of MERTK and TIM-3.
Collapse
Affiliation(s)
- Joshua S. Mytych
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Zijian Pan
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Charmaine Lopez-Davis
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Nancy Redinger
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Christina Lawrence
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Jadith Ziegler
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Narcis I. Popescu
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Judith A. James
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - A. Darise Farris
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
114
|
Xiang F, Sun L, Cao X, Li Y, Chen X, Zhang Z, Zou J, Teng J, Shen B, Ding X. CD73 as a T cell dysfunction marker predicting cardiovascular and infection events in patients undergoing hemodialysis. Clin Chim Acta 2024; 555:117791. [PMID: 38266969 DOI: 10.1016/j.cca.2024.117791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/26/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND T cell dysfunction observed in patients undergoing hemodialysis (HD) has been linked to an extremely high morbidity of cardiovascular events (CVEs) and infections. The cell-surface 5'-nucleotidase CD73 sets the balance between pro-inflammatory nucleotides and anti-inflammatory adenosine. METHODS A total of 395 patients who had been receiving HD for at least six months were evaluated for proportions of CD73+ cells in both the CD4+ T cell and CD8+ T cell compartment and followed for one year to document CVEs and infections. Differences in the proportions of CD73-expressingT cells between healthy controls and patients undergoing HD were compared. The relationship between CD73+ T cells and clinical outcomes was analyzed using the Kaplan-Meier curve and Cox regression. RESULTS HD was significantly related to a lower fraction of CD4+CD73+ T cells. In patients on HD, lower proportions of CD4+ CD73+T cells and CD8+ CD73+T cells were both associated with systemic inflammation and T cell terminal differentiation. More importantly, a lower CD4+CD73+T cell ratio independently predicted CVEs and infection in these patients. CONCLUSION We identified CD73 as a T cell dysfunction marker predicting cardiovascular and infection events in patients undergoing HD, which provides a potential target in future studies of uremia-related immune dysfunction.
Collapse
Affiliation(s)
- Fangfang Xiang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Renal Disease and Blood Purification, Shanghai, China; Shanghai Medical Center of Kidney, Shanghai, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Lin Sun
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuesen Cao
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Li
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhen Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianzhou Zou
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Teng
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Nephrology, Zhongshan Hospital, Fudan University(Xiamen Branch), Xiamen, Fujian, China; Nephrology Clinical Quality Control Center of Xiamen, Xiamen, Fujian, China
| | - Bo Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Renal Disease and Blood Purification, Shanghai, China; Shanghai Medical Center of Kidney, Shanghai, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China.
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Renal Disease and Blood Purification, Shanghai, China; Shanghai Medical Center of Kidney, Shanghai, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China.
| |
Collapse
|
115
|
Sernoskie SC, Bonneil É, Thibault P, Jee A, Uetrecht J. Involvement of Extracellular Vesicles in the Proinflammatory Response to Clozapine: Implications for Clozapine-Induced Agranulocytosis. J Pharmacol Exp Ther 2024; 388:827-845. [PMID: 38262745 DOI: 10.1124/jpet.123.001970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 01/25/2024] Open
Abstract
Most idiosyncratic drug reactions (IDRs) appear to be immune-mediated, but mechanistic events preceding severe reaction onset remain poorly defined. Damage-associated molecular patterns (DAMPs) may contribute to both innate and adaptive immune phases of IDRs, and changes in extracellular vesicle (EV) cargo have been detected post-exposure to several IDR-associated drugs. To explore the hypothesis that EVs are also a source of DAMPs in the induction of the immune response preceding drug-induced agranulocytosis, the proteome and immunogenicity of clozapine- (agranulocytosis-associated drug) and olanzapine- (non-agranulocytosis-associated drug) exposed EVs were compared in two preclinical models: THP-1 macrophages and Sprague-Dawley rats. Compared with olanzapine, clozapine induced a greater increase in the concentration of EVs enriched from both cell culture media and rat serum. Moreover, treatment of drug-naïve THP-1 cells with clozapine-exposed EVs induced an inflammasome-dependent response, supporting a potential role for EVs in immune activation. Proteomic and bioinformatic analyses demonstrated an increased number of differentially expressed proteins with clozapine that were enriched in pathways related to inflammation, myeloid cell chemotaxis, wounding, transforming growth factor-β signaling, and negative regulation of stimuli response. These data indicate that, although clozapine and olanzapine exposure both alter the protein cargo of EVs, clozapine-exposed EVs carry mediators that exhibit significantly greater immunogenicity. Ultimately, this supports the working hypothesis that drugs associated with a risk of IDRs induce cell stress, release of proinflammatory mediators, and early immune activation that precedes severe reaction onset. Further studies characterizing EVs may elucidate biomarkers that predict IDR risk during development of drug candidates. SIGNIFICANCE STATEMENT: This work demonstrates that clozapine, an idiosyncratic drug-induced agranulocytosis (IDIAG)-associated drug, but not olanzapine, a safer structural analogue, induces an acute proinflammatory response and increases extracellular vesicle (EV) release in two preclinical models. Moreover, clozapine-exposed EVs are more immunogenic, as measured by their ability to activate inflammasomes, and contain more differentially expressed proteins, highlighting a novel role for EVs during the early immune response to clozapine and enhancing our mechanistic understanding of IDIAG and other idiosyncratic reactions.
Collapse
Affiliation(s)
- Samantha Christine Sernoskie
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| | - Éric Bonneil
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| | - Pierre Thibault
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| | - Alison Jee
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| | - Jack Uetrecht
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| |
Collapse
|
116
|
Effah CY, Ding X, Drokow EK, Li X, Tong R, Sun T. Bacteria-derived extracellular vesicles: endogenous roles, therapeutic potentials and their biomimetics for the treatment and prevention of sepsis. Front Immunol 2024; 15:1296061. [PMID: 38420121 PMCID: PMC10899385 DOI: 10.3389/fimmu.2024.1296061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Sepsis is one of the medical conditions with a high mortality rate and lacks specific treatment despite several years of extensive research. Bacterial extracellular vesicles (bEVs) are emerging as a focal target in the pathophysiology and treatment of sepsis. Extracellular vesicles (EVs) derived from pathogenic microorganisms carry pathogenic factors such as carbohydrates, proteins, lipids, nucleic acids, and virulence factors and are regarded as "long-range weapons" to trigger an inflammatory response. In particular, the small size of bEVs can cross the blood-brain and placental barriers that are difficult for pathogens to cross, deliver pathogenic agents to host cells, activate the host immune system, and possibly accelerate the bacterial infection process and subsequent sepsis. Over the years, research into host-derived EVs has increased, leading to breakthroughs in cancer and sepsis treatments. However, related approaches to the role and use of bacterial-derived EVs are still rare in the treatment of sepsis. Herein, this review looked at the dual nature of bEVs in sepsis by highlighting their inherent functions and emphasizing their therapeutic characteristics and potential. Various biomimetics of bEVs for the treatment and prevention of sepsis have also been reviewed. Finally, the latest progress and various obstacles in the clinical application of bEVs have been highlighted.
Collapse
Affiliation(s)
- Clement Yaw Effah
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou, China
| | - Xianfei Ding
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou, China
| | - Emmanuel Kwateng Drokow
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Biostatistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Xiang Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou, China
| | - Ran Tong
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou, China
| | - Tongwen Sun
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou, China
| |
Collapse
|
117
|
Bai L, Zhu J, Ma W, Li F, Zhao P, Zhang S. Neutrophil extracellular traps are involved in the occurrence of interstitial lung disease in a murine experimental autoimmune myositis model. Clin Exp Immunol 2024; 215:126-136. [PMID: 37681358 PMCID: PMC10847814 DOI: 10.1093/cei/uxad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/25/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023] Open
Abstract
The excessive formation of neutrophil extracellular traps (NETs) has been demonstrated to be a pathogenic mechanism of idiopathic inflammatory myopathy (IIM)-associated interstitial lung disease (ILD). This study aimed to answer whether an experimental autoimmune myositis (EAM) model can be used to study IIM-ILD and whether NETs participate in the development of EAM-ILD. An EAM mouse model was established using skeletal muscle homogenate and pertussis toxin (PTX). The relationship between NETs and the ILD phenotype was determined via histopathological analysis. As NETs markers, serum cell-free DNA (cfDNA) and serum citrullinated histone 3 (Cit-H3)-DNA were tested. The healthy mouse was injected with PTX intraperitoneally to determine whether PTX intervention could induce NETs formation in vivo. Neutrophils isolated from the peripheral blood of healthy individuals were given different interventions to determine whether PTX and skeletal muscle homogenate can induce neutrophils to form NETs in vitro. EAM-ILD had three pathological phenotypes similar to IIM-ILD. Cit-H3, neutrophil myeloperoxidase, and neutrophil elastase were overexpressed in the lungs of EAM model mice. The serum cfDNA level and Cit-H3-DNA complex level were significantly increased in EAM model mice. Serum cfDNA levels were increased significantly in vivo intervention with PTX in mice. Both PTX and skeletal muscle homogenate-induced neutrophils to form NETs in vitro. EAM-ILD pathological phenotypes are similar to IIM-ILD, and NETs are involved in the development of ILD in a murine model of EAM. Thus, the EAM mouse model can be used as an ideal model targeting NETs to prevent and treat IIM-ILD.
Collapse
Affiliation(s)
- Ling Bai
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jiarui Zhu
- Department of Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Wenlan Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Feifei Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Peipei Zhao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Sigong Zhang
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
118
|
Ni L, Chen D, Zhao Y, Ye R, Fang P. Unveiling the flames: macrophage pyroptosis and its crucial role in liver diseases. Front Immunol 2024; 15:1338125. [PMID: 38380334 PMCID: PMC10877142 DOI: 10.3389/fimmu.2024.1338125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024] Open
Abstract
Macrophages play a critical role in innate immunity, with approximately 90% of the total macrophage population in the human body residing in the liver. This population encompasses both resident and infiltrating macrophages. Recent studies highlight the pivotal role of liver macrophages in various aspects such as liver inflammation, regeneration, and immune regulation. A novel pro-inflammatory programmed cell death, pyroptosis, initially identified in macrophages, has garnered substantial attention since its discovery. Studies investigating pyroptosis and inflammation progression have particularly centered around macrophages. In liver diseases, pyroptosis plays an important role in driving the inflammatory response, facilitating the fibrotic process, and promoting tumor progression. Notably, the role of macrophage pyroptosis cannot be understated. This review primarily focuses on the role of macrophage pyroptosis in liver diseases. Additionally, it underscores the therapeutic potential inherent in targeting macrophage pyroptosis.
Collapse
Affiliation(s)
| | | | | | | | - Peng Fang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
119
|
Zhang H, Wu D, Wang Y, Shi Y, Shao Y, Zeng F, Spencer CB, Ortoga L, Wu D, Miao C. Ferritin-mediated neutrophil extracellular traps formation and cytokine storm via macrophage scavenger receptor in sepsis-associated lung injury. Cell Commun Signal 2024; 22:97. [PMID: 38308264 PMCID: PMC10837893 DOI: 10.1186/s12964-023-01440-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/12/2023] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Sepsis is a severe systemic inflammatory disorder manifested by a dysregulated immune response to infection and multi-organ failure. Numerous studies have shown that elevated ferritin levels exist as an essential feature during sepsis and are able to suggest patients' prognoses. At the same time, the specific mechanism of ferritin-induced inflammatory injury remains unclear. METHODS Hyper-ferritin state during inflammation was performed by injecting ferritin into a mouse model and demonstrated that injection of ferritin could induce a systemic inflammatory response and increase neutrophil extracellular trap (NET) formation.Padi4-/-, Elane-/- and Cybb-/- mice were used for the NETs formation experiment. Western blot, immunofluorescence, ELISA, and flow cytometry examined the changes in NETs, inflammation, and related signaling pathways. RESULTS Ferritin induces NET formation in a peptidylarginine deiminase 4 (PAD4), neutrophil elastase (NE), and reactive oxygen species (ROS)-dependent manner, thereby exacerbating the inflammatory response. Mechanistically, ferritin induces the expression of neutrophil macrophage scavenger receptor (MSR), which promotes the formation of NETs. Clinically, high levels of ferritin in patients with severe sepsis correlate with NETs-mediated cytokines storm and are proportional to the severity of sepsis-induced lung injury. CONCLUSIONS In conclusion, we demonstrated that hyper-ferritin can induce systemic inflammation and increase NET formation in an MSR-dependent manner. This process relies on PAD4, NE, and ROS, further aggravating acute lung injury. In the clinic, high serum ferritin levels are associated with elevated NETs and worse lung injury, which suggests a poor prognosis for patients with sepsis. Our study indicated that targeting NETs or MSR could be a potential treatment to alleviate lung damage and systemic inflammation during sepsis. Video Abstract.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Dan Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanghanzhao Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuxin Shi
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuwen Shao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fu Zeng
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Charles B Spencer
- Department of Cardiac surgery, The Ohio State University, Columbus, USA
| | - Lilibeth Ortoga
- Department of Biomedical Engineering, The Ohio State University, Columbus, USA
| | - Dehua Wu
- Department of Anesthesiology, Shanghai Songjiang District Central Hospital, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
120
|
Akama Y, Murao A, Aziz M, Wang P. Extracellular CIRP induces CD4CD8αα intraepithelial lymphocyte cytotoxicity in sepsis. Mol Med 2024; 30:17. [PMID: 38302880 PMCID: PMC10835974 DOI: 10.1186/s10020-024-00790-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND In sepsis, intestinal barrier dysfunction is often caused by the uncontrolled death of intestinal epithelial cells (IECs). CD4CD8αα intraepithelial lymphocytes (IELs), a subtype of CD4+ T cells residing within the intestinal epithelium, exert cytotoxicity by producing granzyme B (GrB) and perforin (Prf). Extracellular cold-inducible RNA-binding protein (eCIRP) is a recently identified alarmin which stimulates TLR4 on immune cells to induce proinflammatory responses. Here, we hypothesized that eCIRP enhances CD4CD8αα IEL cytotoxicity and induces IEC death in sepsis. METHODS We subjected wild-type (WT) and CIRP-/- mice to sepsis by cecal ligation and puncture (CLP) and collected the small intestines to isolate IELs. The expression of GrB and Prf in CD4CD8αα IELs was assessed by flow cytometry. IELs isolated from WT and TLR4-/- mice were challenged with recombinant mouse CIRP (eCIRP) and assessed the expression of GrB and Prf in CD4CD8αα by flow cytometry. Organoid-derived IECs were co-cultured with eCIRP-treated CD4CD8αα cells in the presence/absence of GrB and Prf inhibitors and assessed IEC death by flow cytometry. RESULTS We found a significant increase in the expression of GrB and Prf in CD4CD8αα IELs of septic mice compared to sham mice. We found that GrB and Prf levels in CD4CD8αα IELs were increased in the small intestines of WT septic mice, while CD4CD8αα IELs of CIRP-/- mice did not show an increase in those cytotoxic granules after sepsis. We found that eCIRP upregulated GrB and Prf in CD4CD8αα IELs isolated from WT mice but not from TLR4-/- mice. Furthermore, we also revealed that eCIRP-treated CD4CD8αα cells induced organoid-derived IEC death, which was mitigated by GrB and Prf inhibitors. Finally, histological analysis of septic mice revealed that CIRP-/- mice were protected from tissue injury and cell death in the small intestines compared to WT mice. CONCLUSION In sepsis, the cytotoxicity initiated by the eCIRP/TLR4 axis in CD4CD8αα IELs is associated with intestinal epithelial cell (IEC) death, which could lead to gut injury.
Collapse
Affiliation(s)
- Yuichi Akama
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, 11030, Manhasset, NY, USA
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, 11030, Manhasset, NY, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, 11030, Manhasset, NY, USA.
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA.
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, 11030, Manhasset, NY, USA.
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA.
| |
Collapse
|
121
|
Zeng J, Yang Z, Xu D, Song J, Liu Y, Qin J, Weng Z. NMI Functions as Immuno-regulatory Molecule in Sepsis by Regulating Multiple Signaling Pathways. Inflammation 2024; 47:60-73. [PMID: 37679586 DOI: 10.1007/s10753-023-01893-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/02/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Sepsis-induced tissue and organ damage is caused by an overactive inflammatory response, immune dysfunction, and coagulation dysfunction. Danger-associated molecular pattern (DAMP) molecules play a critical role in the excessive inflammation observed in sepsis. In our previous research, we identified NMI as a new type of DAMP molecule that promotes inflammation in sepsis by binding to toll-like receptor 4 (TLR4) on macrophage surfaces, activating the NF-κB pathway, and releasing pro-inflammatory cytokines. However, it is still unknown whether NMI plays a significant role in other pathways. Our analysis of bulk and single-cell transcriptome data from the GEO database revealed a significant increase in NMI expression in neutrophils and monocytes in sepsis patients. It is likely that NMI functions through multiple receptors in sepsis, including IFNAR1, IFNAR2, TNFR1, TLR3, TLR1, IL9R, IL10RB, and TLR4. Furthermore, the correlation between NMI expression and the activation of NF-κB, MAPK, and JAK pathways, as well as the up-regulation of their downstream pro-inflammatory factors, demonstrates that NMI may exacerbate the inflammatory response through these signaling pathways. Finally, we demonstrated that STAT1 phosphorylation was enhanced in RAW cells upon stimulation with NMI, supporting the activation of JAK signaling pathway by NMI. Collectively, these findings shed new light on the functional mechanism of NMI in sepsis.
Collapse
Affiliation(s)
- Jinhua Zeng
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Zixin Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Dan Xu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Jierong Song
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Yingfang Liu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Jing Qin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| | - Zhuangfeng Weng
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
122
|
Gomez AM, Brewer RC, Moon JS, Acharya S, Kongpachith S, Wang Q, Jahanbani S, Wong HH, Lanz TV, Love ZZ, Min-Oo G, Niedziela-Majka A, Robinson WH. Anti-Citrullinated Protein Antibodies With Multiple Specificities Ameliorate Collagen Antibody-Induced Arthritis in a Time-Dependent Manner. Arthritis Rheumatol 2024; 76:181-191. [PMID: 37610274 DOI: 10.1002/art.42679] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/23/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVE Anti-citrullinated protein antibodies (ACPAs) are highly specific for rheumatoid arthritis (RA) and have long been regarded as pathogenic. Despite substantial in vitro evidence supporting this claim, reports investigating the proinflammatory effects of ACPAs in animal models of arthritis are rare and include mixed results. Here, we sequenced the plasmablast antibody repertoire of a patient with RA and functionally characterized the encoded ACPAs. METHODS We expressed ACPAs from the antibody repertoire of a patient with RA and characterized their autoantigen specificities on antigen arrays and enzyme-linked immunosorbent assays. Binding affinities were estimated by bio-layer interferometry. Select ACPAs (n = 9) were tested in the collagen antibody-induced arthritis (CAIA) mouse model to evaluate their effects on joint inflammation. RESULTS Recombinant ACPAs bound preferentially and with high affinity (nanomolar range) to citrullinated (cit) autoantigens (primarily histones and fibrinogen) and to auto-cit peptidylarginine deiminase 4 (PAD4). ACPAs were grouped for in vivo testing based on their predominant cit-antigen specificities. Unexpectedly, injections of recombinant ACPAs significantly reduced paw thickness and arthritis severity in CAIA mice as compared with isotype-matched control antibodies (P ≤ 0.001). Bone erosion, synovitis, and cartilage damage were also significantly reduced (P ≤ 0.01). This amelioration of CAIA was observed for all the ACPAs tested and was independent of cit-PAD4 and cit-fibrinogen specificities. Furthermore, disease amelioration was more prominent when ACPAs were injected at earlier stages of CAIA than at later phases of the model. CONCLUSION Recombinant patient-derived ACPAs ameliorated CAIA. Their antiinflammatory effects were more preventive than therapeutic. This study highlights a potential protective role for ACPAs in arthritis.
Collapse
Affiliation(s)
- Alejandro M Gomez
- Stanford University School of Medicine, Stanford, and VA Palo Alto Health Care System, Palo Alto, California
| | - R Camille Brewer
- Stanford University School of Medicine, Stanford, and VA Palo Alto Health Care System, Palo Alto, California
| | - Jae-Seung Moon
- Stanford University School of Medicine, Stanford, and VA Palo Alto Health Care System, Palo Alto, California
| | - Suman Acharya
- Stanford University School of Medicine, Stanford, and VA Palo Alto Health Care System, Palo Alto, California
| | - Sarah Kongpachith
- Stanford University School of Medicine, Stanford, and VA Palo Alto Health Care System, Palo Alto, California
| | - Qian Wang
- Stanford University School of Medicine, Stanford, and VA Palo Alto Health Care System, Palo Alto, California
| | - Shaghayegh Jahanbani
- Stanford University School of Medicine, Stanford, and VA Palo Alto Health Care System, Palo Alto, California
| | - Heidi H Wong
- Stanford University School of Medicine, Stanford, and VA Palo Alto Health Care System, Palo Alto, California
| | - Tobias V Lanz
- Stanford University School of Medicine, Stanford, and VA Palo Alto Health Care System, Palo Alto, California
| | - Zelda Z Love
- Stanford University School of Medicine, Stanford, and VA Palo Alto Health Care System, Palo Alto, California
| | | | | | - William H Robinson
- Stanford University School of Medicine, Stanford, and VA Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
123
|
Shang W, Cao Y, Li Y, Ma M, Che H, Xiao P, Yu Y, Kang H, Wang D. Effect of early hemostasis strategy on secondary post-traumatic sepsis in trauma hemorrhagic patients. Injury 2024; 55:111205. [PMID: 38006781 DOI: 10.1016/j.injury.2023.111205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/02/2023] [Accepted: 11/12/2023] [Indexed: 11/27/2023]
Abstract
INTRODUCTION Fibrinogen and platelet, as the two main components of hemostatic resuscitation, are frequently administered in traumatic massive hemorrhage patients. It is reasonable to infer that they may have an impact on post-traumatic sepsis as more and more recognition of their roles in inflammation and immunity. This study aims to determine the association between the fibrinogen/platelet transfusion ratio during the first 24 h after trauma and the risk of the post- traumatic sepsis. METHODS We analyzed the data from the National Trauma Data Bank (NTDB). Subjects included the critically injured adult patients admitted to Level I/II trauma center from 2013 to 2017 who received fibrinogen and platelet supplementation and more than 10 units (about 4000 ml) packed red blood cells (pRBCs) during the first 24 h after trauma. Two parts of analyses were performed: (1) multivariable stepwise regression was used to determine the variables that influence the risk of post-traumatic sepsis; (2) propensity score matching (PSM), to compare the influences of different transfusion ratio between fibrinogen and platelet on the risk of sepsis and other outcomes after trauma. RESULTS 8 features were screened out by bi-directional multivariable stepwise logistic regression to predict the post-traumatic sepsis. They are age, sex, BMI, ISSabdomen, current smoker, COPD, Fib4h/24h and Fib/PLT24h. Fib/PLT24h was negatively related to sepsis (p < 0.05). A total of 1601 patients were included in the PSM cohort and grouped by Fib/PLT24h = 0.025 according to the fitting generalized additive model (GAM) model curve. The incidence of sepsis was significantly decreased in the high Fib/PLT group [3.3 % vs 9.4 %, OR = 0.33, 95 %CI (0.17-0.60)]; the length of stay in ICU and mechanical ventilation were both shortened as well [8 (IQR 2.00,17.00) vs 9 (IQR 3.00,19.25), p = 0.006 and 4 (IQR 2.00,10.00) vs 5 (IQR 2.00,14.00), p = 0.003, respectively. CONCLUSIONS Early and sufficient supplementation of fibrinogen was a convenient way contribute to reduce the risk of sepsis after trauma.
Collapse
Affiliation(s)
- Wei Shang
- Medical School of Chinese PLA, Beijing, China; Department of Blood Transfusion Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yuan Cao
- Emergency Department, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yun Li
- Medical School of Chinese PLA, Beijing, China; Department of Critical Care Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Mingzi Ma
- Department of Blood Transfusion, Shenyang Women's and Children's Hospital, Shenyang, China
| | - Hebin Che
- Medical Big Data Research Center, Chinese PLA General Hospital, Beijing, China
| | - Pan Xiao
- Department of Blood Transfusion Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing, China; Department of Blood Transfusion, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yang Yu
- Medical School of Chinese PLA, Beijing, China; Department of Blood Transfusion Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Hongjun Kang
- Medical School of Chinese PLA, Beijing, China; Department of Critical Care Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Deqing Wang
- Medical School of Chinese PLA, Beijing, China; Department of Blood Transfusion Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
124
|
Murao A, Jha A, Aziz M, Wang P. Transcriptomic profiling of immune cells in murine polymicrobial sepsis. Front Immunol 2024; 15:1347453. [PMID: 38343542 PMCID: PMC10853340 DOI: 10.3389/fimmu.2024.1347453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
Introduction Various immune cell types play critical roles in sepsis with numerous distinct subsets exhibiting unique phenotypes even within the same cell population. Single-cell RNA sequencing (scRNA-seq) enables comprehensive transcriptome profiling and unbiased cell classification. In this study, we have unveiled the transcriptomic landscape of immune cells in sepsis through scRNA-seq analysis. Methods We induced sepsis in mice by cecal ligation and puncture. 20 h after the surgery, the spleen and peritoneal lavage were collected. Single-cell suspensions were processed using a 10× Genomics pipeline and sequenced on an Illumina platform. Count matrices were generated using the Cell Ranger pipeline, which maps reads to the mouse reference transcriptome, GRCm38/mm10. Subsequent scRNA-seq analysis was performed using the R package Seurat. Results After quality control, we subjected the entire data set to unsupervised classification. Four major clusters were identified as neutrophils, macrophages, B cells, and T cells according to their putative markers. Based on the differentially expressed genes, we identified activated pathways in sepsis for each cell type. In neutrophils, pathways related to inflammatory signaling, such as NF-κB and responses to pathogen-associated molecular patterns (PAMPs), cytokines, and hypoxia were activated. In macrophages, activated pathways were the ones related to cell aging, inflammatory signaling, and responses to PAMPs. In B cells, pathways related to endoplasmic reticulum stress were activated. In T cells, activated pathways were the ones related to inflammatory signaling, responses to PAMPs, and acute lung injury. Next, we further classified each cell type into subsets. Neutrophils consisted of four clusters. Some subsets were activated in inflammatory signaling or cell metabolism, whereas others possessed immunoregulatory or aging properties. Macrophages consisted of four clusters, namely, the ones with enhanced aging, lymphocyte activation, extracellular matrix organization, or cytokine activity. B cells consisted of four clusters, including the ones possessing the phenotype of cell maturation or aging. T cells consisted of six clusters, whose phenotypes include molecular translocation or cell activation. Conclusions Transcriptomic analysis by scRNA-seq has unveiled a comprehensive spectrum of immune cell responses and distinct subsets in the context of sepsis. These findings are poised to enhance our understanding of sepsis pathophysiology, offering avenues for targeting novel molecules, cells, and pathways to combat infectious diseases.
Collapse
Affiliation(s)
- Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Alok Jha
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
125
|
Li Y, Guo A, Liu J, Tang L, Su L, Liu Z. Myeloid-specific knockout of Notch-1 inhibits MyD88- and TRIF-mediated TLR signaling pathways by regulating oxidative stress-SHP2 axis, thus restraining aneurysm progression. Aging (Albany NY) 2024; 16:1182-1191. [PMID: 38284891 PMCID: PMC10866402 DOI: 10.18632/aging.205392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/15/2023] [Indexed: 01/30/2024]
Abstract
OBJECTIVE Notch-1 is a signal regulatory protein with extensive effects in myeloid cells, but its role in aneurysms remains to be fully clarified. In this study, therefore, the aneurysm mouse model with myeloid-specific knockout of Notch-1 was established to observe the role of Notch-1 in aneurysm progression. METHODS AND RESULTS The effect of Notch-1 was assessed by pathological staining and Western blotting. It was found that after myeloid-specific knockout of Notch-1 in the aneurysm mouse model, the area of aneurysms and the macrophage infiltration were significantly reduced, the damage to arterial elastic plates was significantly relieved, and the oxidative stress level significantly declined. The results of Western blotting showed that after myeloid-specific knockout of Notch-1, the levels of oxidative stress-related proteins p22 and p47 in aneurysm tissues significantly declined, accompanied by a significant increase in the protein level of Src homology 2 domain-containing tyrosine phosphatase-2 (SHP2). In addition, the levels of phosphorylated myeloid differential protein-88 (MyD88), TIR domain-containing adaptor-inducing interferon-β (TRIF) and nuclear factor-κB (NF-κB), and inflammatory cytokines interferon-γ (IFN-γ), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) also significantly decreased after myeloid-specific knockout of Notch-1. Following myeloid-specific knockout of Notch-1, the phagocytic capacity of macrophages was enhanced by promoting the SHP2 signaling pathway. CONCLUSION Notch-1 in monocytes/macrophages can activate the Toll-like receptor (TLR)-mediated inflammatory and stress responses by activating oxidative stress and inhibiting the SHP2 protein expression, thus facilitating aneurysm progression.
Collapse
Affiliation(s)
- Yu Li
- Department of Cardiovascular Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Ailin Guo
- Department of Cardiovascular Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jianlei Liu
- Department of Cardiovascular Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Lijuan Tang
- Institute of Prevention and Control of Non-communicable Chronic Diseases, Hebei Province Center for Disease Prevention and Control, Shijiazhuang 050021, China
| | - Lide Su
- Department of Cardiovascular Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Zonghong Liu
- Department of Cardiovascular Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| |
Collapse
|
126
|
Szakmany T, Fitzgerald E, Garlant HN, Whitehouse T, Molnar T, Shah S, Tong D, Hall JE, Ball GR, Kempsell KE. The 'analysis of gene expression and biomarkers for point-of-care decision support in Sepsis' study; temporal clinical parameter analysis and validation of early diagnostic biomarker signatures for severe inflammation andsepsis-SIRS discrimination. Front Immunol 2024; 14:1308530. [PMID: 38332914 PMCID: PMC10850284 DOI: 10.3389/fimmu.2023.1308530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/26/2023] [Indexed: 02/10/2024] Open
Abstract
Introduction Early diagnosis of sepsis and discrimination from SIRS is crucial for clinicians to provide appropriate care, management and treatment to critically ill patients. We describe identification of mRNA biomarkers from peripheral blood leukocytes, able to identify severe, systemic inflammation (irrespective of origin) and differentiate Sepsis from SIRS, in adult patients within a multi-center clinical study. Methods Participants were recruited in Intensive Care Units (ICUs) from multiple UK hospitals, including fifty-nine patients with abdominal sepsis, eighty-four patients with pulmonary sepsis, forty-two SIRS patients with Out-of-Hospital Cardiac Arrest (OOHCA), sampled at four time points, in addition to thirty healthy control donors. Multiple clinical parameters were measured, including SOFA score, with many differences observed between SIRS and sepsis groups. Differential gene expression analyses were performed using microarray hybridization and data analyzed using a combination of parametric and non-parametric statistical tools. Results Nineteen high-performance, differentially expressed mRNA biomarkers were identified between control and combined SIRS/Sepsis groups (FC>20.0, p<0.05), termed 'indicators of inflammation' (I°I), including CD177, FAM20A and OLAH. Best-performing minimal signatures e.g. FAM20A/OLAH showed good accuracy for determination of severe, systemic inflammation (AUC>0.99). Twenty entities, termed 'SIRS or Sepsis' (S°S) biomarkers, were differentially expressed between sepsis and SIRS (FC>2·0, p-value<0.05). Discussion The best performing signature for discriminating sepsis from SIRS was CMTM5/CETP/PLA2G7/MIA/MPP3 (AUC=0.9758). The I°I and S°S signatures performed variably in other independent gene expression datasets, this may be due to technical variation in the study/assay platform.
Collapse
Affiliation(s)
- Tamas Szakmany
- Department of Anaesthesia, Intensive Care and Pain Medicine, Division of Population Medicine, Cardiff University, Cardiff, United Kingdom
- Anaesthesia, Critical Care and Theatres Directorate, Cwm Taf Morgannwg University Health Board, Royal Glamorgan Hospital, Llantrisant, United Kingdom
| | | | | | - Tony Whitehouse
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Mindelsohn Way Edgbaston, Birmingham, United Kingdom
| | - Tamas Molnar
- Critical Care Directorate, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom
| | - Sanjoy Shah
- Critical Care Directorate, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom
| | - Dong Ling Tong
- Faculty of Information and Communication Technology, Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia
| | - Judith E. Hall
- Department of Anaesthesia, Intensive Care and Pain Medicine, Division of Population Medicine, Cardiff University, Cardiff, United Kingdom
| | - Graham R. Ball
- Medical Technology Research Facility, Anglia Ruskin University, Essex, United Kingdom
| | | |
Collapse
|
127
|
Yamaga S, Aziz M, Murao A, Brenner M, Wang P. DAMPs and radiation injury. Front Immunol 2024; 15:1353990. [PMID: 38333215 PMCID: PMC10850293 DOI: 10.3389/fimmu.2024.1353990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
The heightened risk of ionizing radiation exposure, stemming from radiation accidents and potential acts of terrorism, has spurred growing interests in devising effective countermeasures against radiation injury. High-dose ionizing radiation exposure triggers acute radiation syndrome (ARS), manifesting as hematopoietic, gastrointestinal, and neurovascular ARS. Hematopoietic ARS typically presents with neutropenia and thrombocytopenia, while gastrointestinal ARS results in intestinal mucosal injury, often culminating in lethal sepsis and gastrointestinal bleeding. This deleterious impact can be attributed to radiation-induced DNA damage and oxidative stress, leading to various forms of cell death, such as apoptosis, necrosis and ferroptosis. Damage-associated molecular patterns (DAMPs) are intrinsic molecules released by cells undergoing injury or in the process of dying, either through passive or active pathways. These molecules then interact with pattern recognition receptors, triggering inflammatory responses. Such a cascade of events ultimately results in further tissue and organ damage, contributing to the elevated mortality rate. Notably, infection and sepsis often develop in ARS cases, further increasing the release of DAMPs. Given that lethal sepsis stands as a major contributor to the mortality in ARS, DAMPs hold the potential to function as mediators, exacerbating radiation-induced organ injury and consequently worsening overall survival. This review describes the intricate mechanisms underlying radiation-induced release of DAMPs. Furthermore, it discusses the detrimental effects of DAMPs on the immune system and explores potential DAMP-targeting therapeutic strategies to alleviate radiation-induced injury.
Collapse
Affiliation(s)
- Satoshi Yamaga
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
128
|
Bleuzé M, Lavoie JP, Bédard C, Gottschalk M, Segura M. Encapsulated Streptococcus suis impairs optimal neutrophil functions which are not rescued by priming with colony-stimulating factors. PLoS One 2024; 19:e0296844. [PMID: 38261585 PMCID: PMC10805302 DOI: 10.1371/journal.pone.0296844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
The porcine pathogen and zoonotic agent Streptococcus suis induces an exacerbated inflammation in the infected hosts that leads to sepsis, meningitis, and sudden death. Several virulence factors were described for S. suis of which the capsular polysaccharide (CPS) conceals it from the immune system, and the suilysin exhibits cytotoxic activity. Although neutrophils are recruited rapidly upon S. suis infection, their microbicidal functions appear to be poorly activated against the bacteria. However, during disease, the inflammatory environment could promote neutrophil activation as mediators such as the granulocyte colony-stimulating factor granulocyte (G-CSF) and the granulocyte-macrophages colony-stimulating factor (GM-CSF) prime neutrophils and enhance their responsiveness to bacterial detection. Thus, we hypothesized that CPS and suilysin prevent an efficient activation of neutrophils by S. suis, but that G-CSF and GM-CSF rescue neutrophil activation, leading to S. suis elimination. We evaluated the functions of porcine neutrophils in vitro in response to S. suis and investigated the role of the CPS and suilysin on cell activation using isogenic mutants of the bacteria. We also studied the influence of G-CSF and GM-CSF on neutrophil response to S. suis by priming the cells with recombinant proteins. Our study confirmed that CPS prevents S. suis-induced activation of most neutrophil functions but participates in the release of neutrophil-extracellular traps (NETs). Priming with G-CSF did not influence cell activation, but GM-CSF strongly promote IL-8 release, indicating its involvement in immunomodulation. However, priming did not enhance microbicidal functions. Studying the interaction between S. suis and neutrophils-first responders in host defense-remains fundamental to understand the immunopathogenesis of the infection and to develop therapeutical strategies related to neutrophils' defense against this bacterium.
Collapse
Affiliation(s)
- Marêva Bleuzé
- Faculty of Veterinary Medicine, Research Group on Infectious Diseases in Production Animals (GREMIP) & Swine and Poultry Infectious Diseases Research Center (CRIPA), Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Jean-Pierre Lavoie
- Faculty of Veterinary Medicine, Department of Clinical Sciences, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Christian Bédard
- Faculty of Veterinary Medicine, Department of Pathology and Microbiology, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Marcelo Gottschalk
- Faculty of Veterinary Medicine, Research Group on Infectious Diseases in Production Animals (GREMIP) & Swine and Poultry Infectious Diseases Research Center (CRIPA), Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Mariela Segura
- Faculty of Veterinary Medicine, Research Group on Infectious Diseases in Production Animals (GREMIP) & Swine and Poultry Infectious Diseases Research Center (CRIPA), Université de Montréal, St-Hyacinthe, Quebec, Canada
| |
Collapse
|
129
|
Hang Y, Qu H, Yang J, Li Z, Ma S, Tang C, Wu C, Bao Y, Jiang F, Shu J. Exploration of programmed cell death-associated characteristics and immune infiltration in neonatal sepsis: new insights from bioinformatics analysis and machine learning. BMC Pediatr 2024; 24:67. [PMID: 38245687 PMCID: PMC10799360 DOI: 10.1186/s12887-024-04555-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Neonatal sepsis, a perilous medical situation, is typified by the malfunction of organs and serves as the primary reason for neonatal mortality. Nevertheless, the mechanisms underlying newborn sepsis remain ambiguous. Programmed cell death (PCD) has a connection with numerous infectious illnesses and holds a significant function in newborn sepsis, potentially serving as a marker for diagnosing the condition. METHODS From the GEO public repository, we selected two groups, which we referred to as the training and validation sets, for our analysis of neonatal sepsis. We obtained PCD-related genes from 12 different patterns, including databases and published literature. We first obtained differential expressed genes (DEGs) for neonatal sepsis and controls. Three advanced machine learning techniques, namely LASSO, SVM-RFE, and RF, were employed to identify potential genes connected to PCD. To further validate the results, PPI networks were constructed, artificial neural networks and consensus clustering were used. Subsequently, a neonatal sepsis diagnostic prediction model was developed and evaluated. We conducted an analysis of immune cell infiltration to examine immune cell dysregulation in neonatal sepsis, and we established a ceRNA network based on the identified marker genes. RESULTS Within the context of neonatal sepsis, a total of 49 genes exhibited an intersection between the differentially expressed genes (DEGs) and those associated with programmed cell death (PCD). Utilizing three distinct machine learning techniques, six genes were identified as common to both DEGs and PCD-associated genes. A diagnostic model was subsequently constructed by integrating differential expression profiles, and subsequently validated by conducting artificial neural networks and consensus clustering. Receiver operating characteristic (ROC) curves were employed to assess the diagnostic merit of the model, which yielded promising results. The immune infiltration analysis revealed notable disparities in patients diagnosed with neonatal sepsis. Furthermore, based on the identified marker genes, the ceRNA network revealed an intricate regulatory interplay. CONCLUSION In our investigation, we methodically identified six marker genes (AP3B2, STAT3, TSPO, S100A9, GNS, and CX3CR1). An effective diagnostic prediction model emerged from an exhaustive analysis within the training group (AUC 0.930, 95%CI 0.887-0.965) and the validation group (AUC 0.977, 95%CI 0.935-1.000).
Collapse
Affiliation(s)
- Yun Hang
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Huanxia Qu
- Department of Blood Transfusion, Zhenjiang First People's Hospital, Zhenjiang, China
| | - Juanzhi Yang
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Zhang Li
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Shiqi Ma
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Chenlu Tang
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Chuyan Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunlei Bao
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.
| | - Jin Shu
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
130
|
Xu X, Wang Y, Tao Y, Dang W, Yang B, Li Y. The role of platelets in sepsis: A review. BIOMOLECULES & BIOMEDICINE 2024; 24:741-752. [PMID: 38236204 PMCID: PMC11293227 DOI: 10.17305/bb.2023.10135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/19/2024]
Abstract
Sepsis, a life-threatening condition characterized by organ dysfunction, results from a complex series of pathophysiological mechanisms including immune dysfunction, an uncontrolled inflammatory response, and coagulation abnormalities. It is a major contributor to global mortality and severe disease development. Platelets, abundant in the circulatory system, are sensitive to changes in the body's internal environment and are among the first cells to respond to dysregulated pro-inflammatory and pro-coagulant reactions at the onset of sepsis. In the initial stages of sepsis, the coagulation cascade, inflammatory response, and endothelial tissue damage perpetually trigger platelet activation. These activated platelets then engage in complex inflammatory and immune reactions, potentially leading to organ dysfunction. Therefore, further research is essential to fully understand the role of platelets in sepsis pathology and to develop effective therapeutic strategies targeting the associated pathogenic pathways. This review delves into the involvement of platelets in sepsis and briefly outlines the clinical applications of associated biomarkers.
Collapse
Affiliation(s)
- Xinxin Xu
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yurou Wang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yiming Tao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenpei Dang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Yang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongsheng Li
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
131
|
Zhang J, Zhao Q, Hu Z. Clinical predictive value of the initial neutrophils to lymphocytes and platelets ratio for prognosis of sepsis patients in the intensive care unit: a retrospective study. Front Med (Lausanne) 2024; 11:1351492. [PMID: 38318247 PMCID: PMC10840849 DOI: 10.3389/fmed.2024.1351492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Background Neutrophils to lymphocytes and platelets (N/LP) ratio has been confirmed as an indirect marker of inflammation. In this study, we aimed to further evaluate the prognostic significance of the N/LP ratio in sepsis patients admitted to the ICU. Methods Sepsis patients from the Affiliated Hospital of Jiangsu University were retrospectively enrolled from January 2015 and July 2023. The primary outcomes were 30/60 days mortality. The secondary outcomes included the incidence of AKI, vasoactive drug, CRRT, invasive ventilation, length of ICU stay, length of hospital stay and ICU mortality. Results A total of 1,066 sepsis patients were enrolled with a median age of 75.0 (66.0, 85.0) years, and 62.5% of them being male. The 30 days and 60 days mortality rates were found to be 28.7 and 34.0%, respectively, while the incidence of AKI was 45.2%. Based on their N/LP ratios, we classified the sepsis patients into three groups: low, middle, and high, consisting of 266, 534, and 266 patients, respectively. According the Cox proportional hazard model, the middle and high N/LP groups were associated with a 1.990/3.106-fold increase in 30 days mortality risk and a 2.066/3.046-fold increase in 60 days mortality risk compared with the low N/LP group. Besides, multivariate logistic regression model suggested that the risk of AKI occurrence increased 2.460 fold in the high group compared to the low group. However, through subgroup analyses, we observed substantial variations in the association between N/LP ratios and 30/60 days mortality rates as well as the incidence of AKI among different populations. Notably, the N/LP ratio measured at ICU admission exhibited a higher AUC for predicting 30/60 days mortality (0.684/0.687). Additionally, we observed a good predictive power for the occurrence of AKI (AUC: 0.645) using the N/LP ratio measured at sepsis prognosis. Regarding the other secondary outcomes, the N/LP ratio was associated with disease severity in sepsis patients, including the need for vasoactive drugs, length of ICU stay, and ICU mortality. Conclusion The N/LP ratio at ICU admission was found to have a significant independent association with 30/60 days mortality and the incidence of AKI in sepsis patients.
Collapse
Affiliation(s)
| | | | - Zhenkui Hu
- Department of Critical Care Medicine, The Affiliated Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|
132
|
Cicchinelli S, Pignataro G, Gemma S, Piccioni A, Picozzi D, Ojetti V, Franceschi F, Candelli M. PAMPs and DAMPs in Sepsis: A Review of Their Molecular Features and Potential Clinical Implications. Int J Mol Sci 2024; 25:962. [PMID: 38256033 PMCID: PMC10815927 DOI: 10.3390/ijms25020962] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Sepsis is a serious organ dysfunction caused by a dysregulated immune host reaction to a pathogen. The innate immunity is programmed to react immediately to conserved molecules, released by the pathogens (PAMPs), and the host (DAMPs). We aimed to review the molecular mechanisms of the early phases of sepsis, focusing on PAMPs, DAMPs, and their related pathways, to identify potential biomarkers. We included studies published in English and searched on PubMed® and Cochrane®. After a detailed discussion on the actual knowledge of PAMPs/DAMPs, we analyzed their role in the different organs affected by sepsis, trying to elucidate the molecular basis of some of the most-used prognostic scores for sepsis. Furthermore, we described a chronological trend for the release of PAMPs/DAMPs that may be useful to identify different subsets of septic patients, who may benefit from targeted therapies. These findings are preliminary since these pathways seem to be strongly influenced by the peculiar characteristics of different pathogens and host features. Due to these reasons, while initial findings are promising, additional studies are necessary to clarify the potential involvement of these molecular patterns in the natural evolution of sepsis and to facilitate their transition into the clinical setting.
Collapse
Affiliation(s)
- Sara Cicchinelli
- Department of Emergency, S.S. Filippo e Nicola Hospital, 67051 Avezzano, Italy;
| | - Giulia Pignataro
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Stefania Gemma
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Andrea Piccioni
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Domitilla Picozzi
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Veronica Ojetti
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Francesco Franceschi
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Marcello Candelli
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| |
Collapse
|
133
|
Liu J, Zhou J, Luan Y, Li X, Meng X, Liao W, Tang J, Wang Z. cGAS-STING, inflammasomes and pyroptosis: an overview of crosstalk mechanism of activation and regulation. Cell Commun Signal 2024; 22:22. [PMID: 38195584 PMCID: PMC10775518 DOI: 10.1186/s12964-023-01466-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Intracellular DNA-sensing pathway cGAS-STING, inflammasomes and pyroptosis act as critical natural immune signaling axes for microbial infection, chronic inflammation, cancer progression and organ degeneration, but the mechanism and regulation of the crosstalk network remain unclear. Cellular stress disrupts mitochondrial homeostasis, facilitates the opening of mitochondrial permeability transition pore and the leakage of mitochondrial DNA to cell membrane, triggers inflammatory responses by activating cGAS-STING signaling, and subsequently induces inflammasomes activation and the onset of pyroptosis. Meanwhile, the inflammasome-associated protein caspase-1, Gasdermin D, the CARD domain of ASC and the potassium channel are involved in regulating cGAS-STING pathway. Importantly, this crosstalk network has a cascade amplification effect that exacerbates the immuno-inflammatory response, worsening the pathological process of inflammatory and autoimmune diseases. Given the importance of this crosstalk network of cGAS-STING, inflammasomes and pyroptosis in the regulation of innate immunity, it is emerging as a new avenue to explore the mechanisms of multiple disease pathogenesis. Therefore, efforts to define strategies to selectively modulate cGAS-STING, inflammasomes and pyroptosis in different disease settings have been or are ongoing. In this review, we will describe how this mechanistic understanding is driving possible therapeutics targeting this crosstalk network, focusing on the interacting or regulatory proteins, pathways, and a regulatory mitochondrial hub between cGAS-STING, inflammasomes, and pyroptosis. SHORT CONCLUSION This review aims to provide insight into the critical roles and regulatory mechanisms of the crosstalk network of cGAS-STING, inflammasomes and pyroptosis, and to highlight some promising directions for future research and intervention.
Collapse
Affiliation(s)
- Jingwen Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jing Zhou
- The Second Hospital of Ningbo, Ningbo, 315099, China
| | - Yuling Luan
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoying Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200080, China
| | - Xiangrui Meng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Zheilei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
134
|
Qiu X, Wang Q, Zhang Y, Zhao Q, Jiang Z, Zhou L. Prognostic Value of Neutrophils-to-Lymphocytes Ratio and Platelets-to-Lymphocytes Ratio in Sepsis Patients With Lymphopenia. Biomark Insights 2024; 19:11772719231223156. [PMID: 38186669 PMCID: PMC10768602 DOI: 10.1177/11772719231223156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Background Inflammation plays a critical role in sepsis. The integration of neutrophil-to-lymphocyte ratio (NLR) and platelets-to-lymphocytes ratio (PLR) from multiple cell types offers a novel approach to rapidly assess inflammation status. However, the predictive role of NLR and PLR in sepsis with lymphopenia remains uncertain. Objectives The purpose of this study was to explore the prognostic value of NLR and PLR in sepsis patients with lymphopenia. Design and methods In this observational retrospective study, we included 172 sepsis patients with lymphopenia and collected clinical characteristics for analysis. Through binary logistic regression analysis, we identified independent factors. Receiver-operating characteristic curves (ROC) and areas under the curves (AUC) were employed to assess the ability to predict hospital mortality risk. Results Our results showed a total hospital mortality rate of 53.49%. Multivariate analysis demonstrated that NLR (OR = 1.11, P < .001) and PLR (OR = 1.01, P = .003) were independent predictors associated with hospital mortality in sepsis patients with lymphopenia. The AUCs of NLR and PLR were 0.750 (95% CI: 0.634-0.788, P < .001) and 0.662 (95% CI: 0.580-0.743, P < .001), respectively. Notably, an optimal cut-off value of 18.93 for NLR displayed a sensitivity of 75.0% and specificity of 63.0% in discriminating hospital mortality in sepsis patients with lymphopenia, while the optimal cut-off value for PLR was 377.50, with a sensitivity of 67.5% and specificity of 64.1%. Conclusion NLR and PLR serve as independent predictors of hospital mortality in sepsis patients with lymphopenia.
Collapse
Affiliation(s)
- Xianming Qiu
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Respiratory Diseases, Jinan, China
| | - Quanzhen Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
| | - Yuke Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Respiratory Diseases, Jinan, China
| | - Qiannan Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Respiratory Diseases, Jinan, China
| | - Zhiming Jiang
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
| | - Lei Zhou
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Respiratory Diseases, Jinan, China
| |
Collapse
|
135
|
Shao Y, Li L, Yang Y, Ye Y, Guo Z, Liu L, Huang J, Chen Y, Gao X, Sun B. DNase aggravates intestinal microvascular injury in IBD patients by releasing NET-related proteins. FASEB J 2024; 38:e23395. [PMID: 38149880 DOI: 10.1096/fj.202301780r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/02/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023]
Abstract
Neutrophils accumulate in the inflammatory mucosa of patients with inflammatory bowel disease (IBD), and excessive release of NETs (neutrophil extracellular traps may be one of the important factors that cause IBD progression. However, the specific mechanism underlying vascular injury caused by NETs remains unclear. Immunofluorescence, ELISA, and flow cytometry were used in this study to detect the expression of NETs and DNase in the tissue and peripheral blood samples of patients with IBD. DSS mouse model was used to detect colon injury and vascular permeability. We found that NETs and DNase levels increased in the colon of patients with IBD. We found an increase in the activity of NET-related MPO released by DNase. DNase released NET-related proteins and damaged vascular endothelial cells in vitro. In DSS mouse model, the synchronous increase of DNase and NETs in the colon leads to an increase in vascular injury markers (CD44, sTM). DNase aggravated colon injury and increased vascular permeability in vivo, which was inhibited by gentamicin sulfate (GS). GS does not reduce the expression of DNase, but rather reduces the release of NET-related proteins to protect vascular endothelium by inhibiting DNase activity. MPO and histones synergistically damaged the vascular endothelium, and vascular injury can be improved by their active inhibitors. We further found that H2 O2 is an important substrate for MPO induced vascular damage. In conclusion, in IBD, DNase, and NET levels increased synchronously in the lesion area and released NET-related proteins to damage the vascular endothelium. Therefore, targeting DNase may be beneficial for the treatment of IBD.
Collapse
Affiliation(s)
- Yiming Shao
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jining Medical University, Jining, China
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Linbin Li
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yunxi Yang
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yulan Ye
- Department of Gastroenterology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Zaiwen Guo
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Lu Liu
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jiamin Huang
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yi Chen
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xi Gao
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Bingwei Sun
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
136
|
Xiao Y, Fang H, Zhu Y, Zhou J, Dai Z, Wang H, Xia Z, Tu Z, Leong KW. Multifunctional Cationic Hyperbranched Polyaminoglycosides that Target Multiple Mediators for Severe Abdominal Trauma Management. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305273. [PMID: 37997512 PMCID: PMC10767409 DOI: 10.1002/advs.202305273] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Indexed: 11/25/2023]
Abstract
Trauma and its associated complications, including dysregulated inflammatory responses, severe infection, and disseminated intravascular coagulation (DIC), continue to pose lethal threats worldwide. Following injury, cell-free nucleic acids (cfNAs), categorized as damage-associated molecular patterns (DAMPs), are released from dying or dead cells, triggering local and systemic inflammatory responses and coagulation abnormalities that worsen disease progression. Harnessing cfNA scavenging strategies with biomaterials has emerged as a promising approach for treating posttrauma systemic inflammation. In this study, the effectiveness of cationic hyperbranched polyaminoglycosides derived from tobramycin (HPT) and disulfide-included HPT (ss-HPT) in scavenging cfNAs to mitigate posttrauma inflammation and hypercoagulation is investigated. Both cationic polymers demonstrate the ability to suppress DAMP-induced toll-like receptor (TLR) activation, inflammatory cytokine secretion, and hypercoagulation by efficiently scavenging cfNAs. Additionally, HPT and ss-HPT exhibit potent antibacterial efficacy attributed to the presence of tobramycin in their chemical composition. Furthermore, HPT and ss-HPT exhibit favorable modulatory effects on inflammation and therapeutic outcomes in a cecal ligation puncture (CLP) mouse abdominal trauma model. Notably, in vivo studies reveal that ss-HPT displayed high accumulation and retention in injured organs of traumatized mice while maintaining a higher biodegradation rate in healthy mice, contrasting with findings for HPT. Thus, functionalized ss-HPT, a bioreducible polyaminoglycoside, holds promise as an effective option to enhance therapeutic outcomes for trauma patients by alleviating posttrauma inflammation and coagulation complications.
Collapse
Affiliation(s)
- Yongqiang Xiao
- Department of Burn Surgerythe First Affiliated HospitalNaval Medical UniversityShanghai200433P. R. China
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
- ENT InstituteDepartment of Facial Plastic and Reconstructive SurgeryEye & ENT HospitalFudan UniversityShanghai200031P. R. China
| | - He Fang
- Department of Burn Surgerythe First Affiliated HospitalNaval Medical UniversityShanghai200433P. R. China
| | - Yuefei Zhu
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Jie Zhou
- Department of Breast SurgeryAffiliated Cancer Hospital and InstituteGuangzhou Medical UniversityGuangzhou510095P. R. China
| | - Zhanzhan Dai
- Department of Burn Surgerythe First Affiliated HospitalNaval Medical UniversityShanghai200433P. R. China
| | - Hongxia Wang
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Zhaofan Xia
- Department of Burn Surgerythe First Affiliated HospitalNaval Medical UniversityShanghai200433P. R. China
| | - Zhaoxu Tu
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
- The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Kam W. Leong
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
- Department of Systems BiologyColumbia University Medical CenterNew YorkNY10032USA
| |
Collapse
|
137
|
Papamichail GV, Georgiadis AN, Tellis CC, Rapti I, Markatseli TE, Xydis VG, Tselepis AD, Drosos AA, Voulgari PV. Antibodies against oxidized LDL and atherosclerosis in rheumatoid arthritis patients treated with biological agents: a prospective controlled study. Clin Rheumatol 2024; 43:481-488. [PMID: 37642764 DOI: 10.1007/s10067-023-06744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVES The aim of this study was to investigate the relation among atherosclerosis, antibodies against oxidized LDL (anti-oxLDL), and inflammation in rheumatoid arthritis (RA) patients treated with biological (b) disease-modifying anti-rheumatic drugs (DMARDs). METHODS Fifty-nine patients who were receiving conventional synthetic DMARDs and were eligible for treatment with a biological agent were included in the study. Total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and IgG antibodies against oxidized LDL (anti-oxLDL) as well as carotid intima-media thickness (cIMT) were determined before and after 6 months of treatment. Thirty-one healthy individuals were used as a control group. RESULTS At baseline, RA patients had lower TC and HDL-C levels and increased cIMT compared to controls. After a 6-month follow-up, the re-evaluation of carotids revealed a statistically important decrease of cIMT values. This observation was accompanied by a statistically important elevation of HDL-C levels and a reduction of the titer of anti-oxLDL antibodies regardless of the bDMARD that was administered. No statistically significant association was found between the cIMT and anti-oxLDL, HDL-C, CRP, or DAS28 score neither before nor 6 months after treatment using linear regression analyses adjusted for age and gender. CONCLUSIONS We provide evidence that atherogenic lipid profile and ongoing atherosclerosis which characterize RA patients appear to improve after biological therapy, and we also suggest a possible atherogenic effect of IgG anti-ox LDL antibodies.
Collapse
Affiliation(s)
- G V Papamichail
- Department of Internal Medicine, Medical School, University of Ioannina, Ioannina, Greece
| | - A N Georgiadis
- Rheumatology Clinic, Department of Internal Medicine, Medical School, University of Ioannina, 45110, Ioannina, Greece
| | - C C Tellis
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - I Rapti
- Department of Internal Medicine, Medical School, University of Ioannina, Ioannina, Greece
| | - T E Markatseli
- Rheumatology Clinic, Department of Internal Medicine, Medical School, University of Ioannina, 45110, Ioannina, Greece
| | - V G Xydis
- Department of Radiology, Medical School, University of Ioannina, Ioannina, Greece
| | - A D Tselepis
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - A A Drosos
- Rheumatology Clinic, Department of Internal Medicine, Medical School, University of Ioannina, 45110, Ioannina, Greece
| | - P V Voulgari
- Rheumatology Clinic, Department of Internal Medicine, Medical School, University of Ioannina, 45110, Ioannina, Greece.
| |
Collapse
|
138
|
Maisat W, Hou L, Sandhu S, Sin YC, Kim S, Pelt HV, Chen Y, Emani S, Kong SW, Emani S, Ibla J, Yuki K. Neutrophil extracellular traps formation is associated with postoperative complications in neonates and infants undergoing congenital cardiac surgery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572768. [PMID: 38187754 PMCID: PMC10769315 DOI: 10.1101/2023.12.21.572768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Pediatric patients with congenital heart diseases (CHD) often undergo surgical repair on cardiopulmonary bypass (CPB). Despite a significant medical and surgical improvement, the mortality of neonates and infants remains high. Damage-associated molecular patterns (DAMPs) are endogenous molecules released from injured/damaged tissues as danger signals. We examined 101 pediatric patients who underwent congenital cardiac surgery on CPB. The mortality rate was 4.0%, and the complication rate was 31.6%. We found that neonates/infants experienced multiple complications most, consistent with the previous knowledge. Neonates and infants in the complication group had received more transfusion intraoperatively than the non-complication arm with lower maximum amplitude (MA) on rewarming CPB thromboelastography (TEG). Despite TEG profiles were comparable at ICU admission between the two groups, the complication arm had higher postoperative chest tube output, requiring more blood transfusion. The complication group showed greater neutrophil extracellular traps (NETs) formation at the end of CPB and postoperatively. Plasma histones and high mobility group box 1 (HMGB1) levels were significantly higher in the complication arm. Both induced NETs in vitro and in vivo . As histones and HMGB1 target Toll-like receptor (TLR)2 and TLR4, their mRNA expression in neutrophils was upregulated in the complication arm. Taken together, NETs play a major role in postoperative complication in pediatric cardiac surgery and would be considered a target for intervention. Key points Neonates and infants showed highest postoperative complications with more upregulation of inflammatory transcriptomes of neutrophils.Neonates and infants with organ dysfunction had more NETs formation with higher plasma histones and HMGB1 levels.
Collapse
|
139
|
Yong J, Toh CH. Rethinking coagulation: from enzymatic cascade and cell-based reactions to a convergent model involving innate immune activation. Blood 2023; 142:2133-2145. [PMID: 37890148 DOI: 10.1182/blood.2023021166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
ABSTRACT Advancements in the conceptual thinking of hemostasis and thrombosis have been catalyzed by major developments within health research over several decades. The cascade model of coagulation was first described in the 1960s, when biochemistry gained prominence through innovative experimentation and technical developments. This was followed by the cell-based model, which integrated cellular coordination to the enzymology of clot formation and was conceptualized during the growth period in cell biology at the turn of the millennium. Each step forward has heralded a revolution in clinical therapeutics, both in procoagulant and anticoagulant treatments to improve patient care. In current times, the COVID-19 pandemic may also prove to be a catalyst: thrombotic challenges including the mixed responses to anticoagulant treatment and the vaccine-induced immune thrombotic thrombocytopenia have exposed limitations in our preexisting concepts while simultaneously demanding novel therapeutic approaches. It is increasingly clear that innate immune activation as part of the host response to injury is not separate but integrated into adaptive clot formation. Our review summarizes current understanding of the major molecules facilitating such a cross talk between immunity, inflammation and coagulation. We demonstrate how such effects can be layered upon the cascade and cell-based models to evolve conceptual understanding of the physiology of immunohemostasis and the pathology of immunothrombosis.
Collapse
Affiliation(s)
- Jun Yong
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
- The Roald Dahl Haemostasis and Thrombosis Centre, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Cheng-Hock Toh
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
- The Roald Dahl Haemostasis and Thrombosis Centre, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
140
|
Wang S, Jiang D, Huang F, Qian Y, Qi M, Li H, Wang X, Wang Z, Wang K, Wang Y, Du P, Zhan B, Zhou R, Chu L, Yang X. Therapeutic effect of Echinococcus granulosus cyst fluid on bacterial sepsis in mice. Parasit Vectors 2023; 16:450. [PMID: 38066526 PMCID: PMC10709918 DOI: 10.1186/s13071-023-06021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/18/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The primary pathophysiological process of sepsis is to stimulate a massive release of inflammatory mediators to trigger systemic inflammatory response syndrome (SIRS), the major cause of multi-organ dysfunction and death. Like other helminths, Echinococcus granulosus induces host immunomodulation. We sought to determine whether E. granulosus cyst fluid (EgCF) displays a therapeutic effect on sepsis-induced inflammation and tissue damage in a mouse model. METHODS The anti-inflammatory effects of EgCF were determined by in vitro culture with bone marrow-derived macrophages (BMDMs) and in vivo treatment of BALB/C mice with cecal ligation and puncture (CLP)-induced sepsis. The macrophage phenotypes were determined by flow cytometry, and the levels of cytokines in cell supernatants or in sera of mice were measured (ELISA). The therapeutic effect of EgCF on sepsis was evaluated by observing the survival rates of mice for 72 h after CLP, and the pathological injury to the liver, kidney, and lung was measured under a microscope. The expression of TLR-2/MyD88 in tissues was measured by western blot to determine whether TLR-2/MyD88 is involved in the sepsis-induced inflammatory signaling pathway. RESULTS In vitro culture with BMDMs showed that EgCF promoted macrophage polarization to M2 type and inhibited lipopolysaccharide (LPS)-induced M1 macrophages. EgCF treatment provided significant therapeutic effects on CLP-induced sepsis in mice, with increased survival rates and alleviation of tissue injury. The EgCF conferred therapeutic efficacy was associated with upregulated anti-inflammatory cytokines (IL-10 and TGF-β) and reduced pro-inflammatory cytokines (TNF-α and INF-γ). Treatment with EgCF induced Arg-1-expressed M2, and inhibited iNOS-expressed M1 macrophages. The expression of TLR-2 and MyD88 in EgCF-treated mice was reduced. CONCLUSIONS The results demonstrated that EgCF confers a therapeutic effect on sepsis by inhibiting the production of pro-inflammatory cytokines and inducing regulatory cytokines. The anti-inflammatory effect of EgCF is carried out possibly through inducing macrophage polarization from pro-inflammatory M1 to regulatory M2 phenotype to reduce excessive inflammation of sepsis and subsequent multi-organ damage. The role of EgCF in regulating macrophage polarization may be achieved by inhibiting the TLR2/MyD88 signaling pathway.
Collapse
Affiliation(s)
- Shuying Wang
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
- Department of Pediatrics, Anqing First People's Hospital of Anhui Medical University, Anqing, 246000, China
| | - Donghui Jiang
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Feifei Huang
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Yayun Qian
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Meitao Qi
- Department of Pediatrics, Anqing First People's Hospital of Anhui Medical University, Anqing, 246000, China
| | - Huihui Li
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Xiaoli Wang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Zhi Wang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Kaigui Wang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Yin Wang
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Pengfei Du
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Bin Zhan
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rui Zhou
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Liang Chu
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China.
- Second Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China.
| | - Xiaodi Yang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
141
|
Good CJ, Butrico CE, Colley ME, Gibson-Corley KN, Cassat JE, Spraggins JM, Caprioli RM. In situ lipidomics of Staphylococcus aureus osteomyelitis using imaging mass spectrometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569690. [PMID: 38077019 PMCID: PMC10705574 DOI: 10.1101/2023.12.01.569690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Osteomyelitis occurs when Staphylococcus aureus invades the bone microenvironment, resulting in a bone marrow abscess with a spatially defined architecture of cells and biomolecules. Imaging mass spectrometry and microscopy are invaluable tools that can be employed to interrogate the lipidome of S. aureus-infected murine femurs to reveal metabolic and signaling consequences of infection. Here, nearly 250 lipids were spatially mapped to healthy and infection-associated morphological features throughout the femur, establishing composition profiles for tissue types. Ether lipids and arachidonoyl lipids were significantly altered between cells and tissue structures in abscesses, suggesting their roles in abscess formation and inflammatory signaling. Sterols, triglycerides, bis(monoacylglycero)phosphates, and gangliosides possessed ring-like distributions throughout the abscess, indicating dysregulated lipid metabolism in a subpopulation of leukocytes that cannot be discerned with traditional microscopy. These data provide chemical insight into the signaling function and metabolism of cells in the fibrotic border of abscesses, likely characteristic of lipid-laden macrophages.
Collapse
Affiliation(s)
- Christopher J. Good
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37235, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Casey E. Butrico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Madeline E. Colley
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Katherine N. Gibson-Corley
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James E. Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey M. Spraggins
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37235, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Richard M. Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37235, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
- Department of Medicine, Vanderbilt University, Nashville, TN 37235, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
142
|
Yang G, Yang Y, Liu Y, Liu X. Regulation of alveolar macrophage death in pulmonary fibrosis: a review. Apoptosis 2023; 28:1505-1519. [PMID: 37707713 PMCID: PMC10618387 DOI: 10.1007/s10495-023-01888-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 09/15/2023]
Abstract
Pulmonary fibrosis (PF) is a disease in which excessive extracellular matrix (ECM) accumulation occurs in pulmonary mesenchyme, which induces the destruction of alveolar structures and poor prognosis. Macrophage death is responsible for ECM accumulation after alveolar epithelial injury in PF. Depending on the local micro-environments, macrophages can be polarized to either classically activated (M1) or alternatively activated (M2) macrophage phenotypes. In general, M1 macrophages can promote inflammation and sterilization, stop the continuous damage process and prevent excessive repair, while M2 macrophages are anti-inflammatory and promote tissue repair, and excessive M2 macrophage activity may inhibit the absorption and degradation of ECM. Emerging evidence has revealed that death forms such as pyroptosis mediated by inflammasome affect polarization direction and ultimately lead to the development of PF. Pharmacological manipulation of macrophages death signals may serve as a logical therapeutic strategy for PF. This review will focus on the current state of knowledge regarding the regulation and underlying mechanisms of macrophages and their mediators in the influence of macrophage death on the development of PF. We expect to provide help in developing effective therapeutic strategies in clinical settings.
Collapse
Affiliation(s)
- Ganghao Yang
- Department of Respiratory and Critical Medicine, University of Electronic Science and Technology of China Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, Sichuan, China
| | - Yang Yang
- Department of Respiratory and Critical Medicine, University of Electronic Science and Technology of China Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, Sichuan, China
| | - Yiping Liu
- Department of Respiratory and Critical Medicine, University of Electronic Science and Technology of China Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, Sichuan, China
| | - Xiaoshu Liu
- Department of Respiratory and Critical Medicine, University of Electronic Science and Technology of China Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, Sichuan, China.
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, China.
| |
Collapse
|
143
|
Wang Q, Long G, Luo H, Zhu X, Han Y, Shang Y, Zhang D, Gong R. S100A8/A9: An emerging player in sepsis and sepsis-induced organ injury. Biomed Pharmacother 2023; 168:115674. [PMID: 37812889 DOI: 10.1016/j.biopha.2023.115674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023] Open
Abstract
Sepsis, the foremost contributor to mortality in intensive care unit patients, arises from an uncontrolled systemic response to invading infections, resulting in extensive harm across multiple organs and systems. Recently, S100A8/A9 has emerged as a promising biomarker for sepsis and sepsis-induced organ injury, and targeting S100A8/A9 appeared to ameliorate inflammation-induced tissue damage and improve adverse outcomes. S100A8/A9, a calcium-binding heterodimer mainly found in neutrophils and monocytes, serves as a causative molecule with pro-inflammatory and immunosuppressive properties, which are vital in the pathogenesis of sepsis. Therefore, improving our comprehension of how S100A8/A9 acts as a pathological player in the development of sepsis is imperative for advancing research on sepsis. Our review is the first-to the best of our knowledge-to discuss the biology of S100A8/A9 and its release mechanisms, summarize recent advances concerning the vital roles of S100A8/A9 in sepsis and the consequential organ damage, and underscore its potential as a promising diagnostic biomarker and therapeutic target for sepsis.
Collapse
Affiliation(s)
- Qian Wang
- Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430023, China
| | - Gangyu Long
- Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430023, China
| | - Hong Luo
- Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430023, China
| | - Xiqun Zhu
- Hubei Cancer Hospital, Tongji Medical College, HUST, Wuhan 430079, China
| | - Yang Han
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan 430023, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, HUST, Wuhan 430030, China.
| | - Dingyu Zhang
- Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430023, China; Hubei Clinical Research Center for Infectious Diseases, Wuhan 430023, China; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan 430023, China; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan 430023, China.
| | - Rui Gong
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
144
|
Valentí V, Capdevila L, Ruiz I, Ramos J, Badía J, Blázquez S, Villuendas Ó, Pérez C, Fernández-Sender L, Córdoba M, Alonso-Villaverde C. Variation of Plasma Damage-Associated Molecular Patterns in Patients with Advanced Solid Tumors after Standard of Care Systemic Treatment. Cancer Invest 2023; 41:821-829. [PMID: 37975838 DOI: 10.1080/07357907.2023.2283458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Immunogenic cell death (ICD) is known for releasing damage-associated molecular patterns (DAMPs) from tumor cells. We aimed to find ICD signals by assessing the variation of plasmatic DAMPs (HMGB1, S100A8) before-after standard of care (SoC) systemic treatment in patients with advanced solid tumors. METHODS Patients scheduled to start a new line of systemic treatment were included. Plasmatic concentrations of HMGB1 and S100A8 were measured (ng/mL) before and after three months of treatment. RESULTS Fifty-two patients were included. Forty-four patients (85%) had metastases, and 8 (15%) were treated for stage III tumors. The most frequent tumor sites were colorectal (35%) and lung (25%). Forty-two patients (81%) received this treatment in the first-line setting. Thirty-six patients (69%) were treated chemotherapy (CT) alone, ten (19%) CT plus targeted therapy, two (3.8%) carboplatin-pemetrexed-pembrolizumab, three (5.8%) pembrolizumab alone and one (1.9%) cetuximab alone. Median plasmatic concentration of S100A8 was significantly higher before than after treatment in the whole population (3.78 vs. 2.91 ng/mL; p = 0.011) and more markedly in the subgroups of patients who experienced RECIST-assessed tumor response (5.70 vs. 2.63 ng/mL; p = 0.002). Median plasmatic concentration of HMGB1was not significantly different before and after treatment (10.23 vs. 11.85 ng/mL; p = 0.382) and did not differ depending on tumor response. Median PFS was not significantly different between patients whose plasma HMBG1 concentration decreased or increased (8.0 vs. 10.6 months; p = 0.29) after treatment. Median PFS was significantly longer in those patients in whom the plasma concentration of S100A8 decreased after treatment (12 vs. 4.7 months; p < 0.001). Median OS was not significantly different between patients whose plasma HMBG1 concentration decreased or increased (13.1 vs. 14.7 months; p = 0.46) after treatment. Median OS was significantly longer in those patients in whom the plasma concentration of S100A8 decreased after treatment (16.7 vs. 9.0 months; p < 0.001). CONCLUSIONS Signals of ICD were not observed. S100A8 behaves as an inflammatory marker with decreased concentration after treatment, mostly in RECIST-responders. PFS and OS were significantly prolonged in those patients who experienced a decrease of S100A8 compared with those patients who experienced increase of plasma S100A8 at three months.
Collapse
Affiliation(s)
| | - Laia Capdevila
- Medical Oncology, Hospital Santa Tecla, Tarragona, Spain
| | - Isabel Ruiz
- Medical Oncology, Hospital del Vendrell, El Vendrell, Spain
| | - Javier Ramos
- Medical Oncology, Hospital Santa Tecla, Tarragona, Spain
| | - Joan Badía
- Medical Oncology, Hospital Santa Tecla, Tarragona, Spain
| | | | | | - Cristina Pérez
- Medical Oncology, Hospital del Vendrell, El Vendrell, Spain
| | | | - Mónica Córdoba
- Internal Medicine, Hospital Santa Tecla, Tarragona, Spain
| | | |
Collapse
|
145
|
Wang W, He Z. Gasdermins in sepsis. Front Immunol 2023; 14:1203687. [PMID: 38022612 PMCID: PMC10655013 DOI: 10.3389/fimmu.2023.1203687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis is a hyper-heterogeneous syndrome in which the systemic inflammatory response persists throughout the course of the disease and the inflammatory and immune responses are dynamically altered at different pathogenic stages. Gasdermins (GSDMs) proteins are pore-forming executors in the membrane, subsequently mediating the release of pro-inflammatory mediators and inflammatory cell death. With the increasing research on GSDMs proteins and sepsis, it is believed that GSDMs protein are one of the most promising therapeutic targets in sepsis in the future. A more comprehensive and in-depth understanding of the functions of GSDMs proteins in sepsis is important to alleviate the multi-organ dysfunction and reduce sepsis-induced mortality. In this review, we focus on the function of GSDMs proteins, the molecular mechanism of GSDMs involved in sepsis, and the regulatory mechanism of GSDMs-mediated signaling pathways, aiming to provide novel ideas and therapeutic strategies for the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
- Wenhua Wang
- Department of Intensive Care Unit, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhihui He
- Department of Intensive Care Unit, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan, China
| |
Collapse
|
146
|
Marinkovic M, Tran ON, Wang H, Abdul-Azees P, Dean DD, Chen XD, Yeh CK. Extracellular matrix turnover in salivary gland disorders and regenerative therapies: Obstacles and opportunities. J Oral Biol Craniofac Res 2023; 13:693-703. [PMID: 37719063 PMCID: PMC10502366 DOI: 10.1016/j.jobcr.2023.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/28/2023] [Indexed: 09/19/2023] Open
Abstract
Salivary gland (SG) extracellular matrix (ECM) has a major influence on tissue development, homeostasis, and tissue regeneration after injury. During aging, disease, and physical insult, normal remodeling of the SG microenvironment (i.e. ECM) becomes dysregulated, leading to alterations in matrix composition which disrupt tissue architecture/structure, alter cell activity, and negatively impact gland function. Matrix metalloproteinases (MMPs) are a large and diverse family of metalloendopeptidases which play a major role in matrix degradation and are intimately involved in regulating development and cell function; dysregulation of these enzymes leads to the production of a fibrotic matrix. In the SG this altered fibrotic ECM (or cell microenvironment) negatively impacts normal cell function and the effectiveness of gene and stem cell therapies which serve as a foundation for many SG regenerative therapies. For this reason, prospective regenerative strategies should prioritize the maintenance and/or restoration of a healthy SG ECM. Mesenchymal stem cells (MSCs) have great potential for mitigating damage to the SG microenvironment by ameliorating inflammation, reducing fibrosis, and repairing the damaged milieu of extracellular regulatory cues, including the matrix. This review addresses our current understanding of the impact of aging and disease on the SG microenvironment and suggests critical deficiencies and opportunities in ECM-targeted therapeutic interventions.
Collapse
Affiliation(s)
- Milos Marinkovic
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, 78229-4404, USA
| | - Olivia N. Tran
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
| | - Hanzhou Wang
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
| | - Parveez Abdul-Azees
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, 78229-4404, USA
| | - David D. Dean
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Xiao-Dong Chen
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, 78229-4404, USA
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Chih-Ko Yeh
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, 78229-4404, USA
| |
Collapse
|
147
|
Rivera-Concha R, Moya C, León M, Uribe P, Schulz M, Prado A, Taubert A, Hermosilla C, Sánchez R, Zambrano F. Effect of different sperm populations on neutrophils extracellular traps (NETs) formation in cattle. Res Vet Sci 2023; 164:105028. [PMID: 37804665 DOI: 10.1016/j.rvsc.2023.105028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
In cattle, clinical and subclinical inflammation in the bovine female reproductive tract (FRT) significantly reduces fertility. PMN participate in this FRT-associated inflammation by eliminating pathogens by eliciting various defense mechanisms, with the release of neutrophil extracellular traps NETs) being the latest process discovered. Consistently, human-, bovine- and porcine-derived spermatozoa induce release of NETs in exposed PMN of the same species origin, and thereby decreasing sperm motility through NETs-mediated entrapment. The release of NETs in the presence of different sperm sub-populations is evaluated in this work. Cryopreserved bovine sperm were selected and different sperm populations were used: viable sperm, sperm with oxidative stress, capacitated sperm, and sperm with loss of viability. Isolated PMN of dairy cows were co-incubated with these sperm populations for 4 h. Neutrophil elastase (NE) and DNA were detected by fluorescence microscopy analysis. It was noted that exposed bovine PMN released NETs in the presence of sperm. Moreover, sperm-triggered NETosis resulted different phenotypes of NETs, i. e. spread NETs (sprNETs), diffused NETs (diffNETs) and aggregated NETs (aggNETs). Viable/motile spermatozoa induced a higher proportion of NETotic cells at 15, 60 and 120 min in comparison to controls. In conclusion, all bovine sperm populations in co-culture with PMN generated NETs extrusion while viable sperm activated NETotic cells to a greater extent. With this being an early event in the activation of bovine PMN.
Collapse
Affiliation(s)
- Rodrigo Rivera-Concha
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; Ph.D. Program in Medical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Claudia Moya
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Marion León
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Pamela Uribe
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Mabel Schulz
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Aurora Prado
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Raúl Sánchez
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Fabiola Zambrano
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| |
Collapse
|
148
|
Jiao C, Zhang H, Li H, Fu X, Lin Y, Cao C, Liu S, Liu Y, Li P. Caspase-3/GSDME mediated pyroptosis: A potential pathway for sepsis. Int Immunopharmacol 2023; 124:111022. [PMID: 37837715 DOI: 10.1016/j.intimp.2023.111022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
The inflammatory response is one of the host's mechanisms to combat pathogens. Normal and controlled inflammation can accelerate the clearance of pathogens. However, in sepsis, the host often exhibits an excessive inflammatory response to infection, leading to tissue and organ damage. Therefore, studying the mechanisms underlying the occurrence and development of sepsis is of significant importance. Pyroptosis is a form of programmed cell death (PCD) executed by the gasdermins (GSDMs) family, and its pro-inflammatory characteristics are considered a crucial component of the sepsis mechanism. Previous research on pyroptosis in sepsis has mainly focused on the caspase-1/4/5/11-GSDMD pathway, which has made significant progress. However, there is a lack of research on the roles of other GSDMs family members in sepsis. New research has revealed that the caspase-3/GSDME pathway can also mediate pyroptosis, playing important roles in cancer, other inflammatory diseases, and even some sepsis-related conditions. This discovery suggests the potential value of investigating caspase-3/GSDME in sepsis research. This review provides an overview of the role of the GSDMs family in infectious diseases, summarizes current research on the caspase-1/4/5/11-GSDMD pathway, describes the role of caspase-3 in sepsis, and discusses the research findings related to pyroptosis mediated by the caspase-3/GSDME pathway in cancer, inflammatory diseases, and sepsis-related conditions. The aim of this article is to propose the concept of caspase-3/GSDME as a potential target in sepsis research. Considering the role of this pathway in other diseases, including inflammatory conditions, and given the unique nature of sepsis as an inflammatory disease, the article suggests that this pathway may also play a role in sepsis. This hypothesis provides new insights and options for future sepsis research, although direct experiments are needed to validate this hypothesis.
Collapse
Affiliation(s)
- Chaoze Jiao
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Haidan Zhang
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Hongyao Li
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Xu Fu
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Yujie Lin
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Chenglong Cao
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Shixian Liu
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Yijing Liu
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Peiwu Li
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China.
| |
Collapse
|
149
|
Li P, Liang S, Wang L, Guan X, Wang J, Gong P. PREDICTIVE VALUE OF NEUTROPHIL EXTRACELLULAR TRAP COMPONENTS FOR 28-DAY ALL-CAUSE MORTALITY IN PATIENTS WITH CARDIAC ARREST: A PILOT OBSERVATIONAL STUDY. Shock 2023; 60:664-670. [PMID: 37695643 DOI: 10.1097/shk.0000000000002225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
ABSTRACT Background: Ischemia-reperfusion after cardiac arrest (CA) activates peptidyl arginine deiminase and citrullinated histone H3 (CitH3), which leads to the formation of neutrophil extracellular traps (NETs). This study attempted to determine the alterations in NET components in post-CA patients as well as analyze the association of NETs with 28-day all-cause mortality. Methods : In this study, 95 patients with restoration of spontaneous circulation (ROSC) after CA were included. They were categorized into the survivor group (n = 32) and the nonsurvivor group (n = 63) according to their 28-day survival statuses. The control group comprised 20 healthy individuals. The blood samples were collected from the patients on days 1, 3, and 7 after ROSC and from the control subjects at the time of enrollment. The serum cell-free DNA (cfDNA) level was determined using the fluorescent labeling method, and the serum concentrations of NET components, including CitH3, myeloperoxidase, neutrophil elastase, and nucleosomes, were estimated using the enzyme-linked immunosorbent assay. Results : Compared with the control group, the serum NET components were significantly increased in the patients 1 week after ROSC (all P < 0.05). These components were significantly higher in the nonsurvivor group than in the survivor group (all P < 0.05). Spearman correlational analysis revealed that the components were positively correlated with Acute Physiology and Chronic Health Evaluation II scores (both P < 0.05). Binary logistic regression analysis indicated that serum cfDNA, CitH3, and nucleosomes on days 1 and 3 after ROSC were independent predictors of 28-day all-cause mortality. Furthermore, these parameters on day 1 after ROSC had the biggest areas under the receiver operating characteristic curves (0.876, 0.862, and 0.861, respectively). Conclusions: Elevated serum levels of cfDNA, CitH3, myeloperoxidase, neutrophil elastase, and nucleosomes were positively correlated with disease severity after ROSC. However, only serum CitH3, cfDNA, and nucleosomes on day 1 after ROSC showed a good predictive value for 28-day all-cause mortality.
Collapse
Affiliation(s)
- Peijuan Li
- Department of Emergency, First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning, China
| | - Shuangshuang Liang
- Department of Emergency, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou City, Henan, China
| | - Ling Wang
- Department of Emergency, First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning, China
| | - Xiaolan Guan
- Department of Emergency, First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning, China
| | - Jin Wang
- Department of Emergency, Shenzhen People's Hospital (Second Clinical Medical College, Jinan University; First Affiliated Hospital, Southern University of Science and Technology), Shenzhen City, Guangdong, China
| | | |
Collapse
|
150
|
Liu X, Qian N, Zhu L, Fan L, Fu G, Ma M, Bao J, Cao C, Liang X. Geniposide ameliorates acute kidney injury via enhancing the phagocytic ability of macrophages towards neutrophil extracellular traps. Eur J Pharmacol 2023; 957:176018. [PMID: 37634840 DOI: 10.1016/j.ejphar.2023.176018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Acute kidney injury (AKI) is a clinically serious disorder associated with high mortality rates and an increased risk of progression to end-stage renal disease. As an essential supportive treatment for patients with respiratory failure, mechanical ventilation not only save many critically ill patients, but also affect glomerular filtration function by changing renal hemodynamics, neurohumoral and positive end-expiratory pressure, eventually leading to AKI. AMP-activated protein kinase (AMPK), a crucial energy homeostasis regulator, could enhance macrophage phagocytic ability and inhibit inflammation, but whether it can engulf neutrophil extracellular traps (NETs) and alleviate mechanical ventilation-associated AKI is still unclear. In this study, we found that geniposide significantly ameliorated histopathological damage, reduced serum Cre and BUN levels. Besides, geniposide can also induce AMPK activation and enhance macrophage phagocytic ability toward NETs. Moreover, geniposide can markedly reduce the levels of high mobility group box 1 (HMGB1), and these effects were dependent on AMPK-PI3K/Akt signaling. Altogether, these results indicated that geniposide promoted macrophage efferocytosis by inducing AMPK-PI3K/Akt signaling activation, clearing NETs and ameliorating AKI.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, Jiangsu, China; The Second People's Hospital of Lianyungang, Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222006, Jiangsu, China
| | - Na Qian
- The Second People's Hospital of Lianyungang, Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222006, Jiangsu, China
| | - Li Zhu
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Li Fan
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, Jiangsu, China; Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Guanghao Fu
- The Second People's Hospital of Lianyungang, Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222006, Jiangsu, China
| | - Mengqing Ma
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Jiaxin Bao
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Changchun Cao
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, Jiangsu, China.
| | - Xiubin Liang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|